xref: /freebsd/sys/netinet6/in6_mcast.c (revision 3823d5e198425b4f5e5a80267d195769d1063773)
1 /*
2  * Copyright (c) 2009 Bruce Simpson.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote
14  *    products derived from this software without specific prior written
15  *    permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * IPv6 multicast socket, group, and socket option processing module.
32  * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet6.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/protosw.h>
49 #include <sys/sysctl.h>
50 #include <sys/priv.h>
51 #include <sys/ktr.h>
52 #include <sys/tree.h>
53 
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/if_dl.h>
57 #include <net/route.h>
58 #include <net/vnet.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_var.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/tcp_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet6/mld6_var.h>
70 #include <netinet6/scope6_var.h>
71 
72 #ifndef KTR_MLD
73 #define KTR_MLD KTR_INET6
74 #endif
75 
76 #ifndef __SOCKUNION_DECLARED
77 union sockunion {
78 	struct sockaddr_storage	ss;
79 	struct sockaddr		sa;
80 	struct sockaddr_dl	sdl;
81 	struct sockaddr_in6	sin6;
82 };
83 typedef union sockunion sockunion_t;
84 #define __SOCKUNION_DECLARED
85 #endif /* __SOCKUNION_DECLARED */
86 
87 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter",
88     "IPv6 multicast PCB-layer source filter");
89 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group");
90 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options");
91 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource",
92     "IPv6 multicast MLD-layer source filter");
93 
94 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp);
95 
96 /*
97  * Locking:
98  * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
99  * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however
100  *   it can be taken by code in net/if.c also.
101  * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK.
102  *
103  * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly
104  * any need for in6_multi itself to be virtualized -- it is bound to an ifp
105  * anyway no matter what happens.
106  */
107 struct mtx in6_multi_mtx;
108 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF);
109 
110 static void	im6f_commit(struct in6_mfilter *);
111 static int	im6f_get_source(struct in6_mfilter *imf,
112 		    const struct sockaddr_in6 *psin,
113 		    struct in6_msource **);
114 static struct in6_msource *
115 		im6f_graft(struct in6_mfilter *, const uint8_t,
116 		    const struct sockaddr_in6 *);
117 static void	im6f_leave(struct in6_mfilter *);
118 static int	im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *);
119 static void	im6f_purge(struct in6_mfilter *);
120 static void	im6f_rollback(struct in6_mfilter *);
121 static void	im6f_reap(struct in6_mfilter *);
122 static int	im6o_grow(struct ip6_moptions *);
123 static size_t	im6o_match_group(const struct ip6_moptions *,
124 		    const struct ifnet *, const struct sockaddr *);
125 static struct in6_msource *
126 		im6o_match_source(const struct ip6_moptions *, const size_t,
127 		    const struct sockaddr *);
128 static void	im6s_merge(struct ip6_msource *ims,
129 		    const struct in6_msource *lims, const int rollback);
130 static int	in6_mc_get(struct ifnet *, const struct in6_addr *,
131 		    struct in6_multi **);
132 static int	in6m_get_source(struct in6_multi *inm,
133 		    const struct in6_addr *addr, const int noalloc,
134 		    struct ip6_msource **pims);
135 #ifdef KTR
136 static int	in6m_is_ifp_detached(const struct in6_multi *);
137 #endif
138 static int	in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *);
139 static void	in6m_purge(struct in6_multi *);
140 static void	in6m_reap(struct in6_multi *);
141 static struct ip6_moptions *
142 		in6p_findmoptions(struct inpcb *);
143 static int	in6p_get_source_filters(struct inpcb *, struct sockopt *);
144 static int	in6p_join_group(struct inpcb *, struct sockopt *);
145 static int	in6p_leave_group(struct inpcb *, struct sockopt *);
146 static struct ifnet *
147 		in6p_lookup_mcast_ifp(const struct inpcb *,
148 		    const struct sockaddr_in6 *);
149 static int	in6p_block_unblock_source(struct inpcb *, struct sockopt *);
150 static int	in6p_set_multicast_if(struct inpcb *, struct sockopt *);
151 static int	in6p_set_source_filters(struct inpcb *, struct sockopt *);
152 static int	sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS);
153 
154 SYSCTL_DECL(_net_inet6_ip6);	/* XXX Not in any common header. */
155 
156 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0,
157     "IPv6 multicast");
158 
159 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER;
160 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc,
161     CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0,
162     "Max source filters per group");
163 
164 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER;
165 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc,
166     CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0,
167     "Max source filters per socket");
168 
169 /* TODO Virtualize this switch. */
170 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
171 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
172     &in6_mcast_loop, 0, "Loopback multicast datagrams by default");
173 
174 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters,
175     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters,
176     "Per-interface stack-wide source filters");
177 
178 #ifdef KTR
179 /*
180  * Inline function which wraps assertions for a valid ifp.
181  * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
182  * is detached.
183  */
184 static int __inline
185 in6m_is_ifp_detached(const struct in6_multi *inm)
186 {
187 	struct ifnet *ifp;
188 
189 	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
190 	ifp = inm->in6m_ifma->ifma_ifp;
191 	if (ifp != NULL) {
192 		/*
193 		 * Sanity check that network-layer notion of ifp is the
194 		 * same as that of link-layer.
195 		 */
196 		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
197 	}
198 
199 	return (ifp == NULL);
200 }
201 #endif
202 
203 /*
204  * Initialize an in6_mfilter structure to a known state at t0, t1
205  * with an empty source filter list.
206  */
207 static __inline void
208 im6f_init(struct in6_mfilter *imf, const int st0, const int st1)
209 {
210 	memset(imf, 0, sizeof(struct in6_mfilter));
211 	RB_INIT(&imf->im6f_sources);
212 	imf->im6f_st[0] = st0;
213 	imf->im6f_st[1] = st1;
214 }
215 
216 /*
217  * Resize the ip6_moptions vector to the next power-of-two minus 1.
218  * May be called with locks held; do not sleep.
219  */
220 static int
221 im6o_grow(struct ip6_moptions *imo)
222 {
223 	struct in6_multi	**nmships;
224 	struct in6_multi	**omships;
225 	struct in6_mfilter	 *nmfilters;
226 	struct in6_mfilter	 *omfilters;
227 	size_t			  idx;
228 	size_t			  newmax;
229 	size_t			  oldmax;
230 
231 	nmships = NULL;
232 	nmfilters = NULL;
233 	omships = imo->im6o_membership;
234 	omfilters = imo->im6o_mfilters;
235 	oldmax = imo->im6o_max_memberships;
236 	newmax = ((oldmax + 1) * 2) - 1;
237 
238 	if (newmax <= IPV6_MAX_MEMBERSHIPS) {
239 		nmships = (struct in6_multi **)realloc(omships,
240 		    sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT);
241 		nmfilters = (struct in6_mfilter *)realloc(omfilters,
242 		    sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER,
243 		    M_NOWAIT);
244 		if (nmships != NULL && nmfilters != NULL) {
245 			/* Initialize newly allocated source filter heads. */
246 			for (idx = oldmax; idx < newmax; idx++) {
247 				im6f_init(&nmfilters[idx], MCAST_UNDEFINED,
248 				    MCAST_EXCLUDE);
249 			}
250 			imo->im6o_max_memberships = newmax;
251 			imo->im6o_membership = nmships;
252 			imo->im6o_mfilters = nmfilters;
253 		}
254 	}
255 
256 	if (nmships == NULL || nmfilters == NULL) {
257 		if (nmships != NULL)
258 			free(nmships, M_IP6MOPTS);
259 		if (nmfilters != NULL)
260 			free(nmfilters, M_IN6MFILTER);
261 		return (ETOOMANYREFS);
262 	}
263 
264 	return (0);
265 }
266 
267 /*
268  * Find an IPv6 multicast group entry for this ip6_moptions instance
269  * which matches the specified group, and optionally an interface.
270  * Return its index into the array, or -1 if not found.
271  */
272 static size_t
273 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp,
274     const struct sockaddr *group)
275 {
276 	const struct sockaddr_in6 *gsin6;
277 	struct in6_multi	**pinm;
278 	int		  idx;
279 	int		  nmships;
280 
281 	gsin6 = (const struct sockaddr_in6 *)group;
282 
283 	/* The im6o_membership array may be lazy allocated. */
284 	if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0)
285 		return (-1);
286 
287 	nmships = imo->im6o_num_memberships;
288 	pinm = &imo->im6o_membership[0];
289 	for (idx = 0; idx < nmships; idx++, pinm++) {
290 		if (*pinm == NULL)
291 			continue;
292 		if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) &&
293 		    IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr,
294 		    &gsin6->sin6_addr)) {
295 			break;
296 		}
297 	}
298 	if (idx >= nmships)
299 		idx = -1;
300 
301 	return (idx);
302 }
303 
304 /*
305  * Find an IPv6 multicast source entry for this imo which matches
306  * the given group index for this socket, and source address.
307  *
308  * XXX TODO: The scope ID, if present in src, is stripped before
309  * any comparison. We SHOULD enforce scope/zone checks where the source
310  * filter entry has a link scope.
311  *
312  * NOTE: This does not check if the entry is in-mode, merely if
313  * it exists, which may not be the desired behaviour.
314  */
315 static struct in6_msource *
316 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx,
317     const struct sockaddr *src)
318 {
319 	struct ip6_msource	 find;
320 	struct in6_mfilter	*imf;
321 	struct ip6_msource	*ims;
322 	const sockunion_t	*psa;
323 
324 	KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__));
325 	KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships,
326 	    ("%s: invalid index %d\n", __func__, (int)gidx));
327 
328 	/* The im6o_mfilters array may be lazy allocated. */
329 	if (imo->im6o_mfilters == NULL)
330 		return (NULL);
331 	imf = &imo->im6o_mfilters[gidx];
332 
333 	psa = (const sockunion_t *)src;
334 	find.im6s_addr = psa->sin6.sin6_addr;
335 	in6_clearscope(&find.im6s_addr);		/* XXX */
336 	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
337 
338 	return ((struct in6_msource *)ims);
339 }
340 
341 /*
342  * Perform filtering for multicast datagrams on a socket by group and source.
343  *
344  * Returns 0 if a datagram should be allowed through, or various error codes
345  * if the socket was not a member of the group, or the source was muted, etc.
346  */
347 int
348 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp,
349     const struct sockaddr *group, const struct sockaddr *src)
350 {
351 	size_t gidx;
352 	struct in6_msource *ims;
353 	int mode;
354 
355 	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
356 
357 	gidx = im6o_match_group(imo, ifp, group);
358 	if (gidx == -1)
359 		return (MCAST_NOTGMEMBER);
360 
361 	/*
362 	 * Check if the source was included in an (S,G) join.
363 	 * Allow reception on exclusive memberships by default,
364 	 * reject reception on inclusive memberships by default.
365 	 * Exclude source only if an in-mode exclude filter exists.
366 	 * Include source only if an in-mode include filter exists.
367 	 * NOTE: We are comparing group state here at MLD t1 (now)
368 	 * with socket-layer t0 (since last downcall).
369 	 */
370 	mode = imo->im6o_mfilters[gidx].im6f_st[1];
371 	ims = im6o_match_source(imo, gidx, src);
372 
373 	if ((ims == NULL && mode == MCAST_INCLUDE) ||
374 	    (ims != NULL && ims->im6sl_st[0] != mode))
375 		return (MCAST_NOTSMEMBER);
376 
377 	return (MCAST_PASS);
378 }
379 
380 /*
381  * Find and return a reference to an in6_multi record for (ifp, group),
382  * and bump its reference count.
383  * If one does not exist, try to allocate it, and update link-layer multicast
384  * filters on ifp to listen for group.
385  * Assumes the IN6_MULTI lock is held across the call.
386  * Return 0 if successful, otherwise return an appropriate error code.
387  */
388 static int
389 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group,
390     struct in6_multi **pinm)
391 {
392 	struct sockaddr_in6	 gsin6;
393 	struct ifmultiaddr	*ifma;
394 	struct in6_multi	*inm;
395 	int			 error;
396 
397 	error = 0;
398 
399 	/*
400 	 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK;
401 	 * if_addmulti() takes this mutex itself, so we must drop and
402 	 * re-acquire around the call.
403 	 */
404 	IN6_MULTI_LOCK_ASSERT();
405 	IF_ADDR_WLOCK(ifp);
406 
407 	inm = in6m_lookup_locked(ifp, group);
408 	if (inm != NULL) {
409 		/*
410 		 * If we already joined this group, just bump the
411 		 * refcount and return it.
412 		 */
413 		KASSERT(inm->in6m_refcount >= 1,
414 		    ("%s: bad refcount %d", __func__, inm->in6m_refcount));
415 		++inm->in6m_refcount;
416 		*pinm = inm;
417 		goto out_locked;
418 	}
419 
420 	memset(&gsin6, 0, sizeof(gsin6));
421 	gsin6.sin6_family = AF_INET6;
422 	gsin6.sin6_len = sizeof(struct sockaddr_in6);
423 	gsin6.sin6_addr = *group;
424 
425 	/*
426 	 * Check if a link-layer group is already associated
427 	 * with this network-layer group on the given ifnet.
428 	 */
429 	IF_ADDR_WUNLOCK(ifp);
430 	error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma);
431 	if (error != 0)
432 		return (error);
433 	IF_ADDR_WLOCK(ifp);
434 
435 	/*
436 	 * If something other than netinet6 is occupying the link-layer
437 	 * group, print a meaningful error message and back out of
438 	 * the allocation.
439 	 * Otherwise, bump the refcount on the existing network-layer
440 	 * group association and return it.
441 	 */
442 	if (ifma->ifma_protospec != NULL) {
443 		inm = (struct in6_multi *)ifma->ifma_protospec;
444 #ifdef INVARIANTS
445 		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
446 		    __func__));
447 		KASSERT(ifma->ifma_addr->sa_family == AF_INET6,
448 		    ("%s: ifma not AF_INET6", __func__));
449 		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
450 		if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp ||
451 		    !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group))
452 			panic("%s: ifma %p is inconsistent with %p (%p)",
453 			    __func__, ifma, inm, group);
454 #endif
455 		++inm->in6m_refcount;
456 		*pinm = inm;
457 		goto out_locked;
458 	}
459 
460 	IF_ADDR_WLOCK_ASSERT(ifp);
461 
462 	/*
463 	 * A new in6_multi record is needed; allocate and initialize it.
464 	 * We DO NOT perform an MLD join as the in6_ layer may need to
465 	 * push an initial source list down to MLD to support SSM.
466 	 *
467 	 * The initial source filter state is INCLUDE, {} as per the RFC.
468 	 * Pending state-changes per group are subject to a bounds check.
469 	 */
470 	inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO);
471 	if (inm == NULL) {
472 		if_delmulti_ifma(ifma);
473 		error = ENOMEM;
474 		goto out_locked;
475 	}
476 	inm->in6m_addr = *group;
477 	inm->in6m_ifp = ifp;
478 	inm->in6m_mli = MLD_IFINFO(ifp);
479 	inm->in6m_ifma = ifma;
480 	inm->in6m_refcount = 1;
481 	inm->in6m_state = MLD_NOT_MEMBER;
482 	IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES);
483 
484 	inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED;
485 	inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
486 	RB_INIT(&inm->in6m_srcs);
487 
488 	ifma->ifma_protospec = inm;
489 	*pinm = inm;
490 
491 out_locked:
492 	IF_ADDR_WUNLOCK(ifp);
493 	return (error);
494 }
495 
496 /*
497  * Drop a reference to an in6_multi record.
498  *
499  * If the refcount drops to 0, free the in6_multi record and
500  * delete the underlying link-layer membership.
501  */
502 void
503 in6m_release_locked(struct in6_multi *inm)
504 {
505 	struct ifmultiaddr *ifma;
506 
507 	IN6_MULTI_LOCK_ASSERT();
508 
509 	CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount);
510 
511 	if (--inm->in6m_refcount > 0) {
512 		CTR2(KTR_MLD, "%s: refcount is now %d", __func__,
513 		    inm->in6m_refcount);
514 		return;
515 	}
516 
517 	CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm);
518 
519 	ifma = inm->in6m_ifma;
520 
521 	/* XXX this access is not covered by IF_ADDR_LOCK */
522 	CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma);
523 	KASSERT(ifma->ifma_protospec == inm,
524 	    ("%s: ifma_protospec != inm", __func__));
525 	ifma->ifma_protospec = NULL;
526 
527 	in6m_purge(inm);
528 
529 	free(inm, M_IP6MADDR);
530 
531 	if_delmulti_ifma(ifma);
532 }
533 
534 /*
535  * Clear recorded source entries for a group.
536  * Used by the MLD code. Caller must hold the IN6_MULTI lock.
537  * FIXME: Should reap.
538  */
539 void
540 in6m_clear_recorded(struct in6_multi *inm)
541 {
542 	struct ip6_msource	*ims;
543 
544 	IN6_MULTI_LOCK_ASSERT();
545 
546 	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
547 		if (ims->im6s_stp) {
548 			ims->im6s_stp = 0;
549 			--inm->in6m_st[1].iss_rec;
550 		}
551 	}
552 	KASSERT(inm->in6m_st[1].iss_rec == 0,
553 	    ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec));
554 }
555 
556 /*
557  * Record a source as pending for a Source-Group MLDv2 query.
558  * This lives here as it modifies the shared tree.
559  *
560  * inm is the group descriptor.
561  * naddr is the address of the source to record in network-byte order.
562  *
563  * If the net.inet6.mld.sgalloc sysctl is non-zero, we will
564  * lazy-allocate a source node in response to an SG query.
565  * Otherwise, no allocation is performed. This saves some memory
566  * with the trade-off that the source will not be reported to the
567  * router if joined in the window between the query response and
568  * the group actually being joined on the local host.
569  *
570  * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed.
571  * This turns off the allocation of a recorded source entry if
572  * the group has not been joined.
573  *
574  * Return 0 if the source didn't exist or was already marked as recorded.
575  * Return 1 if the source was marked as recorded by this function.
576  * Return <0 if any error occured (negated errno code).
577  */
578 int
579 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr)
580 {
581 	struct ip6_msource	 find;
582 	struct ip6_msource	*ims, *nims;
583 
584 	IN6_MULTI_LOCK_ASSERT();
585 
586 	find.im6s_addr = *addr;
587 	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
588 	if (ims && ims->im6s_stp)
589 		return (0);
590 	if (ims == NULL) {
591 		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
592 			return (-ENOSPC);
593 		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
594 		    M_NOWAIT | M_ZERO);
595 		if (nims == NULL)
596 			return (-ENOMEM);
597 		nims->im6s_addr = find.im6s_addr;
598 		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
599 		++inm->in6m_nsrc;
600 		ims = nims;
601 	}
602 
603 	/*
604 	 * Mark the source as recorded and update the recorded
605 	 * source count.
606 	 */
607 	++ims->im6s_stp;
608 	++inm->in6m_st[1].iss_rec;
609 
610 	return (1);
611 }
612 
613 /*
614  * Return a pointer to an in6_msource owned by an in6_mfilter,
615  * given its source address.
616  * Lazy-allocate if needed. If this is a new entry its filter state is
617  * undefined at t0.
618  *
619  * imf is the filter set being modified.
620  * addr is the source address.
621  *
622  * SMPng: May be called with locks held; malloc must not block.
623  */
624 static int
625 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin,
626     struct in6_msource **plims)
627 {
628 	struct ip6_msource	 find;
629 	struct ip6_msource	*ims, *nims;
630 	struct in6_msource	*lims;
631 	int			 error;
632 
633 	error = 0;
634 	ims = NULL;
635 	lims = NULL;
636 
637 	find.im6s_addr = psin->sin6_addr;
638 	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
639 	lims = (struct in6_msource *)ims;
640 	if (lims == NULL) {
641 		if (imf->im6f_nsrc == in6_mcast_maxsocksrc)
642 			return (ENOSPC);
643 		nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
644 		    M_NOWAIT | M_ZERO);
645 		if (nims == NULL)
646 			return (ENOMEM);
647 		lims = (struct in6_msource *)nims;
648 		lims->im6s_addr = find.im6s_addr;
649 		lims->im6sl_st[0] = MCAST_UNDEFINED;
650 		RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
651 		++imf->im6f_nsrc;
652 	}
653 
654 	*plims = lims;
655 
656 	return (error);
657 }
658 
659 /*
660  * Graft a source entry into an existing socket-layer filter set,
661  * maintaining any required invariants and checking allocations.
662  *
663  * The source is marked as being in the new filter mode at t1.
664  *
665  * Return the pointer to the new node, otherwise return NULL.
666  */
667 static struct in6_msource *
668 im6f_graft(struct in6_mfilter *imf, const uint8_t st1,
669     const struct sockaddr_in6 *psin)
670 {
671 	struct ip6_msource	*nims;
672 	struct in6_msource	*lims;
673 
674 	nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
675 	    M_NOWAIT | M_ZERO);
676 	if (nims == NULL)
677 		return (NULL);
678 	lims = (struct in6_msource *)nims;
679 	lims->im6s_addr = psin->sin6_addr;
680 	lims->im6sl_st[0] = MCAST_UNDEFINED;
681 	lims->im6sl_st[1] = st1;
682 	RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
683 	++imf->im6f_nsrc;
684 
685 	return (lims);
686 }
687 
688 /*
689  * Prune a source entry from an existing socket-layer filter set,
690  * maintaining any required invariants and checking allocations.
691  *
692  * The source is marked as being left at t1, it is not freed.
693  *
694  * Return 0 if no error occurred, otherwise return an errno value.
695  */
696 static int
697 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin)
698 {
699 	struct ip6_msource	 find;
700 	struct ip6_msource	*ims;
701 	struct in6_msource	*lims;
702 
703 	find.im6s_addr = psin->sin6_addr;
704 	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
705 	if (ims == NULL)
706 		return (ENOENT);
707 	lims = (struct in6_msource *)ims;
708 	lims->im6sl_st[1] = MCAST_UNDEFINED;
709 	return (0);
710 }
711 
712 /*
713  * Revert socket-layer filter set deltas at t1 to t0 state.
714  */
715 static void
716 im6f_rollback(struct in6_mfilter *imf)
717 {
718 	struct ip6_msource	*ims, *tims;
719 	struct in6_msource	*lims;
720 
721 	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
722 		lims = (struct in6_msource *)ims;
723 		if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
724 			/* no change at t1 */
725 			continue;
726 		} else if (lims->im6sl_st[0] != MCAST_UNDEFINED) {
727 			/* revert change to existing source at t1 */
728 			lims->im6sl_st[1] = lims->im6sl_st[0];
729 		} else {
730 			/* revert source added t1 */
731 			CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
732 			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
733 			free(ims, M_IN6MFILTER);
734 			imf->im6f_nsrc--;
735 		}
736 	}
737 	imf->im6f_st[1] = imf->im6f_st[0];
738 }
739 
740 /*
741  * Mark socket-layer filter set as INCLUDE {} at t1.
742  */
743 static void
744 im6f_leave(struct in6_mfilter *imf)
745 {
746 	struct ip6_msource	*ims;
747 	struct in6_msource	*lims;
748 
749 	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
750 		lims = (struct in6_msource *)ims;
751 		lims->im6sl_st[1] = MCAST_UNDEFINED;
752 	}
753 	imf->im6f_st[1] = MCAST_INCLUDE;
754 }
755 
756 /*
757  * Mark socket-layer filter set deltas as committed.
758  */
759 static void
760 im6f_commit(struct in6_mfilter *imf)
761 {
762 	struct ip6_msource	*ims;
763 	struct in6_msource	*lims;
764 
765 	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
766 		lims = (struct in6_msource *)ims;
767 		lims->im6sl_st[0] = lims->im6sl_st[1];
768 	}
769 	imf->im6f_st[0] = imf->im6f_st[1];
770 }
771 
772 /*
773  * Reap unreferenced sources from socket-layer filter set.
774  */
775 static void
776 im6f_reap(struct in6_mfilter *imf)
777 {
778 	struct ip6_msource	*ims, *tims;
779 	struct in6_msource	*lims;
780 
781 	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
782 		lims = (struct in6_msource *)ims;
783 		if ((lims->im6sl_st[0] == MCAST_UNDEFINED) &&
784 		    (lims->im6sl_st[1] == MCAST_UNDEFINED)) {
785 			CTR2(KTR_MLD, "%s: free lims %p", __func__, ims);
786 			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
787 			free(ims, M_IN6MFILTER);
788 			imf->im6f_nsrc--;
789 		}
790 	}
791 }
792 
793 /*
794  * Purge socket-layer filter set.
795  */
796 static void
797 im6f_purge(struct in6_mfilter *imf)
798 {
799 	struct ip6_msource	*ims, *tims;
800 
801 	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
802 		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
803 		RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
804 		free(ims, M_IN6MFILTER);
805 		imf->im6f_nsrc--;
806 	}
807 	imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED;
808 	KASSERT(RB_EMPTY(&imf->im6f_sources),
809 	    ("%s: im6f_sources not empty", __func__));
810 }
811 
812 /*
813  * Look up a source filter entry for a multicast group.
814  *
815  * inm is the group descriptor to work with.
816  * addr is the IPv6 address to look up.
817  * noalloc may be non-zero to suppress allocation of sources.
818  * *pims will be set to the address of the retrieved or allocated source.
819  *
820  * SMPng: NOTE: may be called with locks held.
821  * Return 0 if successful, otherwise return a non-zero error code.
822  */
823 static int
824 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr,
825     const int noalloc, struct ip6_msource **pims)
826 {
827 	struct ip6_msource	 find;
828 	struct ip6_msource	*ims, *nims;
829 #ifdef KTR
830 	char			 ip6tbuf[INET6_ADDRSTRLEN];
831 #endif
832 
833 	find.im6s_addr = *addr;
834 	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
835 	if (ims == NULL && !noalloc) {
836 		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
837 			return (ENOSPC);
838 		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
839 		    M_NOWAIT | M_ZERO);
840 		if (nims == NULL)
841 			return (ENOMEM);
842 		nims->im6s_addr = *addr;
843 		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
844 		++inm->in6m_nsrc;
845 		ims = nims;
846 		CTR3(KTR_MLD, "%s: allocated %s as %p", __func__,
847 		    ip6_sprintf(ip6tbuf, addr), ims);
848 	}
849 
850 	*pims = ims;
851 	return (0);
852 }
853 
854 /*
855  * Merge socket-layer source into MLD-layer source.
856  * If rollback is non-zero, perform the inverse of the merge.
857  */
858 static void
859 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims,
860     const int rollback)
861 {
862 	int n = rollback ? -1 : 1;
863 #ifdef KTR
864 	char ip6tbuf[INET6_ADDRSTRLEN];
865 
866 	ip6_sprintf(ip6tbuf, &lims->im6s_addr);
867 #endif
868 
869 	if (lims->im6sl_st[0] == MCAST_EXCLUDE) {
870 		CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf);
871 		ims->im6s_st[1].ex -= n;
872 	} else if (lims->im6sl_st[0] == MCAST_INCLUDE) {
873 		CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf);
874 		ims->im6s_st[1].in -= n;
875 	}
876 
877 	if (lims->im6sl_st[1] == MCAST_EXCLUDE) {
878 		CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf);
879 		ims->im6s_st[1].ex += n;
880 	} else if (lims->im6sl_st[1] == MCAST_INCLUDE) {
881 		CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf);
882 		ims->im6s_st[1].in += n;
883 	}
884 }
885 
886 /*
887  * Atomically update the global in6_multi state, when a membership's
888  * filter list is being updated in any way.
889  *
890  * imf is the per-inpcb-membership group filter pointer.
891  * A fake imf may be passed for in-kernel consumers.
892  *
893  * XXX This is a candidate for a set-symmetric-difference style loop
894  * which would eliminate the repeated lookup from root of ims nodes,
895  * as they share the same key space.
896  *
897  * If any error occurred this function will back out of refcounts
898  * and return a non-zero value.
899  */
900 static int
901 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
902 {
903 	struct ip6_msource	*ims, *nims;
904 	struct in6_msource	*lims;
905 	int			 schanged, error;
906 	int			 nsrc0, nsrc1;
907 
908 	schanged = 0;
909 	error = 0;
910 	nsrc1 = nsrc0 = 0;
911 
912 	/*
913 	 * Update the source filters first, as this may fail.
914 	 * Maintain count of in-mode filters at t0, t1. These are
915 	 * used to work out if we transition into ASM mode or not.
916 	 * Maintain a count of source filters whose state was
917 	 * actually modified by this operation.
918 	 */
919 	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
920 		lims = (struct in6_msource *)ims;
921 		if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++;
922 		if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++;
923 		if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue;
924 		error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims);
925 		++schanged;
926 		if (error)
927 			break;
928 		im6s_merge(nims, lims, 0);
929 	}
930 	if (error) {
931 		struct ip6_msource *bims;
932 
933 		RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) {
934 			lims = (struct in6_msource *)ims;
935 			if (lims->im6sl_st[0] == lims->im6sl_st[1])
936 				continue;
937 			(void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims);
938 			if (bims == NULL)
939 				continue;
940 			im6s_merge(bims, lims, 1);
941 		}
942 		goto out_reap;
943 	}
944 
945 	CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1",
946 	    __func__, nsrc0, nsrc1);
947 
948 	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
949 	if (imf->im6f_st[0] == imf->im6f_st[1] &&
950 	    imf->im6f_st[1] == MCAST_INCLUDE) {
951 		if (nsrc1 == 0) {
952 			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
953 			--inm->in6m_st[1].iss_in;
954 		}
955 	}
956 
957 	/* Handle filter mode transition on socket. */
958 	if (imf->im6f_st[0] != imf->im6f_st[1]) {
959 		CTR3(KTR_MLD, "%s: imf transition %d to %d",
960 		    __func__, imf->im6f_st[0], imf->im6f_st[1]);
961 
962 		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
963 			CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__);
964 			--inm->in6m_st[1].iss_ex;
965 		} else if (imf->im6f_st[0] == MCAST_INCLUDE) {
966 			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
967 			--inm->in6m_st[1].iss_in;
968 		}
969 
970 		if (imf->im6f_st[1] == MCAST_EXCLUDE) {
971 			CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__);
972 			inm->in6m_st[1].iss_ex++;
973 		} else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
974 			CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__);
975 			inm->in6m_st[1].iss_in++;
976 		}
977 	}
978 
979 	/*
980 	 * Track inm filter state in terms of listener counts.
981 	 * If there are any exclusive listeners, stack-wide
982 	 * membership is exclusive.
983 	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
984 	 * If no listeners remain, state is undefined at t1,
985 	 * and the MLD lifecycle for this group should finish.
986 	 */
987 	if (inm->in6m_st[1].iss_ex > 0) {
988 		CTR1(KTR_MLD, "%s: transition to EX", __func__);
989 		inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE;
990 	} else if (inm->in6m_st[1].iss_in > 0) {
991 		CTR1(KTR_MLD, "%s: transition to IN", __func__);
992 		inm->in6m_st[1].iss_fmode = MCAST_INCLUDE;
993 	} else {
994 		CTR1(KTR_MLD, "%s: transition to UNDEF", __func__);
995 		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
996 	}
997 
998 	/* Decrement ASM listener count on transition out of ASM mode. */
999 	if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1000 		if ((imf->im6f_st[1] != MCAST_EXCLUDE) ||
1001 		    (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1002 			CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__);
1003 			--inm->in6m_st[1].iss_asm;
1004 	}
1005 
1006 	/* Increment ASM listener count on transition to ASM mode. */
1007 	if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1008 		CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__);
1009 		inm->in6m_st[1].iss_asm++;
1010 	}
1011 
1012 	CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm);
1013 	in6m_print(inm);
1014 
1015 out_reap:
1016 	if (schanged > 0) {
1017 		CTR1(KTR_MLD, "%s: sources changed; reaping", __func__);
1018 		in6m_reap(inm);
1019 	}
1020 	return (error);
1021 }
1022 
1023 /*
1024  * Mark an in6_multi's filter set deltas as committed.
1025  * Called by MLD after a state change has been enqueued.
1026  */
1027 void
1028 in6m_commit(struct in6_multi *inm)
1029 {
1030 	struct ip6_msource	*ims;
1031 
1032 	CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm);
1033 	CTR1(KTR_MLD, "%s: pre commit:", __func__);
1034 	in6m_print(inm);
1035 
1036 	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
1037 		ims->im6s_st[0] = ims->im6s_st[1];
1038 	}
1039 	inm->in6m_st[0] = inm->in6m_st[1];
1040 }
1041 
1042 /*
1043  * Reap unreferenced nodes from an in6_multi's filter set.
1044  */
1045 static void
1046 in6m_reap(struct in6_multi *inm)
1047 {
1048 	struct ip6_msource	*ims, *tims;
1049 
1050 	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1051 		if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 ||
1052 		    ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 ||
1053 		    ims->im6s_stp != 0)
1054 			continue;
1055 		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1056 		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1057 		free(ims, M_IP6MSOURCE);
1058 		inm->in6m_nsrc--;
1059 	}
1060 }
1061 
1062 /*
1063  * Purge all source nodes from an in6_multi's filter set.
1064  */
1065 static void
1066 in6m_purge(struct in6_multi *inm)
1067 {
1068 	struct ip6_msource	*ims, *tims;
1069 
1070 	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1071 		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1072 		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1073 		free(ims, M_IP6MSOURCE);
1074 		inm->in6m_nsrc--;
1075 	}
1076 }
1077 
1078 /*
1079  * Join a multicast address w/o sources.
1080  * KAME compatibility entry point.
1081  *
1082  * SMPng: Assume no mc locks held by caller.
1083  */
1084 struct in6_multi_mship *
1085 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr,
1086     int *errorp, int delay)
1087 {
1088 	struct in6_multi_mship *imm;
1089 	int error;
1090 
1091 	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1092 	if (imm == NULL) {
1093 		*errorp = ENOBUFS;
1094 		return (NULL);
1095 	}
1096 
1097 	delay = (delay * PR_FASTHZ) / hz;
1098 
1099 	error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay);
1100 	if (error) {
1101 		*errorp = error;
1102 		free(imm, M_IP6MADDR);
1103 		return (NULL);
1104 	}
1105 
1106 	return (imm);
1107 }
1108 
1109 /*
1110  * Leave a multicast address w/o sources.
1111  * KAME compatibility entry point.
1112  *
1113  * SMPng: Assume no mc locks held by caller.
1114  */
1115 int
1116 in6_leavegroup(struct in6_multi_mship *imm)
1117 {
1118 
1119 	if (imm->i6mm_maddr != NULL)
1120 		in6_mc_leave(imm->i6mm_maddr, NULL);
1121 	free(imm,  M_IP6MADDR);
1122 	return 0;
1123 }
1124 
1125 /*
1126  * Join a multicast group; unlocked entry point.
1127  *
1128  * SMPng: XXX: in6_mc_join() is called from in6_control() when upper
1129  * locks are not held. Fortunately, ifp is unlikely to have been detached
1130  * at this point, so we assume it's OK to recurse.
1131  */
1132 int
1133 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr,
1134     /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1135     const int delay)
1136 {
1137 	int error;
1138 
1139 	IN6_MULTI_LOCK();
1140 	error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay);
1141 	IN6_MULTI_UNLOCK();
1142 
1143 	return (error);
1144 }
1145 
1146 /*
1147  * Join a multicast group; real entry point.
1148  *
1149  * Only preserves atomicity at inm level.
1150  * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1151  *
1152  * If the MLD downcall fails, the group is not joined, and an error
1153  * code is returned.
1154  */
1155 int
1156 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr,
1157     /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1158     const int delay)
1159 {
1160 	struct in6_mfilter	 timf;
1161 	struct in6_multi	*inm;
1162 	int			 error;
1163 #ifdef KTR
1164 	char			 ip6tbuf[INET6_ADDRSTRLEN];
1165 #endif
1166 
1167 #ifdef INVARIANTS
1168 	/*
1169 	 * Sanity: Check scope zone ID was set for ifp, if and
1170 	 * only if group is scoped to an interface.
1171 	 */
1172 	KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr),
1173 	    ("%s: not a multicast address", __func__));
1174 	if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) ||
1175 	    IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) {
1176 		KASSERT(mcaddr->s6_addr16[1] != 0,
1177 		    ("%s: scope zone ID not set", __func__));
1178 	}
1179 #endif
1180 
1181 	IN6_MULTI_LOCK_ASSERT();
1182 
1183 	CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__,
1184 	    ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp));
1185 
1186 	error = 0;
1187 	inm = NULL;
1188 
1189 	/*
1190 	 * If no imf was specified (i.e. kernel consumer),
1191 	 * fake one up and assume it is an ASM join.
1192 	 */
1193 	if (imf == NULL) {
1194 		im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1195 		imf = &timf;
1196 	}
1197 
1198 	error = in6_mc_get(ifp, mcaddr, &inm);
1199 	if (error) {
1200 		CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__);
1201 		return (error);
1202 	}
1203 
1204 	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1205 	error = in6m_merge(inm, imf);
1206 	if (error) {
1207 		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1208 		goto out_in6m_release;
1209 	}
1210 
1211 	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1212 	error = mld_change_state(inm, delay);
1213 	if (error) {
1214 		CTR1(KTR_MLD, "%s: failed to update source", __func__);
1215 		goto out_in6m_release;
1216 	}
1217 
1218 out_in6m_release:
1219 	if (error) {
1220 		CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1221 		in6m_release_locked(inm);
1222 	} else {
1223 		*pinm = inm;
1224 	}
1225 
1226 	return (error);
1227 }
1228 
1229 /*
1230  * Leave a multicast group; unlocked entry point.
1231  */
1232 int
1233 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1234 {
1235 	struct ifnet *ifp;
1236 	int error;
1237 
1238 	ifp = inm->in6m_ifp;
1239 
1240 	IN6_MULTI_LOCK();
1241 	error = in6_mc_leave_locked(inm, imf);
1242 	IN6_MULTI_UNLOCK();
1243 
1244 	return (error);
1245 }
1246 
1247 /*
1248  * Leave a multicast group; real entry point.
1249  * All source filters will be expunged.
1250  *
1251  * Only preserves atomicity at inm level.
1252  *
1253  * Holding the write lock for the INP which contains imf
1254  * is highly advisable. We can't assert for it as imf does not
1255  * contain a back-pointer to the owning inp.
1256  *
1257  * Note: This is not the same as in6m_release(*) as this function also
1258  * makes a state change downcall into MLD.
1259  */
1260 int
1261 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1262 {
1263 	struct in6_mfilter	 timf;
1264 	int			 error;
1265 #ifdef KTR
1266 	char			 ip6tbuf[INET6_ADDRSTRLEN];
1267 #endif
1268 
1269 	error = 0;
1270 
1271 	IN6_MULTI_LOCK_ASSERT();
1272 
1273 	CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__,
1274 	    inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1275 	    (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)),
1276 	    imf);
1277 
1278 	/*
1279 	 * If no imf was specified (i.e. kernel consumer),
1280 	 * fake one up and assume it is an ASM join.
1281 	 */
1282 	if (imf == NULL) {
1283 		im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1284 		imf = &timf;
1285 	}
1286 
1287 	/*
1288 	 * Begin state merge transaction at MLD layer.
1289 	 *
1290 	 * As this particular invocation should not cause any memory
1291 	 * to be allocated, and there is no opportunity to roll back
1292 	 * the transaction, it MUST NOT fail.
1293 	 */
1294 	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1295 	error = in6m_merge(inm, imf);
1296 	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1297 
1298 	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1299 	error = mld_change_state(inm, 0);
1300 	if (error)
1301 		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1302 
1303 	CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1304 	in6m_release_locked(inm);
1305 
1306 	return (error);
1307 }
1308 
1309 /*
1310  * Block or unblock an ASM multicast source on an inpcb.
1311  * This implements the delta-based API described in RFC 3678.
1312  *
1313  * The delta-based API applies only to exclusive-mode memberships.
1314  * An MLD downcall will be performed.
1315  *
1316  * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1317  *
1318  * Return 0 if successful, otherwise return an appropriate error code.
1319  */
1320 static int
1321 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1322 {
1323 	struct group_source_req		 gsr;
1324 	sockunion_t			*gsa, *ssa;
1325 	struct ifnet			*ifp;
1326 	struct in6_mfilter		*imf;
1327 	struct ip6_moptions		*imo;
1328 	struct in6_msource		*ims;
1329 	struct in6_multi			*inm;
1330 	size_t				 idx;
1331 	uint16_t			 fmode;
1332 	int				 error, doblock;
1333 #ifdef KTR
1334 	char				 ip6tbuf[INET6_ADDRSTRLEN];
1335 #endif
1336 
1337 	ifp = NULL;
1338 	error = 0;
1339 	doblock = 0;
1340 
1341 	memset(&gsr, 0, sizeof(struct group_source_req));
1342 	gsa = (sockunion_t *)&gsr.gsr_group;
1343 	ssa = (sockunion_t *)&gsr.gsr_source;
1344 
1345 	switch (sopt->sopt_name) {
1346 	case MCAST_BLOCK_SOURCE:
1347 	case MCAST_UNBLOCK_SOURCE:
1348 		error = sooptcopyin(sopt, &gsr,
1349 		    sizeof(struct group_source_req),
1350 		    sizeof(struct group_source_req));
1351 		if (error)
1352 			return (error);
1353 
1354 		if (gsa->sin6.sin6_family != AF_INET6 ||
1355 		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1356 			return (EINVAL);
1357 
1358 		if (ssa->sin6.sin6_family != AF_INET6 ||
1359 		    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1360 			return (EINVAL);
1361 
1362 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1363 			return (EADDRNOTAVAIL);
1364 
1365 		ifp = ifnet_byindex(gsr.gsr_interface);
1366 
1367 		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1368 			doblock = 1;
1369 		break;
1370 
1371 	default:
1372 		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1373 		    __func__, sopt->sopt_name);
1374 		return (EOPNOTSUPP);
1375 		break;
1376 	}
1377 
1378 	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1379 		return (EINVAL);
1380 
1381 	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1382 
1383 	/*
1384 	 * Check if we are actually a member of this group.
1385 	 */
1386 	imo = in6p_findmoptions(inp);
1387 	idx = im6o_match_group(imo, ifp, &gsa->sa);
1388 	if (idx == -1 || imo->im6o_mfilters == NULL) {
1389 		error = EADDRNOTAVAIL;
1390 		goto out_in6p_locked;
1391 	}
1392 
1393 	KASSERT(imo->im6o_mfilters != NULL,
1394 	    ("%s: im6o_mfilters not allocated", __func__));
1395 	imf = &imo->im6o_mfilters[idx];
1396 	inm = imo->im6o_membership[idx];
1397 
1398 	/*
1399 	 * Attempting to use the delta-based API on an
1400 	 * non exclusive-mode membership is an error.
1401 	 */
1402 	fmode = imf->im6f_st[0];
1403 	if (fmode != MCAST_EXCLUDE) {
1404 		error = EINVAL;
1405 		goto out_in6p_locked;
1406 	}
1407 
1408 	/*
1409 	 * Deal with error cases up-front:
1410 	 *  Asked to block, but already blocked; or
1411 	 *  Asked to unblock, but nothing to unblock.
1412 	 * If adding a new block entry, allocate it.
1413 	 */
1414 	ims = im6o_match_source(imo, idx, &ssa->sa);
1415 	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1416 		CTR3(KTR_MLD, "%s: source %s %spresent", __func__,
1417 		    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
1418 		    doblock ? "" : "not ");
1419 		error = EADDRNOTAVAIL;
1420 		goto out_in6p_locked;
1421 	}
1422 
1423 	INP_WLOCK_ASSERT(inp);
1424 
1425 	/*
1426 	 * Begin state merge transaction at socket layer.
1427 	 */
1428 	if (doblock) {
1429 		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
1430 		ims = im6f_graft(imf, fmode, &ssa->sin6);
1431 		if (ims == NULL)
1432 			error = ENOMEM;
1433 	} else {
1434 		CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
1435 		error = im6f_prune(imf, &ssa->sin6);
1436 	}
1437 
1438 	if (error) {
1439 		CTR1(KTR_MLD, "%s: merge imf state failed", __func__);
1440 		goto out_im6f_rollback;
1441 	}
1442 
1443 	/*
1444 	 * Begin state merge transaction at MLD layer.
1445 	 */
1446 	IN6_MULTI_LOCK();
1447 
1448 	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1449 	error = in6m_merge(inm, imf);
1450 	if (error)
1451 		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1452 	else {
1453 		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1454 		error = mld_change_state(inm, 0);
1455 		if (error)
1456 			CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1457 	}
1458 
1459 	IN6_MULTI_UNLOCK();
1460 
1461 out_im6f_rollback:
1462 	if (error)
1463 		im6f_rollback(imf);
1464 	else
1465 		im6f_commit(imf);
1466 
1467 	im6f_reap(imf);
1468 
1469 out_in6p_locked:
1470 	INP_WUNLOCK(inp);
1471 	return (error);
1472 }
1473 
1474 /*
1475  * Given an inpcb, return its multicast options structure pointer.  Accepts
1476  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1477  *
1478  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1479  * SMPng: NOTE: Returns with the INP write lock held.
1480  */
1481 static struct ip6_moptions *
1482 in6p_findmoptions(struct inpcb *inp)
1483 {
1484 	struct ip6_moptions	 *imo;
1485 	struct in6_multi		**immp;
1486 	struct in6_mfilter	 *imfp;
1487 	size_t			  idx;
1488 
1489 	INP_WLOCK(inp);
1490 	if (inp->in6p_moptions != NULL)
1491 		return (inp->in6p_moptions);
1492 
1493 	INP_WUNLOCK(inp);
1494 
1495 	imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK);
1496 	immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS,
1497 	    M_WAITOK | M_ZERO);
1498 	imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS,
1499 	    M_IN6MFILTER, M_WAITOK);
1500 
1501 	imo->im6o_multicast_ifp = NULL;
1502 	imo->im6o_multicast_hlim = V_ip6_defmcasthlim;
1503 	imo->im6o_multicast_loop = in6_mcast_loop;
1504 	imo->im6o_num_memberships = 0;
1505 	imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS;
1506 	imo->im6o_membership = immp;
1507 
1508 	/* Initialize per-group source filters. */
1509 	for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++)
1510 		im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1511 	imo->im6o_mfilters = imfp;
1512 
1513 	INP_WLOCK(inp);
1514 	if (inp->in6p_moptions != NULL) {
1515 		free(imfp, M_IN6MFILTER);
1516 		free(immp, M_IP6MOPTS);
1517 		free(imo, M_IP6MOPTS);
1518 		return (inp->in6p_moptions);
1519 	}
1520 	inp->in6p_moptions = imo;
1521 	return (imo);
1522 }
1523 
1524 /*
1525  * Discard the IPv6 multicast options (and source filters).
1526  *
1527  * SMPng: NOTE: assumes INP write lock is held.
1528  */
1529 void
1530 ip6_freemoptions(struct ip6_moptions *imo)
1531 {
1532 	struct in6_mfilter	*imf;
1533 	size_t			 idx, nmships;
1534 
1535 	KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__));
1536 
1537 	nmships = imo->im6o_num_memberships;
1538 	for (idx = 0; idx < nmships; ++idx) {
1539 		imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL;
1540 		if (imf)
1541 			im6f_leave(imf);
1542 		/* XXX this will thrash the lock(s) */
1543 		(void)in6_mc_leave(imo->im6o_membership[idx], imf);
1544 		if (imf)
1545 			im6f_purge(imf);
1546 	}
1547 
1548 	if (imo->im6o_mfilters)
1549 		free(imo->im6o_mfilters, M_IN6MFILTER);
1550 	free(imo->im6o_membership, M_IP6MOPTS);
1551 	free(imo, M_IP6MOPTS);
1552 }
1553 
1554 /*
1555  * Atomically get source filters on a socket for an IPv6 multicast group.
1556  * Called with INP lock held; returns with lock released.
1557  */
1558 static int
1559 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1560 {
1561 	struct __msfilterreq	 msfr;
1562 	sockunion_t		*gsa;
1563 	struct ifnet		*ifp;
1564 	struct ip6_moptions	*imo;
1565 	struct in6_mfilter	*imf;
1566 	struct ip6_msource	*ims;
1567 	struct in6_msource	*lims;
1568 	struct sockaddr_in6	*psin;
1569 	struct sockaddr_storage	*ptss;
1570 	struct sockaddr_storage	*tss;
1571 	int			 error;
1572 	size_t			 idx, nsrcs, ncsrcs;
1573 
1574 	INP_WLOCK_ASSERT(inp);
1575 
1576 	imo = inp->in6p_moptions;
1577 	KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__));
1578 
1579 	INP_WUNLOCK(inp);
1580 
1581 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1582 	    sizeof(struct __msfilterreq));
1583 	if (error)
1584 		return (error);
1585 
1586 	if (msfr.msfr_group.ss_family != AF_INET6 ||
1587 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
1588 		return (EINVAL);
1589 
1590 	gsa = (sockunion_t *)&msfr.msfr_group;
1591 	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1592 		return (EINVAL);
1593 
1594 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1595 		return (EADDRNOTAVAIL);
1596 	ifp = ifnet_byindex(msfr.msfr_ifindex);
1597 	if (ifp == NULL)
1598 		return (EADDRNOTAVAIL);
1599 	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1600 
1601 	INP_WLOCK(inp);
1602 
1603 	/*
1604 	 * Lookup group on the socket.
1605 	 */
1606 	idx = im6o_match_group(imo, ifp, &gsa->sa);
1607 	if (idx == -1 || imo->im6o_mfilters == NULL) {
1608 		INP_WUNLOCK(inp);
1609 		return (EADDRNOTAVAIL);
1610 	}
1611 	imf = &imo->im6o_mfilters[idx];
1612 
1613 	/*
1614 	 * Ignore memberships which are in limbo.
1615 	 */
1616 	if (imf->im6f_st[1] == MCAST_UNDEFINED) {
1617 		INP_WUNLOCK(inp);
1618 		return (EAGAIN);
1619 	}
1620 	msfr.msfr_fmode = imf->im6f_st[1];
1621 
1622 	/*
1623 	 * If the user specified a buffer, copy out the source filter
1624 	 * entries to userland gracefully.
1625 	 * We only copy out the number of entries which userland
1626 	 * has asked for, but we always tell userland how big the
1627 	 * buffer really needs to be.
1628 	 */
1629 	if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc)
1630 		msfr.msfr_nsrcs = in6_mcast_maxsocksrc;
1631 	tss = NULL;
1632 	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1633 		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1634 		    M_TEMP, M_NOWAIT | M_ZERO);
1635 		if (tss == NULL) {
1636 			INP_WUNLOCK(inp);
1637 			return (ENOBUFS);
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * Count number of sources in-mode at t0.
1643 	 * If buffer space exists and remains, copy out source entries.
1644 	 */
1645 	nsrcs = msfr.msfr_nsrcs;
1646 	ncsrcs = 0;
1647 	ptss = tss;
1648 	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
1649 		lims = (struct in6_msource *)ims;
1650 		if (lims->im6sl_st[0] == MCAST_UNDEFINED ||
1651 		    lims->im6sl_st[0] != imf->im6f_st[0])
1652 			continue;
1653 		++ncsrcs;
1654 		if (tss != NULL && nsrcs > 0) {
1655 			psin = (struct sockaddr_in6 *)ptss;
1656 			psin->sin6_family = AF_INET6;
1657 			psin->sin6_len = sizeof(struct sockaddr_in6);
1658 			psin->sin6_addr = lims->im6s_addr;
1659 			psin->sin6_port = 0;
1660 			--nsrcs;
1661 			++ptss;
1662 		}
1663 	}
1664 
1665 	INP_WUNLOCK(inp);
1666 
1667 	if (tss != NULL) {
1668 		error = copyout(tss, msfr.msfr_srcs,
1669 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1670 		free(tss, M_TEMP);
1671 		if (error)
1672 			return (error);
1673 	}
1674 
1675 	msfr.msfr_nsrcs = ncsrcs;
1676 	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1677 
1678 	return (error);
1679 }
1680 
1681 /*
1682  * Return the IP multicast options in response to user getsockopt().
1683  */
1684 int
1685 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1686 {
1687 	struct ip6_moptions	*im6o;
1688 	int			 error;
1689 	u_int			 optval;
1690 
1691 	INP_WLOCK(inp);
1692 	im6o = inp->in6p_moptions;
1693 	/*
1694 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1695 	 * or is a divert socket, reject it.
1696 	 */
1697 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1698 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1699 	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1700 		INP_WUNLOCK(inp);
1701 		return (EOPNOTSUPP);
1702 	}
1703 
1704 	error = 0;
1705 	switch (sopt->sopt_name) {
1706 	case IPV6_MULTICAST_IF:
1707 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) {
1708 			optval = 0;
1709 		} else {
1710 			optval = im6o->im6o_multicast_ifp->if_index;
1711 		}
1712 		INP_WUNLOCK(inp);
1713 		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1714 		break;
1715 
1716 	case IPV6_MULTICAST_HOPS:
1717 		if (im6o == NULL)
1718 			optval = V_ip6_defmcasthlim;
1719 		else
1720 			optval = im6o->im6o_multicast_hlim;
1721 		INP_WUNLOCK(inp);
1722 		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1723 		break;
1724 
1725 	case IPV6_MULTICAST_LOOP:
1726 		if (im6o == NULL)
1727 			optval = in6_mcast_loop; /* XXX VIMAGE */
1728 		else
1729 			optval = im6o->im6o_multicast_loop;
1730 		INP_WUNLOCK(inp);
1731 		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1732 		break;
1733 
1734 	case IPV6_MSFILTER:
1735 		if (im6o == NULL) {
1736 			error = EADDRNOTAVAIL;
1737 			INP_WUNLOCK(inp);
1738 		} else {
1739 			error = in6p_get_source_filters(inp, sopt);
1740 		}
1741 		break;
1742 
1743 	default:
1744 		INP_WUNLOCK(inp);
1745 		error = ENOPROTOOPT;
1746 		break;
1747 	}
1748 
1749 	INP_UNLOCK_ASSERT(inp);
1750 
1751 	return (error);
1752 }
1753 
1754 /*
1755  * Look up the ifnet to use for a multicast group membership,
1756  * given the address of an IPv6 group.
1757  *
1758  * This routine exists to support legacy IPv6 multicast applications.
1759  *
1760  * If inp is non-NULL, use this socket's current FIB number for any
1761  * required FIB lookup. Look up the group address in the unicast FIB,
1762  * and use its ifp; usually, this points to the default next-hop.
1763  * If the FIB lookup fails, return NULL.
1764  *
1765  * FUTURE: Support multiple forwarding tables for IPv6.
1766  *
1767  * Returns NULL if no ifp could be found.
1768  */
1769 static struct ifnet *
1770 in6p_lookup_mcast_ifp(const struct inpcb *in6p,
1771     const struct sockaddr_in6 *gsin6)
1772 {
1773 	struct route_in6	 ro6;
1774 	struct ifnet		*ifp;
1775 
1776 	KASSERT(in6p->inp_vflag & INP_IPV6,
1777 	    ("%s: not INP_IPV6 inpcb", __func__));
1778 	KASSERT(gsin6->sin6_family == AF_INET6,
1779 	    ("%s: not AF_INET6 group", __func__));
1780 
1781 	ifp = NULL;
1782 	memset(&ro6, 0, sizeof(struct route_in6));
1783 	memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6));
1784 	rtalloc_ign_fib((struct route *)&ro6, 0,
1785 	    in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB);
1786 	if (ro6.ro_rt != NULL) {
1787 		ifp = ro6.ro_rt->rt_ifp;
1788 		KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1789 		RTFREE(ro6.ro_rt);
1790 	}
1791 
1792 	return (ifp);
1793 }
1794 
1795 /*
1796  * Join an IPv6 multicast group, possibly with a source.
1797  *
1798  * FIXME: The KAME use of the unspecified address (::)
1799  * to join *all* multicast groups is currently unsupported.
1800  */
1801 static int
1802 in6p_join_group(struct inpcb *inp, struct sockopt *sopt)
1803 {
1804 	struct group_source_req		 gsr;
1805 	sockunion_t			*gsa, *ssa;
1806 	struct ifnet			*ifp;
1807 	struct in6_mfilter		*imf;
1808 	struct ip6_moptions		*imo;
1809 	struct in6_multi		*inm;
1810 	struct in6_msource		*lims;
1811 	size_t				 idx;
1812 	int				 error, is_new;
1813 
1814 	ifp = NULL;
1815 	imf = NULL;
1816 	lims = NULL;
1817 	error = 0;
1818 	is_new = 0;
1819 
1820 	memset(&gsr, 0, sizeof(struct group_source_req));
1821 	gsa = (sockunion_t *)&gsr.gsr_group;
1822 	gsa->ss.ss_family = AF_UNSPEC;
1823 	ssa = (sockunion_t *)&gsr.gsr_source;
1824 	ssa->ss.ss_family = AF_UNSPEC;
1825 
1826 	/*
1827 	 * Chew everything into struct group_source_req.
1828 	 * Overwrite the port field if present, as the sockaddr
1829 	 * being copied in may be matched with a binary comparison.
1830 	 * Ignore passed-in scope ID.
1831 	 */
1832 	switch (sopt->sopt_name) {
1833 	case IPV6_JOIN_GROUP: {
1834 		struct ipv6_mreq mreq;
1835 
1836 		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
1837 		    sizeof(struct ipv6_mreq));
1838 		if (error)
1839 			return (error);
1840 
1841 		gsa->sin6.sin6_family = AF_INET6;
1842 		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
1843 		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
1844 
1845 		if (mreq.ipv6mr_interface == 0) {
1846 			ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
1847 		} else {
1848 			if (V_if_index < mreq.ipv6mr_interface)
1849 				return (EADDRNOTAVAIL);
1850 			ifp = ifnet_byindex(mreq.ipv6mr_interface);
1851 		}
1852 		CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p",
1853 		    __func__, mreq.ipv6mr_interface, ifp);
1854 	} break;
1855 
1856 	case MCAST_JOIN_GROUP:
1857 	case MCAST_JOIN_SOURCE_GROUP:
1858 		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1859 			error = sooptcopyin(sopt, &gsr,
1860 			    sizeof(struct group_req),
1861 			    sizeof(struct group_req));
1862 		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1863 			error = sooptcopyin(sopt, &gsr,
1864 			    sizeof(struct group_source_req),
1865 			    sizeof(struct group_source_req));
1866 		}
1867 		if (error)
1868 			return (error);
1869 
1870 		if (gsa->sin6.sin6_family != AF_INET6 ||
1871 		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1872 			return (EINVAL);
1873 
1874 		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1875 			if (ssa->sin6.sin6_family != AF_INET6 ||
1876 			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1877 				return (EINVAL);
1878 			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
1879 				return (EINVAL);
1880 			/*
1881 			 * TODO: Validate embedded scope ID in source
1882 			 * list entry against passed-in ifp, if and only
1883 			 * if source list filter entry is iface or node local.
1884 			 */
1885 			in6_clearscope(&ssa->sin6.sin6_addr);
1886 			ssa->sin6.sin6_port = 0;
1887 			ssa->sin6.sin6_scope_id = 0;
1888 		}
1889 
1890 		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1891 			return (EADDRNOTAVAIL);
1892 		ifp = ifnet_byindex(gsr.gsr_interface);
1893 		break;
1894 
1895 	default:
1896 		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1897 		    __func__, sopt->sopt_name);
1898 		return (EOPNOTSUPP);
1899 		break;
1900 	}
1901 
1902 	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1903 		return (EINVAL);
1904 
1905 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1906 		return (EADDRNOTAVAIL);
1907 
1908 	gsa->sin6.sin6_port = 0;
1909 	gsa->sin6.sin6_scope_id = 0;
1910 
1911 	/*
1912 	 * Always set the scope zone ID on memberships created from userland.
1913 	 * Use the passed-in ifp to do this.
1914 	 * XXX The in6_setscope() return value is meaningless.
1915 	 * XXX SCOPE6_LOCK() is taken by in6_setscope().
1916 	 */
1917 	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1918 
1919 	imo = in6p_findmoptions(inp);
1920 	idx = im6o_match_group(imo, ifp, &gsa->sa);
1921 	if (idx == -1) {
1922 		is_new = 1;
1923 	} else {
1924 		inm = imo->im6o_membership[idx];
1925 		imf = &imo->im6o_mfilters[idx];
1926 		if (ssa->ss.ss_family != AF_UNSPEC) {
1927 			/*
1928 			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
1929 			 * is an error. On an existing inclusive membership,
1930 			 * it just adds the source to the filter list.
1931 			 */
1932 			if (imf->im6f_st[1] != MCAST_INCLUDE) {
1933 				error = EINVAL;
1934 				goto out_in6p_locked;
1935 			}
1936 			/*
1937 			 * Throw out duplicates.
1938 			 *
1939 			 * XXX FIXME: This makes a naive assumption that
1940 			 * even if entries exist for *ssa in this imf,
1941 			 * they will be rejected as dupes, even if they
1942 			 * are not valid in the current mode (in-mode).
1943 			 *
1944 			 * in6_msource is transactioned just as for anything
1945 			 * else in SSM -- but note naive use of in6m_graft()
1946 			 * below for allocating new filter entries.
1947 			 *
1948 			 * This is only an issue if someone mixes the
1949 			 * full-state SSM API with the delta-based API,
1950 			 * which is discouraged in the relevant RFCs.
1951 			 */
1952 			lims = im6o_match_source(imo, idx, &ssa->sa);
1953 			if (lims != NULL /*&&
1954 			    lims->im6sl_st[1] == MCAST_INCLUDE*/) {
1955 				error = EADDRNOTAVAIL;
1956 				goto out_in6p_locked;
1957 			}
1958 		} else {
1959 			/*
1960 			 * MCAST_JOIN_GROUP alone, on any existing membership,
1961 			 * is rejected, to stop the same inpcb tying up
1962 			 * multiple refs to the in_multi.
1963 			 * On an existing inclusive membership, this is also
1964 			 * an error; if you want to change filter mode,
1965 			 * you must use the userland API setsourcefilter().
1966 			 * XXX We don't reject this for imf in UNDEFINED
1967 			 * state at t1, because allocation of a filter
1968 			 * is atomic with allocation of a membership.
1969 			 */
1970 			error = EINVAL;
1971 			goto out_in6p_locked;
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * Begin state merge transaction at socket layer.
1977 	 */
1978 	INP_WLOCK_ASSERT(inp);
1979 
1980 	if (is_new) {
1981 		if (imo->im6o_num_memberships == imo->im6o_max_memberships) {
1982 			error = im6o_grow(imo);
1983 			if (error)
1984 				goto out_in6p_locked;
1985 		}
1986 		/*
1987 		 * Allocate the new slot upfront so we can deal with
1988 		 * grafting the new source filter in same code path
1989 		 * as for join-source on existing membership.
1990 		 */
1991 		idx = imo->im6o_num_memberships;
1992 		imo->im6o_membership[idx] = NULL;
1993 		imo->im6o_num_memberships++;
1994 		KASSERT(imo->im6o_mfilters != NULL,
1995 		    ("%s: im6f_mfilters vector was not allocated", __func__));
1996 		imf = &imo->im6o_mfilters[idx];
1997 		KASSERT(RB_EMPTY(&imf->im6f_sources),
1998 		    ("%s: im6f_sources not empty", __func__));
1999 	}
2000 
2001 	/*
2002 	 * Graft new source into filter list for this inpcb's
2003 	 * membership of the group. The in6_multi may not have
2004 	 * been allocated yet if this is a new membership, however,
2005 	 * the in_mfilter slot will be allocated and must be initialized.
2006 	 *
2007 	 * Note: Grafting of exclusive mode filters doesn't happen
2008 	 * in this path.
2009 	 * XXX: Should check for non-NULL lims (node exists but may
2010 	 * not be in-mode) for interop with full-state API.
2011 	 */
2012 	if (ssa->ss.ss_family != AF_UNSPEC) {
2013 		/* Membership starts in IN mode */
2014 		if (is_new) {
2015 			CTR1(KTR_MLD, "%s: new join w/source", __func__);
2016 			im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2017 		} else {
2018 			CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
2019 		}
2020 		lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6);
2021 		if (lims == NULL) {
2022 			CTR1(KTR_MLD, "%s: merge imf state failed",
2023 			    __func__);
2024 			error = ENOMEM;
2025 			goto out_im6o_free;
2026 		}
2027 	} else {
2028 		/* No address specified; Membership starts in EX mode */
2029 		if (is_new) {
2030 			CTR1(KTR_MLD, "%s: new join w/o source", __func__);
2031 			im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2032 		}
2033 	}
2034 
2035 	/*
2036 	 * Begin state merge transaction at MLD layer.
2037 	 */
2038 	IN6_MULTI_LOCK();
2039 
2040 	if (is_new) {
2041 		error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf,
2042 		    &inm, 0);
2043 		if (error) {
2044 			IN6_MULTI_UNLOCK();
2045 			goto out_im6o_free;
2046 		}
2047 		imo->im6o_membership[idx] = inm;
2048 	} else {
2049 		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2050 		error = in6m_merge(inm, imf);
2051 		if (error)
2052 			CTR1(KTR_MLD, "%s: failed to merge inm state",
2053 			    __func__);
2054 		else {
2055 			CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2056 			error = mld_change_state(inm, 0);
2057 			if (error)
2058 				CTR1(KTR_MLD, "%s: failed mld downcall",
2059 				    __func__);
2060 		}
2061 	}
2062 
2063 	IN6_MULTI_UNLOCK();
2064 	INP_WLOCK_ASSERT(inp);
2065 	if (error) {
2066 		im6f_rollback(imf);
2067 		if (is_new)
2068 			im6f_purge(imf);
2069 		else
2070 			im6f_reap(imf);
2071 	} else {
2072 		im6f_commit(imf);
2073 	}
2074 
2075 out_im6o_free:
2076 	if (error && is_new) {
2077 		imo->im6o_membership[idx] = NULL;
2078 		--imo->im6o_num_memberships;
2079 	}
2080 
2081 out_in6p_locked:
2082 	INP_WUNLOCK(inp);
2083 	return (error);
2084 }
2085 
2086 /*
2087  * Leave an IPv6 multicast group on an inpcb, possibly with a source.
2088  */
2089 static int
2090 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt)
2091 {
2092 	struct ipv6_mreq		 mreq;
2093 	struct group_source_req		 gsr;
2094 	sockunion_t			*gsa, *ssa;
2095 	struct ifnet			*ifp;
2096 	struct in6_mfilter		*imf;
2097 	struct ip6_moptions		*imo;
2098 	struct in6_msource		*ims;
2099 	struct in6_multi		*inm;
2100 	uint32_t			 ifindex;
2101 	size_t				 idx;
2102 	int				 error, is_final;
2103 #ifdef KTR
2104 	char				 ip6tbuf[INET6_ADDRSTRLEN];
2105 #endif
2106 
2107 	ifp = NULL;
2108 	ifindex = 0;
2109 	error = 0;
2110 	is_final = 1;
2111 
2112 	memset(&gsr, 0, sizeof(struct group_source_req));
2113 	gsa = (sockunion_t *)&gsr.gsr_group;
2114 	gsa->ss.ss_family = AF_UNSPEC;
2115 	ssa = (sockunion_t *)&gsr.gsr_source;
2116 	ssa->ss.ss_family = AF_UNSPEC;
2117 
2118 	/*
2119 	 * Chew everything passed in up into a struct group_source_req
2120 	 * as that is easier to process.
2121 	 * Note: Any embedded scope ID in the multicast group passed
2122 	 * in by userland is ignored, the interface index is the recommended
2123 	 * mechanism to specify an interface; see below.
2124 	 */
2125 	switch (sopt->sopt_name) {
2126 	case IPV6_LEAVE_GROUP:
2127 		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
2128 		    sizeof(struct ipv6_mreq));
2129 		if (error)
2130 			return (error);
2131 		gsa->sin6.sin6_family = AF_INET6;
2132 		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
2133 		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
2134 		gsa->sin6.sin6_port = 0;
2135 		gsa->sin6.sin6_scope_id = 0;
2136 		ifindex = mreq.ipv6mr_interface;
2137 		break;
2138 
2139 	case MCAST_LEAVE_GROUP:
2140 	case MCAST_LEAVE_SOURCE_GROUP:
2141 		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2142 			error = sooptcopyin(sopt, &gsr,
2143 			    sizeof(struct group_req),
2144 			    sizeof(struct group_req));
2145 		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2146 			error = sooptcopyin(sopt, &gsr,
2147 			    sizeof(struct group_source_req),
2148 			    sizeof(struct group_source_req));
2149 		}
2150 		if (error)
2151 			return (error);
2152 
2153 		if (gsa->sin6.sin6_family != AF_INET6 ||
2154 		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2155 			return (EINVAL);
2156 		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2157 			if (ssa->sin6.sin6_family != AF_INET6 ||
2158 			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2159 				return (EINVAL);
2160 			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
2161 				return (EINVAL);
2162 			/*
2163 			 * TODO: Validate embedded scope ID in source
2164 			 * list entry against passed-in ifp, if and only
2165 			 * if source list filter entry is iface or node local.
2166 			 */
2167 			in6_clearscope(&ssa->sin6.sin6_addr);
2168 		}
2169 		gsa->sin6.sin6_port = 0;
2170 		gsa->sin6.sin6_scope_id = 0;
2171 		ifindex = gsr.gsr_interface;
2172 		break;
2173 
2174 	default:
2175 		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
2176 		    __func__, sopt->sopt_name);
2177 		return (EOPNOTSUPP);
2178 		break;
2179 	}
2180 
2181 	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2182 		return (EINVAL);
2183 
2184 	/*
2185 	 * Validate interface index if provided. If no interface index
2186 	 * was provided separately, attempt to look the membership up
2187 	 * from the default scope as a last resort to disambiguate
2188 	 * the membership we are being asked to leave.
2189 	 * XXX SCOPE6 lock potentially taken here.
2190 	 */
2191 	if (ifindex != 0) {
2192 		if (V_if_index < ifindex)
2193 			return (EADDRNOTAVAIL);
2194 		ifp = ifnet_byindex(ifindex);
2195 		if (ifp == NULL)
2196 			return (EADDRNOTAVAIL);
2197 		(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2198 	} else {
2199 		error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone);
2200 		if (error)
2201 			return (EADDRNOTAVAIL);
2202 		/*
2203 		 * Some badly behaved applications don't pass an ifindex
2204 		 * or a scope ID, which is an API violation. In this case,
2205 		 * perform a lookup as per a v6 join.
2206 		 *
2207 		 * XXX For now, stomp on zone ID for the corner case.
2208 		 * This is not the 'KAME way', but we need to see the ifp
2209 		 * directly until such time as this implementation is
2210 		 * refactored, assuming the scope IDs are the way to go.
2211 		 */
2212 		ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]);
2213 		if (ifindex == 0) {
2214 			CTR2(KTR_MLD, "%s: warning: no ifindex, looking up "
2215 			    "ifp for group %s.", __func__,
2216 			    ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr));
2217 			ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
2218 		} else {
2219 			ifp = ifnet_byindex(ifindex);
2220 		}
2221 		if (ifp == NULL)
2222 			return (EADDRNOTAVAIL);
2223 	}
2224 
2225 	CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp);
2226 	KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__));
2227 
2228 	/*
2229 	 * Find the membership in the membership array.
2230 	 */
2231 	imo = in6p_findmoptions(inp);
2232 	idx = im6o_match_group(imo, ifp, &gsa->sa);
2233 	if (idx == -1) {
2234 		error = EADDRNOTAVAIL;
2235 		goto out_in6p_locked;
2236 	}
2237 	inm = imo->im6o_membership[idx];
2238 	imf = &imo->im6o_mfilters[idx];
2239 
2240 	if (ssa->ss.ss_family != AF_UNSPEC)
2241 		is_final = 0;
2242 
2243 	/*
2244 	 * Begin state merge transaction at socket layer.
2245 	 */
2246 	INP_WLOCK_ASSERT(inp);
2247 
2248 	/*
2249 	 * If we were instructed only to leave a given source, do so.
2250 	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2251 	 */
2252 	if (is_final) {
2253 		im6f_leave(imf);
2254 	} else {
2255 		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
2256 			error = EADDRNOTAVAIL;
2257 			goto out_in6p_locked;
2258 		}
2259 		ims = im6o_match_source(imo, idx, &ssa->sa);
2260 		if (ims == NULL) {
2261 			CTR3(KTR_MLD, "%s: source %p %spresent", __func__,
2262 			    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
2263 			    "not ");
2264 			error = EADDRNOTAVAIL;
2265 			goto out_in6p_locked;
2266 		}
2267 		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
2268 		error = im6f_prune(imf, &ssa->sin6);
2269 		if (error) {
2270 			CTR1(KTR_MLD, "%s: merge imf state failed",
2271 			    __func__);
2272 			goto out_in6p_locked;
2273 		}
2274 	}
2275 
2276 	/*
2277 	 * Begin state merge transaction at MLD layer.
2278 	 */
2279 	IN6_MULTI_LOCK();
2280 
2281 	if (is_final) {
2282 		/*
2283 		 * Give up the multicast address record to which
2284 		 * the membership points.
2285 		 */
2286 		(void)in6_mc_leave_locked(inm, imf);
2287 	} else {
2288 		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2289 		error = in6m_merge(inm, imf);
2290 		if (error)
2291 			CTR1(KTR_MLD, "%s: failed to merge inm state",
2292 			    __func__);
2293 		else {
2294 			CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2295 			error = mld_change_state(inm, 0);
2296 			if (error)
2297 				CTR1(KTR_MLD, "%s: failed mld downcall",
2298 				    __func__);
2299 		}
2300 	}
2301 
2302 	IN6_MULTI_UNLOCK();
2303 
2304 	if (error)
2305 		im6f_rollback(imf);
2306 	else
2307 		im6f_commit(imf);
2308 
2309 	im6f_reap(imf);
2310 
2311 	if (is_final) {
2312 		/* Remove the gap in the membership array. */
2313 		for (++idx; idx < imo->im6o_num_memberships; ++idx) {
2314 			imo->im6o_membership[idx-1] = imo->im6o_membership[idx];
2315 			imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx];
2316 		}
2317 		imo->im6o_num_memberships--;
2318 	}
2319 
2320 out_in6p_locked:
2321 	INP_WUNLOCK(inp);
2322 	return (error);
2323 }
2324 
2325 /*
2326  * Select the interface for transmitting IPv6 multicast datagrams.
2327  *
2328  * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn
2329  * may be passed to this socket option. An address of in6addr_any or an
2330  * interface index of 0 is used to remove a previous selection.
2331  * When no interface is selected, one is chosen for every send.
2332  */
2333 static int
2334 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2335 {
2336 	struct ifnet		*ifp;
2337 	struct ip6_moptions	*imo;
2338 	u_int			 ifindex;
2339 	int			 error;
2340 
2341 	if (sopt->sopt_valsize != sizeof(u_int))
2342 		return (EINVAL);
2343 
2344 	error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int));
2345 	if (error)
2346 		return (error);
2347 	if (V_if_index < ifindex)
2348 		return (EINVAL);
2349 
2350 	ifp = ifnet_byindex(ifindex);
2351 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2352 		return (EADDRNOTAVAIL);
2353 
2354 	imo = in6p_findmoptions(inp);
2355 	imo->im6o_multicast_ifp = ifp;
2356 	INP_WUNLOCK(inp);
2357 
2358 	return (0);
2359 }
2360 
2361 /*
2362  * Atomically set source filters on a socket for an IPv6 multicast group.
2363  *
2364  * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2365  */
2366 static int
2367 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2368 {
2369 	struct __msfilterreq	 msfr;
2370 	sockunion_t		*gsa;
2371 	struct ifnet		*ifp;
2372 	struct in6_mfilter	*imf;
2373 	struct ip6_moptions	*imo;
2374 	struct in6_multi		*inm;
2375 	size_t			 idx;
2376 	int			 error;
2377 
2378 	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2379 	    sizeof(struct __msfilterreq));
2380 	if (error)
2381 		return (error);
2382 
2383 	if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc)
2384 		return (ENOBUFS);
2385 
2386 	if (msfr.msfr_fmode != MCAST_EXCLUDE &&
2387 	    msfr.msfr_fmode != MCAST_INCLUDE)
2388 		return (EINVAL);
2389 
2390 	if (msfr.msfr_group.ss_family != AF_INET6 ||
2391 	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
2392 		return (EINVAL);
2393 
2394 	gsa = (sockunion_t *)&msfr.msfr_group;
2395 	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2396 		return (EINVAL);
2397 
2398 	gsa->sin6.sin6_port = 0;	/* ignore port */
2399 
2400 	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2401 		return (EADDRNOTAVAIL);
2402 	ifp = ifnet_byindex(msfr.msfr_ifindex);
2403 	if (ifp == NULL)
2404 		return (EADDRNOTAVAIL);
2405 	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2406 
2407 	/*
2408 	 * Take the INP write lock.
2409 	 * Check if this socket is a member of this group.
2410 	 */
2411 	imo = in6p_findmoptions(inp);
2412 	idx = im6o_match_group(imo, ifp, &gsa->sa);
2413 	if (idx == -1 || imo->im6o_mfilters == NULL) {
2414 		error = EADDRNOTAVAIL;
2415 		goto out_in6p_locked;
2416 	}
2417 	inm = imo->im6o_membership[idx];
2418 	imf = &imo->im6o_mfilters[idx];
2419 
2420 	/*
2421 	 * Begin state merge transaction at socket layer.
2422 	 */
2423 	INP_WLOCK_ASSERT(inp);
2424 
2425 	imf->im6f_st[1] = msfr.msfr_fmode;
2426 
2427 	/*
2428 	 * Apply any new source filters, if present.
2429 	 * Make a copy of the user-space source vector so
2430 	 * that we may copy them with a single copyin. This
2431 	 * allows us to deal with page faults up-front.
2432 	 */
2433 	if (msfr.msfr_nsrcs > 0) {
2434 		struct in6_msource	*lims;
2435 		struct sockaddr_in6	*psin;
2436 		struct sockaddr_storage	*kss, *pkss;
2437 		int			 i;
2438 
2439 		INP_WUNLOCK(inp);
2440 
2441 		CTR2(KTR_MLD, "%s: loading %lu source list entries",
2442 		    __func__, (unsigned long)msfr.msfr_nsrcs);
2443 		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2444 		    M_TEMP, M_WAITOK);
2445 		error = copyin(msfr.msfr_srcs, kss,
2446 		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2447 		if (error) {
2448 			free(kss, M_TEMP);
2449 			return (error);
2450 		}
2451 
2452 		INP_WLOCK(inp);
2453 
2454 		/*
2455 		 * Mark all source filters as UNDEFINED at t1.
2456 		 * Restore new group filter mode, as im6f_leave()
2457 		 * will set it to INCLUDE.
2458 		 */
2459 		im6f_leave(imf);
2460 		imf->im6f_st[1] = msfr.msfr_fmode;
2461 
2462 		/*
2463 		 * Update socket layer filters at t1, lazy-allocating
2464 		 * new entries. This saves a bunch of memory at the
2465 		 * cost of one RB_FIND() per source entry; duplicate
2466 		 * entries in the msfr_nsrcs vector are ignored.
2467 		 * If we encounter an error, rollback transaction.
2468 		 *
2469 		 * XXX This too could be replaced with a set-symmetric
2470 		 * difference like loop to avoid walking from root
2471 		 * every time, as the key space is common.
2472 		 */
2473 		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2474 			psin = (struct sockaddr_in6 *)pkss;
2475 			if (psin->sin6_family != AF_INET6) {
2476 				error = EAFNOSUPPORT;
2477 				break;
2478 			}
2479 			if (psin->sin6_len != sizeof(struct sockaddr_in6)) {
2480 				error = EINVAL;
2481 				break;
2482 			}
2483 			if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) {
2484 				error = EINVAL;
2485 				break;
2486 			}
2487 			/*
2488 			 * TODO: Validate embedded scope ID in source
2489 			 * list entry against passed-in ifp, if and only
2490 			 * if source list filter entry is iface or node local.
2491 			 */
2492 			in6_clearscope(&psin->sin6_addr);
2493 			error = im6f_get_source(imf, psin, &lims);
2494 			if (error)
2495 				break;
2496 			lims->im6sl_st[1] = imf->im6f_st[1];
2497 		}
2498 		free(kss, M_TEMP);
2499 	}
2500 
2501 	if (error)
2502 		goto out_im6f_rollback;
2503 
2504 	INP_WLOCK_ASSERT(inp);
2505 	IN6_MULTI_LOCK();
2506 
2507 	/*
2508 	 * Begin state merge transaction at MLD layer.
2509 	 */
2510 	CTR1(KTR_MLD, "%s: merge inm state", __func__);
2511 	error = in6m_merge(inm, imf);
2512 	if (error)
2513 		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
2514 	else {
2515 		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2516 		error = mld_change_state(inm, 0);
2517 		if (error)
2518 			CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
2519 	}
2520 
2521 	IN6_MULTI_UNLOCK();
2522 
2523 out_im6f_rollback:
2524 	if (error)
2525 		im6f_rollback(imf);
2526 	else
2527 		im6f_commit(imf);
2528 
2529 	im6f_reap(imf);
2530 
2531 out_in6p_locked:
2532 	INP_WUNLOCK(inp);
2533 	return (error);
2534 }
2535 
2536 /*
2537  * Set the IP multicast options in response to user setsockopt().
2538  *
2539  * Many of the socket options handled in this function duplicate the
2540  * functionality of socket options in the regular unicast API. However,
2541  * it is not possible to merge the duplicate code, because the idempotence
2542  * of the IPv6 multicast part of the BSD Sockets API must be preserved;
2543  * the effects of these options must be treated as separate and distinct.
2544  *
2545  * SMPng: XXX: Unlocked read of inp_socket believed OK.
2546  */
2547 int
2548 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2549 {
2550 	struct ip6_moptions	*im6o;
2551 	int			 error;
2552 
2553 	error = 0;
2554 
2555 	/*
2556 	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2557 	 * or is a divert socket, reject it.
2558 	 */
2559 	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2560 	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2561 	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2562 		return (EOPNOTSUPP);
2563 
2564 	switch (sopt->sopt_name) {
2565 	case IPV6_MULTICAST_IF:
2566 		error = in6p_set_multicast_if(inp, sopt);
2567 		break;
2568 
2569 	case IPV6_MULTICAST_HOPS: {
2570 		int hlim;
2571 
2572 		if (sopt->sopt_valsize != sizeof(int)) {
2573 			error = EINVAL;
2574 			break;
2575 		}
2576 		error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int));
2577 		if (error)
2578 			break;
2579 		if (hlim < -1 || hlim > 255) {
2580 			error = EINVAL;
2581 			break;
2582 		} else if (hlim == -1) {
2583 			hlim = V_ip6_defmcasthlim;
2584 		}
2585 		im6o = in6p_findmoptions(inp);
2586 		im6o->im6o_multicast_hlim = hlim;
2587 		INP_WUNLOCK(inp);
2588 		break;
2589 	}
2590 
2591 	case IPV6_MULTICAST_LOOP: {
2592 		u_int loop;
2593 
2594 		/*
2595 		 * Set the loopback flag for outgoing multicast packets.
2596 		 * Must be zero or one.
2597 		 */
2598 		if (sopt->sopt_valsize != sizeof(u_int)) {
2599 			error = EINVAL;
2600 			break;
2601 		}
2602 		error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int));
2603 		if (error)
2604 			break;
2605 		if (loop > 1) {
2606 			error = EINVAL;
2607 			break;
2608 		}
2609 		im6o = in6p_findmoptions(inp);
2610 		im6o->im6o_multicast_loop = loop;
2611 		INP_WUNLOCK(inp);
2612 		break;
2613 	}
2614 
2615 	case IPV6_JOIN_GROUP:
2616 	case MCAST_JOIN_GROUP:
2617 	case MCAST_JOIN_SOURCE_GROUP:
2618 		error = in6p_join_group(inp, sopt);
2619 		break;
2620 
2621 	case IPV6_LEAVE_GROUP:
2622 	case MCAST_LEAVE_GROUP:
2623 	case MCAST_LEAVE_SOURCE_GROUP:
2624 		error = in6p_leave_group(inp, sopt);
2625 		break;
2626 
2627 	case MCAST_BLOCK_SOURCE:
2628 	case MCAST_UNBLOCK_SOURCE:
2629 		error = in6p_block_unblock_source(inp, sopt);
2630 		break;
2631 
2632 	case IPV6_MSFILTER:
2633 		error = in6p_set_source_filters(inp, sopt);
2634 		break;
2635 
2636 	default:
2637 		error = EOPNOTSUPP;
2638 		break;
2639 	}
2640 
2641 	INP_UNLOCK_ASSERT(inp);
2642 
2643 	return (error);
2644 }
2645 
2646 /*
2647  * Expose MLD's multicast filter mode and source list(s) to userland,
2648  * keyed by (ifindex, group).
2649  * The filter mode is written out as a uint32_t, followed by
2650  * 0..n of struct in6_addr.
2651  * For use by ifmcstat(8).
2652  * SMPng: NOTE: unlocked read of ifindex space.
2653  */
2654 static int
2655 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS)
2656 {
2657 	struct in6_addr			 mcaddr;
2658 	struct in6_addr			 src;
2659 	struct ifnet			*ifp;
2660 	struct ifmultiaddr		*ifma;
2661 	struct in6_multi		*inm;
2662 	struct ip6_msource		*ims;
2663 	int				*name;
2664 	int				 retval;
2665 	u_int				 namelen;
2666 	uint32_t			 fmode, ifindex;
2667 #ifdef KTR
2668 	char				 ip6tbuf[INET6_ADDRSTRLEN];
2669 #endif
2670 
2671 	name = (int *)arg1;
2672 	namelen = arg2;
2673 
2674 	if (req->newptr != NULL)
2675 		return (EPERM);
2676 
2677 	/* int: ifindex + 4 * 32 bits of IPv6 address */
2678 	if (namelen != 5)
2679 		return (EINVAL);
2680 
2681 	ifindex = name[0];
2682 	if (ifindex <= 0 || ifindex > V_if_index) {
2683 		CTR2(KTR_MLD, "%s: ifindex %u out of range",
2684 		    __func__, ifindex);
2685 		return (ENOENT);
2686 	}
2687 
2688 	memcpy(&mcaddr, &name[1], sizeof(struct in6_addr));
2689 	if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) {
2690 		CTR2(KTR_MLD, "%s: group %s is not multicast",
2691 		    __func__, ip6_sprintf(ip6tbuf, &mcaddr));
2692 		return (EINVAL);
2693 	}
2694 
2695 	ifp = ifnet_byindex(ifindex);
2696 	if (ifp == NULL) {
2697 		CTR2(KTR_MLD, "%s: no ifp for ifindex %u",
2698 		    __func__, ifindex);
2699 		return (ENOENT);
2700 	}
2701 	/*
2702 	 * Internal MLD lookups require that scope/zone ID is set.
2703 	 */
2704 	(void)in6_setscope(&mcaddr, ifp, NULL);
2705 
2706 	retval = sysctl_wire_old_buffer(req,
2707 	    sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr)));
2708 	if (retval)
2709 		return (retval);
2710 
2711 	IN6_MULTI_LOCK();
2712 
2713 	IF_ADDR_RLOCK(ifp);
2714 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2715 		if (ifma->ifma_addr->sa_family != AF_INET6 ||
2716 		    ifma->ifma_protospec == NULL)
2717 			continue;
2718 		inm = (struct in6_multi *)ifma->ifma_protospec;
2719 		if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr))
2720 			continue;
2721 		fmode = inm->in6m_st[1].iss_fmode;
2722 		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2723 		if (retval != 0)
2724 			break;
2725 		RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
2726 			CTR2(KTR_MLD, "%s: visit node %p", __func__, ims);
2727 			/*
2728 			 * Only copy-out sources which are in-mode.
2729 			 */
2730 			if (fmode != im6s_get_mode(inm, ims, 1)) {
2731 				CTR1(KTR_MLD, "%s: skip non-in-mode",
2732 				    __func__);
2733 				continue;
2734 			}
2735 			src = ims->im6s_addr;
2736 			retval = SYSCTL_OUT(req, &src,
2737 			    sizeof(struct in6_addr));
2738 			if (retval != 0)
2739 				break;
2740 		}
2741 	}
2742 	IF_ADDR_RUNLOCK(ifp);
2743 
2744 	IN6_MULTI_UNLOCK();
2745 
2746 	return (retval);
2747 }
2748 
2749 #ifdef KTR
2750 
2751 static const char *in6m_modestrs[] = { "un", "in", "ex" };
2752 
2753 static const char *
2754 in6m_mode_str(const int mode)
2755 {
2756 
2757 	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2758 		return (in6m_modestrs[mode]);
2759 	return ("??");
2760 }
2761 
2762 static const char *in6m_statestrs[] = {
2763 	"not-member",
2764 	"silent",
2765 	"idle",
2766 	"lazy",
2767 	"sleeping",
2768 	"awakening",
2769 	"query-pending",
2770 	"sg-query-pending",
2771 	"leaving"
2772 };
2773 
2774 static const char *
2775 in6m_state_str(const int state)
2776 {
2777 
2778 	if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER)
2779 		return (in6m_statestrs[state]);
2780 	return ("??");
2781 }
2782 
2783 /*
2784  * Dump an in6_multi structure to the console.
2785  */
2786 void
2787 in6m_print(const struct in6_multi *inm)
2788 {
2789 	int t;
2790 	char ip6tbuf[INET6_ADDRSTRLEN];
2791 
2792 	if ((ktr_mask & KTR_MLD) == 0)
2793 		return;
2794 
2795 	printf("%s: --- begin in6m %p ---\n", __func__, inm);
2796 	printf("addr %s ifp %p(%s) ifma %p\n",
2797 	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2798 	    inm->in6m_ifp,
2799 	    if_name(inm->in6m_ifp),
2800 	    inm->in6m_ifma);
2801 	printf("timer %u state %s refcount %u scq.len %u\n",
2802 	    inm->in6m_timer,
2803 	    in6m_state_str(inm->in6m_state),
2804 	    inm->in6m_refcount,
2805 	    inm->in6m_scq.ifq_len);
2806 	printf("mli %p nsrc %lu sctimer %u scrv %u\n",
2807 	    inm->in6m_mli,
2808 	    inm->in6m_nsrc,
2809 	    inm->in6m_sctimer,
2810 	    inm->in6m_scrv);
2811 	for (t = 0; t < 2; t++) {
2812 		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2813 		    in6m_mode_str(inm->in6m_st[t].iss_fmode),
2814 		    inm->in6m_st[t].iss_asm,
2815 		    inm->in6m_st[t].iss_ex,
2816 		    inm->in6m_st[t].iss_in,
2817 		    inm->in6m_st[t].iss_rec);
2818 	}
2819 	printf("%s: --- end in6m %p ---\n", __func__, inm);
2820 }
2821 
2822 #else /* !KTR */
2823 
2824 void
2825 in6m_print(const struct in6_multi *inm)
2826 {
2827 
2828 }
2829 
2830 #endif /* KTR */
2831