1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * IPv6 multicast socket, group, and socket option processing module. 34 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/protosw.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/protosw.h> 51 #include <sys/sysctl.h> 52 #include <sys/priv.h> 53 #include <sys/ktr.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/vnet.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_var.h> 64 #include <netinet6/in6_fib.h> 65 #include <netinet6/in6_var.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <netinet6/ip6_var.h> 69 #include <netinet/in_pcb.h> 70 #include <netinet/tcp_var.h> 71 #include <netinet6/nd6.h> 72 #include <netinet6/mld6_var.h> 73 #include <netinet6/scope6_var.h> 74 75 #ifndef KTR_MLD 76 #define KTR_MLD KTR_INET6 77 #endif 78 79 #ifndef __SOCKUNION_DECLARED 80 union sockunion { 81 struct sockaddr_storage ss; 82 struct sockaddr sa; 83 struct sockaddr_dl sdl; 84 struct sockaddr_in6 sin6; 85 }; 86 typedef union sockunion sockunion_t; 87 #define __SOCKUNION_DECLARED 88 #endif /* __SOCKUNION_DECLARED */ 89 90 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 91 "IPv6 multicast PCB-layer source filter"); 92 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 93 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 94 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 95 "IPv6 multicast MLD-layer source filter"); 96 97 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 98 99 /* 100 * Locking: 101 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 102 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 103 * it can be taken by code in net/if.c also. 104 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 105 * 106 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 107 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 108 * anyway no matter what happens. 109 */ 110 struct mtx in6_multi_mtx; 111 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF); 112 113 static void im6f_commit(struct in6_mfilter *); 114 static int im6f_get_source(struct in6_mfilter *imf, 115 const struct sockaddr_in6 *psin, 116 struct in6_msource **); 117 static struct in6_msource * 118 im6f_graft(struct in6_mfilter *, const uint8_t, 119 const struct sockaddr_in6 *); 120 static void im6f_leave(struct in6_mfilter *); 121 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 122 static void im6f_purge(struct in6_mfilter *); 123 static void im6f_rollback(struct in6_mfilter *); 124 static void im6f_reap(struct in6_mfilter *); 125 static int im6o_grow(struct ip6_moptions *); 126 static size_t im6o_match_group(const struct ip6_moptions *, 127 const struct ifnet *, const struct sockaddr *); 128 static struct in6_msource * 129 im6o_match_source(const struct ip6_moptions *, const size_t, 130 const struct sockaddr *); 131 static void im6s_merge(struct ip6_msource *ims, 132 const struct in6_msource *lims, const int rollback); 133 static int in6_mc_get(struct ifnet *, const struct in6_addr *, 134 struct in6_multi **); 135 static int in6m_get_source(struct in6_multi *inm, 136 const struct in6_addr *addr, const int noalloc, 137 struct ip6_msource **pims); 138 #ifdef KTR 139 static int in6m_is_ifp_detached(const struct in6_multi *); 140 #endif 141 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 142 static void in6m_purge(struct in6_multi *); 143 static void in6m_reap(struct in6_multi *); 144 static struct ip6_moptions * 145 in6p_findmoptions(struct inpcb *); 146 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 147 static int in6p_join_group(struct inpcb *, struct sockopt *); 148 static int in6p_leave_group(struct inpcb *, struct sockopt *); 149 static struct ifnet * 150 in6p_lookup_mcast_ifp(const struct inpcb *, 151 const struct sockaddr_in6 *); 152 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 153 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 154 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 155 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 156 157 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 158 159 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 160 "IPv6 multicast"); 161 162 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 163 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 164 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 165 "Max source filters per group"); 166 167 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 168 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 169 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 170 "Max source filters per socket"); 171 172 /* TODO Virtualize this switch. */ 173 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 174 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 175 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 176 177 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 178 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 179 "Per-interface stack-wide source filters"); 180 181 #ifdef KTR 182 /* 183 * Inline function which wraps assertions for a valid ifp. 184 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 185 * is detached. 186 */ 187 static int __inline 188 in6m_is_ifp_detached(const struct in6_multi *inm) 189 { 190 struct ifnet *ifp; 191 192 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 193 ifp = inm->in6m_ifma->ifma_ifp; 194 if (ifp != NULL) { 195 /* 196 * Sanity check that network-layer notion of ifp is the 197 * same as that of link-layer. 198 */ 199 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 200 } 201 202 return (ifp == NULL); 203 } 204 #endif 205 206 /* 207 * Initialize an in6_mfilter structure to a known state at t0, t1 208 * with an empty source filter list. 209 */ 210 static __inline void 211 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 212 { 213 memset(imf, 0, sizeof(struct in6_mfilter)); 214 RB_INIT(&imf->im6f_sources); 215 imf->im6f_st[0] = st0; 216 imf->im6f_st[1] = st1; 217 } 218 219 /* 220 * Resize the ip6_moptions vector to the next power-of-two minus 1. 221 * May be called with locks held; do not sleep. 222 */ 223 static int 224 im6o_grow(struct ip6_moptions *imo) 225 { 226 struct in6_multi **nmships; 227 struct in6_multi **omships; 228 struct in6_mfilter *nmfilters; 229 struct in6_mfilter *omfilters; 230 size_t idx; 231 size_t newmax; 232 size_t oldmax; 233 234 nmships = NULL; 235 nmfilters = NULL; 236 omships = imo->im6o_membership; 237 omfilters = imo->im6o_mfilters; 238 oldmax = imo->im6o_max_memberships; 239 newmax = ((oldmax + 1) * 2) - 1; 240 241 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 242 nmships = (struct in6_multi **)realloc(omships, 243 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 244 nmfilters = (struct in6_mfilter *)realloc(omfilters, 245 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 246 M_NOWAIT); 247 if (nmships != NULL && nmfilters != NULL) { 248 /* Initialize newly allocated source filter heads. */ 249 for (idx = oldmax; idx < newmax; idx++) { 250 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 251 MCAST_EXCLUDE); 252 } 253 imo->im6o_max_memberships = newmax; 254 imo->im6o_membership = nmships; 255 imo->im6o_mfilters = nmfilters; 256 } 257 } 258 259 if (nmships == NULL || nmfilters == NULL) { 260 if (nmships != NULL) 261 free(nmships, M_IP6MOPTS); 262 if (nmfilters != NULL) 263 free(nmfilters, M_IN6MFILTER); 264 return (ETOOMANYREFS); 265 } 266 267 return (0); 268 } 269 270 /* 271 * Find an IPv6 multicast group entry for this ip6_moptions instance 272 * which matches the specified group, and optionally an interface. 273 * Return its index into the array, or -1 if not found. 274 */ 275 static size_t 276 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 277 const struct sockaddr *group) 278 { 279 const struct sockaddr_in6 *gsin6; 280 struct in6_multi **pinm; 281 int idx; 282 int nmships; 283 284 gsin6 = (const struct sockaddr_in6 *)group; 285 286 /* The im6o_membership array may be lazy allocated. */ 287 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 288 return (-1); 289 290 nmships = imo->im6o_num_memberships; 291 pinm = &imo->im6o_membership[0]; 292 for (idx = 0; idx < nmships; idx++, pinm++) { 293 if (*pinm == NULL) 294 continue; 295 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 296 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 297 &gsin6->sin6_addr)) { 298 break; 299 } 300 } 301 if (idx >= nmships) 302 idx = -1; 303 304 return (idx); 305 } 306 307 /* 308 * Find an IPv6 multicast source entry for this imo which matches 309 * the given group index for this socket, and source address. 310 * 311 * XXX TODO: The scope ID, if present in src, is stripped before 312 * any comparison. We SHOULD enforce scope/zone checks where the source 313 * filter entry has a link scope. 314 * 315 * NOTE: This does not check if the entry is in-mode, merely if 316 * it exists, which may not be the desired behaviour. 317 */ 318 static struct in6_msource * 319 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 320 const struct sockaddr *src) 321 { 322 struct ip6_msource find; 323 struct in6_mfilter *imf; 324 struct ip6_msource *ims; 325 const sockunion_t *psa; 326 327 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 328 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 329 ("%s: invalid index %d\n", __func__, (int)gidx)); 330 331 /* The im6o_mfilters array may be lazy allocated. */ 332 if (imo->im6o_mfilters == NULL) 333 return (NULL); 334 imf = &imo->im6o_mfilters[gidx]; 335 336 psa = (const sockunion_t *)src; 337 find.im6s_addr = psa->sin6.sin6_addr; 338 in6_clearscope(&find.im6s_addr); /* XXX */ 339 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 340 341 return ((struct in6_msource *)ims); 342 } 343 344 /* 345 * Perform filtering for multicast datagrams on a socket by group and source. 346 * 347 * Returns 0 if a datagram should be allowed through, or various error codes 348 * if the socket was not a member of the group, or the source was muted, etc. 349 */ 350 int 351 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 352 const struct sockaddr *group, const struct sockaddr *src) 353 { 354 size_t gidx; 355 struct in6_msource *ims; 356 int mode; 357 358 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 359 360 gidx = im6o_match_group(imo, ifp, group); 361 if (gidx == -1) 362 return (MCAST_NOTGMEMBER); 363 364 /* 365 * Check if the source was included in an (S,G) join. 366 * Allow reception on exclusive memberships by default, 367 * reject reception on inclusive memberships by default. 368 * Exclude source only if an in-mode exclude filter exists. 369 * Include source only if an in-mode include filter exists. 370 * NOTE: We are comparing group state here at MLD t1 (now) 371 * with socket-layer t0 (since last downcall). 372 */ 373 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 374 ims = im6o_match_source(imo, gidx, src); 375 376 if ((ims == NULL && mode == MCAST_INCLUDE) || 377 (ims != NULL && ims->im6sl_st[0] != mode)) 378 return (MCAST_NOTSMEMBER); 379 380 return (MCAST_PASS); 381 } 382 383 /* 384 * Find and return a reference to an in6_multi record for (ifp, group), 385 * and bump its reference count. 386 * If one does not exist, try to allocate it, and update link-layer multicast 387 * filters on ifp to listen for group. 388 * Assumes the IN6_MULTI lock is held across the call. 389 * Return 0 if successful, otherwise return an appropriate error code. 390 */ 391 static int 392 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, 393 struct in6_multi **pinm) 394 { 395 struct sockaddr_in6 gsin6; 396 struct ifmultiaddr *ifma; 397 struct in6_multi *inm; 398 int error; 399 400 error = 0; 401 402 /* 403 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 404 * if_addmulti() takes this mutex itself, so we must drop and 405 * re-acquire around the call. 406 */ 407 IN6_MULTI_LOCK_ASSERT(); 408 IF_ADDR_WLOCK(ifp); 409 410 inm = in6m_lookup_locked(ifp, group); 411 if (inm != NULL) { 412 /* 413 * If we already joined this group, just bump the 414 * refcount and return it. 415 */ 416 KASSERT(inm->in6m_refcount >= 1, 417 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 418 ++inm->in6m_refcount; 419 *pinm = inm; 420 goto out_locked; 421 } 422 423 memset(&gsin6, 0, sizeof(gsin6)); 424 gsin6.sin6_family = AF_INET6; 425 gsin6.sin6_len = sizeof(struct sockaddr_in6); 426 gsin6.sin6_addr = *group; 427 428 /* 429 * Check if a link-layer group is already associated 430 * with this network-layer group on the given ifnet. 431 */ 432 IF_ADDR_WUNLOCK(ifp); 433 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 434 if (error != 0) 435 return (error); 436 IF_ADDR_WLOCK(ifp); 437 438 /* 439 * If something other than netinet6 is occupying the link-layer 440 * group, print a meaningful error message and back out of 441 * the allocation. 442 * Otherwise, bump the refcount on the existing network-layer 443 * group association and return it. 444 */ 445 if (ifma->ifma_protospec != NULL) { 446 inm = (struct in6_multi *)ifma->ifma_protospec; 447 #ifdef INVARIANTS 448 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 449 __func__)); 450 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 451 ("%s: ifma not AF_INET6", __func__)); 452 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 453 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 454 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 455 panic("%s: ifma %p is inconsistent with %p (%p)", 456 __func__, ifma, inm, group); 457 #endif 458 ++inm->in6m_refcount; 459 *pinm = inm; 460 goto out_locked; 461 } 462 463 IF_ADDR_WLOCK_ASSERT(ifp); 464 465 /* 466 * A new in6_multi record is needed; allocate and initialize it. 467 * We DO NOT perform an MLD join as the in6_ layer may need to 468 * push an initial source list down to MLD to support SSM. 469 * 470 * The initial source filter state is INCLUDE, {} as per the RFC. 471 * Pending state-changes per group are subject to a bounds check. 472 */ 473 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 474 if (inm == NULL) { 475 IF_ADDR_WUNLOCK(ifp); 476 if_delmulti_ifma(ifma); 477 return (ENOMEM); 478 } 479 inm->in6m_addr = *group; 480 inm->in6m_ifp = ifp; 481 inm->in6m_mli = MLD_IFINFO(ifp); 482 inm->in6m_ifma = ifma; 483 inm->in6m_refcount = 1; 484 inm->in6m_state = MLD_NOT_MEMBER; 485 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 486 487 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 488 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 489 RB_INIT(&inm->in6m_srcs); 490 491 ifma->ifma_protospec = inm; 492 *pinm = inm; 493 494 out_locked: 495 IF_ADDR_WUNLOCK(ifp); 496 return (error); 497 } 498 499 /* 500 * Drop a reference to an in6_multi record. 501 * 502 * If the refcount drops to 0, free the in6_multi record and 503 * delete the underlying link-layer membership. 504 */ 505 void 506 in6m_release_locked(struct in6_multi *inm) 507 { 508 struct ifmultiaddr *ifma; 509 510 IN6_MULTI_LOCK_ASSERT(); 511 512 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 513 514 if (--inm->in6m_refcount > 0) { 515 CTR2(KTR_MLD, "%s: refcount is now %d", __func__, 516 inm->in6m_refcount); 517 return; 518 } 519 520 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 521 522 ifma = inm->in6m_ifma; 523 524 /* XXX this access is not covered by IF_ADDR_LOCK */ 525 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 526 KASSERT(ifma->ifma_protospec == inm, 527 ("%s: ifma_protospec != inm", __func__)); 528 ifma->ifma_protospec = NULL; 529 530 in6m_purge(inm); 531 532 free(inm, M_IP6MADDR); 533 534 if_delmulti_ifma(ifma); 535 } 536 537 /* 538 * Clear recorded source entries for a group. 539 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 540 * FIXME: Should reap. 541 */ 542 void 543 in6m_clear_recorded(struct in6_multi *inm) 544 { 545 struct ip6_msource *ims; 546 547 IN6_MULTI_LOCK_ASSERT(); 548 549 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 550 if (ims->im6s_stp) { 551 ims->im6s_stp = 0; 552 --inm->in6m_st[1].iss_rec; 553 } 554 } 555 KASSERT(inm->in6m_st[1].iss_rec == 0, 556 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 557 } 558 559 /* 560 * Record a source as pending for a Source-Group MLDv2 query. 561 * This lives here as it modifies the shared tree. 562 * 563 * inm is the group descriptor. 564 * naddr is the address of the source to record in network-byte order. 565 * 566 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 567 * lazy-allocate a source node in response to an SG query. 568 * Otherwise, no allocation is performed. This saves some memory 569 * with the trade-off that the source will not be reported to the 570 * router if joined in the window between the query response and 571 * the group actually being joined on the local host. 572 * 573 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 574 * This turns off the allocation of a recorded source entry if 575 * the group has not been joined. 576 * 577 * Return 0 if the source didn't exist or was already marked as recorded. 578 * Return 1 if the source was marked as recorded by this function. 579 * Return <0 if any error occurred (negated errno code). 580 */ 581 int 582 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 583 { 584 struct ip6_msource find; 585 struct ip6_msource *ims, *nims; 586 587 IN6_MULTI_LOCK_ASSERT(); 588 589 find.im6s_addr = *addr; 590 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 591 if (ims && ims->im6s_stp) 592 return (0); 593 if (ims == NULL) { 594 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 595 return (-ENOSPC); 596 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 597 M_NOWAIT | M_ZERO); 598 if (nims == NULL) 599 return (-ENOMEM); 600 nims->im6s_addr = find.im6s_addr; 601 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 602 ++inm->in6m_nsrc; 603 ims = nims; 604 } 605 606 /* 607 * Mark the source as recorded and update the recorded 608 * source count. 609 */ 610 ++ims->im6s_stp; 611 ++inm->in6m_st[1].iss_rec; 612 613 return (1); 614 } 615 616 /* 617 * Return a pointer to an in6_msource owned by an in6_mfilter, 618 * given its source address. 619 * Lazy-allocate if needed. If this is a new entry its filter state is 620 * undefined at t0. 621 * 622 * imf is the filter set being modified. 623 * addr is the source address. 624 * 625 * SMPng: May be called with locks held; malloc must not block. 626 */ 627 static int 628 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 629 struct in6_msource **plims) 630 { 631 struct ip6_msource find; 632 struct ip6_msource *ims, *nims; 633 struct in6_msource *lims; 634 int error; 635 636 error = 0; 637 ims = NULL; 638 lims = NULL; 639 640 find.im6s_addr = psin->sin6_addr; 641 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 642 lims = (struct in6_msource *)ims; 643 if (lims == NULL) { 644 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 645 return (ENOSPC); 646 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 647 M_NOWAIT | M_ZERO); 648 if (nims == NULL) 649 return (ENOMEM); 650 lims = (struct in6_msource *)nims; 651 lims->im6s_addr = find.im6s_addr; 652 lims->im6sl_st[0] = MCAST_UNDEFINED; 653 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 654 ++imf->im6f_nsrc; 655 } 656 657 *plims = lims; 658 659 return (error); 660 } 661 662 /* 663 * Graft a source entry into an existing socket-layer filter set, 664 * maintaining any required invariants and checking allocations. 665 * 666 * The source is marked as being in the new filter mode at t1. 667 * 668 * Return the pointer to the new node, otherwise return NULL. 669 */ 670 static struct in6_msource * 671 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 672 const struct sockaddr_in6 *psin) 673 { 674 struct ip6_msource *nims; 675 struct in6_msource *lims; 676 677 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 678 M_NOWAIT | M_ZERO); 679 if (nims == NULL) 680 return (NULL); 681 lims = (struct in6_msource *)nims; 682 lims->im6s_addr = psin->sin6_addr; 683 lims->im6sl_st[0] = MCAST_UNDEFINED; 684 lims->im6sl_st[1] = st1; 685 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 686 ++imf->im6f_nsrc; 687 688 return (lims); 689 } 690 691 /* 692 * Prune a source entry from an existing socket-layer filter set, 693 * maintaining any required invariants and checking allocations. 694 * 695 * The source is marked as being left at t1, it is not freed. 696 * 697 * Return 0 if no error occurred, otherwise return an errno value. 698 */ 699 static int 700 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 701 { 702 struct ip6_msource find; 703 struct ip6_msource *ims; 704 struct in6_msource *lims; 705 706 find.im6s_addr = psin->sin6_addr; 707 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 708 if (ims == NULL) 709 return (ENOENT); 710 lims = (struct in6_msource *)ims; 711 lims->im6sl_st[1] = MCAST_UNDEFINED; 712 return (0); 713 } 714 715 /* 716 * Revert socket-layer filter set deltas at t1 to t0 state. 717 */ 718 static void 719 im6f_rollback(struct in6_mfilter *imf) 720 { 721 struct ip6_msource *ims, *tims; 722 struct in6_msource *lims; 723 724 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 725 lims = (struct in6_msource *)ims; 726 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 727 /* no change at t1 */ 728 continue; 729 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 730 /* revert change to existing source at t1 */ 731 lims->im6sl_st[1] = lims->im6sl_st[0]; 732 } else { 733 /* revert source added t1 */ 734 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 735 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 736 free(ims, M_IN6MFILTER); 737 imf->im6f_nsrc--; 738 } 739 } 740 imf->im6f_st[1] = imf->im6f_st[0]; 741 } 742 743 /* 744 * Mark socket-layer filter set as INCLUDE {} at t1. 745 */ 746 static void 747 im6f_leave(struct in6_mfilter *imf) 748 { 749 struct ip6_msource *ims; 750 struct in6_msource *lims; 751 752 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 753 lims = (struct in6_msource *)ims; 754 lims->im6sl_st[1] = MCAST_UNDEFINED; 755 } 756 imf->im6f_st[1] = MCAST_INCLUDE; 757 } 758 759 /* 760 * Mark socket-layer filter set deltas as committed. 761 */ 762 static void 763 im6f_commit(struct in6_mfilter *imf) 764 { 765 struct ip6_msource *ims; 766 struct in6_msource *lims; 767 768 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 769 lims = (struct in6_msource *)ims; 770 lims->im6sl_st[0] = lims->im6sl_st[1]; 771 } 772 imf->im6f_st[0] = imf->im6f_st[1]; 773 } 774 775 /* 776 * Reap unreferenced sources from socket-layer filter set. 777 */ 778 static void 779 im6f_reap(struct in6_mfilter *imf) 780 { 781 struct ip6_msource *ims, *tims; 782 struct in6_msource *lims; 783 784 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 785 lims = (struct in6_msource *)ims; 786 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 787 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 788 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 789 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 790 free(ims, M_IN6MFILTER); 791 imf->im6f_nsrc--; 792 } 793 } 794 } 795 796 /* 797 * Purge socket-layer filter set. 798 */ 799 static void 800 im6f_purge(struct in6_mfilter *imf) 801 { 802 struct ip6_msource *ims, *tims; 803 804 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 805 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 806 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 807 free(ims, M_IN6MFILTER); 808 imf->im6f_nsrc--; 809 } 810 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 811 KASSERT(RB_EMPTY(&imf->im6f_sources), 812 ("%s: im6f_sources not empty", __func__)); 813 } 814 815 /* 816 * Look up a source filter entry for a multicast group. 817 * 818 * inm is the group descriptor to work with. 819 * addr is the IPv6 address to look up. 820 * noalloc may be non-zero to suppress allocation of sources. 821 * *pims will be set to the address of the retrieved or allocated source. 822 * 823 * SMPng: NOTE: may be called with locks held. 824 * Return 0 if successful, otherwise return a non-zero error code. 825 */ 826 static int 827 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 828 const int noalloc, struct ip6_msource **pims) 829 { 830 struct ip6_msource find; 831 struct ip6_msource *ims, *nims; 832 #ifdef KTR 833 char ip6tbuf[INET6_ADDRSTRLEN]; 834 #endif 835 836 find.im6s_addr = *addr; 837 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 838 if (ims == NULL && !noalloc) { 839 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 840 return (ENOSPC); 841 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 842 M_NOWAIT | M_ZERO); 843 if (nims == NULL) 844 return (ENOMEM); 845 nims->im6s_addr = *addr; 846 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 847 ++inm->in6m_nsrc; 848 ims = nims; 849 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 850 ip6_sprintf(ip6tbuf, addr), ims); 851 } 852 853 *pims = ims; 854 return (0); 855 } 856 857 /* 858 * Merge socket-layer source into MLD-layer source. 859 * If rollback is non-zero, perform the inverse of the merge. 860 */ 861 static void 862 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 863 const int rollback) 864 { 865 int n = rollback ? -1 : 1; 866 #ifdef KTR 867 char ip6tbuf[INET6_ADDRSTRLEN]; 868 869 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 870 #endif 871 872 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 873 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 874 ims->im6s_st[1].ex -= n; 875 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 876 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 877 ims->im6s_st[1].in -= n; 878 } 879 880 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 881 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 882 ims->im6s_st[1].ex += n; 883 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 884 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 885 ims->im6s_st[1].in += n; 886 } 887 } 888 889 /* 890 * Atomically update the global in6_multi state, when a membership's 891 * filter list is being updated in any way. 892 * 893 * imf is the per-inpcb-membership group filter pointer. 894 * A fake imf may be passed for in-kernel consumers. 895 * 896 * XXX This is a candidate for a set-symmetric-difference style loop 897 * which would eliminate the repeated lookup from root of ims nodes, 898 * as they share the same key space. 899 * 900 * If any error occurred this function will back out of refcounts 901 * and return a non-zero value. 902 */ 903 static int 904 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 905 { 906 struct ip6_msource *ims, *nims; 907 struct in6_msource *lims; 908 int schanged, error; 909 int nsrc0, nsrc1; 910 911 schanged = 0; 912 error = 0; 913 nsrc1 = nsrc0 = 0; 914 915 /* 916 * Update the source filters first, as this may fail. 917 * Maintain count of in-mode filters at t0, t1. These are 918 * used to work out if we transition into ASM mode or not. 919 * Maintain a count of source filters whose state was 920 * actually modified by this operation. 921 */ 922 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 923 lims = (struct in6_msource *)ims; 924 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 925 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 926 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 927 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 928 ++schanged; 929 if (error) 930 break; 931 im6s_merge(nims, lims, 0); 932 } 933 if (error) { 934 struct ip6_msource *bims; 935 936 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 937 lims = (struct in6_msource *)ims; 938 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 939 continue; 940 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 941 if (bims == NULL) 942 continue; 943 im6s_merge(bims, lims, 1); 944 } 945 goto out_reap; 946 } 947 948 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 949 __func__, nsrc0, nsrc1); 950 951 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 952 if (imf->im6f_st[0] == imf->im6f_st[1] && 953 imf->im6f_st[1] == MCAST_INCLUDE) { 954 if (nsrc1 == 0) { 955 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 956 --inm->in6m_st[1].iss_in; 957 } 958 } 959 960 /* Handle filter mode transition on socket. */ 961 if (imf->im6f_st[0] != imf->im6f_st[1]) { 962 CTR3(KTR_MLD, "%s: imf transition %d to %d", 963 __func__, imf->im6f_st[0], imf->im6f_st[1]); 964 965 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 966 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 967 --inm->in6m_st[1].iss_ex; 968 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 969 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 970 --inm->in6m_st[1].iss_in; 971 } 972 973 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 974 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 975 inm->in6m_st[1].iss_ex++; 976 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 977 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 978 inm->in6m_st[1].iss_in++; 979 } 980 } 981 982 /* 983 * Track inm filter state in terms of listener counts. 984 * If there are any exclusive listeners, stack-wide 985 * membership is exclusive. 986 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 987 * If no listeners remain, state is undefined at t1, 988 * and the MLD lifecycle for this group should finish. 989 */ 990 if (inm->in6m_st[1].iss_ex > 0) { 991 CTR1(KTR_MLD, "%s: transition to EX", __func__); 992 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 993 } else if (inm->in6m_st[1].iss_in > 0) { 994 CTR1(KTR_MLD, "%s: transition to IN", __func__); 995 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 996 } else { 997 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 998 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 999 } 1000 1001 /* Decrement ASM listener count on transition out of ASM mode. */ 1002 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1003 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1004 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1005 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1006 --inm->in6m_st[1].iss_asm; 1007 } 1008 } 1009 1010 /* Increment ASM listener count on transition to ASM mode. */ 1011 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1012 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1013 inm->in6m_st[1].iss_asm++; 1014 } 1015 1016 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1017 in6m_print(inm); 1018 1019 out_reap: 1020 if (schanged > 0) { 1021 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1022 in6m_reap(inm); 1023 } 1024 return (error); 1025 } 1026 1027 /* 1028 * Mark an in6_multi's filter set deltas as committed. 1029 * Called by MLD after a state change has been enqueued. 1030 */ 1031 void 1032 in6m_commit(struct in6_multi *inm) 1033 { 1034 struct ip6_msource *ims; 1035 1036 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1037 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1038 in6m_print(inm); 1039 1040 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1041 ims->im6s_st[0] = ims->im6s_st[1]; 1042 } 1043 inm->in6m_st[0] = inm->in6m_st[1]; 1044 } 1045 1046 /* 1047 * Reap unreferenced nodes from an in6_multi's filter set. 1048 */ 1049 static void 1050 in6m_reap(struct in6_multi *inm) 1051 { 1052 struct ip6_msource *ims, *tims; 1053 1054 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1055 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1056 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1057 ims->im6s_stp != 0) 1058 continue; 1059 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1060 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1061 free(ims, M_IP6MSOURCE); 1062 inm->in6m_nsrc--; 1063 } 1064 } 1065 1066 /* 1067 * Purge all source nodes from an in6_multi's filter set. 1068 */ 1069 static void 1070 in6m_purge(struct in6_multi *inm) 1071 { 1072 struct ip6_msource *ims, *tims; 1073 1074 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1075 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1076 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1077 free(ims, M_IP6MSOURCE); 1078 inm->in6m_nsrc--; 1079 } 1080 /* Free state-change requests that might be queued. */ 1081 mbufq_drain(&inm->in6m_scq); 1082 } 1083 1084 /* 1085 * Join a multicast address w/o sources. 1086 * KAME compatibility entry point. 1087 * 1088 * SMPng: Assume no mc locks held by caller. 1089 */ 1090 struct in6_multi_mship * 1091 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, 1092 int *errorp, int delay) 1093 { 1094 struct in6_multi_mship *imm; 1095 int error; 1096 1097 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1098 if (imm == NULL) { 1099 *errorp = ENOBUFS; 1100 return (NULL); 1101 } 1102 1103 delay = (delay * PR_FASTHZ) / hz; 1104 1105 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 1106 if (error) { 1107 *errorp = error; 1108 free(imm, M_IP6MADDR); 1109 return (NULL); 1110 } 1111 1112 return (imm); 1113 } 1114 1115 /* 1116 * Leave a multicast address w/o sources. 1117 * KAME compatibility entry point. 1118 * 1119 * SMPng: Assume no mc locks held by caller. 1120 */ 1121 int 1122 in6_leavegroup(struct in6_multi_mship *imm) 1123 { 1124 1125 if (imm->i6mm_maddr != NULL) 1126 in6_mc_leave(imm->i6mm_maddr, NULL); 1127 free(imm, M_IP6MADDR); 1128 return 0; 1129 } 1130 1131 /* 1132 * Join a multicast group; unlocked entry point. 1133 * 1134 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper 1135 * locks are not held. Fortunately, ifp is unlikely to have been detached 1136 * at this point, so we assume it's OK to recurse. 1137 */ 1138 int 1139 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, 1140 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1141 const int delay) 1142 { 1143 int error; 1144 1145 IN6_MULTI_LOCK(); 1146 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay); 1147 IN6_MULTI_UNLOCK(); 1148 1149 return (error); 1150 } 1151 1152 /* 1153 * Join a multicast group; real entry point. 1154 * 1155 * Only preserves atomicity at inm level. 1156 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1157 * 1158 * If the MLD downcall fails, the group is not joined, and an error 1159 * code is returned. 1160 */ 1161 int 1162 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1163 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1164 const int delay) 1165 { 1166 struct in6_mfilter timf; 1167 struct in6_multi *inm; 1168 int error; 1169 #ifdef KTR 1170 char ip6tbuf[INET6_ADDRSTRLEN]; 1171 #endif 1172 1173 #ifdef INVARIANTS 1174 /* 1175 * Sanity: Check scope zone ID was set for ifp, if and 1176 * only if group is scoped to an interface. 1177 */ 1178 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1179 ("%s: not a multicast address", __func__)); 1180 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1181 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1182 KASSERT(mcaddr->s6_addr16[1] != 0, 1183 ("%s: scope zone ID not set", __func__)); 1184 } 1185 #endif 1186 1187 IN6_MULTI_LOCK_ASSERT(); 1188 1189 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1190 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1191 1192 error = 0; 1193 inm = NULL; 1194 1195 /* 1196 * If no imf was specified (i.e. kernel consumer), 1197 * fake one up and assume it is an ASM join. 1198 */ 1199 if (imf == NULL) { 1200 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1201 imf = &timf; 1202 } 1203 1204 error = in6_mc_get(ifp, mcaddr, &inm); 1205 if (error) { 1206 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__); 1207 return (error); 1208 } 1209 1210 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1211 error = in6m_merge(inm, imf); 1212 if (error) { 1213 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1214 goto out_in6m_release; 1215 } 1216 1217 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1218 error = mld_change_state(inm, delay); 1219 if (error) { 1220 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1221 goto out_in6m_release; 1222 } 1223 1224 out_in6m_release: 1225 if (error) { 1226 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1227 in6m_release_locked(inm); 1228 } else { 1229 *pinm = inm; 1230 } 1231 1232 return (error); 1233 } 1234 1235 /* 1236 * Leave a multicast group; unlocked entry point. 1237 */ 1238 int 1239 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1240 { 1241 struct ifnet *ifp; 1242 int error; 1243 1244 ifp = inm->in6m_ifp; 1245 1246 IN6_MULTI_LOCK(); 1247 error = in6_mc_leave_locked(inm, imf); 1248 IN6_MULTI_UNLOCK(); 1249 1250 return (error); 1251 } 1252 1253 /* 1254 * Leave a multicast group; real entry point. 1255 * All source filters will be expunged. 1256 * 1257 * Only preserves atomicity at inm level. 1258 * 1259 * Holding the write lock for the INP which contains imf 1260 * is highly advisable. We can't assert for it as imf does not 1261 * contain a back-pointer to the owning inp. 1262 * 1263 * Note: This is not the same as in6m_release(*) as this function also 1264 * makes a state change downcall into MLD. 1265 */ 1266 int 1267 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1268 { 1269 struct in6_mfilter timf; 1270 int error; 1271 #ifdef KTR 1272 char ip6tbuf[INET6_ADDRSTRLEN]; 1273 #endif 1274 1275 error = 0; 1276 1277 IN6_MULTI_LOCK_ASSERT(); 1278 1279 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1280 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1281 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1282 imf); 1283 1284 /* 1285 * If no imf was specified (i.e. kernel consumer), 1286 * fake one up and assume it is an ASM join. 1287 */ 1288 if (imf == NULL) { 1289 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1290 imf = &timf; 1291 } 1292 1293 /* 1294 * Begin state merge transaction at MLD layer. 1295 * 1296 * As this particular invocation should not cause any memory 1297 * to be allocated, and there is no opportunity to roll back 1298 * the transaction, it MUST NOT fail. 1299 */ 1300 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1301 error = in6m_merge(inm, imf); 1302 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1303 1304 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1305 error = mld_change_state(inm, 0); 1306 if (error) 1307 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1308 1309 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1310 in6m_release_locked(inm); 1311 1312 return (error); 1313 } 1314 1315 /* 1316 * Block or unblock an ASM multicast source on an inpcb. 1317 * This implements the delta-based API described in RFC 3678. 1318 * 1319 * The delta-based API applies only to exclusive-mode memberships. 1320 * An MLD downcall will be performed. 1321 * 1322 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1323 * 1324 * Return 0 if successful, otherwise return an appropriate error code. 1325 */ 1326 static int 1327 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1328 { 1329 struct group_source_req gsr; 1330 sockunion_t *gsa, *ssa; 1331 struct ifnet *ifp; 1332 struct in6_mfilter *imf; 1333 struct ip6_moptions *imo; 1334 struct in6_msource *ims; 1335 struct in6_multi *inm; 1336 size_t idx; 1337 uint16_t fmode; 1338 int error, doblock; 1339 #ifdef KTR 1340 char ip6tbuf[INET6_ADDRSTRLEN]; 1341 #endif 1342 1343 ifp = NULL; 1344 error = 0; 1345 doblock = 0; 1346 1347 memset(&gsr, 0, sizeof(struct group_source_req)); 1348 gsa = (sockunion_t *)&gsr.gsr_group; 1349 ssa = (sockunion_t *)&gsr.gsr_source; 1350 1351 switch (sopt->sopt_name) { 1352 case MCAST_BLOCK_SOURCE: 1353 case MCAST_UNBLOCK_SOURCE: 1354 error = sooptcopyin(sopt, &gsr, 1355 sizeof(struct group_source_req), 1356 sizeof(struct group_source_req)); 1357 if (error) 1358 return (error); 1359 1360 if (gsa->sin6.sin6_family != AF_INET6 || 1361 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1362 return (EINVAL); 1363 1364 if (ssa->sin6.sin6_family != AF_INET6 || 1365 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1366 return (EINVAL); 1367 1368 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1369 return (EADDRNOTAVAIL); 1370 1371 ifp = ifnet_byindex(gsr.gsr_interface); 1372 1373 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1374 doblock = 1; 1375 break; 1376 1377 default: 1378 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1379 __func__, sopt->sopt_name); 1380 return (EOPNOTSUPP); 1381 break; 1382 } 1383 1384 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1385 return (EINVAL); 1386 1387 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1388 1389 /* 1390 * Check if we are actually a member of this group. 1391 */ 1392 imo = in6p_findmoptions(inp); 1393 idx = im6o_match_group(imo, ifp, &gsa->sa); 1394 if (idx == -1 || imo->im6o_mfilters == NULL) { 1395 error = EADDRNOTAVAIL; 1396 goto out_in6p_locked; 1397 } 1398 1399 KASSERT(imo->im6o_mfilters != NULL, 1400 ("%s: im6o_mfilters not allocated", __func__)); 1401 imf = &imo->im6o_mfilters[idx]; 1402 inm = imo->im6o_membership[idx]; 1403 1404 /* 1405 * Attempting to use the delta-based API on an 1406 * non exclusive-mode membership is an error. 1407 */ 1408 fmode = imf->im6f_st[0]; 1409 if (fmode != MCAST_EXCLUDE) { 1410 error = EINVAL; 1411 goto out_in6p_locked; 1412 } 1413 1414 /* 1415 * Deal with error cases up-front: 1416 * Asked to block, but already blocked; or 1417 * Asked to unblock, but nothing to unblock. 1418 * If adding a new block entry, allocate it. 1419 */ 1420 ims = im6o_match_source(imo, idx, &ssa->sa); 1421 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1422 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1423 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1424 doblock ? "" : "not "); 1425 error = EADDRNOTAVAIL; 1426 goto out_in6p_locked; 1427 } 1428 1429 INP_WLOCK_ASSERT(inp); 1430 1431 /* 1432 * Begin state merge transaction at socket layer. 1433 */ 1434 if (doblock) { 1435 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1436 ims = im6f_graft(imf, fmode, &ssa->sin6); 1437 if (ims == NULL) 1438 error = ENOMEM; 1439 } else { 1440 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1441 error = im6f_prune(imf, &ssa->sin6); 1442 } 1443 1444 if (error) { 1445 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1446 goto out_im6f_rollback; 1447 } 1448 1449 /* 1450 * Begin state merge transaction at MLD layer. 1451 */ 1452 IN6_MULTI_LOCK(); 1453 1454 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1455 error = in6m_merge(inm, imf); 1456 if (error) 1457 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1458 else { 1459 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1460 error = mld_change_state(inm, 0); 1461 if (error) 1462 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1463 } 1464 1465 IN6_MULTI_UNLOCK(); 1466 1467 out_im6f_rollback: 1468 if (error) 1469 im6f_rollback(imf); 1470 else 1471 im6f_commit(imf); 1472 1473 im6f_reap(imf); 1474 1475 out_in6p_locked: 1476 INP_WUNLOCK(inp); 1477 return (error); 1478 } 1479 1480 /* 1481 * Given an inpcb, return its multicast options structure pointer. Accepts 1482 * an unlocked inpcb pointer, but will return it locked. May sleep. 1483 * 1484 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1485 * SMPng: NOTE: Returns with the INP write lock held. 1486 */ 1487 static struct ip6_moptions * 1488 in6p_findmoptions(struct inpcb *inp) 1489 { 1490 struct ip6_moptions *imo; 1491 struct in6_multi **immp; 1492 struct in6_mfilter *imfp; 1493 size_t idx; 1494 1495 INP_WLOCK(inp); 1496 if (inp->in6p_moptions != NULL) 1497 return (inp->in6p_moptions); 1498 1499 INP_WUNLOCK(inp); 1500 1501 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1502 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1503 M_WAITOK | M_ZERO); 1504 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1505 M_IN6MFILTER, M_WAITOK); 1506 1507 imo->im6o_multicast_ifp = NULL; 1508 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1509 imo->im6o_multicast_loop = in6_mcast_loop; 1510 imo->im6o_num_memberships = 0; 1511 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1512 imo->im6o_membership = immp; 1513 1514 /* Initialize per-group source filters. */ 1515 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1516 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1517 imo->im6o_mfilters = imfp; 1518 1519 INP_WLOCK(inp); 1520 if (inp->in6p_moptions != NULL) { 1521 free(imfp, M_IN6MFILTER); 1522 free(immp, M_IP6MOPTS); 1523 free(imo, M_IP6MOPTS); 1524 return (inp->in6p_moptions); 1525 } 1526 inp->in6p_moptions = imo; 1527 return (imo); 1528 } 1529 1530 /* 1531 * Discard the IPv6 multicast options (and source filters). 1532 * 1533 * SMPng: NOTE: assumes INP write lock is held. 1534 */ 1535 void 1536 ip6_freemoptions(struct ip6_moptions *imo) 1537 { 1538 struct in6_mfilter *imf; 1539 size_t idx, nmships; 1540 1541 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__)); 1542 1543 nmships = imo->im6o_num_memberships; 1544 for (idx = 0; idx < nmships; ++idx) { 1545 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1546 if (imf) 1547 im6f_leave(imf); 1548 /* XXX this will thrash the lock(s) */ 1549 (void)in6_mc_leave(imo->im6o_membership[idx], imf); 1550 if (imf) 1551 im6f_purge(imf); 1552 } 1553 1554 if (imo->im6o_mfilters) 1555 free(imo->im6o_mfilters, M_IN6MFILTER); 1556 free(imo->im6o_membership, M_IP6MOPTS); 1557 free(imo, M_IP6MOPTS); 1558 } 1559 1560 /* 1561 * Atomically get source filters on a socket for an IPv6 multicast group. 1562 * Called with INP lock held; returns with lock released. 1563 */ 1564 static int 1565 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1566 { 1567 struct __msfilterreq msfr; 1568 sockunion_t *gsa; 1569 struct ifnet *ifp; 1570 struct ip6_moptions *imo; 1571 struct in6_mfilter *imf; 1572 struct ip6_msource *ims; 1573 struct in6_msource *lims; 1574 struct sockaddr_in6 *psin; 1575 struct sockaddr_storage *ptss; 1576 struct sockaddr_storage *tss; 1577 int error; 1578 size_t idx, nsrcs, ncsrcs; 1579 1580 INP_WLOCK_ASSERT(inp); 1581 1582 imo = inp->in6p_moptions; 1583 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1584 1585 INP_WUNLOCK(inp); 1586 1587 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1588 sizeof(struct __msfilterreq)); 1589 if (error) 1590 return (error); 1591 1592 if (msfr.msfr_group.ss_family != AF_INET6 || 1593 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1594 return (EINVAL); 1595 1596 gsa = (sockunion_t *)&msfr.msfr_group; 1597 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1598 return (EINVAL); 1599 1600 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1601 return (EADDRNOTAVAIL); 1602 ifp = ifnet_byindex(msfr.msfr_ifindex); 1603 if (ifp == NULL) 1604 return (EADDRNOTAVAIL); 1605 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1606 1607 INP_WLOCK(inp); 1608 1609 /* 1610 * Lookup group on the socket. 1611 */ 1612 idx = im6o_match_group(imo, ifp, &gsa->sa); 1613 if (idx == -1 || imo->im6o_mfilters == NULL) { 1614 INP_WUNLOCK(inp); 1615 return (EADDRNOTAVAIL); 1616 } 1617 imf = &imo->im6o_mfilters[idx]; 1618 1619 /* 1620 * Ignore memberships which are in limbo. 1621 */ 1622 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1623 INP_WUNLOCK(inp); 1624 return (EAGAIN); 1625 } 1626 msfr.msfr_fmode = imf->im6f_st[1]; 1627 1628 /* 1629 * If the user specified a buffer, copy out the source filter 1630 * entries to userland gracefully. 1631 * We only copy out the number of entries which userland 1632 * has asked for, but we always tell userland how big the 1633 * buffer really needs to be. 1634 */ 1635 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1636 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1637 tss = NULL; 1638 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1639 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1640 M_TEMP, M_NOWAIT | M_ZERO); 1641 if (tss == NULL) { 1642 INP_WUNLOCK(inp); 1643 return (ENOBUFS); 1644 } 1645 } 1646 1647 /* 1648 * Count number of sources in-mode at t0. 1649 * If buffer space exists and remains, copy out source entries. 1650 */ 1651 nsrcs = msfr.msfr_nsrcs; 1652 ncsrcs = 0; 1653 ptss = tss; 1654 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1655 lims = (struct in6_msource *)ims; 1656 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1657 lims->im6sl_st[0] != imf->im6f_st[0]) 1658 continue; 1659 ++ncsrcs; 1660 if (tss != NULL && nsrcs > 0) { 1661 psin = (struct sockaddr_in6 *)ptss; 1662 psin->sin6_family = AF_INET6; 1663 psin->sin6_len = sizeof(struct sockaddr_in6); 1664 psin->sin6_addr = lims->im6s_addr; 1665 psin->sin6_port = 0; 1666 --nsrcs; 1667 ++ptss; 1668 } 1669 } 1670 1671 INP_WUNLOCK(inp); 1672 1673 if (tss != NULL) { 1674 error = copyout(tss, msfr.msfr_srcs, 1675 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1676 free(tss, M_TEMP); 1677 if (error) 1678 return (error); 1679 } 1680 1681 msfr.msfr_nsrcs = ncsrcs; 1682 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1683 1684 return (error); 1685 } 1686 1687 /* 1688 * Return the IP multicast options in response to user getsockopt(). 1689 */ 1690 int 1691 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1692 { 1693 struct ip6_moptions *im6o; 1694 int error; 1695 u_int optval; 1696 1697 INP_WLOCK(inp); 1698 im6o = inp->in6p_moptions; 1699 /* 1700 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1701 * or is a divert socket, reject it. 1702 */ 1703 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1704 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1705 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1706 INP_WUNLOCK(inp); 1707 return (EOPNOTSUPP); 1708 } 1709 1710 error = 0; 1711 switch (sopt->sopt_name) { 1712 case IPV6_MULTICAST_IF: 1713 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1714 optval = 0; 1715 } else { 1716 optval = im6o->im6o_multicast_ifp->if_index; 1717 } 1718 INP_WUNLOCK(inp); 1719 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1720 break; 1721 1722 case IPV6_MULTICAST_HOPS: 1723 if (im6o == NULL) 1724 optval = V_ip6_defmcasthlim; 1725 else 1726 optval = im6o->im6o_multicast_hlim; 1727 INP_WUNLOCK(inp); 1728 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1729 break; 1730 1731 case IPV6_MULTICAST_LOOP: 1732 if (im6o == NULL) 1733 optval = in6_mcast_loop; /* XXX VIMAGE */ 1734 else 1735 optval = im6o->im6o_multicast_loop; 1736 INP_WUNLOCK(inp); 1737 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1738 break; 1739 1740 case IPV6_MSFILTER: 1741 if (im6o == NULL) { 1742 error = EADDRNOTAVAIL; 1743 INP_WUNLOCK(inp); 1744 } else { 1745 error = in6p_get_source_filters(inp, sopt); 1746 } 1747 break; 1748 1749 default: 1750 INP_WUNLOCK(inp); 1751 error = ENOPROTOOPT; 1752 break; 1753 } 1754 1755 INP_UNLOCK_ASSERT(inp); 1756 1757 return (error); 1758 } 1759 1760 /* 1761 * Look up the ifnet to use for a multicast group membership, 1762 * given the address of an IPv6 group. 1763 * 1764 * This routine exists to support legacy IPv6 multicast applications. 1765 * 1766 * If inp is non-NULL, use this socket's current FIB number for any 1767 * required FIB lookup. Look up the group address in the unicast FIB, 1768 * and use its ifp; usually, this points to the default next-hop. 1769 * If the FIB lookup fails, return NULL. 1770 * 1771 * FUTURE: Support multiple forwarding tables for IPv6. 1772 * 1773 * Returns NULL if no ifp could be found. 1774 */ 1775 static struct ifnet * 1776 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1777 const struct sockaddr_in6 *gsin6) 1778 { 1779 struct nhop6_basic nh6; 1780 struct in6_addr dst; 1781 uint32_t scopeid; 1782 uint32_t fibnum; 1783 1784 KASSERT(in6p->inp_vflag & INP_IPV6, 1785 ("%s: not INP_IPV6 inpcb", __func__)); 1786 KASSERT(gsin6->sin6_family == AF_INET6, 1787 ("%s: not AF_INET6 group", __func__)); 1788 1789 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1790 fibnum = in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB; 1791 if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6) != 0) 1792 return (NULL); 1793 1794 return (nh6.nh_ifp); 1795 } 1796 1797 /* 1798 * Join an IPv6 multicast group, possibly with a source. 1799 * 1800 * FIXME: The KAME use of the unspecified address (::) 1801 * to join *all* multicast groups is currently unsupported. 1802 */ 1803 static int 1804 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1805 { 1806 struct group_source_req gsr; 1807 sockunion_t *gsa, *ssa; 1808 struct ifnet *ifp; 1809 struct in6_mfilter *imf; 1810 struct ip6_moptions *imo; 1811 struct in6_multi *inm; 1812 struct in6_msource *lims; 1813 size_t idx; 1814 int error, is_new; 1815 1816 ifp = NULL; 1817 imf = NULL; 1818 lims = NULL; 1819 error = 0; 1820 is_new = 0; 1821 1822 memset(&gsr, 0, sizeof(struct group_source_req)); 1823 gsa = (sockunion_t *)&gsr.gsr_group; 1824 gsa->ss.ss_family = AF_UNSPEC; 1825 ssa = (sockunion_t *)&gsr.gsr_source; 1826 ssa->ss.ss_family = AF_UNSPEC; 1827 1828 /* 1829 * Chew everything into struct group_source_req. 1830 * Overwrite the port field if present, as the sockaddr 1831 * being copied in may be matched with a binary comparison. 1832 * Ignore passed-in scope ID. 1833 */ 1834 switch (sopt->sopt_name) { 1835 case IPV6_JOIN_GROUP: { 1836 struct ipv6_mreq mreq; 1837 1838 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1839 sizeof(struct ipv6_mreq)); 1840 if (error) 1841 return (error); 1842 1843 gsa->sin6.sin6_family = AF_INET6; 1844 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1845 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1846 1847 if (mreq.ipv6mr_interface == 0) { 1848 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1849 } else { 1850 if (V_if_index < mreq.ipv6mr_interface) 1851 return (EADDRNOTAVAIL); 1852 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1853 } 1854 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1855 __func__, mreq.ipv6mr_interface, ifp); 1856 } break; 1857 1858 case MCAST_JOIN_GROUP: 1859 case MCAST_JOIN_SOURCE_GROUP: 1860 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1861 error = sooptcopyin(sopt, &gsr, 1862 sizeof(struct group_req), 1863 sizeof(struct group_req)); 1864 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1865 error = sooptcopyin(sopt, &gsr, 1866 sizeof(struct group_source_req), 1867 sizeof(struct group_source_req)); 1868 } 1869 if (error) 1870 return (error); 1871 1872 if (gsa->sin6.sin6_family != AF_INET6 || 1873 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1874 return (EINVAL); 1875 1876 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1877 if (ssa->sin6.sin6_family != AF_INET6 || 1878 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1879 return (EINVAL); 1880 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1881 return (EINVAL); 1882 /* 1883 * TODO: Validate embedded scope ID in source 1884 * list entry against passed-in ifp, if and only 1885 * if source list filter entry is iface or node local. 1886 */ 1887 in6_clearscope(&ssa->sin6.sin6_addr); 1888 ssa->sin6.sin6_port = 0; 1889 ssa->sin6.sin6_scope_id = 0; 1890 } 1891 1892 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1893 return (EADDRNOTAVAIL); 1894 ifp = ifnet_byindex(gsr.gsr_interface); 1895 break; 1896 1897 default: 1898 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1899 __func__, sopt->sopt_name); 1900 return (EOPNOTSUPP); 1901 break; 1902 } 1903 1904 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1905 return (EINVAL); 1906 1907 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1908 return (EADDRNOTAVAIL); 1909 1910 gsa->sin6.sin6_port = 0; 1911 gsa->sin6.sin6_scope_id = 0; 1912 1913 /* 1914 * Always set the scope zone ID on memberships created from userland. 1915 * Use the passed-in ifp to do this. 1916 * XXX The in6_setscope() return value is meaningless. 1917 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1918 */ 1919 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1920 1921 imo = in6p_findmoptions(inp); 1922 idx = im6o_match_group(imo, ifp, &gsa->sa); 1923 if (idx == -1) { 1924 is_new = 1; 1925 } else { 1926 inm = imo->im6o_membership[idx]; 1927 imf = &imo->im6o_mfilters[idx]; 1928 if (ssa->ss.ss_family != AF_UNSPEC) { 1929 /* 1930 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 1931 * is an error. On an existing inclusive membership, 1932 * it just adds the source to the filter list. 1933 */ 1934 if (imf->im6f_st[1] != MCAST_INCLUDE) { 1935 error = EINVAL; 1936 goto out_in6p_locked; 1937 } 1938 /* 1939 * Throw out duplicates. 1940 * 1941 * XXX FIXME: This makes a naive assumption that 1942 * even if entries exist for *ssa in this imf, 1943 * they will be rejected as dupes, even if they 1944 * are not valid in the current mode (in-mode). 1945 * 1946 * in6_msource is transactioned just as for anything 1947 * else in SSM -- but note naive use of in6m_graft() 1948 * below for allocating new filter entries. 1949 * 1950 * This is only an issue if someone mixes the 1951 * full-state SSM API with the delta-based API, 1952 * which is discouraged in the relevant RFCs. 1953 */ 1954 lims = im6o_match_source(imo, idx, &ssa->sa); 1955 if (lims != NULL /*&& 1956 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 1957 error = EADDRNOTAVAIL; 1958 goto out_in6p_locked; 1959 } 1960 } else { 1961 /* 1962 * MCAST_JOIN_GROUP alone, on any existing membership, 1963 * is rejected, to stop the same inpcb tying up 1964 * multiple refs to the in_multi. 1965 * On an existing inclusive membership, this is also 1966 * an error; if you want to change filter mode, 1967 * you must use the userland API setsourcefilter(). 1968 * XXX We don't reject this for imf in UNDEFINED 1969 * state at t1, because allocation of a filter 1970 * is atomic with allocation of a membership. 1971 */ 1972 error = EINVAL; 1973 goto out_in6p_locked; 1974 } 1975 } 1976 1977 /* 1978 * Begin state merge transaction at socket layer. 1979 */ 1980 INP_WLOCK_ASSERT(inp); 1981 1982 if (is_new) { 1983 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 1984 error = im6o_grow(imo); 1985 if (error) 1986 goto out_in6p_locked; 1987 } 1988 /* 1989 * Allocate the new slot upfront so we can deal with 1990 * grafting the new source filter in same code path 1991 * as for join-source on existing membership. 1992 */ 1993 idx = imo->im6o_num_memberships; 1994 imo->im6o_membership[idx] = NULL; 1995 imo->im6o_num_memberships++; 1996 KASSERT(imo->im6o_mfilters != NULL, 1997 ("%s: im6f_mfilters vector was not allocated", __func__)); 1998 imf = &imo->im6o_mfilters[idx]; 1999 KASSERT(RB_EMPTY(&imf->im6f_sources), 2000 ("%s: im6f_sources not empty", __func__)); 2001 } 2002 2003 /* 2004 * Graft new source into filter list for this inpcb's 2005 * membership of the group. The in6_multi may not have 2006 * been allocated yet if this is a new membership, however, 2007 * the in_mfilter slot will be allocated and must be initialized. 2008 * 2009 * Note: Grafting of exclusive mode filters doesn't happen 2010 * in this path. 2011 * XXX: Should check for non-NULL lims (node exists but may 2012 * not be in-mode) for interop with full-state API. 2013 */ 2014 if (ssa->ss.ss_family != AF_UNSPEC) { 2015 /* Membership starts in IN mode */ 2016 if (is_new) { 2017 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2018 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2019 } else { 2020 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2021 } 2022 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2023 if (lims == NULL) { 2024 CTR1(KTR_MLD, "%s: merge imf state failed", 2025 __func__); 2026 error = ENOMEM; 2027 goto out_im6o_free; 2028 } 2029 } else { 2030 /* No address specified; Membership starts in EX mode */ 2031 if (is_new) { 2032 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2033 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2034 } 2035 } 2036 2037 /* 2038 * Begin state merge transaction at MLD layer. 2039 */ 2040 IN6_MULTI_LOCK(); 2041 2042 if (is_new) { 2043 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf, 2044 &inm, 0); 2045 if (error) { 2046 IN6_MULTI_UNLOCK(); 2047 goto out_im6o_free; 2048 } 2049 imo->im6o_membership[idx] = inm; 2050 } else { 2051 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2052 error = in6m_merge(inm, imf); 2053 if (error) 2054 CTR1(KTR_MLD, "%s: failed to merge inm state", 2055 __func__); 2056 else { 2057 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2058 error = mld_change_state(inm, 0); 2059 if (error) 2060 CTR1(KTR_MLD, "%s: failed mld downcall", 2061 __func__); 2062 } 2063 } 2064 2065 IN6_MULTI_UNLOCK(); 2066 INP_WLOCK_ASSERT(inp); 2067 if (error) { 2068 im6f_rollback(imf); 2069 if (is_new) 2070 im6f_purge(imf); 2071 else 2072 im6f_reap(imf); 2073 } else { 2074 im6f_commit(imf); 2075 } 2076 2077 out_im6o_free: 2078 if (error && is_new) { 2079 imo->im6o_membership[idx] = NULL; 2080 --imo->im6o_num_memberships; 2081 } 2082 2083 out_in6p_locked: 2084 INP_WUNLOCK(inp); 2085 return (error); 2086 } 2087 2088 /* 2089 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2090 */ 2091 static int 2092 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2093 { 2094 struct ipv6_mreq mreq; 2095 struct group_source_req gsr; 2096 sockunion_t *gsa, *ssa; 2097 struct ifnet *ifp; 2098 struct in6_mfilter *imf; 2099 struct ip6_moptions *imo; 2100 struct in6_msource *ims; 2101 struct in6_multi *inm; 2102 uint32_t ifindex; 2103 size_t idx; 2104 int error, is_final; 2105 #ifdef KTR 2106 char ip6tbuf[INET6_ADDRSTRLEN]; 2107 #endif 2108 2109 ifp = NULL; 2110 ifindex = 0; 2111 error = 0; 2112 is_final = 1; 2113 2114 memset(&gsr, 0, sizeof(struct group_source_req)); 2115 gsa = (sockunion_t *)&gsr.gsr_group; 2116 gsa->ss.ss_family = AF_UNSPEC; 2117 ssa = (sockunion_t *)&gsr.gsr_source; 2118 ssa->ss.ss_family = AF_UNSPEC; 2119 2120 /* 2121 * Chew everything passed in up into a struct group_source_req 2122 * as that is easier to process. 2123 * Note: Any embedded scope ID in the multicast group passed 2124 * in by userland is ignored, the interface index is the recommended 2125 * mechanism to specify an interface; see below. 2126 */ 2127 switch (sopt->sopt_name) { 2128 case IPV6_LEAVE_GROUP: 2129 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2130 sizeof(struct ipv6_mreq)); 2131 if (error) 2132 return (error); 2133 gsa->sin6.sin6_family = AF_INET6; 2134 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2135 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2136 gsa->sin6.sin6_port = 0; 2137 gsa->sin6.sin6_scope_id = 0; 2138 ifindex = mreq.ipv6mr_interface; 2139 break; 2140 2141 case MCAST_LEAVE_GROUP: 2142 case MCAST_LEAVE_SOURCE_GROUP: 2143 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2144 error = sooptcopyin(sopt, &gsr, 2145 sizeof(struct group_req), 2146 sizeof(struct group_req)); 2147 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2148 error = sooptcopyin(sopt, &gsr, 2149 sizeof(struct group_source_req), 2150 sizeof(struct group_source_req)); 2151 } 2152 if (error) 2153 return (error); 2154 2155 if (gsa->sin6.sin6_family != AF_INET6 || 2156 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2157 return (EINVAL); 2158 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2159 if (ssa->sin6.sin6_family != AF_INET6 || 2160 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2161 return (EINVAL); 2162 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2163 return (EINVAL); 2164 /* 2165 * TODO: Validate embedded scope ID in source 2166 * list entry against passed-in ifp, if and only 2167 * if source list filter entry is iface or node local. 2168 */ 2169 in6_clearscope(&ssa->sin6.sin6_addr); 2170 } 2171 gsa->sin6.sin6_port = 0; 2172 gsa->sin6.sin6_scope_id = 0; 2173 ifindex = gsr.gsr_interface; 2174 break; 2175 2176 default: 2177 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2178 __func__, sopt->sopt_name); 2179 return (EOPNOTSUPP); 2180 break; 2181 } 2182 2183 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2184 return (EINVAL); 2185 2186 /* 2187 * Validate interface index if provided. If no interface index 2188 * was provided separately, attempt to look the membership up 2189 * from the default scope as a last resort to disambiguate 2190 * the membership we are being asked to leave. 2191 * XXX SCOPE6 lock potentially taken here. 2192 */ 2193 if (ifindex != 0) { 2194 if (V_if_index < ifindex) 2195 return (EADDRNOTAVAIL); 2196 ifp = ifnet_byindex(ifindex); 2197 if (ifp == NULL) 2198 return (EADDRNOTAVAIL); 2199 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2200 } else { 2201 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2202 if (error) 2203 return (EADDRNOTAVAIL); 2204 /* 2205 * Some badly behaved applications don't pass an ifindex 2206 * or a scope ID, which is an API violation. In this case, 2207 * perform a lookup as per a v6 join. 2208 * 2209 * XXX For now, stomp on zone ID for the corner case. 2210 * This is not the 'KAME way', but we need to see the ifp 2211 * directly until such time as this implementation is 2212 * refactored, assuming the scope IDs are the way to go. 2213 */ 2214 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2215 if (ifindex == 0) { 2216 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2217 "ifp for group %s.", __func__, 2218 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2219 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2220 } else { 2221 ifp = ifnet_byindex(ifindex); 2222 } 2223 if (ifp == NULL) 2224 return (EADDRNOTAVAIL); 2225 } 2226 2227 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2228 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2229 2230 /* 2231 * Find the membership in the membership array. 2232 */ 2233 imo = in6p_findmoptions(inp); 2234 idx = im6o_match_group(imo, ifp, &gsa->sa); 2235 if (idx == -1) { 2236 error = EADDRNOTAVAIL; 2237 goto out_in6p_locked; 2238 } 2239 inm = imo->im6o_membership[idx]; 2240 imf = &imo->im6o_mfilters[idx]; 2241 2242 if (ssa->ss.ss_family != AF_UNSPEC) 2243 is_final = 0; 2244 2245 /* 2246 * Begin state merge transaction at socket layer. 2247 */ 2248 INP_WLOCK_ASSERT(inp); 2249 2250 /* 2251 * If we were instructed only to leave a given source, do so. 2252 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2253 */ 2254 if (is_final) { 2255 im6f_leave(imf); 2256 } else { 2257 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2258 error = EADDRNOTAVAIL; 2259 goto out_in6p_locked; 2260 } 2261 ims = im6o_match_source(imo, idx, &ssa->sa); 2262 if (ims == NULL) { 2263 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2264 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2265 "not "); 2266 error = EADDRNOTAVAIL; 2267 goto out_in6p_locked; 2268 } 2269 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2270 error = im6f_prune(imf, &ssa->sin6); 2271 if (error) { 2272 CTR1(KTR_MLD, "%s: merge imf state failed", 2273 __func__); 2274 goto out_in6p_locked; 2275 } 2276 } 2277 2278 /* 2279 * Begin state merge transaction at MLD layer. 2280 */ 2281 IN6_MULTI_LOCK(); 2282 2283 if (is_final) { 2284 /* 2285 * Give up the multicast address record to which 2286 * the membership points. 2287 */ 2288 (void)in6_mc_leave_locked(inm, imf); 2289 } else { 2290 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2291 error = in6m_merge(inm, imf); 2292 if (error) 2293 CTR1(KTR_MLD, "%s: failed to merge inm state", 2294 __func__); 2295 else { 2296 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2297 error = mld_change_state(inm, 0); 2298 if (error) 2299 CTR1(KTR_MLD, "%s: failed mld downcall", 2300 __func__); 2301 } 2302 } 2303 2304 IN6_MULTI_UNLOCK(); 2305 2306 if (error) 2307 im6f_rollback(imf); 2308 else 2309 im6f_commit(imf); 2310 2311 im6f_reap(imf); 2312 2313 if (is_final) { 2314 /* Remove the gap in the membership array. */ 2315 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2316 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2317 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2318 } 2319 imo->im6o_num_memberships--; 2320 } 2321 2322 out_in6p_locked: 2323 INP_WUNLOCK(inp); 2324 return (error); 2325 } 2326 2327 /* 2328 * Select the interface for transmitting IPv6 multicast datagrams. 2329 * 2330 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2331 * may be passed to this socket option. An address of in6addr_any or an 2332 * interface index of 0 is used to remove a previous selection. 2333 * When no interface is selected, one is chosen for every send. 2334 */ 2335 static int 2336 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2337 { 2338 struct ifnet *ifp; 2339 struct ip6_moptions *imo; 2340 u_int ifindex; 2341 int error; 2342 2343 if (sopt->sopt_valsize != sizeof(u_int)) 2344 return (EINVAL); 2345 2346 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2347 if (error) 2348 return (error); 2349 if (V_if_index < ifindex) 2350 return (EINVAL); 2351 if (ifindex == 0) 2352 ifp = NULL; 2353 else { 2354 ifp = ifnet_byindex(ifindex); 2355 if (ifp == NULL) 2356 return (EINVAL); 2357 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2358 return (EADDRNOTAVAIL); 2359 } 2360 imo = in6p_findmoptions(inp); 2361 imo->im6o_multicast_ifp = ifp; 2362 INP_WUNLOCK(inp); 2363 2364 return (0); 2365 } 2366 2367 /* 2368 * Atomically set source filters on a socket for an IPv6 multicast group. 2369 * 2370 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2371 */ 2372 static int 2373 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2374 { 2375 struct __msfilterreq msfr; 2376 sockunion_t *gsa; 2377 struct ifnet *ifp; 2378 struct in6_mfilter *imf; 2379 struct ip6_moptions *imo; 2380 struct in6_multi *inm; 2381 size_t idx; 2382 int error; 2383 2384 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2385 sizeof(struct __msfilterreq)); 2386 if (error) 2387 return (error); 2388 2389 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2390 return (ENOBUFS); 2391 2392 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2393 msfr.msfr_fmode != MCAST_INCLUDE) 2394 return (EINVAL); 2395 2396 if (msfr.msfr_group.ss_family != AF_INET6 || 2397 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2398 return (EINVAL); 2399 2400 gsa = (sockunion_t *)&msfr.msfr_group; 2401 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2402 return (EINVAL); 2403 2404 gsa->sin6.sin6_port = 0; /* ignore port */ 2405 2406 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2407 return (EADDRNOTAVAIL); 2408 ifp = ifnet_byindex(msfr.msfr_ifindex); 2409 if (ifp == NULL) 2410 return (EADDRNOTAVAIL); 2411 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2412 2413 /* 2414 * Take the INP write lock. 2415 * Check if this socket is a member of this group. 2416 */ 2417 imo = in6p_findmoptions(inp); 2418 idx = im6o_match_group(imo, ifp, &gsa->sa); 2419 if (idx == -1 || imo->im6o_mfilters == NULL) { 2420 error = EADDRNOTAVAIL; 2421 goto out_in6p_locked; 2422 } 2423 inm = imo->im6o_membership[idx]; 2424 imf = &imo->im6o_mfilters[idx]; 2425 2426 /* 2427 * Begin state merge transaction at socket layer. 2428 */ 2429 INP_WLOCK_ASSERT(inp); 2430 2431 imf->im6f_st[1] = msfr.msfr_fmode; 2432 2433 /* 2434 * Apply any new source filters, if present. 2435 * Make a copy of the user-space source vector so 2436 * that we may copy them with a single copyin. This 2437 * allows us to deal with page faults up-front. 2438 */ 2439 if (msfr.msfr_nsrcs > 0) { 2440 struct in6_msource *lims; 2441 struct sockaddr_in6 *psin; 2442 struct sockaddr_storage *kss, *pkss; 2443 int i; 2444 2445 INP_WUNLOCK(inp); 2446 2447 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2448 __func__, (unsigned long)msfr.msfr_nsrcs); 2449 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2450 M_TEMP, M_WAITOK); 2451 error = copyin(msfr.msfr_srcs, kss, 2452 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2453 if (error) { 2454 free(kss, M_TEMP); 2455 return (error); 2456 } 2457 2458 INP_WLOCK(inp); 2459 2460 /* 2461 * Mark all source filters as UNDEFINED at t1. 2462 * Restore new group filter mode, as im6f_leave() 2463 * will set it to INCLUDE. 2464 */ 2465 im6f_leave(imf); 2466 imf->im6f_st[1] = msfr.msfr_fmode; 2467 2468 /* 2469 * Update socket layer filters at t1, lazy-allocating 2470 * new entries. This saves a bunch of memory at the 2471 * cost of one RB_FIND() per source entry; duplicate 2472 * entries in the msfr_nsrcs vector are ignored. 2473 * If we encounter an error, rollback transaction. 2474 * 2475 * XXX This too could be replaced with a set-symmetric 2476 * difference like loop to avoid walking from root 2477 * every time, as the key space is common. 2478 */ 2479 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2480 psin = (struct sockaddr_in6 *)pkss; 2481 if (psin->sin6_family != AF_INET6) { 2482 error = EAFNOSUPPORT; 2483 break; 2484 } 2485 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2486 error = EINVAL; 2487 break; 2488 } 2489 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2490 error = EINVAL; 2491 break; 2492 } 2493 /* 2494 * TODO: Validate embedded scope ID in source 2495 * list entry against passed-in ifp, if and only 2496 * if source list filter entry is iface or node local. 2497 */ 2498 in6_clearscope(&psin->sin6_addr); 2499 error = im6f_get_source(imf, psin, &lims); 2500 if (error) 2501 break; 2502 lims->im6sl_st[1] = imf->im6f_st[1]; 2503 } 2504 free(kss, M_TEMP); 2505 } 2506 2507 if (error) 2508 goto out_im6f_rollback; 2509 2510 INP_WLOCK_ASSERT(inp); 2511 IN6_MULTI_LOCK(); 2512 2513 /* 2514 * Begin state merge transaction at MLD layer. 2515 */ 2516 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2517 error = in6m_merge(inm, imf); 2518 if (error) 2519 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2520 else { 2521 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2522 error = mld_change_state(inm, 0); 2523 if (error) 2524 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2525 } 2526 2527 IN6_MULTI_UNLOCK(); 2528 2529 out_im6f_rollback: 2530 if (error) 2531 im6f_rollback(imf); 2532 else 2533 im6f_commit(imf); 2534 2535 im6f_reap(imf); 2536 2537 out_in6p_locked: 2538 INP_WUNLOCK(inp); 2539 return (error); 2540 } 2541 2542 /* 2543 * Set the IP multicast options in response to user setsockopt(). 2544 * 2545 * Many of the socket options handled in this function duplicate the 2546 * functionality of socket options in the regular unicast API. However, 2547 * it is not possible to merge the duplicate code, because the idempotence 2548 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2549 * the effects of these options must be treated as separate and distinct. 2550 * 2551 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2552 */ 2553 int 2554 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2555 { 2556 struct ip6_moptions *im6o; 2557 int error; 2558 2559 error = 0; 2560 2561 /* 2562 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2563 * or is a divert socket, reject it. 2564 */ 2565 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2566 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2567 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2568 return (EOPNOTSUPP); 2569 2570 switch (sopt->sopt_name) { 2571 case IPV6_MULTICAST_IF: 2572 error = in6p_set_multicast_if(inp, sopt); 2573 break; 2574 2575 case IPV6_MULTICAST_HOPS: { 2576 int hlim; 2577 2578 if (sopt->sopt_valsize != sizeof(int)) { 2579 error = EINVAL; 2580 break; 2581 } 2582 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2583 if (error) 2584 break; 2585 if (hlim < -1 || hlim > 255) { 2586 error = EINVAL; 2587 break; 2588 } else if (hlim == -1) { 2589 hlim = V_ip6_defmcasthlim; 2590 } 2591 im6o = in6p_findmoptions(inp); 2592 im6o->im6o_multicast_hlim = hlim; 2593 INP_WUNLOCK(inp); 2594 break; 2595 } 2596 2597 case IPV6_MULTICAST_LOOP: { 2598 u_int loop; 2599 2600 /* 2601 * Set the loopback flag for outgoing multicast packets. 2602 * Must be zero or one. 2603 */ 2604 if (sopt->sopt_valsize != sizeof(u_int)) { 2605 error = EINVAL; 2606 break; 2607 } 2608 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2609 if (error) 2610 break; 2611 if (loop > 1) { 2612 error = EINVAL; 2613 break; 2614 } 2615 im6o = in6p_findmoptions(inp); 2616 im6o->im6o_multicast_loop = loop; 2617 INP_WUNLOCK(inp); 2618 break; 2619 } 2620 2621 case IPV6_JOIN_GROUP: 2622 case MCAST_JOIN_GROUP: 2623 case MCAST_JOIN_SOURCE_GROUP: 2624 error = in6p_join_group(inp, sopt); 2625 break; 2626 2627 case IPV6_LEAVE_GROUP: 2628 case MCAST_LEAVE_GROUP: 2629 case MCAST_LEAVE_SOURCE_GROUP: 2630 error = in6p_leave_group(inp, sopt); 2631 break; 2632 2633 case MCAST_BLOCK_SOURCE: 2634 case MCAST_UNBLOCK_SOURCE: 2635 error = in6p_block_unblock_source(inp, sopt); 2636 break; 2637 2638 case IPV6_MSFILTER: 2639 error = in6p_set_source_filters(inp, sopt); 2640 break; 2641 2642 default: 2643 error = EOPNOTSUPP; 2644 break; 2645 } 2646 2647 INP_UNLOCK_ASSERT(inp); 2648 2649 return (error); 2650 } 2651 2652 /* 2653 * Expose MLD's multicast filter mode and source list(s) to userland, 2654 * keyed by (ifindex, group). 2655 * The filter mode is written out as a uint32_t, followed by 2656 * 0..n of struct in6_addr. 2657 * For use by ifmcstat(8). 2658 * SMPng: NOTE: unlocked read of ifindex space. 2659 */ 2660 static int 2661 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2662 { 2663 struct in6_addr mcaddr; 2664 struct in6_addr src; 2665 struct ifnet *ifp; 2666 struct ifmultiaddr *ifma; 2667 struct in6_multi *inm; 2668 struct ip6_msource *ims; 2669 int *name; 2670 int retval; 2671 u_int namelen; 2672 uint32_t fmode, ifindex; 2673 #ifdef KTR 2674 char ip6tbuf[INET6_ADDRSTRLEN]; 2675 #endif 2676 2677 name = (int *)arg1; 2678 namelen = arg2; 2679 2680 if (req->newptr != NULL) 2681 return (EPERM); 2682 2683 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2684 if (namelen != 5) 2685 return (EINVAL); 2686 2687 ifindex = name[0]; 2688 if (ifindex <= 0 || ifindex > V_if_index) { 2689 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2690 __func__, ifindex); 2691 return (ENOENT); 2692 } 2693 2694 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2695 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2696 CTR2(KTR_MLD, "%s: group %s is not multicast", 2697 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2698 return (EINVAL); 2699 } 2700 2701 ifp = ifnet_byindex(ifindex); 2702 if (ifp == NULL) { 2703 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2704 __func__, ifindex); 2705 return (ENOENT); 2706 } 2707 /* 2708 * Internal MLD lookups require that scope/zone ID is set. 2709 */ 2710 (void)in6_setscope(&mcaddr, ifp, NULL); 2711 2712 retval = sysctl_wire_old_buffer(req, 2713 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2714 if (retval) 2715 return (retval); 2716 2717 IN6_MULTI_LOCK(); 2718 2719 IF_ADDR_RLOCK(ifp); 2720 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2721 if (ifma->ifma_addr->sa_family != AF_INET6 || 2722 ifma->ifma_protospec == NULL) 2723 continue; 2724 inm = (struct in6_multi *)ifma->ifma_protospec; 2725 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2726 continue; 2727 fmode = inm->in6m_st[1].iss_fmode; 2728 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2729 if (retval != 0) 2730 break; 2731 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2732 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2733 /* 2734 * Only copy-out sources which are in-mode. 2735 */ 2736 if (fmode != im6s_get_mode(inm, ims, 1)) { 2737 CTR1(KTR_MLD, "%s: skip non-in-mode", 2738 __func__); 2739 continue; 2740 } 2741 src = ims->im6s_addr; 2742 retval = SYSCTL_OUT(req, &src, 2743 sizeof(struct in6_addr)); 2744 if (retval != 0) 2745 break; 2746 } 2747 } 2748 IF_ADDR_RUNLOCK(ifp); 2749 2750 IN6_MULTI_UNLOCK(); 2751 2752 return (retval); 2753 } 2754 2755 #ifdef KTR 2756 2757 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2758 2759 static const char * 2760 in6m_mode_str(const int mode) 2761 { 2762 2763 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2764 return (in6m_modestrs[mode]); 2765 return ("??"); 2766 } 2767 2768 static const char *in6m_statestrs[] = { 2769 "not-member", 2770 "silent", 2771 "idle", 2772 "lazy", 2773 "sleeping", 2774 "awakening", 2775 "query-pending", 2776 "sg-query-pending", 2777 "leaving" 2778 }; 2779 2780 static const char * 2781 in6m_state_str(const int state) 2782 { 2783 2784 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2785 return (in6m_statestrs[state]); 2786 return ("??"); 2787 } 2788 2789 /* 2790 * Dump an in6_multi structure to the console. 2791 */ 2792 void 2793 in6m_print(const struct in6_multi *inm) 2794 { 2795 int t; 2796 char ip6tbuf[INET6_ADDRSTRLEN]; 2797 2798 if ((ktr_mask & KTR_MLD) == 0) 2799 return; 2800 2801 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2802 printf("addr %s ifp %p(%s) ifma %p\n", 2803 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2804 inm->in6m_ifp, 2805 if_name(inm->in6m_ifp), 2806 inm->in6m_ifma); 2807 printf("timer %u state %s refcount %u scq.len %u\n", 2808 inm->in6m_timer, 2809 in6m_state_str(inm->in6m_state), 2810 inm->in6m_refcount, 2811 mbufq_len(&inm->in6m_scq)); 2812 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2813 inm->in6m_mli, 2814 inm->in6m_nsrc, 2815 inm->in6m_sctimer, 2816 inm->in6m_scrv); 2817 for (t = 0; t < 2; t++) { 2818 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2819 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2820 inm->in6m_st[t].iss_asm, 2821 inm->in6m_st[t].iss_ex, 2822 inm->in6m_st[t].iss_in, 2823 inm->in6m_st[t].iss_rec); 2824 } 2825 printf("%s: --- end in6m %p ---\n", __func__, inm); 2826 } 2827 2828 #else /* !KTR */ 2829 2830 void 2831 in6m_print(const struct in6_multi *inm) 2832 { 2833 2834 } 2835 2836 #endif /* KTR */ 2837