1 /* 2 * Copyright (c) 2009 Bruce Simpson. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote 14 * products derived from this software without specific prior written 15 * permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * IPv6 multicast socket, group, and socket option processing module. 32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sysctl.h> 50 #include <sys/priv.h> 51 #include <sys/ktr.h> 52 #include <sys/tree.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_var.h> 62 #include <netinet6/in6_var.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet6/ip6_var.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet6/nd6.h> 69 #include <netinet6/mld6_var.h> 70 #include <netinet6/scope6_var.h> 71 72 #ifndef KTR_MLD 73 #define KTR_MLD KTR_INET6 74 #endif 75 76 #ifndef __SOCKUNION_DECLARED 77 union sockunion { 78 struct sockaddr_storage ss; 79 struct sockaddr sa; 80 struct sockaddr_dl sdl; 81 struct sockaddr_in6 sin6; 82 }; 83 typedef union sockunion sockunion_t; 84 #define __SOCKUNION_DECLARED 85 #endif /* __SOCKUNION_DECLARED */ 86 87 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 88 "IPv6 multicast PCB-layer source filter"); 89 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 90 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 91 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 92 "IPv6 multicast MLD-layer source filter"); 93 94 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 95 96 /* 97 * Locking: 98 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 99 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 100 * it can be taken by code in net/if.c also. 101 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 102 * 103 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 104 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 105 * anyway no matter what happens. 106 */ 107 struct mtx in6_multi_mtx; 108 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF); 109 110 static void im6f_commit(struct in6_mfilter *); 111 static int im6f_get_source(struct in6_mfilter *imf, 112 const struct sockaddr_in6 *psin, 113 struct in6_msource **); 114 static struct in6_msource * 115 im6f_graft(struct in6_mfilter *, const uint8_t, 116 const struct sockaddr_in6 *); 117 static void im6f_leave(struct in6_mfilter *); 118 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 119 static void im6f_purge(struct in6_mfilter *); 120 static void im6f_rollback(struct in6_mfilter *); 121 static void im6f_reap(struct in6_mfilter *); 122 static int im6o_grow(struct ip6_moptions *); 123 static size_t im6o_match_group(const struct ip6_moptions *, 124 const struct ifnet *, const struct sockaddr *); 125 static struct in6_msource * 126 im6o_match_source(const struct ip6_moptions *, const size_t, 127 const struct sockaddr *); 128 static void im6s_merge(struct ip6_msource *ims, 129 const struct in6_msource *lims, const int rollback); 130 static int in6_mc_get(struct ifnet *, const struct in6_addr *, 131 struct in6_multi **); 132 static int in6m_get_source(struct in6_multi *inm, 133 const struct in6_addr *addr, const int noalloc, 134 struct ip6_msource **pims); 135 #ifdef KTR 136 static int in6m_is_ifp_detached(const struct in6_multi *); 137 #endif 138 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 139 static void in6m_purge(struct in6_multi *); 140 static void in6m_reap(struct in6_multi *); 141 static struct ip6_moptions * 142 in6p_findmoptions(struct inpcb *); 143 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 144 static int in6p_join_group(struct inpcb *, struct sockopt *); 145 static int in6p_leave_group(struct inpcb *, struct sockopt *); 146 static struct ifnet * 147 in6p_lookup_mcast_ifp(const struct inpcb *, 148 const struct sockaddr_in6 *); 149 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 150 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 151 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 152 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 153 154 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 155 156 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 157 "IPv6 multicast"); 158 159 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 160 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 161 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 162 "Max source filters per group"); 163 164 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 165 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 166 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 167 "Max source filters per socket"); 168 169 /* TODO Virtualize this switch. */ 170 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 171 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 172 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 173 174 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 175 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 176 "Per-interface stack-wide source filters"); 177 178 #ifdef KTR 179 /* 180 * Inline function which wraps assertions for a valid ifp. 181 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 182 * is detached. 183 */ 184 static int __inline 185 in6m_is_ifp_detached(const struct in6_multi *inm) 186 { 187 struct ifnet *ifp; 188 189 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 190 ifp = inm->in6m_ifma->ifma_ifp; 191 if (ifp != NULL) { 192 /* 193 * Sanity check that network-layer notion of ifp is the 194 * same as that of link-layer. 195 */ 196 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 197 } 198 199 return (ifp == NULL); 200 } 201 #endif 202 203 /* 204 * Initialize an in6_mfilter structure to a known state at t0, t1 205 * with an empty source filter list. 206 */ 207 static __inline void 208 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 209 { 210 memset(imf, 0, sizeof(struct in6_mfilter)); 211 RB_INIT(&imf->im6f_sources); 212 imf->im6f_st[0] = st0; 213 imf->im6f_st[1] = st1; 214 } 215 216 /* 217 * Resize the ip6_moptions vector to the next power-of-two minus 1. 218 * May be called with locks held; do not sleep. 219 */ 220 static int 221 im6o_grow(struct ip6_moptions *imo) 222 { 223 struct in6_multi **nmships; 224 struct in6_multi **omships; 225 struct in6_mfilter *nmfilters; 226 struct in6_mfilter *omfilters; 227 size_t idx; 228 size_t newmax; 229 size_t oldmax; 230 231 nmships = NULL; 232 nmfilters = NULL; 233 omships = imo->im6o_membership; 234 omfilters = imo->im6o_mfilters; 235 oldmax = imo->im6o_max_memberships; 236 newmax = ((oldmax + 1) * 2) - 1; 237 238 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 239 nmships = (struct in6_multi **)realloc(omships, 240 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 241 nmfilters = (struct in6_mfilter *)realloc(omfilters, 242 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 243 M_NOWAIT); 244 if (nmships != NULL && nmfilters != NULL) { 245 /* Initialize newly allocated source filter heads. */ 246 for (idx = oldmax; idx < newmax; idx++) { 247 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 248 MCAST_EXCLUDE); 249 } 250 imo->im6o_max_memberships = newmax; 251 imo->im6o_membership = nmships; 252 imo->im6o_mfilters = nmfilters; 253 } 254 } 255 256 if (nmships == NULL || nmfilters == NULL) { 257 if (nmships != NULL) 258 free(nmships, M_IP6MOPTS); 259 if (nmfilters != NULL) 260 free(nmfilters, M_IN6MFILTER); 261 return (ETOOMANYREFS); 262 } 263 264 return (0); 265 } 266 267 /* 268 * Find an IPv6 multicast group entry for this ip6_moptions instance 269 * which matches the specified group, and optionally an interface. 270 * Return its index into the array, or -1 if not found. 271 */ 272 static size_t 273 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 274 const struct sockaddr *group) 275 { 276 const struct sockaddr_in6 *gsin6; 277 struct in6_multi **pinm; 278 int idx; 279 int nmships; 280 281 gsin6 = (const struct sockaddr_in6 *)group; 282 283 /* The im6o_membership array may be lazy allocated. */ 284 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 285 return (-1); 286 287 nmships = imo->im6o_num_memberships; 288 pinm = &imo->im6o_membership[0]; 289 for (idx = 0; idx < nmships; idx++, pinm++) { 290 if (*pinm == NULL) 291 continue; 292 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 293 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 294 &gsin6->sin6_addr)) { 295 break; 296 } 297 } 298 if (idx >= nmships) 299 idx = -1; 300 301 return (idx); 302 } 303 304 /* 305 * Find an IPv6 multicast source entry for this imo which matches 306 * the given group index for this socket, and source address. 307 * 308 * XXX TODO: The scope ID, if present in src, is stripped before 309 * any comparison. We SHOULD enforce scope/zone checks where the source 310 * filter entry has a link scope. 311 * 312 * NOTE: This does not check if the entry is in-mode, merely if 313 * it exists, which may not be the desired behaviour. 314 */ 315 static struct in6_msource * 316 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 317 const struct sockaddr *src) 318 { 319 struct ip6_msource find; 320 struct in6_mfilter *imf; 321 struct ip6_msource *ims; 322 const sockunion_t *psa; 323 324 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 325 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 326 ("%s: invalid index %d\n", __func__, (int)gidx)); 327 328 /* The im6o_mfilters array may be lazy allocated. */ 329 if (imo->im6o_mfilters == NULL) 330 return (NULL); 331 imf = &imo->im6o_mfilters[gidx]; 332 333 psa = (const sockunion_t *)src; 334 find.im6s_addr = psa->sin6.sin6_addr; 335 in6_clearscope(&find.im6s_addr); /* XXX */ 336 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 337 338 return ((struct in6_msource *)ims); 339 } 340 341 /* 342 * Perform filtering for multicast datagrams on a socket by group and source. 343 * 344 * Returns 0 if a datagram should be allowed through, or various error codes 345 * if the socket was not a member of the group, or the source was muted, etc. 346 */ 347 int 348 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 349 const struct sockaddr *group, const struct sockaddr *src) 350 { 351 size_t gidx; 352 struct in6_msource *ims; 353 int mode; 354 355 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 356 357 gidx = im6o_match_group(imo, ifp, group); 358 if (gidx == -1) 359 return (MCAST_NOTGMEMBER); 360 361 /* 362 * Check if the source was included in an (S,G) join. 363 * Allow reception on exclusive memberships by default, 364 * reject reception on inclusive memberships by default. 365 * Exclude source only if an in-mode exclude filter exists. 366 * Include source only if an in-mode include filter exists. 367 * NOTE: We are comparing group state here at MLD t1 (now) 368 * with socket-layer t0 (since last downcall). 369 */ 370 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 371 ims = im6o_match_source(imo, gidx, src); 372 373 if ((ims == NULL && mode == MCAST_INCLUDE) || 374 (ims != NULL && ims->im6sl_st[0] != mode)) 375 return (MCAST_NOTSMEMBER); 376 377 return (MCAST_PASS); 378 } 379 380 /* 381 * Find and return a reference to an in6_multi record for (ifp, group), 382 * and bump its reference count. 383 * If one does not exist, try to allocate it, and update link-layer multicast 384 * filters on ifp to listen for group. 385 * Assumes the IN6_MULTI lock is held across the call. 386 * Return 0 if successful, otherwise return an appropriate error code. 387 */ 388 static int 389 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, 390 struct in6_multi **pinm) 391 { 392 struct sockaddr_in6 gsin6; 393 struct ifmultiaddr *ifma; 394 struct in6_multi *inm; 395 int error; 396 397 error = 0; 398 399 /* 400 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 401 * if_addmulti() takes this mutex itself, so we must drop and 402 * re-acquire around the call. 403 */ 404 IN6_MULTI_LOCK_ASSERT(); 405 IF_ADDR_WLOCK(ifp); 406 407 inm = in6m_lookup_locked(ifp, group); 408 if (inm != NULL) { 409 /* 410 * If we already joined this group, just bump the 411 * refcount and return it. 412 */ 413 KASSERT(inm->in6m_refcount >= 1, 414 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 415 ++inm->in6m_refcount; 416 *pinm = inm; 417 goto out_locked; 418 } 419 420 memset(&gsin6, 0, sizeof(gsin6)); 421 gsin6.sin6_family = AF_INET6; 422 gsin6.sin6_len = sizeof(struct sockaddr_in6); 423 gsin6.sin6_addr = *group; 424 425 /* 426 * Check if a link-layer group is already associated 427 * with this network-layer group on the given ifnet. 428 */ 429 IF_ADDR_WUNLOCK(ifp); 430 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 431 if (error != 0) 432 return (error); 433 IF_ADDR_WLOCK(ifp); 434 435 /* 436 * If something other than netinet6 is occupying the link-layer 437 * group, print a meaningful error message and back out of 438 * the allocation. 439 * Otherwise, bump the refcount on the existing network-layer 440 * group association and return it. 441 */ 442 if (ifma->ifma_protospec != NULL) { 443 inm = (struct in6_multi *)ifma->ifma_protospec; 444 #ifdef INVARIANTS 445 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 446 __func__)); 447 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 448 ("%s: ifma not AF_INET6", __func__)); 449 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 450 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 451 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 452 panic("%s: ifma %p is inconsistent with %p (%p)", 453 __func__, ifma, inm, group); 454 #endif 455 ++inm->in6m_refcount; 456 *pinm = inm; 457 goto out_locked; 458 } 459 460 IF_ADDR_WLOCK_ASSERT(ifp); 461 462 /* 463 * A new in6_multi record is needed; allocate and initialize it. 464 * We DO NOT perform an MLD join as the in6_ layer may need to 465 * push an initial source list down to MLD to support SSM. 466 * 467 * The initial source filter state is INCLUDE, {} as per the RFC. 468 * Pending state-changes per group are subject to a bounds check. 469 */ 470 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 471 if (inm == NULL) { 472 if_delmulti_ifma(ifma); 473 error = ENOMEM; 474 goto out_locked; 475 } 476 inm->in6m_addr = *group; 477 inm->in6m_ifp = ifp; 478 inm->in6m_mli = MLD_IFINFO(ifp); 479 inm->in6m_ifma = ifma; 480 inm->in6m_refcount = 1; 481 inm->in6m_state = MLD_NOT_MEMBER; 482 IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 483 484 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 485 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 486 RB_INIT(&inm->in6m_srcs); 487 488 ifma->ifma_protospec = inm; 489 *pinm = inm; 490 491 out_locked: 492 IF_ADDR_WUNLOCK(ifp); 493 return (error); 494 } 495 496 /* 497 * Drop a reference to an in6_multi record. 498 * 499 * If the refcount drops to 0, free the in6_multi record and 500 * delete the underlying link-layer membership. 501 */ 502 void 503 in6m_release_locked(struct in6_multi *inm) 504 { 505 struct ifmultiaddr *ifma; 506 507 IN6_MULTI_LOCK_ASSERT(); 508 509 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 510 511 if (--inm->in6m_refcount > 0) { 512 CTR2(KTR_MLD, "%s: refcount is now %d", __func__, 513 inm->in6m_refcount); 514 return; 515 } 516 517 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 518 519 ifma = inm->in6m_ifma; 520 521 /* XXX this access is not covered by IF_ADDR_LOCK */ 522 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 523 KASSERT(ifma->ifma_protospec == inm, 524 ("%s: ifma_protospec != inm", __func__)); 525 ifma->ifma_protospec = NULL; 526 527 in6m_purge(inm); 528 529 free(inm, M_IP6MADDR); 530 531 if_delmulti_ifma(ifma); 532 } 533 534 /* 535 * Clear recorded source entries for a group. 536 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 537 * FIXME: Should reap. 538 */ 539 void 540 in6m_clear_recorded(struct in6_multi *inm) 541 { 542 struct ip6_msource *ims; 543 544 IN6_MULTI_LOCK_ASSERT(); 545 546 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 547 if (ims->im6s_stp) { 548 ims->im6s_stp = 0; 549 --inm->in6m_st[1].iss_rec; 550 } 551 } 552 KASSERT(inm->in6m_st[1].iss_rec == 0, 553 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 554 } 555 556 /* 557 * Record a source as pending for a Source-Group MLDv2 query. 558 * This lives here as it modifies the shared tree. 559 * 560 * inm is the group descriptor. 561 * naddr is the address of the source to record in network-byte order. 562 * 563 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 564 * lazy-allocate a source node in response to an SG query. 565 * Otherwise, no allocation is performed. This saves some memory 566 * with the trade-off that the source will not be reported to the 567 * router if joined in the window between the query response and 568 * the group actually being joined on the local host. 569 * 570 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 571 * This turns off the allocation of a recorded source entry if 572 * the group has not been joined. 573 * 574 * Return 0 if the source didn't exist or was already marked as recorded. 575 * Return 1 if the source was marked as recorded by this function. 576 * Return <0 if any error occured (negated errno code). 577 */ 578 int 579 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 580 { 581 struct ip6_msource find; 582 struct ip6_msource *ims, *nims; 583 584 IN6_MULTI_LOCK_ASSERT(); 585 586 find.im6s_addr = *addr; 587 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 588 if (ims && ims->im6s_stp) 589 return (0); 590 if (ims == NULL) { 591 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 592 return (-ENOSPC); 593 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 594 M_NOWAIT | M_ZERO); 595 if (nims == NULL) 596 return (-ENOMEM); 597 nims->im6s_addr = find.im6s_addr; 598 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 599 ++inm->in6m_nsrc; 600 ims = nims; 601 } 602 603 /* 604 * Mark the source as recorded and update the recorded 605 * source count. 606 */ 607 ++ims->im6s_stp; 608 ++inm->in6m_st[1].iss_rec; 609 610 return (1); 611 } 612 613 /* 614 * Return a pointer to an in6_msource owned by an in6_mfilter, 615 * given its source address. 616 * Lazy-allocate if needed. If this is a new entry its filter state is 617 * undefined at t0. 618 * 619 * imf is the filter set being modified. 620 * addr is the source address. 621 * 622 * SMPng: May be called with locks held; malloc must not block. 623 */ 624 static int 625 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 626 struct in6_msource **plims) 627 { 628 struct ip6_msource find; 629 struct ip6_msource *ims, *nims; 630 struct in6_msource *lims; 631 int error; 632 633 error = 0; 634 ims = NULL; 635 lims = NULL; 636 637 find.im6s_addr = psin->sin6_addr; 638 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 639 lims = (struct in6_msource *)ims; 640 if (lims == NULL) { 641 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 642 return (ENOSPC); 643 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 644 M_NOWAIT | M_ZERO); 645 if (nims == NULL) 646 return (ENOMEM); 647 lims = (struct in6_msource *)nims; 648 lims->im6s_addr = find.im6s_addr; 649 lims->im6sl_st[0] = MCAST_UNDEFINED; 650 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 651 ++imf->im6f_nsrc; 652 } 653 654 *plims = lims; 655 656 return (error); 657 } 658 659 /* 660 * Graft a source entry into an existing socket-layer filter set, 661 * maintaining any required invariants and checking allocations. 662 * 663 * The source is marked as being in the new filter mode at t1. 664 * 665 * Return the pointer to the new node, otherwise return NULL. 666 */ 667 static struct in6_msource * 668 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 669 const struct sockaddr_in6 *psin) 670 { 671 struct ip6_msource *nims; 672 struct in6_msource *lims; 673 674 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 675 M_NOWAIT | M_ZERO); 676 if (nims == NULL) 677 return (NULL); 678 lims = (struct in6_msource *)nims; 679 lims->im6s_addr = psin->sin6_addr; 680 lims->im6sl_st[0] = MCAST_UNDEFINED; 681 lims->im6sl_st[1] = st1; 682 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 683 ++imf->im6f_nsrc; 684 685 return (lims); 686 } 687 688 /* 689 * Prune a source entry from an existing socket-layer filter set, 690 * maintaining any required invariants and checking allocations. 691 * 692 * The source is marked as being left at t1, it is not freed. 693 * 694 * Return 0 if no error occurred, otherwise return an errno value. 695 */ 696 static int 697 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 698 { 699 struct ip6_msource find; 700 struct ip6_msource *ims; 701 struct in6_msource *lims; 702 703 find.im6s_addr = psin->sin6_addr; 704 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 705 if (ims == NULL) 706 return (ENOENT); 707 lims = (struct in6_msource *)ims; 708 lims->im6sl_st[1] = MCAST_UNDEFINED; 709 return (0); 710 } 711 712 /* 713 * Revert socket-layer filter set deltas at t1 to t0 state. 714 */ 715 static void 716 im6f_rollback(struct in6_mfilter *imf) 717 { 718 struct ip6_msource *ims, *tims; 719 struct in6_msource *lims; 720 721 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 722 lims = (struct in6_msource *)ims; 723 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 724 /* no change at t1 */ 725 continue; 726 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 727 /* revert change to existing source at t1 */ 728 lims->im6sl_st[1] = lims->im6sl_st[0]; 729 } else { 730 /* revert source added t1 */ 731 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 732 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 733 free(ims, M_IN6MFILTER); 734 imf->im6f_nsrc--; 735 } 736 } 737 imf->im6f_st[1] = imf->im6f_st[0]; 738 } 739 740 /* 741 * Mark socket-layer filter set as INCLUDE {} at t1. 742 */ 743 static void 744 im6f_leave(struct in6_mfilter *imf) 745 { 746 struct ip6_msource *ims; 747 struct in6_msource *lims; 748 749 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 750 lims = (struct in6_msource *)ims; 751 lims->im6sl_st[1] = MCAST_UNDEFINED; 752 } 753 imf->im6f_st[1] = MCAST_INCLUDE; 754 } 755 756 /* 757 * Mark socket-layer filter set deltas as committed. 758 */ 759 static void 760 im6f_commit(struct in6_mfilter *imf) 761 { 762 struct ip6_msource *ims; 763 struct in6_msource *lims; 764 765 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 766 lims = (struct in6_msource *)ims; 767 lims->im6sl_st[0] = lims->im6sl_st[1]; 768 } 769 imf->im6f_st[0] = imf->im6f_st[1]; 770 } 771 772 /* 773 * Reap unreferenced sources from socket-layer filter set. 774 */ 775 static void 776 im6f_reap(struct in6_mfilter *imf) 777 { 778 struct ip6_msource *ims, *tims; 779 struct in6_msource *lims; 780 781 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 782 lims = (struct in6_msource *)ims; 783 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 784 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 785 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 786 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 787 free(ims, M_IN6MFILTER); 788 imf->im6f_nsrc--; 789 } 790 } 791 } 792 793 /* 794 * Purge socket-layer filter set. 795 */ 796 static void 797 im6f_purge(struct in6_mfilter *imf) 798 { 799 struct ip6_msource *ims, *tims; 800 801 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 802 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 803 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 804 free(ims, M_IN6MFILTER); 805 imf->im6f_nsrc--; 806 } 807 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 808 KASSERT(RB_EMPTY(&imf->im6f_sources), 809 ("%s: im6f_sources not empty", __func__)); 810 } 811 812 /* 813 * Look up a source filter entry for a multicast group. 814 * 815 * inm is the group descriptor to work with. 816 * addr is the IPv6 address to look up. 817 * noalloc may be non-zero to suppress allocation of sources. 818 * *pims will be set to the address of the retrieved or allocated source. 819 * 820 * SMPng: NOTE: may be called with locks held. 821 * Return 0 if successful, otherwise return a non-zero error code. 822 */ 823 static int 824 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 825 const int noalloc, struct ip6_msource **pims) 826 { 827 struct ip6_msource find; 828 struct ip6_msource *ims, *nims; 829 #ifdef KTR 830 char ip6tbuf[INET6_ADDRSTRLEN]; 831 #endif 832 833 find.im6s_addr = *addr; 834 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 835 if (ims == NULL && !noalloc) { 836 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 837 return (ENOSPC); 838 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 839 M_NOWAIT | M_ZERO); 840 if (nims == NULL) 841 return (ENOMEM); 842 nims->im6s_addr = *addr; 843 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 844 ++inm->in6m_nsrc; 845 ims = nims; 846 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 847 ip6_sprintf(ip6tbuf, addr), ims); 848 } 849 850 *pims = ims; 851 return (0); 852 } 853 854 /* 855 * Merge socket-layer source into MLD-layer source. 856 * If rollback is non-zero, perform the inverse of the merge. 857 */ 858 static void 859 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 860 const int rollback) 861 { 862 int n = rollback ? -1 : 1; 863 #ifdef KTR 864 char ip6tbuf[INET6_ADDRSTRLEN]; 865 866 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 867 #endif 868 869 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 870 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 871 ims->im6s_st[1].ex -= n; 872 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 873 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 874 ims->im6s_st[1].in -= n; 875 } 876 877 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 878 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 879 ims->im6s_st[1].ex += n; 880 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 881 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 882 ims->im6s_st[1].in += n; 883 } 884 } 885 886 /* 887 * Atomically update the global in6_multi state, when a membership's 888 * filter list is being updated in any way. 889 * 890 * imf is the per-inpcb-membership group filter pointer. 891 * A fake imf may be passed for in-kernel consumers. 892 * 893 * XXX This is a candidate for a set-symmetric-difference style loop 894 * which would eliminate the repeated lookup from root of ims nodes, 895 * as they share the same key space. 896 * 897 * If any error occurred this function will back out of refcounts 898 * and return a non-zero value. 899 */ 900 static int 901 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 902 { 903 struct ip6_msource *ims, *nims; 904 struct in6_msource *lims; 905 int schanged, error; 906 int nsrc0, nsrc1; 907 908 schanged = 0; 909 error = 0; 910 nsrc1 = nsrc0 = 0; 911 912 /* 913 * Update the source filters first, as this may fail. 914 * Maintain count of in-mode filters at t0, t1. These are 915 * used to work out if we transition into ASM mode or not. 916 * Maintain a count of source filters whose state was 917 * actually modified by this operation. 918 */ 919 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 920 lims = (struct in6_msource *)ims; 921 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 922 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 923 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 924 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 925 ++schanged; 926 if (error) 927 break; 928 im6s_merge(nims, lims, 0); 929 } 930 if (error) { 931 struct ip6_msource *bims; 932 933 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 934 lims = (struct in6_msource *)ims; 935 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 936 continue; 937 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 938 if (bims == NULL) 939 continue; 940 im6s_merge(bims, lims, 1); 941 } 942 goto out_reap; 943 } 944 945 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 946 __func__, nsrc0, nsrc1); 947 948 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 949 if (imf->im6f_st[0] == imf->im6f_st[1] && 950 imf->im6f_st[1] == MCAST_INCLUDE) { 951 if (nsrc1 == 0) { 952 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 953 --inm->in6m_st[1].iss_in; 954 } 955 } 956 957 /* Handle filter mode transition on socket. */ 958 if (imf->im6f_st[0] != imf->im6f_st[1]) { 959 CTR3(KTR_MLD, "%s: imf transition %d to %d", 960 __func__, imf->im6f_st[0], imf->im6f_st[1]); 961 962 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 963 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 964 --inm->in6m_st[1].iss_ex; 965 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 966 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 967 --inm->in6m_st[1].iss_in; 968 } 969 970 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 971 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 972 inm->in6m_st[1].iss_ex++; 973 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 974 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 975 inm->in6m_st[1].iss_in++; 976 } 977 } 978 979 /* 980 * Track inm filter state in terms of listener counts. 981 * If there are any exclusive listeners, stack-wide 982 * membership is exclusive. 983 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 984 * If no listeners remain, state is undefined at t1, 985 * and the MLD lifecycle for this group should finish. 986 */ 987 if (inm->in6m_st[1].iss_ex > 0) { 988 CTR1(KTR_MLD, "%s: transition to EX", __func__); 989 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 990 } else if (inm->in6m_st[1].iss_in > 0) { 991 CTR1(KTR_MLD, "%s: transition to IN", __func__); 992 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 993 } else { 994 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 995 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 996 } 997 998 /* Decrement ASM listener count on transition out of ASM mode. */ 999 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1000 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1001 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1002 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1003 --inm->in6m_st[1].iss_asm; 1004 } 1005 1006 /* Increment ASM listener count on transition to ASM mode. */ 1007 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1008 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1009 inm->in6m_st[1].iss_asm++; 1010 } 1011 1012 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1013 in6m_print(inm); 1014 1015 out_reap: 1016 if (schanged > 0) { 1017 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1018 in6m_reap(inm); 1019 } 1020 return (error); 1021 } 1022 1023 /* 1024 * Mark an in6_multi's filter set deltas as committed. 1025 * Called by MLD after a state change has been enqueued. 1026 */ 1027 void 1028 in6m_commit(struct in6_multi *inm) 1029 { 1030 struct ip6_msource *ims; 1031 1032 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1033 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1034 in6m_print(inm); 1035 1036 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1037 ims->im6s_st[0] = ims->im6s_st[1]; 1038 } 1039 inm->in6m_st[0] = inm->in6m_st[1]; 1040 } 1041 1042 /* 1043 * Reap unreferenced nodes from an in6_multi's filter set. 1044 */ 1045 static void 1046 in6m_reap(struct in6_multi *inm) 1047 { 1048 struct ip6_msource *ims, *tims; 1049 1050 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1051 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1052 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1053 ims->im6s_stp != 0) 1054 continue; 1055 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1056 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1057 free(ims, M_IP6MSOURCE); 1058 inm->in6m_nsrc--; 1059 } 1060 } 1061 1062 /* 1063 * Purge all source nodes from an in6_multi's filter set. 1064 */ 1065 static void 1066 in6m_purge(struct in6_multi *inm) 1067 { 1068 struct ip6_msource *ims, *tims; 1069 1070 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1071 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1072 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1073 free(ims, M_IP6MSOURCE); 1074 inm->in6m_nsrc--; 1075 } 1076 } 1077 1078 /* 1079 * Join a multicast address w/o sources. 1080 * KAME compatibility entry point. 1081 * 1082 * SMPng: Assume no mc locks held by caller. 1083 */ 1084 struct in6_multi_mship * 1085 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, 1086 int *errorp, int delay) 1087 { 1088 struct in6_multi_mship *imm; 1089 int error; 1090 1091 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1092 if (imm == NULL) { 1093 *errorp = ENOBUFS; 1094 return (NULL); 1095 } 1096 1097 delay = (delay * PR_FASTHZ) / hz; 1098 1099 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 1100 if (error) { 1101 *errorp = error; 1102 free(imm, M_IP6MADDR); 1103 return (NULL); 1104 } 1105 1106 return (imm); 1107 } 1108 1109 /* 1110 * Leave a multicast address w/o sources. 1111 * KAME compatibility entry point. 1112 * 1113 * SMPng: Assume no mc locks held by caller. 1114 */ 1115 int 1116 in6_leavegroup(struct in6_multi_mship *imm) 1117 { 1118 1119 if (imm->i6mm_maddr != NULL) 1120 in6_mc_leave(imm->i6mm_maddr, NULL); 1121 free(imm, M_IP6MADDR); 1122 return 0; 1123 } 1124 1125 /* 1126 * Join a multicast group; unlocked entry point. 1127 * 1128 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper 1129 * locks are not held. Fortunately, ifp is unlikely to have been detached 1130 * at this point, so we assume it's OK to recurse. 1131 */ 1132 int 1133 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, 1134 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1135 const int delay) 1136 { 1137 int error; 1138 1139 IN6_MULTI_LOCK(); 1140 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay); 1141 IN6_MULTI_UNLOCK(); 1142 1143 return (error); 1144 } 1145 1146 /* 1147 * Join a multicast group; real entry point. 1148 * 1149 * Only preserves atomicity at inm level. 1150 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1151 * 1152 * If the MLD downcall fails, the group is not joined, and an error 1153 * code is returned. 1154 */ 1155 int 1156 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1157 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1158 const int delay) 1159 { 1160 struct in6_mfilter timf; 1161 struct in6_multi *inm; 1162 int error; 1163 #ifdef KTR 1164 char ip6tbuf[INET6_ADDRSTRLEN]; 1165 #endif 1166 1167 #ifdef INVARIANTS 1168 /* 1169 * Sanity: Check scope zone ID was set for ifp, if and 1170 * only if group is scoped to an interface. 1171 */ 1172 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1173 ("%s: not a multicast address", __func__)); 1174 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1175 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1176 KASSERT(mcaddr->s6_addr16[1] != 0, 1177 ("%s: scope zone ID not set", __func__)); 1178 } 1179 #endif 1180 1181 IN6_MULTI_LOCK_ASSERT(); 1182 1183 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1184 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1185 1186 error = 0; 1187 inm = NULL; 1188 1189 /* 1190 * If no imf was specified (i.e. kernel consumer), 1191 * fake one up and assume it is an ASM join. 1192 */ 1193 if (imf == NULL) { 1194 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1195 imf = &timf; 1196 } 1197 1198 error = in6_mc_get(ifp, mcaddr, &inm); 1199 if (error) { 1200 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__); 1201 return (error); 1202 } 1203 1204 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1205 error = in6m_merge(inm, imf); 1206 if (error) { 1207 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1208 goto out_in6m_release; 1209 } 1210 1211 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1212 error = mld_change_state(inm, delay); 1213 if (error) { 1214 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1215 goto out_in6m_release; 1216 } 1217 1218 out_in6m_release: 1219 if (error) { 1220 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1221 in6m_release_locked(inm); 1222 } else { 1223 *pinm = inm; 1224 } 1225 1226 return (error); 1227 } 1228 1229 /* 1230 * Leave a multicast group; unlocked entry point. 1231 */ 1232 int 1233 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1234 { 1235 struct ifnet *ifp; 1236 int error; 1237 1238 ifp = inm->in6m_ifp; 1239 1240 IN6_MULTI_LOCK(); 1241 error = in6_mc_leave_locked(inm, imf); 1242 IN6_MULTI_UNLOCK(); 1243 1244 return (error); 1245 } 1246 1247 /* 1248 * Leave a multicast group; real entry point. 1249 * All source filters will be expunged. 1250 * 1251 * Only preserves atomicity at inm level. 1252 * 1253 * Holding the write lock for the INP which contains imf 1254 * is highly advisable. We can't assert for it as imf does not 1255 * contain a back-pointer to the owning inp. 1256 * 1257 * Note: This is not the same as in6m_release(*) as this function also 1258 * makes a state change downcall into MLD. 1259 */ 1260 int 1261 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1262 { 1263 struct in6_mfilter timf; 1264 int error; 1265 #ifdef KTR 1266 char ip6tbuf[INET6_ADDRSTRLEN]; 1267 #endif 1268 1269 error = 0; 1270 1271 IN6_MULTI_LOCK_ASSERT(); 1272 1273 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1274 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1275 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1276 imf); 1277 1278 /* 1279 * If no imf was specified (i.e. kernel consumer), 1280 * fake one up and assume it is an ASM join. 1281 */ 1282 if (imf == NULL) { 1283 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1284 imf = &timf; 1285 } 1286 1287 /* 1288 * Begin state merge transaction at MLD layer. 1289 * 1290 * As this particular invocation should not cause any memory 1291 * to be allocated, and there is no opportunity to roll back 1292 * the transaction, it MUST NOT fail. 1293 */ 1294 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1295 error = in6m_merge(inm, imf); 1296 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1297 1298 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1299 error = mld_change_state(inm, 0); 1300 if (error) 1301 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1302 1303 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1304 in6m_release_locked(inm); 1305 1306 return (error); 1307 } 1308 1309 /* 1310 * Block or unblock an ASM multicast source on an inpcb. 1311 * This implements the delta-based API described in RFC 3678. 1312 * 1313 * The delta-based API applies only to exclusive-mode memberships. 1314 * An MLD downcall will be performed. 1315 * 1316 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1317 * 1318 * Return 0 if successful, otherwise return an appropriate error code. 1319 */ 1320 static int 1321 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1322 { 1323 struct group_source_req gsr; 1324 sockunion_t *gsa, *ssa; 1325 struct ifnet *ifp; 1326 struct in6_mfilter *imf; 1327 struct ip6_moptions *imo; 1328 struct in6_msource *ims; 1329 struct in6_multi *inm; 1330 size_t idx; 1331 uint16_t fmode; 1332 int error, doblock; 1333 #ifdef KTR 1334 char ip6tbuf[INET6_ADDRSTRLEN]; 1335 #endif 1336 1337 ifp = NULL; 1338 error = 0; 1339 doblock = 0; 1340 1341 memset(&gsr, 0, sizeof(struct group_source_req)); 1342 gsa = (sockunion_t *)&gsr.gsr_group; 1343 ssa = (sockunion_t *)&gsr.gsr_source; 1344 1345 switch (sopt->sopt_name) { 1346 case MCAST_BLOCK_SOURCE: 1347 case MCAST_UNBLOCK_SOURCE: 1348 error = sooptcopyin(sopt, &gsr, 1349 sizeof(struct group_source_req), 1350 sizeof(struct group_source_req)); 1351 if (error) 1352 return (error); 1353 1354 if (gsa->sin6.sin6_family != AF_INET6 || 1355 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1356 return (EINVAL); 1357 1358 if (ssa->sin6.sin6_family != AF_INET6 || 1359 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1360 return (EINVAL); 1361 1362 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1363 return (EADDRNOTAVAIL); 1364 1365 ifp = ifnet_byindex(gsr.gsr_interface); 1366 1367 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1368 doblock = 1; 1369 break; 1370 1371 default: 1372 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1373 __func__, sopt->sopt_name); 1374 return (EOPNOTSUPP); 1375 break; 1376 } 1377 1378 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1379 return (EINVAL); 1380 1381 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1382 1383 /* 1384 * Check if we are actually a member of this group. 1385 */ 1386 imo = in6p_findmoptions(inp); 1387 idx = im6o_match_group(imo, ifp, &gsa->sa); 1388 if (idx == -1 || imo->im6o_mfilters == NULL) { 1389 error = EADDRNOTAVAIL; 1390 goto out_in6p_locked; 1391 } 1392 1393 KASSERT(imo->im6o_mfilters != NULL, 1394 ("%s: im6o_mfilters not allocated", __func__)); 1395 imf = &imo->im6o_mfilters[idx]; 1396 inm = imo->im6o_membership[idx]; 1397 1398 /* 1399 * Attempting to use the delta-based API on an 1400 * non exclusive-mode membership is an error. 1401 */ 1402 fmode = imf->im6f_st[0]; 1403 if (fmode != MCAST_EXCLUDE) { 1404 error = EINVAL; 1405 goto out_in6p_locked; 1406 } 1407 1408 /* 1409 * Deal with error cases up-front: 1410 * Asked to block, but already blocked; or 1411 * Asked to unblock, but nothing to unblock. 1412 * If adding a new block entry, allocate it. 1413 */ 1414 ims = im6o_match_source(imo, idx, &ssa->sa); 1415 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1416 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1417 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1418 doblock ? "" : "not "); 1419 error = EADDRNOTAVAIL; 1420 goto out_in6p_locked; 1421 } 1422 1423 INP_WLOCK_ASSERT(inp); 1424 1425 /* 1426 * Begin state merge transaction at socket layer. 1427 */ 1428 if (doblock) { 1429 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1430 ims = im6f_graft(imf, fmode, &ssa->sin6); 1431 if (ims == NULL) 1432 error = ENOMEM; 1433 } else { 1434 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1435 error = im6f_prune(imf, &ssa->sin6); 1436 } 1437 1438 if (error) { 1439 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1440 goto out_im6f_rollback; 1441 } 1442 1443 /* 1444 * Begin state merge transaction at MLD layer. 1445 */ 1446 IN6_MULTI_LOCK(); 1447 1448 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1449 error = in6m_merge(inm, imf); 1450 if (error) 1451 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1452 else { 1453 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1454 error = mld_change_state(inm, 0); 1455 if (error) 1456 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1457 } 1458 1459 IN6_MULTI_UNLOCK(); 1460 1461 out_im6f_rollback: 1462 if (error) 1463 im6f_rollback(imf); 1464 else 1465 im6f_commit(imf); 1466 1467 im6f_reap(imf); 1468 1469 out_in6p_locked: 1470 INP_WUNLOCK(inp); 1471 return (error); 1472 } 1473 1474 /* 1475 * Given an inpcb, return its multicast options structure pointer. Accepts 1476 * an unlocked inpcb pointer, but will return it locked. May sleep. 1477 * 1478 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1479 * SMPng: NOTE: Returns with the INP write lock held. 1480 */ 1481 static struct ip6_moptions * 1482 in6p_findmoptions(struct inpcb *inp) 1483 { 1484 struct ip6_moptions *imo; 1485 struct in6_multi **immp; 1486 struct in6_mfilter *imfp; 1487 size_t idx; 1488 1489 INP_WLOCK(inp); 1490 if (inp->in6p_moptions != NULL) 1491 return (inp->in6p_moptions); 1492 1493 INP_WUNLOCK(inp); 1494 1495 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1496 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1497 M_WAITOK | M_ZERO); 1498 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1499 M_IN6MFILTER, M_WAITOK); 1500 1501 imo->im6o_multicast_ifp = NULL; 1502 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1503 imo->im6o_multicast_loop = in6_mcast_loop; 1504 imo->im6o_num_memberships = 0; 1505 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1506 imo->im6o_membership = immp; 1507 1508 /* Initialize per-group source filters. */ 1509 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1510 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1511 imo->im6o_mfilters = imfp; 1512 1513 INP_WLOCK(inp); 1514 if (inp->in6p_moptions != NULL) { 1515 free(imfp, M_IN6MFILTER); 1516 free(immp, M_IP6MOPTS); 1517 free(imo, M_IP6MOPTS); 1518 return (inp->in6p_moptions); 1519 } 1520 inp->in6p_moptions = imo; 1521 return (imo); 1522 } 1523 1524 /* 1525 * Discard the IPv6 multicast options (and source filters). 1526 * 1527 * SMPng: NOTE: assumes INP write lock is held. 1528 */ 1529 void 1530 ip6_freemoptions(struct ip6_moptions *imo) 1531 { 1532 struct in6_mfilter *imf; 1533 size_t idx, nmships; 1534 1535 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__)); 1536 1537 nmships = imo->im6o_num_memberships; 1538 for (idx = 0; idx < nmships; ++idx) { 1539 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1540 if (imf) 1541 im6f_leave(imf); 1542 /* XXX this will thrash the lock(s) */ 1543 (void)in6_mc_leave(imo->im6o_membership[idx], imf); 1544 if (imf) 1545 im6f_purge(imf); 1546 } 1547 1548 if (imo->im6o_mfilters) 1549 free(imo->im6o_mfilters, M_IN6MFILTER); 1550 free(imo->im6o_membership, M_IP6MOPTS); 1551 free(imo, M_IP6MOPTS); 1552 } 1553 1554 /* 1555 * Atomically get source filters on a socket for an IPv6 multicast group. 1556 * Called with INP lock held; returns with lock released. 1557 */ 1558 static int 1559 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1560 { 1561 struct __msfilterreq msfr; 1562 sockunion_t *gsa; 1563 struct ifnet *ifp; 1564 struct ip6_moptions *imo; 1565 struct in6_mfilter *imf; 1566 struct ip6_msource *ims; 1567 struct in6_msource *lims; 1568 struct sockaddr_in6 *psin; 1569 struct sockaddr_storage *ptss; 1570 struct sockaddr_storage *tss; 1571 int error; 1572 size_t idx, nsrcs, ncsrcs; 1573 1574 INP_WLOCK_ASSERT(inp); 1575 1576 imo = inp->in6p_moptions; 1577 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1578 1579 INP_WUNLOCK(inp); 1580 1581 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1582 sizeof(struct __msfilterreq)); 1583 if (error) 1584 return (error); 1585 1586 if (msfr.msfr_group.ss_family != AF_INET6 || 1587 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1588 return (EINVAL); 1589 1590 gsa = (sockunion_t *)&msfr.msfr_group; 1591 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1592 return (EINVAL); 1593 1594 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1595 return (EADDRNOTAVAIL); 1596 ifp = ifnet_byindex(msfr.msfr_ifindex); 1597 if (ifp == NULL) 1598 return (EADDRNOTAVAIL); 1599 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1600 1601 INP_WLOCK(inp); 1602 1603 /* 1604 * Lookup group on the socket. 1605 */ 1606 idx = im6o_match_group(imo, ifp, &gsa->sa); 1607 if (idx == -1 || imo->im6o_mfilters == NULL) { 1608 INP_WUNLOCK(inp); 1609 return (EADDRNOTAVAIL); 1610 } 1611 imf = &imo->im6o_mfilters[idx]; 1612 1613 /* 1614 * Ignore memberships which are in limbo. 1615 */ 1616 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1617 INP_WUNLOCK(inp); 1618 return (EAGAIN); 1619 } 1620 msfr.msfr_fmode = imf->im6f_st[1]; 1621 1622 /* 1623 * If the user specified a buffer, copy out the source filter 1624 * entries to userland gracefully. 1625 * We only copy out the number of entries which userland 1626 * has asked for, but we always tell userland how big the 1627 * buffer really needs to be. 1628 */ 1629 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1630 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1631 tss = NULL; 1632 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1633 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1634 M_TEMP, M_NOWAIT | M_ZERO); 1635 if (tss == NULL) { 1636 INP_WUNLOCK(inp); 1637 return (ENOBUFS); 1638 } 1639 } 1640 1641 /* 1642 * Count number of sources in-mode at t0. 1643 * If buffer space exists and remains, copy out source entries. 1644 */ 1645 nsrcs = msfr.msfr_nsrcs; 1646 ncsrcs = 0; 1647 ptss = tss; 1648 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1649 lims = (struct in6_msource *)ims; 1650 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1651 lims->im6sl_st[0] != imf->im6f_st[0]) 1652 continue; 1653 ++ncsrcs; 1654 if (tss != NULL && nsrcs > 0) { 1655 psin = (struct sockaddr_in6 *)ptss; 1656 psin->sin6_family = AF_INET6; 1657 psin->sin6_len = sizeof(struct sockaddr_in6); 1658 psin->sin6_addr = lims->im6s_addr; 1659 psin->sin6_port = 0; 1660 --nsrcs; 1661 ++ptss; 1662 } 1663 } 1664 1665 INP_WUNLOCK(inp); 1666 1667 if (tss != NULL) { 1668 error = copyout(tss, msfr.msfr_srcs, 1669 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1670 free(tss, M_TEMP); 1671 if (error) 1672 return (error); 1673 } 1674 1675 msfr.msfr_nsrcs = ncsrcs; 1676 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1677 1678 return (error); 1679 } 1680 1681 /* 1682 * Return the IP multicast options in response to user getsockopt(). 1683 */ 1684 int 1685 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1686 { 1687 struct ip6_moptions *im6o; 1688 int error; 1689 u_int optval; 1690 1691 INP_WLOCK(inp); 1692 im6o = inp->in6p_moptions; 1693 /* 1694 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1695 * or is a divert socket, reject it. 1696 */ 1697 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1698 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1699 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1700 INP_WUNLOCK(inp); 1701 return (EOPNOTSUPP); 1702 } 1703 1704 error = 0; 1705 switch (sopt->sopt_name) { 1706 case IPV6_MULTICAST_IF: 1707 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1708 optval = 0; 1709 } else { 1710 optval = im6o->im6o_multicast_ifp->if_index; 1711 } 1712 INP_WUNLOCK(inp); 1713 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1714 break; 1715 1716 case IPV6_MULTICAST_HOPS: 1717 if (im6o == NULL) 1718 optval = V_ip6_defmcasthlim; 1719 else 1720 optval = im6o->im6o_multicast_hlim; 1721 INP_WUNLOCK(inp); 1722 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1723 break; 1724 1725 case IPV6_MULTICAST_LOOP: 1726 if (im6o == NULL) 1727 optval = in6_mcast_loop; /* XXX VIMAGE */ 1728 else 1729 optval = im6o->im6o_multicast_loop; 1730 INP_WUNLOCK(inp); 1731 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1732 break; 1733 1734 case IPV6_MSFILTER: 1735 if (im6o == NULL) { 1736 error = EADDRNOTAVAIL; 1737 INP_WUNLOCK(inp); 1738 } else { 1739 error = in6p_get_source_filters(inp, sopt); 1740 } 1741 break; 1742 1743 default: 1744 INP_WUNLOCK(inp); 1745 error = ENOPROTOOPT; 1746 break; 1747 } 1748 1749 INP_UNLOCK_ASSERT(inp); 1750 1751 return (error); 1752 } 1753 1754 /* 1755 * Look up the ifnet to use for a multicast group membership, 1756 * given the address of an IPv6 group. 1757 * 1758 * This routine exists to support legacy IPv6 multicast applications. 1759 * 1760 * If inp is non-NULL, use this socket's current FIB number for any 1761 * required FIB lookup. Look up the group address in the unicast FIB, 1762 * and use its ifp; usually, this points to the default next-hop. 1763 * If the FIB lookup fails, return NULL. 1764 * 1765 * FUTURE: Support multiple forwarding tables for IPv6. 1766 * 1767 * Returns NULL if no ifp could be found. 1768 */ 1769 static struct ifnet * 1770 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1771 const struct sockaddr_in6 *gsin6) 1772 { 1773 struct route_in6 ro6; 1774 struct ifnet *ifp; 1775 1776 KASSERT(in6p->inp_vflag & INP_IPV6, 1777 ("%s: not INP_IPV6 inpcb", __func__)); 1778 KASSERT(gsin6->sin6_family == AF_INET6, 1779 ("%s: not AF_INET6 group", __func__)); 1780 1781 ifp = NULL; 1782 memset(&ro6, 0, sizeof(struct route_in6)); 1783 memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6)); 1784 rtalloc_ign_fib((struct route *)&ro6, 0, 1785 in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB); 1786 if (ro6.ro_rt != NULL) { 1787 ifp = ro6.ro_rt->rt_ifp; 1788 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1789 RTFREE(ro6.ro_rt); 1790 } 1791 1792 return (ifp); 1793 } 1794 1795 /* 1796 * Join an IPv6 multicast group, possibly with a source. 1797 * 1798 * FIXME: The KAME use of the unspecified address (::) 1799 * to join *all* multicast groups is currently unsupported. 1800 */ 1801 static int 1802 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1803 { 1804 struct group_source_req gsr; 1805 sockunion_t *gsa, *ssa; 1806 struct ifnet *ifp; 1807 struct in6_mfilter *imf; 1808 struct ip6_moptions *imo; 1809 struct in6_multi *inm; 1810 struct in6_msource *lims; 1811 size_t idx; 1812 int error, is_new; 1813 1814 ifp = NULL; 1815 imf = NULL; 1816 lims = NULL; 1817 error = 0; 1818 is_new = 0; 1819 1820 memset(&gsr, 0, sizeof(struct group_source_req)); 1821 gsa = (sockunion_t *)&gsr.gsr_group; 1822 gsa->ss.ss_family = AF_UNSPEC; 1823 ssa = (sockunion_t *)&gsr.gsr_source; 1824 ssa->ss.ss_family = AF_UNSPEC; 1825 1826 /* 1827 * Chew everything into struct group_source_req. 1828 * Overwrite the port field if present, as the sockaddr 1829 * being copied in may be matched with a binary comparison. 1830 * Ignore passed-in scope ID. 1831 */ 1832 switch (sopt->sopt_name) { 1833 case IPV6_JOIN_GROUP: { 1834 struct ipv6_mreq mreq; 1835 1836 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1837 sizeof(struct ipv6_mreq)); 1838 if (error) 1839 return (error); 1840 1841 gsa->sin6.sin6_family = AF_INET6; 1842 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1843 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1844 1845 if (mreq.ipv6mr_interface == 0) { 1846 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1847 } else { 1848 if (V_if_index < mreq.ipv6mr_interface) 1849 return (EADDRNOTAVAIL); 1850 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1851 } 1852 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1853 __func__, mreq.ipv6mr_interface, ifp); 1854 } break; 1855 1856 case MCAST_JOIN_GROUP: 1857 case MCAST_JOIN_SOURCE_GROUP: 1858 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1859 error = sooptcopyin(sopt, &gsr, 1860 sizeof(struct group_req), 1861 sizeof(struct group_req)); 1862 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1863 error = sooptcopyin(sopt, &gsr, 1864 sizeof(struct group_source_req), 1865 sizeof(struct group_source_req)); 1866 } 1867 if (error) 1868 return (error); 1869 1870 if (gsa->sin6.sin6_family != AF_INET6 || 1871 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1872 return (EINVAL); 1873 1874 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1875 if (ssa->sin6.sin6_family != AF_INET6 || 1876 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1877 return (EINVAL); 1878 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1879 return (EINVAL); 1880 /* 1881 * TODO: Validate embedded scope ID in source 1882 * list entry against passed-in ifp, if and only 1883 * if source list filter entry is iface or node local. 1884 */ 1885 in6_clearscope(&ssa->sin6.sin6_addr); 1886 ssa->sin6.sin6_port = 0; 1887 ssa->sin6.sin6_scope_id = 0; 1888 } 1889 1890 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1891 return (EADDRNOTAVAIL); 1892 ifp = ifnet_byindex(gsr.gsr_interface); 1893 break; 1894 1895 default: 1896 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1897 __func__, sopt->sopt_name); 1898 return (EOPNOTSUPP); 1899 break; 1900 } 1901 1902 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1903 return (EINVAL); 1904 1905 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1906 return (EADDRNOTAVAIL); 1907 1908 gsa->sin6.sin6_port = 0; 1909 gsa->sin6.sin6_scope_id = 0; 1910 1911 /* 1912 * Always set the scope zone ID on memberships created from userland. 1913 * Use the passed-in ifp to do this. 1914 * XXX The in6_setscope() return value is meaningless. 1915 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1916 */ 1917 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1918 1919 imo = in6p_findmoptions(inp); 1920 idx = im6o_match_group(imo, ifp, &gsa->sa); 1921 if (idx == -1) { 1922 is_new = 1; 1923 } else { 1924 inm = imo->im6o_membership[idx]; 1925 imf = &imo->im6o_mfilters[idx]; 1926 if (ssa->ss.ss_family != AF_UNSPEC) { 1927 /* 1928 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 1929 * is an error. On an existing inclusive membership, 1930 * it just adds the source to the filter list. 1931 */ 1932 if (imf->im6f_st[1] != MCAST_INCLUDE) { 1933 error = EINVAL; 1934 goto out_in6p_locked; 1935 } 1936 /* 1937 * Throw out duplicates. 1938 * 1939 * XXX FIXME: This makes a naive assumption that 1940 * even if entries exist for *ssa in this imf, 1941 * they will be rejected as dupes, even if they 1942 * are not valid in the current mode (in-mode). 1943 * 1944 * in6_msource is transactioned just as for anything 1945 * else in SSM -- but note naive use of in6m_graft() 1946 * below for allocating new filter entries. 1947 * 1948 * This is only an issue if someone mixes the 1949 * full-state SSM API with the delta-based API, 1950 * which is discouraged in the relevant RFCs. 1951 */ 1952 lims = im6o_match_source(imo, idx, &ssa->sa); 1953 if (lims != NULL /*&& 1954 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 1955 error = EADDRNOTAVAIL; 1956 goto out_in6p_locked; 1957 } 1958 } else { 1959 /* 1960 * MCAST_JOIN_GROUP alone, on any existing membership, 1961 * is rejected, to stop the same inpcb tying up 1962 * multiple refs to the in_multi. 1963 * On an existing inclusive membership, this is also 1964 * an error; if you want to change filter mode, 1965 * you must use the userland API setsourcefilter(). 1966 * XXX We don't reject this for imf in UNDEFINED 1967 * state at t1, because allocation of a filter 1968 * is atomic with allocation of a membership. 1969 */ 1970 error = EINVAL; 1971 goto out_in6p_locked; 1972 } 1973 } 1974 1975 /* 1976 * Begin state merge transaction at socket layer. 1977 */ 1978 INP_WLOCK_ASSERT(inp); 1979 1980 if (is_new) { 1981 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 1982 error = im6o_grow(imo); 1983 if (error) 1984 goto out_in6p_locked; 1985 } 1986 /* 1987 * Allocate the new slot upfront so we can deal with 1988 * grafting the new source filter in same code path 1989 * as for join-source on existing membership. 1990 */ 1991 idx = imo->im6o_num_memberships; 1992 imo->im6o_membership[idx] = NULL; 1993 imo->im6o_num_memberships++; 1994 KASSERT(imo->im6o_mfilters != NULL, 1995 ("%s: im6f_mfilters vector was not allocated", __func__)); 1996 imf = &imo->im6o_mfilters[idx]; 1997 KASSERT(RB_EMPTY(&imf->im6f_sources), 1998 ("%s: im6f_sources not empty", __func__)); 1999 } 2000 2001 /* 2002 * Graft new source into filter list for this inpcb's 2003 * membership of the group. The in6_multi may not have 2004 * been allocated yet if this is a new membership, however, 2005 * the in_mfilter slot will be allocated and must be initialized. 2006 * 2007 * Note: Grafting of exclusive mode filters doesn't happen 2008 * in this path. 2009 * XXX: Should check for non-NULL lims (node exists but may 2010 * not be in-mode) for interop with full-state API. 2011 */ 2012 if (ssa->ss.ss_family != AF_UNSPEC) { 2013 /* Membership starts in IN mode */ 2014 if (is_new) { 2015 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2016 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2017 } else { 2018 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2019 } 2020 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2021 if (lims == NULL) { 2022 CTR1(KTR_MLD, "%s: merge imf state failed", 2023 __func__); 2024 error = ENOMEM; 2025 goto out_im6o_free; 2026 } 2027 } else { 2028 /* No address specified; Membership starts in EX mode */ 2029 if (is_new) { 2030 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2031 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2032 } 2033 } 2034 2035 /* 2036 * Begin state merge transaction at MLD layer. 2037 */ 2038 IN6_MULTI_LOCK(); 2039 2040 if (is_new) { 2041 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf, 2042 &inm, 0); 2043 if (error) { 2044 IN6_MULTI_UNLOCK(); 2045 goto out_im6o_free; 2046 } 2047 imo->im6o_membership[idx] = inm; 2048 } else { 2049 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2050 error = in6m_merge(inm, imf); 2051 if (error) 2052 CTR1(KTR_MLD, "%s: failed to merge inm state", 2053 __func__); 2054 else { 2055 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2056 error = mld_change_state(inm, 0); 2057 if (error) 2058 CTR1(KTR_MLD, "%s: failed mld downcall", 2059 __func__); 2060 } 2061 } 2062 2063 IN6_MULTI_UNLOCK(); 2064 INP_WLOCK_ASSERT(inp); 2065 if (error) { 2066 im6f_rollback(imf); 2067 if (is_new) 2068 im6f_purge(imf); 2069 else 2070 im6f_reap(imf); 2071 } else { 2072 im6f_commit(imf); 2073 } 2074 2075 out_im6o_free: 2076 if (error && is_new) { 2077 imo->im6o_membership[idx] = NULL; 2078 --imo->im6o_num_memberships; 2079 } 2080 2081 out_in6p_locked: 2082 INP_WUNLOCK(inp); 2083 return (error); 2084 } 2085 2086 /* 2087 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2088 */ 2089 static int 2090 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2091 { 2092 struct ipv6_mreq mreq; 2093 struct group_source_req gsr; 2094 sockunion_t *gsa, *ssa; 2095 struct ifnet *ifp; 2096 struct in6_mfilter *imf; 2097 struct ip6_moptions *imo; 2098 struct in6_msource *ims; 2099 struct in6_multi *inm; 2100 uint32_t ifindex; 2101 size_t idx; 2102 int error, is_final; 2103 #ifdef KTR 2104 char ip6tbuf[INET6_ADDRSTRLEN]; 2105 #endif 2106 2107 ifp = NULL; 2108 ifindex = 0; 2109 error = 0; 2110 is_final = 1; 2111 2112 memset(&gsr, 0, sizeof(struct group_source_req)); 2113 gsa = (sockunion_t *)&gsr.gsr_group; 2114 gsa->ss.ss_family = AF_UNSPEC; 2115 ssa = (sockunion_t *)&gsr.gsr_source; 2116 ssa->ss.ss_family = AF_UNSPEC; 2117 2118 /* 2119 * Chew everything passed in up into a struct group_source_req 2120 * as that is easier to process. 2121 * Note: Any embedded scope ID in the multicast group passed 2122 * in by userland is ignored, the interface index is the recommended 2123 * mechanism to specify an interface; see below. 2124 */ 2125 switch (sopt->sopt_name) { 2126 case IPV6_LEAVE_GROUP: 2127 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2128 sizeof(struct ipv6_mreq)); 2129 if (error) 2130 return (error); 2131 gsa->sin6.sin6_family = AF_INET6; 2132 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2133 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2134 gsa->sin6.sin6_port = 0; 2135 gsa->sin6.sin6_scope_id = 0; 2136 ifindex = mreq.ipv6mr_interface; 2137 break; 2138 2139 case MCAST_LEAVE_GROUP: 2140 case MCAST_LEAVE_SOURCE_GROUP: 2141 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2142 error = sooptcopyin(sopt, &gsr, 2143 sizeof(struct group_req), 2144 sizeof(struct group_req)); 2145 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2146 error = sooptcopyin(sopt, &gsr, 2147 sizeof(struct group_source_req), 2148 sizeof(struct group_source_req)); 2149 } 2150 if (error) 2151 return (error); 2152 2153 if (gsa->sin6.sin6_family != AF_INET6 || 2154 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2155 return (EINVAL); 2156 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2157 if (ssa->sin6.sin6_family != AF_INET6 || 2158 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2159 return (EINVAL); 2160 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2161 return (EINVAL); 2162 /* 2163 * TODO: Validate embedded scope ID in source 2164 * list entry against passed-in ifp, if and only 2165 * if source list filter entry is iface or node local. 2166 */ 2167 in6_clearscope(&ssa->sin6.sin6_addr); 2168 } 2169 gsa->sin6.sin6_port = 0; 2170 gsa->sin6.sin6_scope_id = 0; 2171 ifindex = gsr.gsr_interface; 2172 break; 2173 2174 default: 2175 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2176 __func__, sopt->sopt_name); 2177 return (EOPNOTSUPP); 2178 break; 2179 } 2180 2181 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2182 return (EINVAL); 2183 2184 /* 2185 * Validate interface index if provided. If no interface index 2186 * was provided separately, attempt to look the membership up 2187 * from the default scope as a last resort to disambiguate 2188 * the membership we are being asked to leave. 2189 * XXX SCOPE6 lock potentially taken here. 2190 */ 2191 if (ifindex != 0) { 2192 if (V_if_index < ifindex) 2193 return (EADDRNOTAVAIL); 2194 ifp = ifnet_byindex(ifindex); 2195 if (ifp == NULL) 2196 return (EADDRNOTAVAIL); 2197 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2198 } else { 2199 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2200 if (error) 2201 return (EADDRNOTAVAIL); 2202 /* 2203 * Some badly behaved applications don't pass an ifindex 2204 * or a scope ID, which is an API violation. In this case, 2205 * perform a lookup as per a v6 join. 2206 * 2207 * XXX For now, stomp on zone ID for the corner case. 2208 * This is not the 'KAME way', but we need to see the ifp 2209 * directly until such time as this implementation is 2210 * refactored, assuming the scope IDs are the way to go. 2211 */ 2212 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2213 if (ifindex == 0) { 2214 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2215 "ifp for group %s.", __func__, 2216 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2217 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2218 } else { 2219 ifp = ifnet_byindex(ifindex); 2220 } 2221 if (ifp == NULL) 2222 return (EADDRNOTAVAIL); 2223 } 2224 2225 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2226 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2227 2228 /* 2229 * Find the membership in the membership array. 2230 */ 2231 imo = in6p_findmoptions(inp); 2232 idx = im6o_match_group(imo, ifp, &gsa->sa); 2233 if (idx == -1) { 2234 error = EADDRNOTAVAIL; 2235 goto out_in6p_locked; 2236 } 2237 inm = imo->im6o_membership[idx]; 2238 imf = &imo->im6o_mfilters[idx]; 2239 2240 if (ssa->ss.ss_family != AF_UNSPEC) 2241 is_final = 0; 2242 2243 /* 2244 * Begin state merge transaction at socket layer. 2245 */ 2246 INP_WLOCK_ASSERT(inp); 2247 2248 /* 2249 * If we were instructed only to leave a given source, do so. 2250 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2251 */ 2252 if (is_final) { 2253 im6f_leave(imf); 2254 } else { 2255 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2256 error = EADDRNOTAVAIL; 2257 goto out_in6p_locked; 2258 } 2259 ims = im6o_match_source(imo, idx, &ssa->sa); 2260 if (ims == NULL) { 2261 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2262 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2263 "not "); 2264 error = EADDRNOTAVAIL; 2265 goto out_in6p_locked; 2266 } 2267 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2268 error = im6f_prune(imf, &ssa->sin6); 2269 if (error) { 2270 CTR1(KTR_MLD, "%s: merge imf state failed", 2271 __func__); 2272 goto out_in6p_locked; 2273 } 2274 } 2275 2276 /* 2277 * Begin state merge transaction at MLD layer. 2278 */ 2279 IN6_MULTI_LOCK(); 2280 2281 if (is_final) { 2282 /* 2283 * Give up the multicast address record to which 2284 * the membership points. 2285 */ 2286 (void)in6_mc_leave_locked(inm, imf); 2287 } else { 2288 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2289 error = in6m_merge(inm, imf); 2290 if (error) 2291 CTR1(KTR_MLD, "%s: failed to merge inm state", 2292 __func__); 2293 else { 2294 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2295 error = mld_change_state(inm, 0); 2296 if (error) 2297 CTR1(KTR_MLD, "%s: failed mld downcall", 2298 __func__); 2299 } 2300 } 2301 2302 IN6_MULTI_UNLOCK(); 2303 2304 if (error) 2305 im6f_rollback(imf); 2306 else 2307 im6f_commit(imf); 2308 2309 im6f_reap(imf); 2310 2311 if (is_final) { 2312 /* Remove the gap in the membership array. */ 2313 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2314 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2315 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2316 } 2317 imo->im6o_num_memberships--; 2318 } 2319 2320 out_in6p_locked: 2321 INP_WUNLOCK(inp); 2322 return (error); 2323 } 2324 2325 /* 2326 * Select the interface for transmitting IPv6 multicast datagrams. 2327 * 2328 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2329 * may be passed to this socket option. An address of in6addr_any or an 2330 * interface index of 0 is used to remove a previous selection. 2331 * When no interface is selected, one is chosen for every send. 2332 */ 2333 static int 2334 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2335 { 2336 struct ifnet *ifp; 2337 struct ip6_moptions *imo; 2338 u_int ifindex; 2339 int error; 2340 2341 if (sopt->sopt_valsize != sizeof(u_int)) 2342 return (EINVAL); 2343 2344 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2345 if (error) 2346 return (error); 2347 if (V_if_index < ifindex) 2348 return (EINVAL); 2349 2350 ifp = ifnet_byindex(ifindex); 2351 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2352 return (EADDRNOTAVAIL); 2353 2354 imo = in6p_findmoptions(inp); 2355 imo->im6o_multicast_ifp = ifp; 2356 INP_WUNLOCK(inp); 2357 2358 return (0); 2359 } 2360 2361 /* 2362 * Atomically set source filters on a socket for an IPv6 multicast group. 2363 * 2364 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2365 */ 2366 static int 2367 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2368 { 2369 struct __msfilterreq msfr; 2370 sockunion_t *gsa; 2371 struct ifnet *ifp; 2372 struct in6_mfilter *imf; 2373 struct ip6_moptions *imo; 2374 struct in6_multi *inm; 2375 size_t idx; 2376 int error; 2377 2378 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2379 sizeof(struct __msfilterreq)); 2380 if (error) 2381 return (error); 2382 2383 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2384 return (ENOBUFS); 2385 2386 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2387 msfr.msfr_fmode != MCAST_INCLUDE) 2388 return (EINVAL); 2389 2390 if (msfr.msfr_group.ss_family != AF_INET6 || 2391 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2392 return (EINVAL); 2393 2394 gsa = (sockunion_t *)&msfr.msfr_group; 2395 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2396 return (EINVAL); 2397 2398 gsa->sin6.sin6_port = 0; /* ignore port */ 2399 2400 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2401 return (EADDRNOTAVAIL); 2402 ifp = ifnet_byindex(msfr.msfr_ifindex); 2403 if (ifp == NULL) 2404 return (EADDRNOTAVAIL); 2405 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2406 2407 /* 2408 * Take the INP write lock. 2409 * Check if this socket is a member of this group. 2410 */ 2411 imo = in6p_findmoptions(inp); 2412 idx = im6o_match_group(imo, ifp, &gsa->sa); 2413 if (idx == -1 || imo->im6o_mfilters == NULL) { 2414 error = EADDRNOTAVAIL; 2415 goto out_in6p_locked; 2416 } 2417 inm = imo->im6o_membership[idx]; 2418 imf = &imo->im6o_mfilters[idx]; 2419 2420 /* 2421 * Begin state merge transaction at socket layer. 2422 */ 2423 INP_WLOCK_ASSERT(inp); 2424 2425 imf->im6f_st[1] = msfr.msfr_fmode; 2426 2427 /* 2428 * Apply any new source filters, if present. 2429 * Make a copy of the user-space source vector so 2430 * that we may copy them with a single copyin. This 2431 * allows us to deal with page faults up-front. 2432 */ 2433 if (msfr.msfr_nsrcs > 0) { 2434 struct in6_msource *lims; 2435 struct sockaddr_in6 *psin; 2436 struct sockaddr_storage *kss, *pkss; 2437 int i; 2438 2439 INP_WUNLOCK(inp); 2440 2441 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2442 __func__, (unsigned long)msfr.msfr_nsrcs); 2443 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2444 M_TEMP, M_WAITOK); 2445 error = copyin(msfr.msfr_srcs, kss, 2446 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2447 if (error) { 2448 free(kss, M_TEMP); 2449 return (error); 2450 } 2451 2452 INP_WLOCK(inp); 2453 2454 /* 2455 * Mark all source filters as UNDEFINED at t1. 2456 * Restore new group filter mode, as im6f_leave() 2457 * will set it to INCLUDE. 2458 */ 2459 im6f_leave(imf); 2460 imf->im6f_st[1] = msfr.msfr_fmode; 2461 2462 /* 2463 * Update socket layer filters at t1, lazy-allocating 2464 * new entries. This saves a bunch of memory at the 2465 * cost of one RB_FIND() per source entry; duplicate 2466 * entries in the msfr_nsrcs vector are ignored. 2467 * If we encounter an error, rollback transaction. 2468 * 2469 * XXX This too could be replaced with a set-symmetric 2470 * difference like loop to avoid walking from root 2471 * every time, as the key space is common. 2472 */ 2473 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2474 psin = (struct sockaddr_in6 *)pkss; 2475 if (psin->sin6_family != AF_INET6) { 2476 error = EAFNOSUPPORT; 2477 break; 2478 } 2479 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2480 error = EINVAL; 2481 break; 2482 } 2483 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2484 error = EINVAL; 2485 break; 2486 } 2487 /* 2488 * TODO: Validate embedded scope ID in source 2489 * list entry against passed-in ifp, if and only 2490 * if source list filter entry is iface or node local. 2491 */ 2492 in6_clearscope(&psin->sin6_addr); 2493 error = im6f_get_source(imf, psin, &lims); 2494 if (error) 2495 break; 2496 lims->im6sl_st[1] = imf->im6f_st[1]; 2497 } 2498 free(kss, M_TEMP); 2499 } 2500 2501 if (error) 2502 goto out_im6f_rollback; 2503 2504 INP_WLOCK_ASSERT(inp); 2505 IN6_MULTI_LOCK(); 2506 2507 /* 2508 * Begin state merge transaction at MLD layer. 2509 */ 2510 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2511 error = in6m_merge(inm, imf); 2512 if (error) 2513 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2514 else { 2515 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2516 error = mld_change_state(inm, 0); 2517 if (error) 2518 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2519 } 2520 2521 IN6_MULTI_UNLOCK(); 2522 2523 out_im6f_rollback: 2524 if (error) 2525 im6f_rollback(imf); 2526 else 2527 im6f_commit(imf); 2528 2529 im6f_reap(imf); 2530 2531 out_in6p_locked: 2532 INP_WUNLOCK(inp); 2533 return (error); 2534 } 2535 2536 /* 2537 * Set the IP multicast options in response to user setsockopt(). 2538 * 2539 * Many of the socket options handled in this function duplicate the 2540 * functionality of socket options in the regular unicast API. However, 2541 * it is not possible to merge the duplicate code, because the idempotence 2542 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2543 * the effects of these options must be treated as separate and distinct. 2544 * 2545 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2546 */ 2547 int 2548 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2549 { 2550 struct ip6_moptions *im6o; 2551 int error; 2552 2553 error = 0; 2554 2555 /* 2556 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2557 * or is a divert socket, reject it. 2558 */ 2559 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2560 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2561 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2562 return (EOPNOTSUPP); 2563 2564 switch (sopt->sopt_name) { 2565 case IPV6_MULTICAST_IF: 2566 error = in6p_set_multicast_if(inp, sopt); 2567 break; 2568 2569 case IPV6_MULTICAST_HOPS: { 2570 int hlim; 2571 2572 if (sopt->sopt_valsize != sizeof(int)) { 2573 error = EINVAL; 2574 break; 2575 } 2576 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2577 if (error) 2578 break; 2579 if (hlim < -1 || hlim > 255) { 2580 error = EINVAL; 2581 break; 2582 } else if (hlim == -1) { 2583 hlim = V_ip6_defmcasthlim; 2584 } 2585 im6o = in6p_findmoptions(inp); 2586 im6o->im6o_multicast_hlim = hlim; 2587 INP_WUNLOCK(inp); 2588 break; 2589 } 2590 2591 case IPV6_MULTICAST_LOOP: { 2592 u_int loop; 2593 2594 /* 2595 * Set the loopback flag for outgoing multicast packets. 2596 * Must be zero or one. 2597 */ 2598 if (sopt->sopt_valsize != sizeof(u_int)) { 2599 error = EINVAL; 2600 break; 2601 } 2602 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2603 if (error) 2604 break; 2605 if (loop > 1) { 2606 error = EINVAL; 2607 break; 2608 } 2609 im6o = in6p_findmoptions(inp); 2610 im6o->im6o_multicast_loop = loop; 2611 INP_WUNLOCK(inp); 2612 break; 2613 } 2614 2615 case IPV6_JOIN_GROUP: 2616 case MCAST_JOIN_GROUP: 2617 case MCAST_JOIN_SOURCE_GROUP: 2618 error = in6p_join_group(inp, sopt); 2619 break; 2620 2621 case IPV6_LEAVE_GROUP: 2622 case MCAST_LEAVE_GROUP: 2623 case MCAST_LEAVE_SOURCE_GROUP: 2624 error = in6p_leave_group(inp, sopt); 2625 break; 2626 2627 case MCAST_BLOCK_SOURCE: 2628 case MCAST_UNBLOCK_SOURCE: 2629 error = in6p_block_unblock_source(inp, sopt); 2630 break; 2631 2632 case IPV6_MSFILTER: 2633 error = in6p_set_source_filters(inp, sopt); 2634 break; 2635 2636 default: 2637 error = EOPNOTSUPP; 2638 break; 2639 } 2640 2641 INP_UNLOCK_ASSERT(inp); 2642 2643 return (error); 2644 } 2645 2646 /* 2647 * Expose MLD's multicast filter mode and source list(s) to userland, 2648 * keyed by (ifindex, group). 2649 * The filter mode is written out as a uint32_t, followed by 2650 * 0..n of struct in6_addr. 2651 * For use by ifmcstat(8). 2652 * SMPng: NOTE: unlocked read of ifindex space. 2653 */ 2654 static int 2655 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2656 { 2657 struct in6_addr mcaddr; 2658 struct in6_addr src; 2659 struct ifnet *ifp; 2660 struct ifmultiaddr *ifma; 2661 struct in6_multi *inm; 2662 struct ip6_msource *ims; 2663 int *name; 2664 int retval; 2665 u_int namelen; 2666 uint32_t fmode, ifindex; 2667 #ifdef KTR 2668 char ip6tbuf[INET6_ADDRSTRLEN]; 2669 #endif 2670 2671 name = (int *)arg1; 2672 namelen = arg2; 2673 2674 if (req->newptr != NULL) 2675 return (EPERM); 2676 2677 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2678 if (namelen != 5) 2679 return (EINVAL); 2680 2681 ifindex = name[0]; 2682 if (ifindex <= 0 || ifindex > V_if_index) { 2683 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2684 __func__, ifindex); 2685 return (ENOENT); 2686 } 2687 2688 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2689 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2690 CTR2(KTR_MLD, "%s: group %s is not multicast", 2691 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2692 return (EINVAL); 2693 } 2694 2695 ifp = ifnet_byindex(ifindex); 2696 if (ifp == NULL) { 2697 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2698 __func__, ifindex); 2699 return (ENOENT); 2700 } 2701 /* 2702 * Internal MLD lookups require that scope/zone ID is set. 2703 */ 2704 (void)in6_setscope(&mcaddr, ifp, NULL); 2705 2706 retval = sysctl_wire_old_buffer(req, 2707 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2708 if (retval) 2709 return (retval); 2710 2711 IN6_MULTI_LOCK(); 2712 2713 IF_ADDR_RLOCK(ifp); 2714 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2715 if (ifma->ifma_addr->sa_family != AF_INET6 || 2716 ifma->ifma_protospec == NULL) 2717 continue; 2718 inm = (struct in6_multi *)ifma->ifma_protospec; 2719 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2720 continue; 2721 fmode = inm->in6m_st[1].iss_fmode; 2722 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2723 if (retval != 0) 2724 break; 2725 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2726 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2727 /* 2728 * Only copy-out sources which are in-mode. 2729 */ 2730 if (fmode != im6s_get_mode(inm, ims, 1)) { 2731 CTR1(KTR_MLD, "%s: skip non-in-mode", 2732 __func__); 2733 continue; 2734 } 2735 src = ims->im6s_addr; 2736 retval = SYSCTL_OUT(req, &src, 2737 sizeof(struct in6_addr)); 2738 if (retval != 0) 2739 break; 2740 } 2741 } 2742 IF_ADDR_RUNLOCK(ifp); 2743 2744 IN6_MULTI_UNLOCK(); 2745 2746 return (retval); 2747 } 2748 2749 #ifdef KTR 2750 2751 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2752 2753 static const char * 2754 in6m_mode_str(const int mode) 2755 { 2756 2757 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2758 return (in6m_modestrs[mode]); 2759 return ("??"); 2760 } 2761 2762 static const char *in6m_statestrs[] = { 2763 "not-member", 2764 "silent", 2765 "idle", 2766 "lazy", 2767 "sleeping", 2768 "awakening", 2769 "query-pending", 2770 "sg-query-pending", 2771 "leaving" 2772 }; 2773 2774 static const char * 2775 in6m_state_str(const int state) 2776 { 2777 2778 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2779 return (in6m_statestrs[state]); 2780 return ("??"); 2781 } 2782 2783 /* 2784 * Dump an in6_multi structure to the console. 2785 */ 2786 void 2787 in6m_print(const struct in6_multi *inm) 2788 { 2789 int t; 2790 char ip6tbuf[INET6_ADDRSTRLEN]; 2791 2792 if ((ktr_mask & KTR_MLD) == 0) 2793 return; 2794 2795 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2796 printf("addr %s ifp %p(%s) ifma %p\n", 2797 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2798 inm->in6m_ifp, 2799 if_name(inm->in6m_ifp), 2800 inm->in6m_ifma); 2801 printf("timer %u state %s refcount %u scq.len %u\n", 2802 inm->in6m_timer, 2803 in6m_state_str(inm->in6m_state), 2804 inm->in6m_refcount, 2805 inm->in6m_scq.ifq_len); 2806 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2807 inm->in6m_mli, 2808 inm->in6m_nsrc, 2809 inm->in6m_sctimer, 2810 inm->in6m_scrv); 2811 for (t = 0; t < 2; t++) { 2812 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2813 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2814 inm->in6m_st[t].iss_asm, 2815 inm->in6m_st[t].iss_ex, 2816 inm->in6m_st[t].iss_in, 2817 inm->in6m_st[t].iss_rec); 2818 } 2819 printf("%s: --- end in6m %p ---\n", __func__, inm); 2820 } 2821 2822 #else /* !KTR */ 2823 2824 void 2825 in6m_print(const struct in6_multi *inm) 2826 { 2827 2828 } 2829 2830 #endif /* KTR */ 2831