1 /* 2 * Copyright (c) 2009 Bruce Simpson. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote 14 * products derived from this software without specific prior written 15 * permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * IPv6 multicast socket, group, and socket option processing module. 32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sysctl.h> 50 #include <sys/priv.h> 51 #include <sys/ktr.h> 52 #include <sys/tree.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_var.h> 62 #include <netinet6/in6_fib.h> 63 #include <netinet6/in6_var.h> 64 #include <netinet/ip6.h> 65 #include <netinet/icmp6.h> 66 #include <netinet6/ip6_var.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/tcp_var.h> 69 #include <netinet6/nd6.h> 70 #include <netinet6/mld6_var.h> 71 #include <netinet6/scope6_var.h> 72 73 #ifndef KTR_MLD 74 #define KTR_MLD KTR_INET6 75 #endif 76 77 #ifndef __SOCKUNION_DECLARED 78 union sockunion { 79 struct sockaddr_storage ss; 80 struct sockaddr sa; 81 struct sockaddr_dl sdl; 82 struct sockaddr_in6 sin6; 83 }; 84 typedef union sockunion sockunion_t; 85 #define __SOCKUNION_DECLARED 86 #endif /* __SOCKUNION_DECLARED */ 87 88 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 89 "IPv6 multicast PCB-layer source filter"); 90 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 91 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 92 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 93 "IPv6 multicast MLD-layer source filter"); 94 95 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 96 97 /* 98 * Locking: 99 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 100 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 101 * it can be taken by code in net/if.c also. 102 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 103 * 104 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 105 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 106 * anyway no matter what happens. 107 */ 108 struct mtx in6_multi_mtx; 109 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF); 110 111 static void im6f_commit(struct in6_mfilter *); 112 static int im6f_get_source(struct in6_mfilter *imf, 113 const struct sockaddr_in6 *psin, 114 struct in6_msource **); 115 static struct in6_msource * 116 im6f_graft(struct in6_mfilter *, const uint8_t, 117 const struct sockaddr_in6 *); 118 static void im6f_leave(struct in6_mfilter *); 119 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 120 static void im6f_purge(struct in6_mfilter *); 121 static void im6f_rollback(struct in6_mfilter *); 122 static void im6f_reap(struct in6_mfilter *); 123 static int im6o_grow(struct ip6_moptions *); 124 static size_t im6o_match_group(const struct ip6_moptions *, 125 const struct ifnet *, const struct sockaddr *); 126 static struct in6_msource * 127 im6o_match_source(const struct ip6_moptions *, const size_t, 128 const struct sockaddr *); 129 static void im6s_merge(struct ip6_msource *ims, 130 const struct in6_msource *lims, const int rollback); 131 static int in6_mc_get(struct ifnet *, const struct in6_addr *, 132 struct in6_multi **); 133 static int in6m_get_source(struct in6_multi *inm, 134 const struct in6_addr *addr, const int noalloc, 135 struct ip6_msource **pims); 136 #ifdef KTR 137 static int in6m_is_ifp_detached(const struct in6_multi *); 138 #endif 139 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 140 static void in6m_purge(struct in6_multi *); 141 static void in6m_reap(struct in6_multi *); 142 static struct ip6_moptions * 143 in6p_findmoptions(struct inpcb *); 144 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 145 static int in6p_join_group(struct inpcb *, struct sockopt *); 146 static int in6p_leave_group(struct inpcb *, struct sockopt *); 147 static struct ifnet * 148 in6p_lookup_mcast_ifp(const struct inpcb *, 149 const struct sockaddr_in6 *); 150 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 151 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 152 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 153 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 154 155 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 156 157 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 158 "IPv6 multicast"); 159 160 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 161 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 162 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 163 "Max source filters per group"); 164 165 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 166 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 167 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 168 "Max source filters per socket"); 169 170 /* TODO Virtualize this switch. */ 171 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 172 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 173 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 174 175 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 176 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 177 "Per-interface stack-wide source filters"); 178 179 #ifdef KTR 180 /* 181 * Inline function which wraps assertions for a valid ifp. 182 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 183 * is detached. 184 */ 185 static int __inline 186 in6m_is_ifp_detached(const struct in6_multi *inm) 187 { 188 struct ifnet *ifp; 189 190 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 191 ifp = inm->in6m_ifma->ifma_ifp; 192 if (ifp != NULL) { 193 /* 194 * Sanity check that network-layer notion of ifp is the 195 * same as that of link-layer. 196 */ 197 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 198 } 199 200 return (ifp == NULL); 201 } 202 #endif 203 204 /* 205 * Initialize an in6_mfilter structure to a known state at t0, t1 206 * with an empty source filter list. 207 */ 208 static __inline void 209 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 210 { 211 memset(imf, 0, sizeof(struct in6_mfilter)); 212 RB_INIT(&imf->im6f_sources); 213 imf->im6f_st[0] = st0; 214 imf->im6f_st[1] = st1; 215 } 216 217 /* 218 * Resize the ip6_moptions vector to the next power-of-two minus 1. 219 * May be called with locks held; do not sleep. 220 */ 221 static int 222 im6o_grow(struct ip6_moptions *imo) 223 { 224 struct in6_multi **nmships; 225 struct in6_multi **omships; 226 struct in6_mfilter *nmfilters; 227 struct in6_mfilter *omfilters; 228 size_t idx; 229 size_t newmax; 230 size_t oldmax; 231 232 nmships = NULL; 233 nmfilters = NULL; 234 omships = imo->im6o_membership; 235 omfilters = imo->im6o_mfilters; 236 oldmax = imo->im6o_max_memberships; 237 newmax = ((oldmax + 1) * 2) - 1; 238 239 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 240 nmships = (struct in6_multi **)realloc(omships, 241 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 242 nmfilters = (struct in6_mfilter *)realloc(omfilters, 243 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 244 M_NOWAIT); 245 if (nmships != NULL && nmfilters != NULL) { 246 /* Initialize newly allocated source filter heads. */ 247 for (idx = oldmax; idx < newmax; idx++) { 248 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 249 MCAST_EXCLUDE); 250 } 251 imo->im6o_max_memberships = newmax; 252 imo->im6o_membership = nmships; 253 imo->im6o_mfilters = nmfilters; 254 } 255 } 256 257 if (nmships == NULL || nmfilters == NULL) { 258 if (nmships != NULL) 259 free(nmships, M_IP6MOPTS); 260 if (nmfilters != NULL) 261 free(nmfilters, M_IN6MFILTER); 262 return (ETOOMANYREFS); 263 } 264 265 return (0); 266 } 267 268 /* 269 * Find an IPv6 multicast group entry for this ip6_moptions instance 270 * which matches the specified group, and optionally an interface. 271 * Return its index into the array, or -1 if not found. 272 */ 273 static size_t 274 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 275 const struct sockaddr *group) 276 { 277 const struct sockaddr_in6 *gsin6; 278 struct in6_multi **pinm; 279 int idx; 280 int nmships; 281 282 gsin6 = (const struct sockaddr_in6 *)group; 283 284 /* The im6o_membership array may be lazy allocated. */ 285 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 286 return (-1); 287 288 nmships = imo->im6o_num_memberships; 289 pinm = &imo->im6o_membership[0]; 290 for (idx = 0; idx < nmships; idx++, pinm++) { 291 if (*pinm == NULL) 292 continue; 293 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 294 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 295 &gsin6->sin6_addr)) { 296 break; 297 } 298 } 299 if (idx >= nmships) 300 idx = -1; 301 302 return (idx); 303 } 304 305 /* 306 * Find an IPv6 multicast source entry for this imo which matches 307 * the given group index for this socket, and source address. 308 * 309 * XXX TODO: The scope ID, if present in src, is stripped before 310 * any comparison. We SHOULD enforce scope/zone checks where the source 311 * filter entry has a link scope. 312 * 313 * NOTE: This does not check if the entry is in-mode, merely if 314 * it exists, which may not be the desired behaviour. 315 */ 316 static struct in6_msource * 317 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 318 const struct sockaddr *src) 319 { 320 struct ip6_msource find; 321 struct in6_mfilter *imf; 322 struct ip6_msource *ims; 323 const sockunion_t *psa; 324 325 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 326 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 327 ("%s: invalid index %d\n", __func__, (int)gidx)); 328 329 /* The im6o_mfilters array may be lazy allocated. */ 330 if (imo->im6o_mfilters == NULL) 331 return (NULL); 332 imf = &imo->im6o_mfilters[gidx]; 333 334 psa = (const sockunion_t *)src; 335 find.im6s_addr = psa->sin6.sin6_addr; 336 in6_clearscope(&find.im6s_addr); /* XXX */ 337 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 338 339 return ((struct in6_msource *)ims); 340 } 341 342 /* 343 * Perform filtering for multicast datagrams on a socket by group and source. 344 * 345 * Returns 0 if a datagram should be allowed through, or various error codes 346 * if the socket was not a member of the group, or the source was muted, etc. 347 */ 348 int 349 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 350 const struct sockaddr *group, const struct sockaddr *src) 351 { 352 size_t gidx; 353 struct in6_msource *ims; 354 int mode; 355 356 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 357 358 gidx = im6o_match_group(imo, ifp, group); 359 if (gidx == -1) 360 return (MCAST_NOTGMEMBER); 361 362 /* 363 * Check if the source was included in an (S,G) join. 364 * Allow reception on exclusive memberships by default, 365 * reject reception on inclusive memberships by default. 366 * Exclude source only if an in-mode exclude filter exists. 367 * Include source only if an in-mode include filter exists. 368 * NOTE: We are comparing group state here at MLD t1 (now) 369 * with socket-layer t0 (since last downcall). 370 */ 371 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 372 ims = im6o_match_source(imo, gidx, src); 373 374 if ((ims == NULL && mode == MCAST_INCLUDE) || 375 (ims != NULL && ims->im6sl_st[0] != mode)) 376 return (MCAST_NOTSMEMBER); 377 378 return (MCAST_PASS); 379 } 380 381 /* 382 * Find and return a reference to an in6_multi record for (ifp, group), 383 * and bump its reference count. 384 * If one does not exist, try to allocate it, and update link-layer multicast 385 * filters on ifp to listen for group. 386 * Assumes the IN6_MULTI lock is held across the call. 387 * Return 0 if successful, otherwise return an appropriate error code. 388 */ 389 static int 390 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, 391 struct in6_multi **pinm) 392 { 393 struct sockaddr_in6 gsin6; 394 struct ifmultiaddr *ifma; 395 struct in6_multi *inm; 396 int error; 397 398 error = 0; 399 400 /* 401 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 402 * if_addmulti() takes this mutex itself, so we must drop and 403 * re-acquire around the call. 404 */ 405 IN6_MULTI_LOCK_ASSERT(); 406 IF_ADDR_WLOCK(ifp); 407 408 inm = in6m_lookup_locked(ifp, group); 409 if (inm != NULL) { 410 /* 411 * If we already joined this group, just bump the 412 * refcount and return it. 413 */ 414 KASSERT(inm->in6m_refcount >= 1, 415 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 416 ++inm->in6m_refcount; 417 *pinm = inm; 418 goto out_locked; 419 } 420 421 memset(&gsin6, 0, sizeof(gsin6)); 422 gsin6.sin6_family = AF_INET6; 423 gsin6.sin6_len = sizeof(struct sockaddr_in6); 424 gsin6.sin6_addr = *group; 425 426 /* 427 * Check if a link-layer group is already associated 428 * with this network-layer group on the given ifnet. 429 */ 430 IF_ADDR_WUNLOCK(ifp); 431 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 432 if (error != 0) 433 return (error); 434 IF_ADDR_WLOCK(ifp); 435 436 /* 437 * If something other than netinet6 is occupying the link-layer 438 * group, print a meaningful error message and back out of 439 * the allocation. 440 * Otherwise, bump the refcount on the existing network-layer 441 * group association and return it. 442 */ 443 if (ifma->ifma_protospec != NULL) { 444 inm = (struct in6_multi *)ifma->ifma_protospec; 445 #ifdef INVARIANTS 446 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 447 __func__)); 448 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 449 ("%s: ifma not AF_INET6", __func__)); 450 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 451 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 452 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 453 panic("%s: ifma %p is inconsistent with %p (%p)", 454 __func__, ifma, inm, group); 455 #endif 456 ++inm->in6m_refcount; 457 *pinm = inm; 458 goto out_locked; 459 } 460 461 IF_ADDR_WLOCK_ASSERT(ifp); 462 463 /* 464 * A new in6_multi record is needed; allocate and initialize it. 465 * We DO NOT perform an MLD join as the in6_ layer may need to 466 * push an initial source list down to MLD to support SSM. 467 * 468 * The initial source filter state is INCLUDE, {} as per the RFC. 469 * Pending state-changes per group are subject to a bounds check. 470 */ 471 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 472 if (inm == NULL) { 473 IF_ADDR_WUNLOCK(ifp); 474 if_delmulti_ifma(ifma); 475 return (ENOMEM); 476 } 477 inm->in6m_addr = *group; 478 inm->in6m_ifp = ifp; 479 inm->in6m_mli = MLD_IFINFO(ifp); 480 inm->in6m_ifma = ifma; 481 inm->in6m_refcount = 1; 482 inm->in6m_state = MLD_NOT_MEMBER; 483 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 484 485 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 486 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 487 RB_INIT(&inm->in6m_srcs); 488 489 ifma->ifma_protospec = inm; 490 *pinm = inm; 491 492 out_locked: 493 IF_ADDR_WUNLOCK(ifp); 494 return (error); 495 } 496 497 /* 498 * Drop a reference to an in6_multi record. 499 * 500 * If the refcount drops to 0, free the in6_multi record and 501 * delete the underlying link-layer membership. 502 */ 503 void 504 in6m_release_locked(struct in6_multi *inm) 505 { 506 struct ifmultiaddr *ifma; 507 508 IN6_MULTI_LOCK_ASSERT(); 509 510 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 511 512 if (--inm->in6m_refcount > 0) { 513 CTR2(KTR_MLD, "%s: refcount is now %d", __func__, 514 inm->in6m_refcount); 515 return; 516 } 517 518 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 519 520 ifma = inm->in6m_ifma; 521 522 /* XXX this access is not covered by IF_ADDR_LOCK */ 523 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 524 KASSERT(ifma->ifma_protospec == inm, 525 ("%s: ifma_protospec != inm", __func__)); 526 ifma->ifma_protospec = NULL; 527 528 in6m_purge(inm); 529 530 free(inm, M_IP6MADDR); 531 532 if_delmulti_ifma(ifma); 533 } 534 535 /* 536 * Clear recorded source entries for a group. 537 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 538 * FIXME: Should reap. 539 */ 540 void 541 in6m_clear_recorded(struct in6_multi *inm) 542 { 543 struct ip6_msource *ims; 544 545 IN6_MULTI_LOCK_ASSERT(); 546 547 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 548 if (ims->im6s_stp) { 549 ims->im6s_stp = 0; 550 --inm->in6m_st[1].iss_rec; 551 } 552 } 553 KASSERT(inm->in6m_st[1].iss_rec == 0, 554 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 555 } 556 557 /* 558 * Record a source as pending for a Source-Group MLDv2 query. 559 * This lives here as it modifies the shared tree. 560 * 561 * inm is the group descriptor. 562 * naddr is the address of the source to record in network-byte order. 563 * 564 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 565 * lazy-allocate a source node in response to an SG query. 566 * Otherwise, no allocation is performed. This saves some memory 567 * with the trade-off that the source will not be reported to the 568 * router if joined in the window between the query response and 569 * the group actually being joined on the local host. 570 * 571 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 572 * This turns off the allocation of a recorded source entry if 573 * the group has not been joined. 574 * 575 * Return 0 if the source didn't exist or was already marked as recorded. 576 * Return 1 if the source was marked as recorded by this function. 577 * Return <0 if any error occurred (negated errno code). 578 */ 579 int 580 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 581 { 582 struct ip6_msource find; 583 struct ip6_msource *ims, *nims; 584 585 IN6_MULTI_LOCK_ASSERT(); 586 587 find.im6s_addr = *addr; 588 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 589 if (ims && ims->im6s_stp) 590 return (0); 591 if (ims == NULL) { 592 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 593 return (-ENOSPC); 594 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 595 M_NOWAIT | M_ZERO); 596 if (nims == NULL) 597 return (-ENOMEM); 598 nims->im6s_addr = find.im6s_addr; 599 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 600 ++inm->in6m_nsrc; 601 ims = nims; 602 } 603 604 /* 605 * Mark the source as recorded and update the recorded 606 * source count. 607 */ 608 ++ims->im6s_stp; 609 ++inm->in6m_st[1].iss_rec; 610 611 return (1); 612 } 613 614 /* 615 * Return a pointer to an in6_msource owned by an in6_mfilter, 616 * given its source address. 617 * Lazy-allocate if needed. If this is a new entry its filter state is 618 * undefined at t0. 619 * 620 * imf is the filter set being modified. 621 * addr is the source address. 622 * 623 * SMPng: May be called with locks held; malloc must not block. 624 */ 625 static int 626 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 627 struct in6_msource **plims) 628 { 629 struct ip6_msource find; 630 struct ip6_msource *ims, *nims; 631 struct in6_msource *lims; 632 int error; 633 634 error = 0; 635 ims = NULL; 636 lims = NULL; 637 638 find.im6s_addr = psin->sin6_addr; 639 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 640 lims = (struct in6_msource *)ims; 641 if (lims == NULL) { 642 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 643 return (ENOSPC); 644 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 645 M_NOWAIT | M_ZERO); 646 if (nims == NULL) 647 return (ENOMEM); 648 lims = (struct in6_msource *)nims; 649 lims->im6s_addr = find.im6s_addr; 650 lims->im6sl_st[0] = MCAST_UNDEFINED; 651 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 652 ++imf->im6f_nsrc; 653 } 654 655 *plims = lims; 656 657 return (error); 658 } 659 660 /* 661 * Graft a source entry into an existing socket-layer filter set, 662 * maintaining any required invariants and checking allocations. 663 * 664 * The source is marked as being in the new filter mode at t1. 665 * 666 * Return the pointer to the new node, otherwise return NULL. 667 */ 668 static struct in6_msource * 669 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 670 const struct sockaddr_in6 *psin) 671 { 672 struct ip6_msource *nims; 673 struct in6_msource *lims; 674 675 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 676 M_NOWAIT | M_ZERO); 677 if (nims == NULL) 678 return (NULL); 679 lims = (struct in6_msource *)nims; 680 lims->im6s_addr = psin->sin6_addr; 681 lims->im6sl_st[0] = MCAST_UNDEFINED; 682 lims->im6sl_st[1] = st1; 683 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 684 ++imf->im6f_nsrc; 685 686 return (lims); 687 } 688 689 /* 690 * Prune a source entry from an existing socket-layer filter set, 691 * maintaining any required invariants and checking allocations. 692 * 693 * The source is marked as being left at t1, it is not freed. 694 * 695 * Return 0 if no error occurred, otherwise return an errno value. 696 */ 697 static int 698 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 699 { 700 struct ip6_msource find; 701 struct ip6_msource *ims; 702 struct in6_msource *lims; 703 704 find.im6s_addr = psin->sin6_addr; 705 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 706 if (ims == NULL) 707 return (ENOENT); 708 lims = (struct in6_msource *)ims; 709 lims->im6sl_st[1] = MCAST_UNDEFINED; 710 return (0); 711 } 712 713 /* 714 * Revert socket-layer filter set deltas at t1 to t0 state. 715 */ 716 static void 717 im6f_rollback(struct in6_mfilter *imf) 718 { 719 struct ip6_msource *ims, *tims; 720 struct in6_msource *lims; 721 722 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 723 lims = (struct in6_msource *)ims; 724 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 725 /* no change at t1 */ 726 continue; 727 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 728 /* revert change to existing source at t1 */ 729 lims->im6sl_st[1] = lims->im6sl_st[0]; 730 } else { 731 /* revert source added t1 */ 732 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 733 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 734 free(ims, M_IN6MFILTER); 735 imf->im6f_nsrc--; 736 } 737 } 738 imf->im6f_st[1] = imf->im6f_st[0]; 739 } 740 741 /* 742 * Mark socket-layer filter set as INCLUDE {} at t1. 743 */ 744 static void 745 im6f_leave(struct in6_mfilter *imf) 746 { 747 struct ip6_msource *ims; 748 struct in6_msource *lims; 749 750 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 751 lims = (struct in6_msource *)ims; 752 lims->im6sl_st[1] = MCAST_UNDEFINED; 753 } 754 imf->im6f_st[1] = MCAST_INCLUDE; 755 } 756 757 /* 758 * Mark socket-layer filter set deltas as committed. 759 */ 760 static void 761 im6f_commit(struct in6_mfilter *imf) 762 { 763 struct ip6_msource *ims; 764 struct in6_msource *lims; 765 766 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 767 lims = (struct in6_msource *)ims; 768 lims->im6sl_st[0] = lims->im6sl_st[1]; 769 } 770 imf->im6f_st[0] = imf->im6f_st[1]; 771 } 772 773 /* 774 * Reap unreferenced sources from socket-layer filter set. 775 */ 776 static void 777 im6f_reap(struct in6_mfilter *imf) 778 { 779 struct ip6_msource *ims, *tims; 780 struct in6_msource *lims; 781 782 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 783 lims = (struct in6_msource *)ims; 784 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 785 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 786 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 787 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 788 free(ims, M_IN6MFILTER); 789 imf->im6f_nsrc--; 790 } 791 } 792 } 793 794 /* 795 * Purge socket-layer filter set. 796 */ 797 static void 798 im6f_purge(struct in6_mfilter *imf) 799 { 800 struct ip6_msource *ims, *tims; 801 802 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 803 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 804 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 805 free(ims, M_IN6MFILTER); 806 imf->im6f_nsrc--; 807 } 808 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 809 KASSERT(RB_EMPTY(&imf->im6f_sources), 810 ("%s: im6f_sources not empty", __func__)); 811 } 812 813 /* 814 * Look up a source filter entry for a multicast group. 815 * 816 * inm is the group descriptor to work with. 817 * addr is the IPv6 address to look up. 818 * noalloc may be non-zero to suppress allocation of sources. 819 * *pims will be set to the address of the retrieved or allocated source. 820 * 821 * SMPng: NOTE: may be called with locks held. 822 * Return 0 if successful, otherwise return a non-zero error code. 823 */ 824 static int 825 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 826 const int noalloc, struct ip6_msource **pims) 827 { 828 struct ip6_msource find; 829 struct ip6_msource *ims, *nims; 830 #ifdef KTR 831 char ip6tbuf[INET6_ADDRSTRLEN]; 832 #endif 833 834 find.im6s_addr = *addr; 835 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 836 if (ims == NULL && !noalloc) { 837 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 838 return (ENOSPC); 839 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 840 M_NOWAIT | M_ZERO); 841 if (nims == NULL) 842 return (ENOMEM); 843 nims->im6s_addr = *addr; 844 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 845 ++inm->in6m_nsrc; 846 ims = nims; 847 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 848 ip6_sprintf(ip6tbuf, addr), ims); 849 } 850 851 *pims = ims; 852 return (0); 853 } 854 855 /* 856 * Merge socket-layer source into MLD-layer source. 857 * If rollback is non-zero, perform the inverse of the merge. 858 */ 859 static void 860 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 861 const int rollback) 862 { 863 int n = rollback ? -1 : 1; 864 #ifdef KTR 865 char ip6tbuf[INET6_ADDRSTRLEN]; 866 867 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 868 #endif 869 870 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 871 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 872 ims->im6s_st[1].ex -= n; 873 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 874 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 875 ims->im6s_st[1].in -= n; 876 } 877 878 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 879 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 880 ims->im6s_st[1].ex += n; 881 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 882 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 883 ims->im6s_st[1].in += n; 884 } 885 } 886 887 /* 888 * Atomically update the global in6_multi state, when a membership's 889 * filter list is being updated in any way. 890 * 891 * imf is the per-inpcb-membership group filter pointer. 892 * A fake imf may be passed for in-kernel consumers. 893 * 894 * XXX This is a candidate for a set-symmetric-difference style loop 895 * which would eliminate the repeated lookup from root of ims nodes, 896 * as they share the same key space. 897 * 898 * If any error occurred this function will back out of refcounts 899 * and return a non-zero value. 900 */ 901 static int 902 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 903 { 904 struct ip6_msource *ims, *nims; 905 struct in6_msource *lims; 906 int schanged, error; 907 int nsrc0, nsrc1; 908 909 schanged = 0; 910 error = 0; 911 nsrc1 = nsrc0 = 0; 912 913 /* 914 * Update the source filters first, as this may fail. 915 * Maintain count of in-mode filters at t0, t1. These are 916 * used to work out if we transition into ASM mode or not. 917 * Maintain a count of source filters whose state was 918 * actually modified by this operation. 919 */ 920 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 921 lims = (struct in6_msource *)ims; 922 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 923 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 924 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 925 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 926 ++schanged; 927 if (error) 928 break; 929 im6s_merge(nims, lims, 0); 930 } 931 if (error) { 932 struct ip6_msource *bims; 933 934 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 935 lims = (struct in6_msource *)ims; 936 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 937 continue; 938 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 939 if (bims == NULL) 940 continue; 941 im6s_merge(bims, lims, 1); 942 } 943 goto out_reap; 944 } 945 946 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 947 __func__, nsrc0, nsrc1); 948 949 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 950 if (imf->im6f_st[0] == imf->im6f_st[1] && 951 imf->im6f_st[1] == MCAST_INCLUDE) { 952 if (nsrc1 == 0) { 953 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 954 --inm->in6m_st[1].iss_in; 955 } 956 } 957 958 /* Handle filter mode transition on socket. */ 959 if (imf->im6f_st[0] != imf->im6f_st[1]) { 960 CTR3(KTR_MLD, "%s: imf transition %d to %d", 961 __func__, imf->im6f_st[0], imf->im6f_st[1]); 962 963 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 964 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 965 --inm->in6m_st[1].iss_ex; 966 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 967 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 968 --inm->in6m_st[1].iss_in; 969 } 970 971 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 972 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 973 inm->in6m_st[1].iss_ex++; 974 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 975 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 976 inm->in6m_st[1].iss_in++; 977 } 978 } 979 980 /* 981 * Track inm filter state in terms of listener counts. 982 * If there are any exclusive listeners, stack-wide 983 * membership is exclusive. 984 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 985 * If no listeners remain, state is undefined at t1, 986 * and the MLD lifecycle for this group should finish. 987 */ 988 if (inm->in6m_st[1].iss_ex > 0) { 989 CTR1(KTR_MLD, "%s: transition to EX", __func__); 990 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 991 } else if (inm->in6m_st[1].iss_in > 0) { 992 CTR1(KTR_MLD, "%s: transition to IN", __func__); 993 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 994 } else { 995 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 996 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 997 } 998 999 /* Decrement ASM listener count on transition out of ASM mode. */ 1000 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1001 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1002 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1003 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1004 --inm->in6m_st[1].iss_asm; 1005 } 1006 1007 /* Increment ASM listener count on transition to ASM mode. */ 1008 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1009 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1010 inm->in6m_st[1].iss_asm++; 1011 } 1012 1013 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1014 in6m_print(inm); 1015 1016 out_reap: 1017 if (schanged > 0) { 1018 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1019 in6m_reap(inm); 1020 } 1021 return (error); 1022 } 1023 1024 /* 1025 * Mark an in6_multi's filter set deltas as committed. 1026 * Called by MLD after a state change has been enqueued. 1027 */ 1028 void 1029 in6m_commit(struct in6_multi *inm) 1030 { 1031 struct ip6_msource *ims; 1032 1033 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1034 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1035 in6m_print(inm); 1036 1037 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1038 ims->im6s_st[0] = ims->im6s_st[1]; 1039 } 1040 inm->in6m_st[0] = inm->in6m_st[1]; 1041 } 1042 1043 /* 1044 * Reap unreferenced nodes from an in6_multi's filter set. 1045 */ 1046 static void 1047 in6m_reap(struct in6_multi *inm) 1048 { 1049 struct ip6_msource *ims, *tims; 1050 1051 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1052 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1053 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1054 ims->im6s_stp != 0) 1055 continue; 1056 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1057 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1058 free(ims, M_IP6MSOURCE); 1059 inm->in6m_nsrc--; 1060 } 1061 } 1062 1063 /* 1064 * Purge all source nodes from an in6_multi's filter set. 1065 */ 1066 static void 1067 in6m_purge(struct in6_multi *inm) 1068 { 1069 struct ip6_msource *ims, *tims; 1070 1071 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1072 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1073 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1074 free(ims, M_IP6MSOURCE); 1075 inm->in6m_nsrc--; 1076 } 1077 /* Free state-change requests that might be queued. */ 1078 mbufq_drain(&inm->in6m_scq); 1079 } 1080 1081 /* 1082 * Join a multicast address w/o sources. 1083 * KAME compatibility entry point. 1084 * 1085 * SMPng: Assume no mc locks held by caller. 1086 */ 1087 struct in6_multi_mship * 1088 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, 1089 int *errorp, int delay) 1090 { 1091 struct in6_multi_mship *imm; 1092 int error; 1093 1094 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1095 if (imm == NULL) { 1096 *errorp = ENOBUFS; 1097 return (NULL); 1098 } 1099 1100 delay = (delay * PR_FASTHZ) / hz; 1101 1102 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 1103 if (error) { 1104 *errorp = error; 1105 free(imm, M_IP6MADDR); 1106 return (NULL); 1107 } 1108 1109 return (imm); 1110 } 1111 1112 /* 1113 * Leave a multicast address w/o sources. 1114 * KAME compatibility entry point. 1115 * 1116 * SMPng: Assume no mc locks held by caller. 1117 */ 1118 int 1119 in6_leavegroup(struct in6_multi_mship *imm) 1120 { 1121 1122 if (imm->i6mm_maddr != NULL) 1123 in6_mc_leave(imm->i6mm_maddr, NULL); 1124 free(imm, M_IP6MADDR); 1125 return 0; 1126 } 1127 1128 /* 1129 * Join a multicast group; unlocked entry point. 1130 * 1131 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper 1132 * locks are not held. Fortunately, ifp is unlikely to have been detached 1133 * at this point, so we assume it's OK to recurse. 1134 */ 1135 int 1136 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, 1137 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1138 const int delay) 1139 { 1140 int error; 1141 1142 IN6_MULTI_LOCK(); 1143 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay); 1144 IN6_MULTI_UNLOCK(); 1145 1146 return (error); 1147 } 1148 1149 /* 1150 * Join a multicast group; real entry point. 1151 * 1152 * Only preserves atomicity at inm level. 1153 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1154 * 1155 * If the MLD downcall fails, the group is not joined, and an error 1156 * code is returned. 1157 */ 1158 int 1159 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1160 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1161 const int delay) 1162 { 1163 struct in6_mfilter timf; 1164 struct in6_multi *inm; 1165 int error; 1166 #ifdef KTR 1167 char ip6tbuf[INET6_ADDRSTRLEN]; 1168 #endif 1169 1170 #ifdef INVARIANTS 1171 /* 1172 * Sanity: Check scope zone ID was set for ifp, if and 1173 * only if group is scoped to an interface. 1174 */ 1175 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1176 ("%s: not a multicast address", __func__)); 1177 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1178 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1179 KASSERT(mcaddr->s6_addr16[1] != 0, 1180 ("%s: scope zone ID not set", __func__)); 1181 } 1182 #endif 1183 1184 IN6_MULTI_LOCK_ASSERT(); 1185 1186 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1187 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1188 1189 error = 0; 1190 inm = NULL; 1191 1192 /* 1193 * If no imf was specified (i.e. kernel consumer), 1194 * fake one up and assume it is an ASM join. 1195 */ 1196 if (imf == NULL) { 1197 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1198 imf = &timf; 1199 } 1200 1201 error = in6_mc_get(ifp, mcaddr, &inm); 1202 if (error) { 1203 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__); 1204 return (error); 1205 } 1206 1207 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1208 error = in6m_merge(inm, imf); 1209 if (error) { 1210 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1211 goto out_in6m_release; 1212 } 1213 1214 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1215 error = mld_change_state(inm, delay); 1216 if (error) { 1217 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1218 goto out_in6m_release; 1219 } 1220 1221 out_in6m_release: 1222 if (error) { 1223 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1224 in6m_release_locked(inm); 1225 } else { 1226 *pinm = inm; 1227 } 1228 1229 return (error); 1230 } 1231 1232 /* 1233 * Leave a multicast group; unlocked entry point. 1234 */ 1235 int 1236 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1237 { 1238 struct ifnet *ifp; 1239 int error; 1240 1241 ifp = inm->in6m_ifp; 1242 1243 IN6_MULTI_LOCK(); 1244 error = in6_mc_leave_locked(inm, imf); 1245 IN6_MULTI_UNLOCK(); 1246 1247 return (error); 1248 } 1249 1250 /* 1251 * Leave a multicast group; real entry point. 1252 * All source filters will be expunged. 1253 * 1254 * Only preserves atomicity at inm level. 1255 * 1256 * Holding the write lock for the INP which contains imf 1257 * is highly advisable. We can't assert for it as imf does not 1258 * contain a back-pointer to the owning inp. 1259 * 1260 * Note: This is not the same as in6m_release(*) as this function also 1261 * makes a state change downcall into MLD. 1262 */ 1263 int 1264 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1265 { 1266 struct in6_mfilter timf; 1267 int error; 1268 #ifdef KTR 1269 char ip6tbuf[INET6_ADDRSTRLEN]; 1270 #endif 1271 1272 error = 0; 1273 1274 IN6_MULTI_LOCK_ASSERT(); 1275 1276 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1277 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1278 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1279 imf); 1280 1281 /* 1282 * If no imf was specified (i.e. kernel consumer), 1283 * fake one up and assume it is an ASM join. 1284 */ 1285 if (imf == NULL) { 1286 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1287 imf = &timf; 1288 } 1289 1290 /* 1291 * Begin state merge transaction at MLD layer. 1292 * 1293 * As this particular invocation should not cause any memory 1294 * to be allocated, and there is no opportunity to roll back 1295 * the transaction, it MUST NOT fail. 1296 */ 1297 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1298 error = in6m_merge(inm, imf); 1299 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1300 1301 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1302 error = mld_change_state(inm, 0); 1303 if (error) 1304 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1305 1306 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1307 in6m_release_locked(inm); 1308 1309 return (error); 1310 } 1311 1312 /* 1313 * Block or unblock an ASM multicast source on an inpcb. 1314 * This implements the delta-based API described in RFC 3678. 1315 * 1316 * The delta-based API applies only to exclusive-mode memberships. 1317 * An MLD downcall will be performed. 1318 * 1319 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1320 * 1321 * Return 0 if successful, otherwise return an appropriate error code. 1322 */ 1323 static int 1324 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1325 { 1326 struct group_source_req gsr; 1327 sockunion_t *gsa, *ssa; 1328 struct ifnet *ifp; 1329 struct in6_mfilter *imf; 1330 struct ip6_moptions *imo; 1331 struct in6_msource *ims; 1332 struct in6_multi *inm; 1333 size_t idx; 1334 uint16_t fmode; 1335 int error, doblock; 1336 #ifdef KTR 1337 char ip6tbuf[INET6_ADDRSTRLEN]; 1338 #endif 1339 1340 ifp = NULL; 1341 error = 0; 1342 doblock = 0; 1343 1344 memset(&gsr, 0, sizeof(struct group_source_req)); 1345 gsa = (sockunion_t *)&gsr.gsr_group; 1346 ssa = (sockunion_t *)&gsr.gsr_source; 1347 1348 switch (sopt->sopt_name) { 1349 case MCAST_BLOCK_SOURCE: 1350 case MCAST_UNBLOCK_SOURCE: 1351 error = sooptcopyin(sopt, &gsr, 1352 sizeof(struct group_source_req), 1353 sizeof(struct group_source_req)); 1354 if (error) 1355 return (error); 1356 1357 if (gsa->sin6.sin6_family != AF_INET6 || 1358 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1359 return (EINVAL); 1360 1361 if (ssa->sin6.sin6_family != AF_INET6 || 1362 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1363 return (EINVAL); 1364 1365 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1366 return (EADDRNOTAVAIL); 1367 1368 ifp = ifnet_byindex(gsr.gsr_interface); 1369 1370 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1371 doblock = 1; 1372 break; 1373 1374 default: 1375 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1376 __func__, sopt->sopt_name); 1377 return (EOPNOTSUPP); 1378 break; 1379 } 1380 1381 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1382 return (EINVAL); 1383 1384 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1385 1386 /* 1387 * Check if we are actually a member of this group. 1388 */ 1389 imo = in6p_findmoptions(inp); 1390 idx = im6o_match_group(imo, ifp, &gsa->sa); 1391 if (idx == -1 || imo->im6o_mfilters == NULL) { 1392 error = EADDRNOTAVAIL; 1393 goto out_in6p_locked; 1394 } 1395 1396 KASSERT(imo->im6o_mfilters != NULL, 1397 ("%s: im6o_mfilters not allocated", __func__)); 1398 imf = &imo->im6o_mfilters[idx]; 1399 inm = imo->im6o_membership[idx]; 1400 1401 /* 1402 * Attempting to use the delta-based API on an 1403 * non exclusive-mode membership is an error. 1404 */ 1405 fmode = imf->im6f_st[0]; 1406 if (fmode != MCAST_EXCLUDE) { 1407 error = EINVAL; 1408 goto out_in6p_locked; 1409 } 1410 1411 /* 1412 * Deal with error cases up-front: 1413 * Asked to block, but already blocked; or 1414 * Asked to unblock, but nothing to unblock. 1415 * If adding a new block entry, allocate it. 1416 */ 1417 ims = im6o_match_source(imo, idx, &ssa->sa); 1418 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1419 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1420 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1421 doblock ? "" : "not "); 1422 error = EADDRNOTAVAIL; 1423 goto out_in6p_locked; 1424 } 1425 1426 INP_WLOCK_ASSERT(inp); 1427 1428 /* 1429 * Begin state merge transaction at socket layer. 1430 */ 1431 if (doblock) { 1432 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1433 ims = im6f_graft(imf, fmode, &ssa->sin6); 1434 if (ims == NULL) 1435 error = ENOMEM; 1436 } else { 1437 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1438 error = im6f_prune(imf, &ssa->sin6); 1439 } 1440 1441 if (error) { 1442 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1443 goto out_im6f_rollback; 1444 } 1445 1446 /* 1447 * Begin state merge transaction at MLD layer. 1448 */ 1449 IN6_MULTI_LOCK(); 1450 1451 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1452 error = in6m_merge(inm, imf); 1453 if (error) 1454 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1455 else { 1456 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1457 error = mld_change_state(inm, 0); 1458 if (error) 1459 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1460 } 1461 1462 IN6_MULTI_UNLOCK(); 1463 1464 out_im6f_rollback: 1465 if (error) 1466 im6f_rollback(imf); 1467 else 1468 im6f_commit(imf); 1469 1470 im6f_reap(imf); 1471 1472 out_in6p_locked: 1473 INP_WUNLOCK(inp); 1474 return (error); 1475 } 1476 1477 /* 1478 * Given an inpcb, return its multicast options structure pointer. Accepts 1479 * an unlocked inpcb pointer, but will return it locked. May sleep. 1480 * 1481 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1482 * SMPng: NOTE: Returns with the INP write lock held. 1483 */ 1484 static struct ip6_moptions * 1485 in6p_findmoptions(struct inpcb *inp) 1486 { 1487 struct ip6_moptions *imo; 1488 struct in6_multi **immp; 1489 struct in6_mfilter *imfp; 1490 size_t idx; 1491 1492 INP_WLOCK(inp); 1493 if (inp->in6p_moptions != NULL) 1494 return (inp->in6p_moptions); 1495 1496 INP_WUNLOCK(inp); 1497 1498 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1499 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1500 M_WAITOK | M_ZERO); 1501 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1502 M_IN6MFILTER, M_WAITOK); 1503 1504 imo->im6o_multicast_ifp = NULL; 1505 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1506 imo->im6o_multicast_loop = in6_mcast_loop; 1507 imo->im6o_num_memberships = 0; 1508 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1509 imo->im6o_membership = immp; 1510 1511 /* Initialize per-group source filters. */ 1512 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1513 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1514 imo->im6o_mfilters = imfp; 1515 1516 INP_WLOCK(inp); 1517 if (inp->in6p_moptions != NULL) { 1518 free(imfp, M_IN6MFILTER); 1519 free(immp, M_IP6MOPTS); 1520 free(imo, M_IP6MOPTS); 1521 return (inp->in6p_moptions); 1522 } 1523 inp->in6p_moptions = imo; 1524 return (imo); 1525 } 1526 1527 /* 1528 * Discard the IPv6 multicast options (and source filters). 1529 * 1530 * SMPng: NOTE: assumes INP write lock is held. 1531 */ 1532 void 1533 ip6_freemoptions(struct ip6_moptions *imo) 1534 { 1535 struct in6_mfilter *imf; 1536 size_t idx, nmships; 1537 1538 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__)); 1539 1540 nmships = imo->im6o_num_memberships; 1541 for (idx = 0; idx < nmships; ++idx) { 1542 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1543 if (imf) 1544 im6f_leave(imf); 1545 /* XXX this will thrash the lock(s) */ 1546 (void)in6_mc_leave(imo->im6o_membership[idx], imf); 1547 if (imf) 1548 im6f_purge(imf); 1549 } 1550 1551 if (imo->im6o_mfilters) 1552 free(imo->im6o_mfilters, M_IN6MFILTER); 1553 free(imo->im6o_membership, M_IP6MOPTS); 1554 free(imo, M_IP6MOPTS); 1555 } 1556 1557 /* 1558 * Atomically get source filters on a socket for an IPv6 multicast group. 1559 * Called with INP lock held; returns with lock released. 1560 */ 1561 static int 1562 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1563 { 1564 struct __msfilterreq msfr; 1565 sockunion_t *gsa; 1566 struct ifnet *ifp; 1567 struct ip6_moptions *imo; 1568 struct in6_mfilter *imf; 1569 struct ip6_msource *ims; 1570 struct in6_msource *lims; 1571 struct sockaddr_in6 *psin; 1572 struct sockaddr_storage *ptss; 1573 struct sockaddr_storage *tss; 1574 int error; 1575 size_t idx, nsrcs, ncsrcs; 1576 1577 INP_WLOCK_ASSERT(inp); 1578 1579 imo = inp->in6p_moptions; 1580 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1581 1582 INP_WUNLOCK(inp); 1583 1584 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1585 sizeof(struct __msfilterreq)); 1586 if (error) 1587 return (error); 1588 1589 if (msfr.msfr_group.ss_family != AF_INET6 || 1590 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1591 return (EINVAL); 1592 1593 gsa = (sockunion_t *)&msfr.msfr_group; 1594 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1595 return (EINVAL); 1596 1597 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1598 return (EADDRNOTAVAIL); 1599 ifp = ifnet_byindex(msfr.msfr_ifindex); 1600 if (ifp == NULL) 1601 return (EADDRNOTAVAIL); 1602 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1603 1604 INP_WLOCK(inp); 1605 1606 /* 1607 * Lookup group on the socket. 1608 */ 1609 idx = im6o_match_group(imo, ifp, &gsa->sa); 1610 if (idx == -1 || imo->im6o_mfilters == NULL) { 1611 INP_WUNLOCK(inp); 1612 return (EADDRNOTAVAIL); 1613 } 1614 imf = &imo->im6o_mfilters[idx]; 1615 1616 /* 1617 * Ignore memberships which are in limbo. 1618 */ 1619 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1620 INP_WUNLOCK(inp); 1621 return (EAGAIN); 1622 } 1623 msfr.msfr_fmode = imf->im6f_st[1]; 1624 1625 /* 1626 * If the user specified a buffer, copy out the source filter 1627 * entries to userland gracefully. 1628 * We only copy out the number of entries which userland 1629 * has asked for, but we always tell userland how big the 1630 * buffer really needs to be. 1631 */ 1632 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1633 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1634 tss = NULL; 1635 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1636 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1637 M_TEMP, M_NOWAIT | M_ZERO); 1638 if (tss == NULL) { 1639 INP_WUNLOCK(inp); 1640 return (ENOBUFS); 1641 } 1642 } 1643 1644 /* 1645 * Count number of sources in-mode at t0. 1646 * If buffer space exists and remains, copy out source entries. 1647 */ 1648 nsrcs = msfr.msfr_nsrcs; 1649 ncsrcs = 0; 1650 ptss = tss; 1651 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1652 lims = (struct in6_msource *)ims; 1653 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1654 lims->im6sl_st[0] != imf->im6f_st[0]) 1655 continue; 1656 ++ncsrcs; 1657 if (tss != NULL && nsrcs > 0) { 1658 psin = (struct sockaddr_in6 *)ptss; 1659 psin->sin6_family = AF_INET6; 1660 psin->sin6_len = sizeof(struct sockaddr_in6); 1661 psin->sin6_addr = lims->im6s_addr; 1662 psin->sin6_port = 0; 1663 --nsrcs; 1664 ++ptss; 1665 } 1666 } 1667 1668 INP_WUNLOCK(inp); 1669 1670 if (tss != NULL) { 1671 error = copyout(tss, msfr.msfr_srcs, 1672 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1673 free(tss, M_TEMP); 1674 if (error) 1675 return (error); 1676 } 1677 1678 msfr.msfr_nsrcs = ncsrcs; 1679 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1680 1681 return (error); 1682 } 1683 1684 /* 1685 * Return the IP multicast options in response to user getsockopt(). 1686 */ 1687 int 1688 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1689 { 1690 struct ip6_moptions *im6o; 1691 int error; 1692 u_int optval; 1693 1694 INP_WLOCK(inp); 1695 im6o = inp->in6p_moptions; 1696 /* 1697 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1698 * or is a divert socket, reject it. 1699 */ 1700 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1701 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1702 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1703 INP_WUNLOCK(inp); 1704 return (EOPNOTSUPP); 1705 } 1706 1707 error = 0; 1708 switch (sopt->sopt_name) { 1709 case IPV6_MULTICAST_IF: 1710 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1711 optval = 0; 1712 } else { 1713 optval = im6o->im6o_multicast_ifp->if_index; 1714 } 1715 INP_WUNLOCK(inp); 1716 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1717 break; 1718 1719 case IPV6_MULTICAST_HOPS: 1720 if (im6o == NULL) 1721 optval = V_ip6_defmcasthlim; 1722 else 1723 optval = im6o->im6o_multicast_hlim; 1724 INP_WUNLOCK(inp); 1725 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1726 break; 1727 1728 case IPV6_MULTICAST_LOOP: 1729 if (im6o == NULL) 1730 optval = in6_mcast_loop; /* XXX VIMAGE */ 1731 else 1732 optval = im6o->im6o_multicast_loop; 1733 INP_WUNLOCK(inp); 1734 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1735 break; 1736 1737 case IPV6_MSFILTER: 1738 if (im6o == NULL) { 1739 error = EADDRNOTAVAIL; 1740 INP_WUNLOCK(inp); 1741 } else { 1742 error = in6p_get_source_filters(inp, sopt); 1743 } 1744 break; 1745 1746 default: 1747 INP_WUNLOCK(inp); 1748 error = ENOPROTOOPT; 1749 break; 1750 } 1751 1752 INP_UNLOCK_ASSERT(inp); 1753 1754 return (error); 1755 } 1756 1757 /* 1758 * Look up the ifnet to use for a multicast group membership, 1759 * given the address of an IPv6 group. 1760 * 1761 * This routine exists to support legacy IPv6 multicast applications. 1762 * 1763 * If inp is non-NULL, use this socket's current FIB number for any 1764 * required FIB lookup. Look up the group address in the unicast FIB, 1765 * and use its ifp; usually, this points to the default next-hop. 1766 * If the FIB lookup fails, return NULL. 1767 * 1768 * FUTURE: Support multiple forwarding tables for IPv6. 1769 * 1770 * Returns NULL if no ifp could be found. 1771 */ 1772 static struct ifnet * 1773 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1774 const struct sockaddr_in6 *gsin6) 1775 { 1776 struct nhop6_basic nh6; 1777 struct in6_addr dst; 1778 uint32_t scopeid; 1779 uint32_t fibnum; 1780 1781 KASSERT(in6p->inp_vflag & INP_IPV6, 1782 ("%s: not INP_IPV6 inpcb", __func__)); 1783 KASSERT(gsin6->sin6_family == AF_INET6, 1784 ("%s: not AF_INET6 group", __func__)); 1785 1786 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1787 fibnum = in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB; 1788 if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6) != 0) 1789 return (NULL); 1790 1791 return (nh6.nh_ifp); 1792 } 1793 1794 /* 1795 * Join an IPv6 multicast group, possibly with a source. 1796 * 1797 * FIXME: The KAME use of the unspecified address (::) 1798 * to join *all* multicast groups is currently unsupported. 1799 */ 1800 static int 1801 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1802 { 1803 struct group_source_req gsr; 1804 sockunion_t *gsa, *ssa; 1805 struct ifnet *ifp; 1806 struct in6_mfilter *imf; 1807 struct ip6_moptions *imo; 1808 struct in6_multi *inm; 1809 struct in6_msource *lims; 1810 size_t idx; 1811 int error, is_new; 1812 1813 ifp = NULL; 1814 imf = NULL; 1815 lims = NULL; 1816 error = 0; 1817 is_new = 0; 1818 1819 memset(&gsr, 0, sizeof(struct group_source_req)); 1820 gsa = (sockunion_t *)&gsr.gsr_group; 1821 gsa->ss.ss_family = AF_UNSPEC; 1822 ssa = (sockunion_t *)&gsr.gsr_source; 1823 ssa->ss.ss_family = AF_UNSPEC; 1824 1825 /* 1826 * Chew everything into struct group_source_req. 1827 * Overwrite the port field if present, as the sockaddr 1828 * being copied in may be matched with a binary comparison. 1829 * Ignore passed-in scope ID. 1830 */ 1831 switch (sopt->sopt_name) { 1832 case IPV6_JOIN_GROUP: { 1833 struct ipv6_mreq mreq; 1834 1835 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1836 sizeof(struct ipv6_mreq)); 1837 if (error) 1838 return (error); 1839 1840 gsa->sin6.sin6_family = AF_INET6; 1841 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1842 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1843 1844 if (mreq.ipv6mr_interface == 0) { 1845 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1846 } else { 1847 if (V_if_index < mreq.ipv6mr_interface) 1848 return (EADDRNOTAVAIL); 1849 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1850 } 1851 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1852 __func__, mreq.ipv6mr_interface, ifp); 1853 } break; 1854 1855 case MCAST_JOIN_GROUP: 1856 case MCAST_JOIN_SOURCE_GROUP: 1857 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1858 error = sooptcopyin(sopt, &gsr, 1859 sizeof(struct group_req), 1860 sizeof(struct group_req)); 1861 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1862 error = sooptcopyin(sopt, &gsr, 1863 sizeof(struct group_source_req), 1864 sizeof(struct group_source_req)); 1865 } 1866 if (error) 1867 return (error); 1868 1869 if (gsa->sin6.sin6_family != AF_INET6 || 1870 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1871 return (EINVAL); 1872 1873 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1874 if (ssa->sin6.sin6_family != AF_INET6 || 1875 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1876 return (EINVAL); 1877 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1878 return (EINVAL); 1879 /* 1880 * TODO: Validate embedded scope ID in source 1881 * list entry against passed-in ifp, if and only 1882 * if source list filter entry is iface or node local. 1883 */ 1884 in6_clearscope(&ssa->sin6.sin6_addr); 1885 ssa->sin6.sin6_port = 0; 1886 ssa->sin6.sin6_scope_id = 0; 1887 } 1888 1889 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1890 return (EADDRNOTAVAIL); 1891 ifp = ifnet_byindex(gsr.gsr_interface); 1892 break; 1893 1894 default: 1895 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1896 __func__, sopt->sopt_name); 1897 return (EOPNOTSUPP); 1898 break; 1899 } 1900 1901 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1902 return (EINVAL); 1903 1904 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1905 return (EADDRNOTAVAIL); 1906 1907 gsa->sin6.sin6_port = 0; 1908 gsa->sin6.sin6_scope_id = 0; 1909 1910 /* 1911 * Always set the scope zone ID on memberships created from userland. 1912 * Use the passed-in ifp to do this. 1913 * XXX The in6_setscope() return value is meaningless. 1914 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1915 */ 1916 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1917 1918 imo = in6p_findmoptions(inp); 1919 idx = im6o_match_group(imo, ifp, &gsa->sa); 1920 if (idx == -1) { 1921 is_new = 1; 1922 } else { 1923 inm = imo->im6o_membership[idx]; 1924 imf = &imo->im6o_mfilters[idx]; 1925 if (ssa->ss.ss_family != AF_UNSPEC) { 1926 /* 1927 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 1928 * is an error. On an existing inclusive membership, 1929 * it just adds the source to the filter list. 1930 */ 1931 if (imf->im6f_st[1] != MCAST_INCLUDE) { 1932 error = EINVAL; 1933 goto out_in6p_locked; 1934 } 1935 /* 1936 * Throw out duplicates. 1937 * 1938 * XXX FIXME: This makes a naive assumption that 1939 * even if entries exist for *ssa in this imf, 1940 * they will be rejected as dupes, even if they 1941 * are not valid in the current mode (in-mode). 1942 * 1943 * in6_msource is transactioned just as for anything 1944 * else in SSM -- but note naive use of in6m_graft() 1945 * below for allocating new filter entries. 1946 * 1947 * This is only an issue if someone mixes the 1948 * full-state SSM API with the delta-based API, 1949 * which is discouraged in the relevant RFCs. 1950 */ 1951 lims = im6o_match_source(imo, idx, &ssa->sa); 1952 if (lims != NULL /*&& 1953 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 1954 error = EADDRNOTAVAIL; 1955 goto out_in6p_locked; 1956 } 1957 } else { 1958 /* 1959 * MCAST_JOIN_GROUP alone, on any existing membership, 1960 * is rejected, to stop the same inpcb tying up 1961 * multiple refs to the in_multi. 1962 * On an existing inclusive membership, this is also 1963 * an error; if you want to change filter mode, 1964 * you must use the userland API setsourcefilter(). 1965 * XXX We don't reject this for imf in UNDEFINED 1966 * state at t1, because allocation of a filter 1967 * is atomic with allocation of a membership. 1968 */ 1969 error = EINVAL; 1970 goto out_in6p_locked; 1971 } 1972 } 1973 1974 /* 1975 * Begin state merge transaction at socket layer. 1976 */ 1977 INP_WLOCK_ASSERT(inp); 1978 1979 if (is_new) { 1980 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 1981 error = im6o_grow(imo); 1982 if (error) 1983 goto out_in6p_locked; 1984 } 1985 /* 1986 * Allocate the new slot upfront so we can deal with 1987 * grafting the new source filter in same code path 1988 * as for join-source on existing membership. 1989 */ 1990 idx = imo->im6o_num_memberships; 1991 imo->im6o_membership[idx] = NULL; 1992 imo->im6o_num_memberships++; 1993 KASSERT(imo->im6o_mfilters != NULL, 1994 ("%s: im6f_mfilters vector was not allocated", __func__)); 1995 imf = &imo->im6o_mfilters[idx]; 1996 KASSERT(RB_EMPTY(&imf->im6f_sources), 1997 ("%s: im6f_sources not empty", __func__)); 1998 } 1999 2000 /* 2001 * Graft new source into filter list for this inpcb's 2002 * membership of the group. The in6_multi may not have 2003 * been allocated yet if this is a new membership, however, 2004 * the in_mfilter slot will be allocated and must be initialized. 2005 * 2006 * Note: Grafting of exclusive mode filters doesn't happen 2007 * in this path. 2008 * XXX: Should check for non-NULL lims (node exists but may 2009 * not be in-mode) for interop with full-state API. 2010 */ 2011 if (ssa->ss.ss_family != AF_UNSPEC) { 2012 /* Membership starts in IN mode */ 2013 if (is_new) { 2014 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2015 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2016 } else { 2017 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2018 } 2019 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2020 if (lims == NULL) { 2021 CTR1(KTR_MLD, "%s: merge imf state failed", 2022 __func__); 2023 error = ENOMEM; 2024 goto out_im6o_free; 2025 } 2026 } else { 2027 /* No address specified; Membership starts in EX mode */ 2028 if (is_new) { 2029 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2030 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2031 } 2032 } 2033 2034 /* 2035 * Begin state merge transaction at MLD layer. 2036 */ 2037 IN6_MULTI_LOCK(); 2038 2039 if (is_new) { 2040 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf, 2041 &inm, 0); 2042 if (error) { 2043 IN6_MULTI_UNLOCK(); 2044 goto out_im6o_free; 2045 } 2046 imo->im6o_membership[idx] = inm; 2047 } else { 2048 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2049 error = in6m_merge(inm, imf); 2050 if (error) 2051 CTR1(KTR_MLD, "%s: failed to merge inm state", 2052 __func__); 2053 else { 2054 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2055 error = mld_change_state(inm, 0); 2056 if (error) 2057 CTR1(KTR_MLD, "%s: failed mld downcall", 2058 __func__); 2059 } 2060 } 2061 2062 IN6_MULTI_UNLOCK(); 2063 INP_WLOCK_ASSERT(inp); 2064 if (error) { 2065 im6f_rollback(imf); 2066 if (is_new) 2067 im6f_purge(imf); 2068 else 2069 im6f_reap(imf); 2070 } else { 2071 im6f_commit(imf); 2072 } 2073 2074 out_im6o_free: 2075 if (error && is_new) { 2076 imo->im6o_membership[idx] = NULL; 2077 --imo->im6o_num_memberships; 2078 } 2079 2080 out_in6p_locked: 2081 INP_WUNLOCK(inp); 2082 return (error); 2083 } 2084 2085 /* 2086 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2087 */ 2088 static int 2089 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2090 { 2091 struct ipv6_mreq mreq; 2092 struct group_source_req gsr; 2093 sockunion_t *gsa, *ssa; 2094 struct ifnet *ifp; 2095 struct in6_mfilter *imf; 2096 struct ip6_moptions *imo; 2097 struct in6_msource *ims; 2098 struct in6_multi *inm; 2099 uint32_t ifindex; 2100 size_t idx; 2101 int error, is_final; 2102 #ifdef KTR 2103 char ip6tbuf[INET6_ADDRSTRLEN]; 2104 #endif 2105 2106 ifp = NULL; 2107 ifindex = 0; 2108 error = 0; 2109 is_final = 1; 2110 2111 memset(&gsr, 0, sizeof(struct group_source_req)); 2112 gsa = (sockunion_t *)&gsr.gsr_group; 2113 gsa->ss.ss_family = AF_UNSPEC; 2114 ssa = (sockunion_t *)&gsr.gsr_source; 2115 ssa->ss.ss_family = AF_UNSPEC; 2116 2117 /* 2118 * Chew everything passed in up into a struct group_source_req 2119 * as that is easier to process. 2120 * Note: Any embedded scope ID in the multicast group passed 2121 * in by userland is ignored, the interface index is the recommended 2122 * mechanism to specify an interface; see below. 2123 */ 2124 switch (sopt->sopt_name) { 2125 case IPV6_LEAVE_GROUP: 2126 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2127 sizeof(struct ipv6_mreq)); 2128 if (error) 2129 return (error); 2130 gsa->sin6.sin6_family = AF_INET6; 2131 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2132 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2133 gsa->sin6.sin6_port = 0; 2134 gsa->sin6.sin6_scope_id = 0; 2135 ifindex = mreq.ipv6mr_interface; 2136 break; 2137 2138 case MCAST_LEAVE_GROUP: 2139 case MCAST_LEAVE_SOURCE_GROUP: 2140 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2141 error = sooptcopyin(sopt, &gsr, 2142 sizeof(struct group_req), 2143 sizeof(struct group_req)); 2144 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2145 error = sooptcopyin(sopt, &gsr, 2146 sizeof(struct group_source_req), 2147 sizeof(struct group_source_req)); 2148 } 2149 if (error) 2150 return (error); 2151 2152 if (gsa->sin6.sin6_family != AF_INET6 || 2153 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2154 return (EINVAL); 2155 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2156 if (ssa->sin6.sin6_family != AF_INET6 || 2157 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2158 return (EINVAL); 2159 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2160 return (EINVAL); 2161 /* 2162 * TODO: Validate embedded scope ID in source 2163 * list entry against passed-in ifp, if and only 2164 * if source list filter entry is iface or node local. 2165 */ 2166 in6_clearscope(&ssa->sin6.sin6_addr); 2167 } 2168 gsa->sin6.sin6_port = 0; 2169 gsa->sin6.sin6_scope_id = 0; 2170 ifindex = gsr.gsr_interface; 2171 break; 2172 2173 default: 2174 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2175 __func__, sopt->sopt_name); 2176 return (EOPNOTSUPP); 2177 break; 2178 } 2179 2180 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2181 return (EINVAL); 2182 2183 /* 2184 * Validate interface index if provided. If no interface index 2185 * was provided separately, attempt to look the membership up 2186 * from the default scope as a last resort to disambiguate 2187 * the membership we are being asked to leave. 2188 * XXX SCOPE6 lock potentially taken here. 2189 */ 2190 if (ifindex != 0) { 2191 if (V_if_index < ifindex) 2192 return (EADDRNOTAVAIL); 2193 ifp = ifnet_byindex(ifindex); 2194 if (ifp == NULL) 2195 return (EADDRNOTAVAIL); 2196 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2197 } else { 2198 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2199 if (error) 2200 return (EADDRNOTAVAIL); 2201 /* 2202 * Some badly behaved applications don't pass an ifindex 2203 * or a scope ID, which is an API violation. In this case, 2204 * perform a lookup as per a v6 join. 2205 * 2206 * XXX For now, stomp on zone ID for the corner case. 2207 * This is not the 'KAME way', but we need to see the ifp 2208 * directly until such time as this implementation is 2209 * refactored, assuming the scope IDs are the way to go. 2210 */ 2211 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2212 if (ifindex == 0) { 2213 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2214 "ifp for group %s.", __func__, 2215 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2216 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2217 } else { 2218 ifp = ifnet_byindex(ifindex); 2219 } 2220 if (ifp == NULL) 2221 return (EADDRNOTAVAIL); 2222 } 2223 2224 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2225 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2226 2227 /* 2228 * Find the membership in the membership array. 2229 */ 2230 imo = in6p_findmoptions(inp); 2231 idx = im6o_match_group(imo, ifp, &gsa->sa); 2232 if (idx == -1) { 2233 error = EADDRNOTAVAIL; 2234 goto out_in6p_locked; 2235 } 2236 inm = imo->im6o_membership[idx]; 2237 imf = &imo->im6o_mfilters[idx]; 2238 2239 if (ssa->ss.ss_family != AF_UNSPEC) 2240 is_final = 0; 2241 2242 /* 2243 * Begin state merge transaction at socket layer. 2244 */ 2245 INP_WLOCK_ASSERT(inp); 2246 2247 /* 2248 * If we were instructed only to leave a given source, do so. 2249 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2250 */ 2251 if (is_final) { 2252 im6f_leave(imf); 2253 } else { 2254 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2255 error = EADDRNOTAVAIL; 2256 goto out_in6p_locked; 2257 } 2258 ims = im6o_match_source(imo, idx, &ssa->sa); 2259 if (ims == NULL) { 2260 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2261 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2262 "not "); 2263 error = EADDRNOTAVAIL; 2264 goto out_in6p_locked; 2265 } 2266 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2267 error = im6f_prune(imf, &ssa->sin6); 2268 if (error) { 2269 CTR1(KTR_MLD, "%s: merge imf state failed", 2270 __func__); 2271 goto out_in6p_locked; 2272 } 2273 } 2274 2275 /* 2276 * Begin state merge transaction at MLD layer. 2277 */ 2278 IN6_MULTI_LOCK(); 2279 2280 if (is_final) { 2281 /* 2282 * Give up the multicast address record to which 2283 * the membership points. 2284 */ 2285 (void)in6_mc_leave_locked(inm, imf); 2286 } else { 2287 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2288 error = in6m_merge(inm, imf); 2289 if (error) 2290 CTR1(KTR_MLD, "%s: failed to merge inm state", 2291 __func__); 2292 else { 2293 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2294 error = mld_change_state(inm, 0); 2295 if (error) 2296 CTR1(KTR_MLD, "%s: failed mld downcall", 2297 __func__); 2298 } 2299 } 2300 2301 IN6_MULTI_UNLOCK(); 2302 2303 if (error) 2304 im6f_rollback(imf); 2305 else 2306 im6f_commit(imf); 2307 2308 im6f_reap(imf); 2309 2310 if (is_final) { 2311 /* Remove the gap in the membership array. */ 2312 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2313 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2314 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2315 } 2316 imo->im6o_num_memberships--; 2317 } 2318 2319 out_in6p_locked: 2320 INP_WUNLOCK(inp); 2321 return (error); 2322 } 2323 2324 /* 2325 * Select the interface for transmitting IPv6 multicast datagrams. 2326 * 2327 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2328 * may be passed to this socket option. An address of in6addr_any or an 2329 * interface index of 0 is used to remove a previous selection. 2330 * When no interface is selected, one is chosen for every send. 2331 */ 2332 static int 2333 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2334 { 2335 struct ifnet *ifp; 2336 struct ip6_moptions *imo; 2337 u_int ifindex; 2338 int error; 2339 2340 if (sopt->sopt_valsize != sizeof(u_int)) 2341 return (EINVAL); 2342 2343 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2344 if (error) 2345 return (error); 2346 if (V_if_index < ifindex) 2347 return (EINVAL); 2348 if (ifindex == 0) 2349 ifp = NULL; 2350 else { 2351 ifp = ifnet_byindex(ifindex); 2352 if (ifp == NULL) 2353 return (EINVAL); 2354 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2355 return (EADDRNOTAVAIL); 2356 } 2357 imo = in6p_findmoptions(inp); 2358 imo->im6o_multicast_ifp = ifp; 2359 INP_WUNLOCK(inp); 2360 2361 return (0); 2362 } 2363 2364 /* 2365 * Atomically set source filters on a socket for an IPv6 multicast group. 2366 * 2367 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2368 */ 2369 static int 2370 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2371 { 2372 struct __msfilterreq msfr; 2373 sockunion_t *gsa; 2374 struct ifnet *ifp; 2375 struct in6_mfilter *imf; 2376 struct ip6_moptions *imo; 2377 struct in6_multi *inm; 2378 size_t idx; 2379 int error; 2380 2381 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2382 sizeof(struct __msfilterreq)); 2383 if (error) 2384 return (error); 2385 2386 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2387 return (ENOBUFS); 2388 2389 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2390 msfr.msfr_fmode != MCAST_INCLUDE) 2391 return (EINVAL); 2392 2393 if (msfr.msfr_group.ss_family != AF_INET6 || 2394 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2395 return (EINVAL); 2396 2397 gsa = (sockunion_t *)&msfr.msfr_group; 2398 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2399 return (EINVAL); 2400 2401 gsa->sin6.sin6_port = 0; /* ignore port */ 2402 2403 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2404 return (EADDRNOTAVAIL); 2405 ifp = ifnet_byindex(msfr.msfr_ifindex); 2406 if (ifp == NULL) 2407 return (EADDRNOTAVAIL); 2408 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2409 2410 /* 2411 * Take the INP write lock. 2412 * Check if this socket is a member of this group. 2413 */ 2414 imo = in6p_findmoptions(inp); 2415 idx = im6o_match_group(imo, ifp, &gsa->sa); 2416 if (idx == -1 || imo->im6o_mfilters == NULL) { 2417 error = EADDRNOTAVAIL; 2418 goto out_in6p_locked; 2419 } 2420 inm = imo->im6o_membership[idx]; 2421 imf = &imo->im6o_mfilters[idx]; 2422 2423 /* 2424 * Begin state merge transaction at socket layer. 2425 */ 2426 INP_WLOCK_ASSERT(inp); 2427 2428 imf->im6f_st[1] = msfr.msfr_fmode; 2429 2430 /* 2431 * Apply any new source filters, if present. 2432 * Make a copy of the user-space source vector so 2433 * that we may copy them with a single copyin. This 2434 * allows us to deal with page faults up-front. 2435 */ 2436 if (msfr.msfr_nsrcs > 0) { 2437 struct in6_msource *lims; 2438 struct sockaddr_in6 *psin; 2439 struct sockaddr_storage *kss, *pkss; 2440 int i; 2441 2442 INP_WUNLOCK(inp); 2443 2444 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2445 __func__, (unsigned long)msfr.msfr_nsrcs); 2446 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2447 M_TEMP, M_WAITOK); 2448 error = copyin(msfr.msfr_srcs, kss, 2449 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2450 if (error) { 2451 free(kss, M_TEMP); 2452 return (error); 2453 } 2454 2455 INP_WLOCK(inp); 2456 2457 /* 2458 * Mark all source filters as UNDEFINED at t1. 2459 * Restore new group filter mode, as im6f_leave() 2460 * will set it to INCLUDE. 2461 */ 2462 im6f_leave(imf); 2463 imf->im6f_st[1] = msfr.msfr_fmode; 2464 2465 /* 2466 * Update socket layer filters at t1, lazy-allocating 2467 * new entries. This saves a bunch of memory at the 2468 * cost of one RB_FIND() per source entry; duplicate 2469 * entries in the msfr_nsrcs vector are ignored. 2470 * If we encounter an error, rollback transaction. 2471 * 2472 * XXX This too could be replaced with a set-symmetric 2473 * difference like loop to avoid walking from root 2474 * every time, as the key space is common. 2475 */ 2476 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2477 psin = (struct sockaddr_in6 *)pkss; 2478 if (psin->sin6_family != AF_INET6) { 2479 error = EAFNOSUPPORT; 2480 break; 2481 } 2482 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2483 error = EINVAL; 2484 break; 2485 } 2486 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2487 error = EINVAL; 2488 break; 2489 } 2490 /* 2491 * TODO: Validate embedded scope ID in source 2492 * list entry against passed-in ifp, if and only 2493 * if source list filter entry is iface or node local. 2494 */ 2495 in6_clearscope(&psin->sin6_addr); 2496 error = im6f_get_source(imf, psin, &lims); 2497 if (error) 2498 break; 2499 lims->im6sl_st[1] = imf->im6f_st[1]; 2500 } 2501 free(kss, M_TEMP); 2502 } 2503 2504 if (error) 2505 goto out_im6f_rollback; 2506 2507 INP_WLOCK_ASSERT(inp); 2508 IN6_MULTI_LOCK(); 2509 2510 /* 2511 * Begin state merge transaction at MLD layer. 2512 */ 2513 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2514 error = in6m_merge(inm, imf); 2515 if (error) 2516 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2517 else { 2518 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2519 error = mld_change_state(inm, 0); 2520 if (error) 2521 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2522 } 2523 2524 IN6_MULTI_UNLOCK(); 2525 2526 out_im6f_rollback: 2527 if (error) 2528 im6f_rollback(imf); 2529 else 2530 im6f_commit(imf); 2531 2532 im6f_reap(imf); 2533 2534 out_in6p_locked: 2535 INP_WUNLOCK(inp); 2536 return (error); 2537 } 2538 2539 /* 2540 * Set the IP multicast options in response to user setsockopt(). 2541 * 2542 * Many of the socket options handled in this function duplicate the 2543 * functionality of socket options in the regular unicast API. However, 2544 * it is not possible to merge the duplicate code, because the idempotence 2545 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2546 * the effects of these options must be treated as separate and distinct. 2547 * 2548 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2549 */ 2550 int 2551 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2552 { 2553 struct ip6_moptions *im6o; 2554 int error; 2555 2556 error = 0; 2557 2558 /* 2559 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2560 * or is a divert socket, reject it. 2561 */ 2562 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2563 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2564 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2565 return (EOPNOTSUPP); 2566 2567 switch (sopt->sopt_name) { 2568 case IPV6_MULTICAST_IF: 2569 error = in6p_set_multicast_if(inp, sopt); 2570 break; 2571 2572 case IPV6_MULTICAST_HOPS: { 2573 int hlim; 2574 2575 if (sopt->sopt_valsize != sizeof(int)) { 2576 error = EINVAL; 2577 break; 2578 } 2579 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2580 if (error) 2581 break; 2582 if (hlim < -1 || hlim > 255) { 2583 error = EINVAL; 2584 break; 2585 } else if (hlim == -1) { 2586 hlim = V_ip6_defmcasthlim; 2587 } 2588 im6o = in6p_findmoptions(inp); 2589 im6o->im6o_multicast_hlim = hlim; 2590 INP_WUNLOCK(inp); 2591 break; 2592 } 2593 2594 case IPV6_MULTICAST_LOOP: { 2595 u_int loop; 2596 2597 /* 2598 * Set the loopback flag for outgoing multicast packets. 2599 * Must be zero or one. 2600 */ 2601 if (sopt->sopt_valsize != sizeof(u_int)) { 2602 error = EINVAL; 2603 break; 2604 } 2605 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2606 if (error) 2607 break; 2608 if (loop > 1) { 2609 error = EINVAL; 2610 break; 2611 } 2612 im6o = in6p_findmoptions(inp); 2613 im6o->im6o_multicast_loop = loop; 2614 INP_WUNLOCK(inp); 2615 break; 2616 } 2617 2618 case IPV6_JOIN_GROUP: 2619 case MCAST_JOIN_GROUP: 2620 case MCAST_JOIN_SOURCE_GROUP: 2621 error = in6p_join_group(inp, sopt); 2622 break; 2623 2624 case IPV6_LEAVE_GROUP: 2625 case MCAST_LEAVE_GROUP: 2626 case MCAST_LEAVE_SOURCE_GROUP: 2627 error = in6p_leave_group(inp, sopt); 2628 break; 2629 2630 case MCAST_BLOCK_SOURCE: 2631 case MCAST_UNBLOCK_SOURCE: 2632 error = in6p_block_unblock_source(inp, sopt); 2633 break; 2634 2635 case IPV6_MSFILTER: 2636 error = in6p_set_source_filters(inp, sopt); 2637 break; 2638 2639 default: 2640 error = EOPNOTSUPP; 2641 break; 2642 } 2643 2644 INP_UNLOCK_ASSERT(inp); 2645 2646 return (error); 2647 } 2648 2649 /* 2650 * Expose MLD's multicast filter mode and source list(s) to userland, 2651 * keyed by (ifindex, group). 2652 * The filter mode is written out as a uint32_t, followed by 2653 * 0..n of struct in6_addr. 2654 * For use by ifmcstat(8). 2655 * SMPng: NOTE: unlocked read of ifindex space. 2656 */ 2657 static int 2658 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2659 { 2660 struct in6_addr mcaddr; 2661 struct in6_addr src; 2662 struct ifnet *ifp; 2663 struct ifmultiaddr *ifma; 2664 struct in6_multi *inm; 2665 struct ip6_msource *ims; 2666 int *name; 2667 int retval; 2668 u_int namelen; 2669 uint32_t fmode, ifindex; 2670 #ifdef KTR 2671 char ip6tbuf[INET6_ADDRSTRLEN]; 2672 #endif 2673 2674 name = (int *)arg1; 2675 namelen = arg2; 2676 2677 if (req->newptr != NULL) 2678 return (EPERM); 2679 2680 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2681 if (namelen != 5) 2682 return (EINVAL); 2683 2684 ifindex = name[0]; 2685 if (ifindex <= 0 || ifindex > V_if_index) { 2686 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2687 __func__, ifindex); 2688 return (ENOENT); 2689 } 2690 2691 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2692 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2693 CTR2(KTR_MLD, "%s: group %s is not multicast", 2694 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2695 return (EINVAL); 2696 } 2697 2698 ifp = ifnet_byindex(ifindex); 2699 if (ifp == NULL) { 2700 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2701 __func__, ifindex); 2702 return (ENOENT); 2703 } 2704 /* 2705 * Internal MLD lookups require that scope/zone ID is set. 2706 */ 2707 (void)in6_setscope(&mcaddr, ifp, NULL); 2708 2709 retval = sysctl_wire_old_buffer(req, 2710 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2711 if (retval) 2712 return (retval); 2713 2714 IN6_MULTI_LOCK(); 2715 2716 IF_ADDR_RLOCK(ifp); 2717 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2718 if (ifma->ifma_addr->sa_family != AF_INET6 || 2719 ifma->ifma_protospec == NULL) 2720 continue; 2721 inm = (struct in6_multi *)ifma->ifma_protospec; 2722 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2723 continue; 2724 fmode = inm->in6m_st[1].iss_fmode; 2725 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2726 if (retval != 0) 2727 break; 2728 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2729 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2730 /* 2731 * Only copy-out sources which are in-mode. 2732 */ 2733 if (fmode != im6s_get_mode(inm, ims, 1)) { 2734 CTR1(KTR_MLD, "%s: skip non-in-mode", 2735 __func__); 2736 continue; 2737 } 2738 src = ims->im6s_addr; 2739 retval = SYSCTL_OUT(req, &src, 2740 sizeof(struct in6_addr)); 2741 if (retval != 0) 2742 break; 2743 } 2744 } 2745 IF_ADDR_RUNLOCK(ifp); 2746 2747 IN6_MULTI_UNLOCK(); 2748 2749 return (retval); 2750 } 2751 2752 #ifdef KTR 2753 2754 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2755 2756 static const char * 2757 in6m_mode_str(const int mode) 2758 { 2759 2760 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2761 return (in6m_modestrs[mode]); 2762 return ("??"); 2763 } 2764 2765 static const char *in6m_statestrs[] = { 2766 "not-member", 2767 "silent", 2768 "idle", 2769 "lazy", 2770 "sleeping", 2771 "awakening", 2772 "query-pending", 2773 "sg-query-pending", 2774 "leaving" 2775 }; 2776 2777 static const char * 2778 in6m_state_str(const int state) 2779 { 2780 2781 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2782 return (in6m_statestrs[state]); 2783 return ("??"); 2784 } 2785 2786 /* 2787 * Dump an in6_multi structure to the console. 2788 */ 2789 void 2790 in6m_print(const struct in6_multi *inm) 2791 { 2792 int t; 2793 char ip6tbuf[INET6_ADDRSTRLEN]; 2794 2795 if ((ktr_mask & KTR_MLD) == 0) 2796 return; 2797 2798 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2799 printf("addr %s ifp %p(%s) ifma %p\n", 2800 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2801 inm->in6m_ifp, 2802 if_name(inm->in6m_ifp), 2803 inm->in6m_ifma); 2804 printf("timer %u state %s refcount %u scq.len %u\n", 2805 inm->in6m_timer, 2806 in6m_state_str(inm->in6m_state), 2807 inm->in6m_refcount, 2808 mbufq_len(&inm->in6m_scq)); 2809 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2810 inm->in6m_mli, 2811 inm->in6m_nsrc, 2812 inm->in6m_sctimer, 2813 inm->in6m_scrv); 2814 for (t = 0; t < 2; t++) { 2815 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2816 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2817 inm->in6m_st[t].iss_asm, 2818 inm->in6m_st[t].iss_ex, 2819 inm->in6m_st[t].iss_in, 2820 inm->in6m_st[t].iss_rec); 2821 } 2822 printf("%s: --- end in6m %p ---\n", __func__, inm); 2823 } 2824 2825 #else /* !KTR */ 2826 2827 void 2828 in6m_print(const struct in6_multi *inm) 2829 { 2830 2831 } 2832 2833 #endif /* KTR */ 2834