1 /* $FreeBSD$ */ 2 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)in.c 8.2 (Berkeley) 11/15/93 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/errno.h> 73 #include <sys/malloc.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #ifndef SCOPEDROUTING 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/in_pcb.h> 95 #endif 96 97 #include <netinet/ip6.h> 98 #include <netinet6/ip6_var.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #ifndef SCOPEDROUTING 105 #include <netinet6/in6_pcb.h> 106 #endif 107 108 #include <net/net_osdep.h> 109 110 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); 111 112 /* 113 * Definitions of some costant IP6 addresses. 114 */ 115 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 116 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 117 const struct in6_addr in6addr_nodelocal_allnodes = 118 IN6ADDR_NODELOCAL_ALLNODES_INIT; 119 const struct in6_addr in6addr_linklocal_allnodes = 120 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 121 const struct in6_addr in6addr_linklocal_allrouters = 122 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 123 124 const struct in6_addr in6mask0 = IN6MASK0; 125 const struct in6_addr in6mask32 = IN6MASK32; 126 const struct in6_addr in6mask64 = IN6MASK64; 127 const struct in6_addr in6mask96 = IN6MASK96; 128 const struct in6_addr in6mask128 = IN6MASK128; 129 130 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 131 0, 0, IN6ADDR_ANY_INIT, 0}; 132 133 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 134 struct ifnet *, struct thread *)); 135 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 136 struct sockaddr_in6 *, int)); 137 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 138 139 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 140 141 int (*faithprefix_p)(struct in6_addr *); 142 143 /* 144 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 145 * This routine does actual work. 146 */ 147 static void 148 in6_ifloop_request(int cmd, struct ifaddr *ifa) 149 { 150 struct sockaddr_in6 all1_sa; 151 struct rtentry *nrt = NULL; 152 int e; 153 154 bzero(&all1_sa, sizeof(all1_sa)); 155 all1_sa.sin6_family = AF_INET6; 156 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 157 all1_sa.sin6_addr = in6mask128; 158 159 /* 160 * We specify the address itself as the gateway, and set the 161 * RTF_LLINFO flag, so that the corresponding host route would have 162 * the flag, and thus applications that assume traditional behavior 163 * would be happy. Note that we assume the caller of the function 164 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 165 * which changes the outgoing interface to the loopback interface. 166 */ 167 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 168 (struct sockaddr *)&all1_sa, 169 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 170 if (e != 0) { 171 log(LOG_ERR, "in6_ifloop_request: " 172 "%s operation failed for %s (errno=%d)\n", 173 cmd == RTM_ADD ? "ADD" : "DELETE", 174 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 175 e); 176 } 177 178 /* 179 * Make sure rt_ifa be equal to IFA, the second argument of the 180 * function. 181 * We need this because when we refer to rt_ifa->ia6_flags in 182 * ip6_input, we assume that the rt_ifa points to the address instead 183 * of the loopback address. 184 */ 185 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 186 IFAFREE(nrt->rt_ifa); 187 IFAREF(ifa); 188 nrt->rt_ifa = ifa; 189 } 190 191 /* 192 * Report the addition/removal of the address to the routing socket. 193 * XXX: since we called rtinit for a p2p interface with a destination, 194 * we end up reporting twice in such a case. Should we rather 195 * omit the second report? 196 */ 197 if (nrt) { 198 rt_newaddrmsg(cmd, ifa, e, nrt); 199 if (cmd == RTM_DELETE) { 200 RTFREE(nrt); 201 } else { 202 /* the cmd must be RTM_ADD here */ 203 nrt->rt_refcnt--; 204 } 205 } 206 } 207 208 /* 209 * Add ownaddr as loopback rtentry. We previously add the route only if 210 * necessary (ex. on a p2p link). However, since we now manage addresses 211 * separately from prefixes, we should always add the route. We can't 212 * rely on the cloning mechanism from the corresponding interface route 213 * any more. 214 */ 215 static void 216 in6_ifaddloop(struct ifaddr *ifa) 217 { 218 struct rtentry *rt; 219 220 /* If there is no loopback entry, allocate one. */ 221 rt = rtalloc1(ifa->ifa_addr, 0, 0); 222 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 223 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 224 in6_ifloop_request(RTM_ADD, ifa); 225 if (rt) 226 rt->rt_refcnt--; 227 } 228 229 /* 230 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 231 * if it exists. 232 */ 233 static void 234 in6_ifremloop(struct ifaddr *ifa) 235 { 236 struct in6_ifaddr *ia; 237 struct rtentry *rt; 238 int ia_count = 0; 239 240 /* 241 * Some of BSD variants do not remove cloned routes 242 * from an interface direct route, when removing the direct route 243 * (see comments in net/net_osdep.h). Even for variants that do remove 244 * cloned routes, they could fail to remove the cloned routes when 245 * we handle multple addresses that share a common prefix. 246 * So, we should remove the route corresponding to the deleted address 247 * regardless of the result of in6_is_ifloop_auto(). 248 */ 249 250 /* 251 * Delete the entry only if exact one ifa exists. More than one ifa 252 * can exist if we assign a same single address to multiple 253 * (probably p2p) interfaces. 254 * XXX: we should avoid such a configuration in IPv6... 255 */ 256 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 257 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 258 ia_count++; 259 if (ia_count > 1) 260 break; 261 } 262 } 263 264 if (ia_count == 1) { 265 /* 266 * Before deleting, check if a corresponding loopbacked host 267 * route surely exists. With this check, we can avoid to 268 * delete an interface direct route whose destination is same 269 * as the address being removed. This can happen when remofing 270 * a subnet-router anycast address on an interface attahced 271 * to a shared medium. 272 */ 273 rt = rtalloc1(ifa->ifa_addr, 0, 0); 274 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 && 275 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 276 rt->rt_refcnt--; 277 in6_ifloop_request(RTM_DELETE, ifa); 278 } 279 } 280 } 281 282 int 283 in6_ifindex2scopeid(idx) 284 int idx; 285 { 286 struct ifnet *ifp; 287 struct ifaddr *ifa; 288 struct sockaddr_in6 *sin6; 289 290 if (idx < 0 || if_index < idx) 291 return -1; 292 ifp = ifnet_byindex(idx); 293 294 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 295 { 296 if (ifa->ifa_addr->sa_family != AF_INET6) 297 continue; 298 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 299 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 300 return sin6->sin6_scope_id & 0xffff; 301 } 302 303 return -1; 304 } 305 306 int 307 in6_mask2len(mask, lim0) 308 struct in6_addr *mask; 309 u_char *lim0; 310 { 311 int x = 0, y; 312 u_char *lim = lim0, *p; 313 314 if (lim0 == NULL || 315 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 316 lim = (u_char *)mask + sizeof(*mask); 317 for (p = (u_char *)mask; p < lim; x++, p++) { 318 if (*p != 0xff) 319 break; 320 } 321 y = 0; 322 if (p < lim) { 323 for (y = 0; y < 8; y++) { 324 if ((*p & (0x80 >> y)) == 0) 325 break; 326 } 327 } 328 329 /* 330 * when the limit pointer is given, do a stricter check on the 331 * remaining bits. 332 */ 333 if (p < lim) { 334 if (y != 0 && (*p & (0x00ff >> y)) != 0) 335 return(-1); 336 for (p = p + 1; p < lim; p++) 337 if (*p != 0) 338 return(-1); 339 } 340 341 return x * 8 + y; 342 } 343 344 void 345 in6_len2mask(mask, len) 346 struct in6_addr *mask; 347 int len; 348 { 349 int i; 350 351 bzero(mask, sizeof(*mask)); 352 for (i = 0; i < len / 8; i++) 353 mask->s6_addr8[i] = 0xff; 354 if (len % 8) 355 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 356 } 357 358 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 359 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 360 361 int 362 in6_control(so, cmd, data, ifp, td) 363 struct socket *so; 364 u_long cmd; 365 caddr_t data; 366 struct ifnet *ifp; 367 struct thread *td; 368 { 369 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 370 struct in6_ifaddr *ia = NULL; 371 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 372 int privileged; 373 374 privileged = 0; 375 if (td == NULL || !suser(td)) 376 privileged++; 377 378 switch (cmd) { 379 case SIOCGETSGCNT_IN6: 380 case SIOCGETMIFCNT_IN6: 381 return (mrt6_ioctl(cmd, data)); 382 } 383 384 if (ifp == NULL) 385 return(EOPNOTSUPP); 386 387 switch (cmd) { 388 case SIOCSNDFLUSH_IN6: 389 case SIOCSPFXFLUSH_IN6: 390 case SIOCSRTRFLUSH_IN6: 391 case SIOCSDEFIFACE_IN6: 392 case SIOCSIFINFO_FLAGS: 393 if (!privileged) 394 return(EPERM); 395 /* fall through */ 396 case OSIOCGIFINFO_IN6: 397 case SIOCGIFINFO_IN6: 398 case SIOCGDRLST_IN6: 399 case SIOCGPRLST_IN6: 400 case SIOCGNBRINFO_IN6: 401 case SIOCGDEFIFACE_IN6: 402 return(nd6_ioctl(cmd, data, ifp)); 403 } 404 405 switch (cmd) { 406 case SIOCSIFPREFIX_IN6: 407 case SIOCDIFPREFIX_IN6: 408 case SIOCAIFPREFIX_IN6: 409 case SIOCCIFPREFIX_IN6: 410 case SIOCSGIFPREFIX_IN6: 411 case SIOCGIFPREFIX_IN6: 412 log(LOG_NOTICE, 413 "prefix ioctls are now invalidated. " 414 "please use ifconfig.\n"); 415 return(EOPNOTSUPP); 416 } 417 418 switch (cmd) { 419 case SIOCSSCOPE6: 420 if (!privileged) 421 return(EPERM); 422 return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id)); 423 break; 424 case SIOCGSCOPE6: 425 return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id)); 426 break; 427 case SIOCGSCOPE6DEF: 428 return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id)); 429 break; 430 } 431 432 switch (cmd) { 433 case SIOCALIFADDR: 434 case SIOCDLIFADDR: 435 if (!privileged) 436 return(EPERM); 437 /* fall through */ 438 case SIOCGLIFADDR: 439 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 440 } 441 442 /* 443 * Find address for this interface, if it exists. 444 */ 445 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 446 struct sockaddr_in6 *sa6 = 447 (struct sockaddr_in6 *)&ifra->ifra_addr; 448 449 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 450 if (sa6->sin6_addr.s6_addr16[1] == 0) { 451 /* link ID is not embedded by the user */ 452 sa6->sin6_addr.s6_addr16[1] = 453 htons(ifp->if_index); 454 } else if (sa6->sin6_addr.s6_addr16[1] != 455 htons(ifp->if_index)) { 456 return(EINVAL); /* link ID contradicts */ 457 } 458 if (sa6->sin6_scope_id) { 459 if (sa6->sin6_scope_id != 460 (u_int32_t)ifp->if_index) 461 return(EINVAL); 462 sa6->sin6_scope_id = 0; /* XXX: good way? */ 463 } 464 } 465 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 466 } 467 468 switch (cmd) { 469 case SIOCSIFADDR_IN6: 470 case SIOCSIFDSTADDR_IN6: 471 case SIOCSIFNETMASK_IN6: 472 /* 473 * Since IPv6 allows a node to assign multiple addresses 474 * on a single interface, SIOCSIFxxx ioctls are not suitable 475 * and should be unused. 476 */ 477 /* we decided to obsolete this command (20000704) */ 478 return(EINVAL); 479 480 case SIOCDIFADDR_IN6: 481 /* 482 * for IPv4, we look for existing in_ifaddr here to allow 483 * "ifconfig if0 delete" to remove first IPv4 address on the 484 * interface. For IPv6, as the spec allow multiple interface 485 * address from the day one, we consider "remove the first one" 486 * semantics to be not preferable. 487 */ 488 if (ia == NULL) 489 return(EADDRNOTAVAIL); 490 /* FALLTHROUGH */ 491 case SIOCAIFADDR_IN6: 492 /* 493 * We always require users to specify a valid IPv6 address for 494 * the corresponding operation. 495 */ 496 if (ifra->ifra_addr.sin6_family != AF_INET6 || 497 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 498 return(EAFNOSUPPORT); 499 if (!privileged) 500 return(EPERM); 501 502 break; 503 504 case SIOCGIFADDR_IN6: 505 /* This interface is basically deprecated. use SIOCGIFCONF. */ 506 /* fall through */ 507 case SIOCGIFAFLAG_IN6: 508 case SIOCGIFNETMASK_IN6: 509 case SIOCGIFDSTADDR_IN6: 510 case SIOCGIFALIFETIME_IN6: 511 /* must think again about its semantics */ 512 if (ia == NULL) 513 return(EADDRNOTAVAIL); 514 break; 515 case SIOCSIFALIFETIME_IN6: 516 { 517 struct in6_addrlifetime *lt; 518 519 if (!privileged) 520 return(EPERM); 521 if (ia == NULL) 522 return(EADDRNOTAVAIL); 523 /* sanity for overflow - beware unsigned */ 524 lt = &ifr->ifr_ifru.ifru_lifetime; 525 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 526 && lt->ia6t_vltime + time_second < time_second) { 527 return EINVAL; 528 } 529 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 530 && lt->ia6t_pltime + time_second < time_second) { 531 return EINVAL; 532 } 533 break; 534 } 535 } 536 537 switch (cmd) { 538 539 case SIOCGIFADDR_IN6: 540 ifr->ifr_addr = ia->ia_addr; 541 break; 542 543 case SIOCGIFDSTADDR_IN6: 544 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 545 return(EINVAL); 546 /* 547 * XXX: should we check if ifa_dstaddr is NULL and return 548 * an error? 549 */ 550 ifr->ifr_dstaddr = ia->ia_dstaddr; 551 break; 552 553 case SIOCGIFNETMASK_IN6: 554 ifr->ifr_addr = ia->ia_prefixmask; 555 break; 556 557 case SIOCGIFAFLAG_IN6: 558 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 559 break; 560 561 case SIOCGIFSTAT_IN6: 562 if (ifp == NULL) 563 return EINVAL; 564 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax 565 || in6_ifstat[ifp->if_index] == NULL) { 566 /* return EAFNOSUPPORT? */ 567 bzero(&ifr->ifr_ifru.ifru_stat, 568 sizeof(ifr->ifr_ifru.ifru_stat)); 569 } else 570 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index]; 571 break; 572 573 case SIOCGIFSTAT_ICMP6: 574 if (ifp == NULL) 575 return EINVAL; 576 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax || 577 icmp6_ifstat[ifp->if_index] == NULL) { 578 /* return EAFNOSUPPORT? */ 579 bzero(&ifr->ifr_ifru.ifru_stat, 580 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 581 } else 582 ifr->ifr_ifru.ifru_icmp6stat = 583 *icmp6_ifstat[ifp->if_index]; 584 break; 585 586 case SIOCGIFALIFETIME_IN6: 587 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 588 break; 589 590 case SIOCSIFALIFETIME_IN6: 591 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 592 /* for sanity */ 593 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 594 ia->ia6_lifetime.ia6t_expire = 595 time_second + ia->ia6_lifetime.ia6t_vltime; 596 } else 597 ia->ia6_lifetime.ia6t_expire = 0; 598 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 599 ia->ia6_lifetime.ia6t_preferred = 600 time_second + ia->ia6_lifetime.ia6t_pltime; 601 } else 602 ia->ia6_lifetime.ia6t_preferred = 0; 603 break; 604 605 case SIOCAIFADDR_IN6: 606 { 607 int i, error = 0; 608 struct nd_prefix pr0, *pr; 609 610 /* 611 * first, make or update the interface address structure, 612 * and link it to the list. 613 */ 614 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 615 return(error); 616 617 /* 618 * then, make the prefix on-link on the interface. 619 * XXX: we'd rather create the prefix before the address, but 620 * we need at least one address to install the corresponding 621 * interface route, so we configure the address first. 622 */ 623 624 /* 625 * convert mask to prefix length (prefixmask has already 626 * been validated in in6_update_ifa(). 627 */ 628 bzero(&pr0, sizeof(pr0)); 629 pr0.ndpr_ifp = ifp; 630 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 631 NULL); 632 if (pr0.ndpr_plen == 128) 633 break; /* we don't need to install a host route. */ 634 pr0.ndpr_prefix = ifra->ifra_addr; 635 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 636 /* apply the mask for safety. */ 637 for (i = 0; i < 4; i++) { 638 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 639 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 640 } 641 /* 642 * XXX: since we don't have an API to set prefix (not address) 643 * lifetimes, we just use the same lifetimes as addresses. 644 * The (temporarily) installed lifetimes can be overridden by 645 * later advertised RAs (when accept_rtadv is non 0), which is 646 * an intended behavior. 647 */ 648 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 649 pr0.ndpr_raf_auto = 650 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 651 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 652 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 653 654 /* add the prefix if there's one. */ 655 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 656 /* 657 * nd6_prelist_add will install the corresponding 658 * interface route. 659 */ 660 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 661 return(error); 662 if (pr == NULL) { 663 log(LOG_ERR, "nd6_prelist_add succedded but " 664 "no prefix\n"); 665 return(EINVAL); /* XXX panic here? */ 666 } 667 } 668 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 669 == NULL) { 670 /* XXX: this should not happen! */ 671 log(LOG_ERR, "in6_control: addition succeeded, but" 672 " no ifaddr\n"); 673 } else { 674 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 675 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 676 ia->ia6_ndpr = pr; 677 pr->ndpr_refcnt++; 678 679 /* 680 * If this is the first autoconf address from 681 * the prefix, create a temporary address 682 * as well (when specified). 683 */ 684 if (ip6_use_tempaddr && 685 pr->ndpr_refcnt == 1) { 686 int e; 687 if ((e = in6_tmpifadd(ia, 1)) != 0) { 688 log(LOG_NOTICE, "in6_control: " 689 "failed to create a " 690 "temporary address, " 691 "errno=%d\n", 692 e); 693 } 694 } 695 } 696 697 /* 698 * this might affect the status of autoconfigured 699 * addresses, that is, this address might make 700 * other addresses detached. 701 */ 702 pfxlist_onlink_check(); 703 } 704 break; 705 } 706 707 case SIOCDIFADDR_IN6: 708 { 709 int i = 0; 710 struct nd_prefix pr0, *pr; 711 712 /* 713 * If the address being deleted is the only one that owns 714 * the corresponding prefix, expire the prefix as well. 715 * XXX: theoretically, we don't have to warry about such 716 * relationship, since we separate the address management 717 * and the prefix management. We do this, however, to provide 718 * as much backward compatibility as possible in terms of 719 * the ioctl operation. 720 */ 721 bzero(&pr0, sizeof(pr0)); 722 pr0.ndpr_ifp = ifp; 723 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 724 NULL); 725 if (pr0.ndpr_plen == 128) 726 goto purgeaddr; 727 pr0.ndpr_prefix = ia->ia_addr; 728 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 729 for (i = 0; i < 4; i++) { 730 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 731 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 732 } 733 /* 734 * The logic of the following condition is a bit complicated. 735 * We expire the prefix when 736 * 1. the address obeys autoconfiguration and it is the 737 * only owner of the associated prefix, or 738 * 2. the address does not obey autoconf and there is no 739 * other owner of the prefix. 740 */ 741 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 742 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 743 pr->ndpr_refcnt == 1) || 744 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && 745 pr->ndpr_refcnt == 0))) { 746 pr->ndpr_expire = 1; /* XXX: just for expiration */ 747 } 748 749 purgeaddr: 750 in6_purgeaddr(&ia->ia_ifa); 751 break; 752 } 753 754 default: 755 if (ifp == NULL || ifp->if_ioctl == 0) 756 return(EOPNOTSUPP); 757 return((*ifp->if_ioctl)(ifp, cmd, data)); 758 } 759 760 return(0); 761 } 762 763 /* 764 * Update parameters of an IPv6 interface address. 765 * If necessary, a new entry is created and linked into address chains. 766 * This function is separated from in6_control(). 767 * XXX: should this be performed under splnet()? 768 */ 769 int 770 in6_update_ifa(ifp, ifra, ia) 771 struct ifnet *ifp; 772 struct in6_aliasreq *ifra; 773 struct in6_ifaddr *ia; 774 { 775 int error = 0, hostIsNew = 0, plen = -1; 776 struct in6_ifaddr *oia; 777 struct sockaddr_in6 dst6; 778 struct in6_addrlifetime *lt; 779 780 /* Validate parameters */ 781 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 782 return(EINVAL); 783 784 /* 785 * The destination address for a p2p link must have a family 786 * of AF_UNSPEC or AF_INET6. 787 */ 788 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 789 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 790 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 791 return(EAFNOSUPPORT); 792 /* 793 * validate ifra_prefixmask. don't check sin6_family, netmask 794 * does not carry fields other than sin6_len. 795 */ 796 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 797 return(EINVAL); 798 /* 799 * Because the IPv6 address architecture is classless, we require 800 * users to specify a (non 0) prefix length (mask) for a new address. 801 * We also require the prefix (when specified) mask is valid, and thus 802 * reject a non-consecutive mask. 803 */ 804 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 805 return(EINVAL); 806 if (ifra->ifra_prefixmask.sin6_len != 0) { 807 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 808 (u_char *)&ifra->ifra_prefixmask + 809 ifra->ifra_prefixmask.sin6_len); 810 if (plen <= 0) 811 return(EINVAL); 812 } 813 else { 814 /* 815 * In this case, ia must not be NULL. We just use its prefix 816 * length. 817 */ 818 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 819 } 820 /* 821 * If the destination address on a p2p interface is specified, 822 * and the address is a scoped one, validate/set the scope 823 * zone identifier. 824 */ 825 dst6 = ifra->ifra_dstaddr; 826 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 827 (dst6.sin6_family == AF_INET6)) { 828 int scopeid; 829 830 #ifndef SCOPEDROUTING 831 if ((error = in6_recoverscope(&dst6, 832 &ifra->ifra_dstaddr.sin6_addr, 833 ifp)) != 0) 834 return(error); 835 #endif 836 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 837 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 838 dst6.sin6_scope_id = scopeid; 839 else if (dst6.sin6_scope_id != scopeid) 840 return(EINVAL); /* scope ID mismatch. */ 841 #ifndef SCOPEDROUTING 842 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 843 != 0) 844 return(error); 845 dst6.sin6_scope_id = 0; /* XXX */ 846 #endif 847 } 848 /* 849 * The destination address can be specified only for a p2p or a 850 * loopback interface. If specified, the corresponding prefix length 851 * must be 128. 852 */ 853 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 854 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 855 /* XXX: noisy message */ 856 log(LOG_INFO, "in6_update_ifa: a destination can be " 857 "specified for a p2p or a loopback IF only\n"); 858 return(EINVAL); 859 } 860 if (plen != 128) { 861 /* 862 * The following message seems noisy, but we dare to 863 * add it for diagnosis. 864 */ 865 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 866 "when dstaddr is specified\n"); 867 return(EINVAL); 868 } 869 } 870 /* lifetime consistency check */ 871 lt = &ifra->ifra_lifetime; 872 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 873 && lt->ia6t_vltime + time_second < time_second) { 874 return EINVAL; 875 } 876 if (lt->ia6t_vltime == 0) { 877 /* 878 * the following log might be noisy, but this is a typical 879 * configuration mistake or a tool's bug. 880 */ 881 log(LOG_INFO, 882 "in6_update_ifa: valid lifetime is 0 for %s\n", 883 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 884 } 885 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 886 && lt->ia6t_pltime + time_second < time_second) { 887 return EINVAL; 888 } 889 890 /* 891 * If this is a new address, allocate a new ifaddr and link it 892 * into chains. 893 */ 894 if (ia == NULL) { 895 hostIsNew = 1; 896 /* 897 * When in6_update_ifa() is called in a process of a received 898 * RA, it is called under splnet(). So, we should call malloc 899 * with M_NOWAIT. 900 */ 901 ia = (struct in6_ifaddr *) 902 malloc(sizeof(*ia), M_IFADDR, M_NOWAIT); 903 if (ia == NULL) 904 return (ENOBUFS); 905 bzero((caddr_t)ia, sizeof(*ia)); 906 /* Initialize the address and masks */ 907 IFA_LOCK_INIT(&ia->ia_ifa); 908 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 909 ia->ia_addr.sin6_family = AF_INET6; 910 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 911 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 912 /* 913 * XXX: some functions expect that ifa_dstaddr is not 914 * NULL for p2p interfaces. 915 */ 916 ia->ia_ifa.ifa_dstaddr 917 = (struct sockaddr *)&ia->ia_dstaddr; 918 } else { 919 ia->ia_ifa.ifa_dstaddr = NULL; 920 } 921 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 922 923 ia->ia_ifp = ifp; 924 if ((oia = in6_ifaddr) != NULL) { 925 for ( ; oia->ia_next; oia = oia->ia_next) 926 continue; 927 oia->ia_next = ia; 928 } else 929 in6_ifaddr = ia; 930 931 ia->ia_ifa.ifa_refcnt = 1; 932 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 933 } 934 935 /* set prefix mask */ 936 if (ifra->ifra_prefixmask.sin6_len) { 937 /* 938 * We prohibit changing the prefix length of an existing 939 * address, because 940 * + such an operation should be rare in IPv6, and 941 * + the operation would confuse prefix management. 942 */ 943 if (ia->ia_prefixmask.sin6_len && 944 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 945 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 946 " existing (%s) address should not be changed\n", 947 ip6_sprintf(&ia->ia_addr.sin6_addr)); 948 error = EINVAL; 949 goto unlink; 950 } 951 ia->ia_prefixmask = ifra->ifra_prefixmask; 952 } 953 954 /* 955 * If a new destination address is specified, scrub the old one and 956 * install the new destination. Note that the interface must be 957 * p2p or loopback (see the check above.) 958 */ 959 if (dst6.sin6_family == AF_INET6 && 960 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 961 &ia->ia_dstaddr.sin6_addr)) { 962 int e; 963 964 if ((ia->ia_flags & IFA_ROUTE) != 0 && 965 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 966 != 0) { 967 log(LOG_ERR, "in6_update_ifa: failed to remove " 968 "a route to the old destination: %s\n", 969 ip6_sprintf(&ia->ia_addr.sin6_addr)); 970 /* proceed anyway... */ 971 } 972 else 973 ia->ia_flags &= ~IFA_ROUTE; 974 ia->ia_dstaddr = dst6; 975 } 976 977 /* reset the interface and routing table appropriately. */ 978 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 979 goto unlink; 980 981 /* 982 * Beyond this point, we should call in6_purgeaddr upon an error, 983 * not just go to unlink. 984 */ 985 986 #if 0 /* disable this mechanism for now */ 987 /* update prefix list */ 988 if (hostIsNew && 989 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 990 int iilen; 991 992 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 993 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 994 in6_purgeaddr((struct ifaddr *)ia); 995 return(error); 996 } 997 } 998 #endif 999 1000 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1001 struct sockaddr_in6 mltaddr, mltmask; 1002 struct in6_multi *in6m; 1003 1004 if (hostIsNew) { 1005 /* 1006 * join solicited multicast addr for new host id 1007 */ 1008 struct in6_addr llsol; 1009 bzero(&llsol, sizeof(struct in6_addr)); 1010 llsol.s6_addr16[0] = htons(0xff02); 1011 llsol.s6_addr16[1] = htons(ifp->if_index); 1012 llsol.s6_addr32[1] = 0; 1013 llsol.s6_addr32[2] = htonl(1); 1014 llsol.s6_addr32[3] = 1015 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1016 llsol.s6_addr8[12] = 0xff; 1017 (void)in6_addmulti(&llsol, ifp, &error); 1018 if (error != 0) { 1019 log(LOG_WARNING, 1020 "in6_update_ifa: addmulti failed for " 1021 "%s on %s (errno=%d)\n", 1022 ip6_sprintf(&llsol), if_name(ifp), 1023 error); 1024 in6_purgeaddr((struct ifaddr *)ia); 1025 return(error); 1026 } 1027 } 1028 1029 bzero(&mltmask, sizeof(mltmask)); 1030 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1031 mltmask.sin6_family = AF_INET6; 1032 mltmask.sin6_addr = in6mask32; 1033 1034 /* 1035 * join link-local all-nodes address 1036 */ 1037 bzero(&mltaddr, sizeof(mltaddr)); 1038 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1039 mltaddr.sin6_family = AF_INET6; 1040 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1041 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1042 1043 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1044 if (in6m == NULL) { 1045 rtrequest(RTM_ADD, 1046 (struct sockaddr *)&mltaddr, 1047 (struct sockaddr *)&ia->ia_addr, 1048 (struct sockaddr *)&mltmask, 1049 RTF_UP|RTF_CLONING, /* xxx */ 1050 (struct rtentry **)0); 1051 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1052 if (error != 0) { 1053 log(LOG_WARNING, 1054 "in6_update_ifa: addmulti failed for " 1055 "%s on %s (errno=%d)\n", 1056 ip6_sprintf(&mltaddr.sin6_addr), 1057 if_name(ifp), error); 1058 } 1059 } 1060 1061 /* 1062 * join node information group address 1063 */ 1064 #define hostnamelen strlen(hostname) 1065 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1066 == 0) { 1067 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1068 if (in6m == NULL && ia != NULL) { 1069 (void)in6_addmulti(&mltaddr.sin6_addr, 1070 ifp, &error); 1071 if (error != 0) { 1072 log(LOG_WARNING, "in6_update_ifa: " 1073 "addmulti failed for " 1074 "%s on %s (errno=%d)\n", 1075 ip6_sprintf(&mltaddr.sin6_addr), 1076 if_name(ifp), error); 1077 } 1078 } 1079 } 1080 #undef hostnamelen 1081 1082 /* 1083 * join node-local all-nodes address, on loopback. 1084 * XXX: since "node-local" is obsoleted by interface-local, 1085 * we have to join the group on every interface with 1086 * some interface-boundary restriction. 1087 */ 1088 if (ifp->if_flags & IFF_LOOPBACK) { 1089 struct in6_ifaddr *ia_loop; 1090 1091 struct in6_addr loop6 = in6addr_loopback; 1092 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1093 1094 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1095 1096 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1097 if (in6m == NULL && ia_loop != NULL) { 1098 rtrequest(RTM_ADD, 1099 (struct sockaddr *)&mltaddr, 1100 (struct sockaddr *)&ia_loop->ia_addr, 1101 (struct sockaddr *)&mltmask, 1102 RTF_UP, 1103 (struct rtentry **)0); 1104 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, 1105 &error); 1106 if (error != 0) { 1107 log(LOG_WARNING, "in6_update_ifa: " 1108 "addmulti failed for %s on %s " 1109 "(errno=%d)\n", 1110 ip6_sprintf(&mltaddr.sin6_addr), 1111 if_name(ifp), error); 1112 } 1113 } 1114 } 1115 } 1116 1117 ia->ia6_flags = ifra->ifra_flags; 1118 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1119 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1120 1121 ia->ia6_lifetime = ifra->ifra_lifetime; 1122 /* for sanity */ 1123 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1124 ia->ia6_lifetime.ia6t_expire = 1125 time_second + ia->ia6_lifetime.ia6t_vltime; 1126 } else 1127 ia->ia6_lifetime.ia6t_expire = 0; 1128 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1129 ia->ia6_lifetime.ia6t_preferred = 1130 time_second + ia->ia6_lifetime.ia6t_pltime; 1131 } else 1132 ia->ia6_lifetime.ia6t_preferred = 0; 1133 1134 /* 1135 * make sure to initialize ND6 information. this is to workaround 1136 * issues with interfaces with IPv6 addresses, which have never brought 1137 * up. We are assuming that it is safe to nd6_ifattach multiple times. 1138 */ 1139 nd6_ifattach(ifp); 1140 1141 /* 1142 * Perform DAD, if needed. 1143 * XXX It may be of use, if we can administratively 1144 * disable DAD. 1145 */ 1146 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { 1147 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1148 nd6_dad_start((struct ifaddr *)ia, NULL); 1149 } 1150 1151 return(error); 1152 1153 unlink: 1154 /* 1155 * XXX: if a change of an existing address failed, keep the entry 1156 * anyway. 1157 */ 1158 if (hostIsNew) 1159 in6_unlink_ifa(ia, ifp); 1160 return(error); 1161 } 1162 1163 void 1164 in6_purgeaddr(ifa) 1165 struct ifaddr *ifa; 1166 { 1167 struct ifnet *ifp = ifa->ifa_ifp; 1168 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1169 1170 /* stop DAD processing */ 1171 nd6_dad_stop(ifa); 1172 1173 /* 1174 * delete route to the destination of the address being purged. 1175 * The interface must be p2p or loopback in this case. 1176 */ 1177 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1178 int e; 1179 1180 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1181 != 0) { 1182 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1183 "a route to the p2p destination: %s on %s, " 1184 "errno=%d\n", 1185 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1186 e); 1187 /* proceed anyway... */ 1188 } 1189 else 1190 ia->ia_flags &= ~IFA_ROUTE; 1191 } 1192 1193 /* Remove ownaddr's loopback rtentry, if it exists. */ 1194 in6_ifremloop(&(ia->ia_ifa)); 1195 1196 if (ifp->if_flags & IFF_MULTICAST) { 1197 /* 1198 * delete solicited multicast addr for deleting host id 1199 */ 1200 struct in6_multi *in6m; 1201 struct in6_addr llsol; 1202 bzero(&llsol, sizeof(struct in6_addr)); 1203 llsol.s6_addr16[0] = htons(0xff02); 1204 llsol.s6_addr16[1] = htons(ifp->if_index); 1205 llsol.s6_addr32[1] = 0; 1206 llsol.s6_addr32[2] = htonl(1); 1207 llsol.s6_addr32[3] = 1208 ia->ia_addr.sin6_addr.s6_addr32[3]; 1209 llsol.s6_addr8[12] = 0xff; 1210 1211 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1212 if (in6m) 1213 in6_delmulti(in6m); 1214 } 1215 1216 in6_unlink_ifa(ia, ifp); 1217 } 1218 1219 static void 1220 in6_unlink_ifa(ia, ifp) 1221 struct in6_ifaddr *ia; 1222 struct ifnet *ifp; 1223 { 1224 int plen, iilen; 1225 struct in6_ifaddr *oia; 1226 int s = splnet(); 1227 1228 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1229 1230 oia = ia; 1231 if (oia == (ia = in6_ifaddr)) 1232 in6_ifaddr = ia->ia_next; 1233 else { 1234 while (ia->ia_next && (ia->ia_next != oia)) 1235 ia = ia->ia_next; 1236 if (ia->ia_next) 1237 ia->ia_next = oia->ia_next; 1238 else { 1239 /* search failed */ 1240 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1241 } 1242 } 1243 1244 if (oia->ia6_ifpr) { /* check for safety */ 1245 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1246 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1247 in6_prefix_remove_ifid(iilen, oia); 1248 } 1249 1250 /* 1251 * When an autoconfigured address is being removed, release the 1252 * reference to the base prefix. Also, since the release might 1253 * affect the status of other (detached) addresses, call 1254 * pfxlist_onlink_check(). 1255 */ 1256 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1257 if (oia->ia6_ndpr == NULL) { 1258 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1259 "%p has no prefix\n", oia); 1260 } else { 1261 oia->ia6_ndpr->ndpr_refcnt--; 1262 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1263 oia->ia6_ndpr = NULL; 1264 } 1265 1266 pfxlist_onlink_check(); 1267 } 1268 1269 /* 1270 * release another refcnt for the link from in6_ifaddr. 1271 * Note that we should decrement the refcnt at least once for all *BSD. 1272 */ 1273 IFAFREE(&oia->ia_ifa); 1274 1275 splx(s); 1276 } 1277 1278 void 1279 in6_purgeif(ifp) 1280 struct ifnet *ifp; 1281 { 1282 struct ifaddr *ifa, *nifa; 1283 1284 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1285 { 1286 nifa = TAILQ_NEXT(ifa, ifa_list); 1287 if (ifa->ifa_addr->sa_family != AF_INET6) 1288 continue; 1289 in6_purgeaddr(ifa); 1290 } 1291 1292 in6_ifdetach(ifp); 1293 } 1294 1295 /* 1296 * SIOC[GAD]LIFADDR. 1297 * SIOCGLIFADDR: get first address. (?) 1298 * SIOCGLIFADDR with IFLR_PREFIX: 1299 * get first address that matches the specified prefix. 1300 * SIOCALIFADDR: add the specified address. 1301 * SIOCALIFADDR with IFLR_PREFIX: 1302 * add the specified prefix, filling hostid part from 1303 * the first link-local address. prefixlen must be <= 64. 1304 * SIOCDLIFADDR: delete the specified address. 1305 * SIOCDLIFADDR with IFLR_PREFIX: 1306 * delete the first address that matches the specified prefix. 1307 * return values: 1308 * EINVAL on invalid parameters 1309 * EADDRNOTAVAIL on prefix match failed/specified address not found 1310 * other values may be returned from in6_ioctl() 1311 * 1312 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1313 * this is to accomodate address naming scheme other than RFC2374, 1314 * in the future. 1315 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1316 * address encoding scheme. (see figure on page 8) 1317 */ 1318 static int 1319 in6_lifaddr_ioctl(so, cmd, data, ifp, td) 1320 struct socket *so; 1321 u_long cmd; 1322 caddr_t data; 1323 struct ifnet *ifp; 1324 struct thread *td; 1325 { 1326 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1327 struct ifaddr *ifa; 1328 struct sockaddr *sa; 1329 1330 /* sanity checks */ 1331 if (!data || !ifp) { 1332 panic("invalid argument to in6_lifaddr_ioctl"); 1333 /*NOTRECHED*/ 1334 } 1335 1336 switch (cmd) { 1337 case SIOCGLIFADDR: 1338 /* address must be specified on GET with IFLR_PREFIX */ 1339 if ((iflr->flags & IFLR_PREFIX) == 0) 1340 break; 1341 /* FALLTHROUGH */ 1342 case SIOCALIFADDR: 1343 case SIOCDLIFADDR: 1344 /* address must be specified on ADD and DELETE */ 1345 sa = (struct sockaddr *)&iflr->addr; 1346 if (sa->sa_family != AF_INET6) 1347 return EINVAL; 1348 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1349 return EINVAL; 1350 /* XXX need improvement */ 1351 sa = (struct sockaddr *)&iflr->dstaddr; 1352 if (sa->sa_family && sa->sa_family != AF_INET6) 1353 return EINVAL; 1354 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1355 return EINVAL; 1356 break; 1357 default: /* shouldn't happen */ 1358 #if 0 1359 panic("invalid cmd to in6_lifaddr_ioctl"); 1360 /* NOTREACHED */ 1361 #else 1362 return EOPNOTSUPP; 1363 #endif 1364 } 1365 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1366 return EINVAL; 1367 1368 switch (cmd) { 1369 case SIOCALIFADDR: 1370 { 1371 struct in6_aliasreq ifra; 1372 struct in6_addr *hostid = NULL; 1373 int prefixlen; 1374 1375 if ((iflr->flags & IFLR_PREFIX) != 0) { 1376 struct sockaddr_in6 *sin6; 1377 1378 /* 1379 * hostid is to fill in the hostid part of the 1380 * address. hostid points to the first link-local 1381 * address attached to the interface. 1382 */ 1383 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1384 if (!ifa) 1385 return EADDRNOTAVAIL; 1386 hostid = IFA_IN6(ifa); 1387 1388 /* prefixlen must be <= 64. */ 1389 if (64 < iflr->prefixlen) 1390 return EINVAL; 1391 prefixlen = iflr->prefixlen; 1392 1393 /* hostid part must be zero. */ 1394 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1395 if (sin6->sin6_addr.s6_addr32[2] != 0 1396 || sin6->sin6_addr.s6_addr32[3] != 0) { 1397 return EINVAL; 1398 } 1399 } else 1400 prefixlen = iflr->prefixlen; 1401 1402 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1403 bzero(&ifra, sizeof(ifra)); 1404 bcopy(iflr->iflr_name, ifra.ifra_name, 1405 sizeof(ifra.ifra_name)); 1406 1407 bcopy(&iflr->addr, &ifra.ifra_addr, 1408 ((struct sockaddr *)&iflr->addr)->sa_len); 1409 if (hostid) { 1410 /* fill in hostid part */ 1411 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1412 hostid->s6_addr32[2]; 1413 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1414 hostid->s6_addr32[3]; 1415 } 1416 1417 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1418 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1419 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1420 if (hostid) { 1421 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1422 hostid->s6_addr32[2]; 1423 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1424 hostid->s6_addr32[3]; 1425 } 1426 } 1427 1428 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1429 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1430 1431 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1432 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1433 } 1434 case SIOCGLIFADDR: 1435 case SIOCDLIFADDR: 1436 { 1437 struct in6_ifaddr *ia; 1438 struct in6_addr mask, candidate, match; 1439 struct sockaddr_in6 *sin6; 1440 int cmp; 1441 1442 bzero(&mask, sizeof(mask)); 1443 if (iflr->flags & IFLR_PREFIX) { 1444 /* lookup a prefix rather than address. */ 1445 in6_len2mask(&mask, iflr->prefixlen); 1446 1447 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1448 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1449 match.s6_addr32[0] &= mask.s6_addr32[0]; 1450 match.s6_addr32[1] &= mask.s6_addr32[1]; 1451 match.s6_addr32[2] &= mask.s6_addr32[2]; 1452 match.s6_addr32[3] &= mask.s6_addr32[3]; 1453 1454 /* if you set extra bits, that's wrong */ 1455 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1456 return EINVAL; 1457 1458 cmp = 1; 1459 } else { 1460 if (cmd == SIOCGLIFADDR) { 1461 /* on getting an address, take the 1st match */ 1462 cmp = 0; /* XXX */ 1463 } else { 1464 /* on deleting an address, do exact match */ 1465 in6_len2mask(&mask, 128); 1466 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1467 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1468 1469 cmp = 1; 1470 } 1471 } 1472 1473 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1474 { 1475 if (ifa->ifa_addr->sa_family != AF_INET6) 1476 continue; 1477 if (!cmp) 1478 break; 1479 1480 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1481 #ifndef SCOPEDROUTING 1482 /* 1483 * XXX: this is adhoc, but is necessary to allow 1484 * a user to specify fe80::/64 (not /10) for a 1485 * link-local address. 1486 */ 1487 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1488 candidate.s6_addr16[1] = 0; 1489 #endif 1490 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1491 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1492 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1493 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1494 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1495 break; 1496 } 1497 if (!ifa) 1498 return EADDRNOTAVAIL; 1499 ia = ifa2ia6(ifa); 1500 1501 if (cmd == SIOCGLIFADDR) { 1502 #ifndef SCOPEDROUTING 1503 struct sockaddr_in6 *s6; 1504 #endif 1505 1506 /* fill in the if_laddrreq structure */ 1507 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1508 #ifndef SCOPEDROUTING /* XXX see above */ 1509 s6 = (struct sockaddr_in6 *)&iflr->addr; 1510 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1511 s6->sin6_addr.s6_addr16[1] = 0; 1512 s6->sin6_scope_id = 1513 in6_addr2scopeid(ifp, &s6->sin6_addr); 1514 } 1515 #endif 1516 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1517 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1518 ia->ia_dstaddr.sin6_len); 1519 #ifndef SCOPEDROUTING /* XXX see above */ 1520 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1521 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1522 s6->sin6_addr.s6_addr16[1] = 0; 1523 s6->sin6_scope_id = 1524 in6_addr2scopeid(ifp, 1525 &s6->sin6_addr); 1526 } 1527 #endif 1528 } else 1529 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1530 1531 iflr->prefixlen = 1532 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1533 NULL); 1534 1535 iflr->flags = ia->ia6_flags; /* XXX */ 1536 1537 return 0; 1538 } else { 1539 struct in6_aliasreq ifra; 1540 1541 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1542 bzero(&ifra, sizeof(ifra)); 1543 bcopy(iflr->iflr_name, ifra.ifra_name, 1544 sizeof(ifra.ifra_name)); 1545 1546 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1547 ia->ia_addr.sin6_len); 1548 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1549 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1550 ia->ia_dstaddr.sin6_len); 1551 } else { 1552 bzero(&ifra.ifra_dstaddr, 1553 sizeof(ifra.ifra_dstaddr)); 1554 } 1555 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1556 ia->ia_prefixmask.sin6_len); 1557 1558 ifra.ifra_flags = ia->ia6_flags; 1559 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1560 ifp, td); 1561 } 1562 } 1563 } 1564 1565 return EOPNOTSUPP; /* just for safety */ 1566 } 1567 1568 /* 1569 * Initialize an interface's intetnet6 address 1570 * and routing table entry. 1571 */ 1572 static int 1573 in6_ifinit(ifp, ia, sin6, newhost) 1574 struct ifnet *ifp; 1575 struct in6_ifaddr *ia; 1576 struct sockaddr_in6 *sin6; 1577 int newhost; 1578 { 1579 int error = 0, plen, ifacount = 0; 1580 int s = splimp(); 1581 struct ifaddr *ifa; 1582 1583 /* 1584 * Give the interface a chance to initialize 1585 * if this is its first address, 1586 * and to validate the address if necessary. 1587 */ 1588 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1589 { 1590 if (ifa->ifa_addr == NULL) 1591 continue; /* just for safety */ 1592 if (ifa->ifa_addr->sa_family != AF_INET6) 1593 continue; 1594 ifacount++; 1595 } 1596 1597 ia->ia_addr = *sin6; 1598 1599 if (ifacount <= 1 && ifp->if_ioctl && 1600 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { 1601 splx(s); 1602 return(error); 1603 } 1604 splx(s); 1605 1606 ia->ia_ifa.ifa_metric = ifp->if_metric; 1607 1608 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1609 1610 /* 1611 * Special case: 1612 * If the destination address is specified for a point-to-point 1613 * interface, install a route to the destination as an interface 1614 * direct route. 1615 */ 1616 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1617 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1618 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1619 RTF_UP | RTF_HOST)) != 0) 1620 return(error); 1621 ia->ia_flags |= IFA_ROUTE; 1622 } 1623 if (plen < 128) { 1624 /* 1625 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1626 */ 1627 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1628 } 1629 1630 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1631 if (newhost) { 1632 /* set the rtrequest function to create llinfo */ 1633 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1634 in6_ifaddloop(&(ia->ia_ifa)); 1635 } 1636 1637 return(error); 1638 } 1639 1640 /* 1641 * Add an address to the list of IP6 multicast addresses for a 1642 * given interface. 1643 */ 1644 struct in6_multi * 1645 in6_addmulti(maddr6, ifp, errorp) 1646 struct in6_addr *maddr6; 1647 struct ifnet *ifp; 1648 int *errorp; 1649 { 1650 struct in6_multi *in6m; 1651 struct sockaddr_in6 sin6; 1652 struct ifmultiaddr *ifma; 1653 int s = splnet(); 1654 1655 *errorp = 0; 1656 1657 /* 1658 * Call generic routine to add membership or increment 1659 * refcount. It wants addresses in the form of a sockaddr, 1660 * so we build one here (being careful to zero the unused bytes). 1661 */ 1662 bzero(&sin6, sizeof sin6); 1663 sin6.sin6_family = AF_INET6; 1664 sin6.sin6_len = sizeof sin6; 1665 sin6.sin6_addr = *maddr6; 1666 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1667 if (*errorp) { 1668 splx(s); 1669 return 0; 1670 } 1671 1672 /* 1673 * If ifma->ifma_protospec is null, then if_addmulti() created 1674 * a new record. Otherwise, we are done. 1675 */ 1676 if (ifma->ifma_protospec != 0) 1677 return ifma->ifma_protospec; 1678 1679 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1680 at interrupt time? If so, need to fix if_addmulti. XXX */ 1681 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1682 if (in6m == NULL) { 1683 splx(s); 1684 return (NULL); 1685 } 1686 1687 bzero(in6m, sizeof *in6m); 1688 in6m->in6m_addr = *maddr6; 1689 in6m->in6m_ifp = ifp; 1690 in6m->in6m_ifma = ifma; 1691 ifma->ifma_protospec = in6m; 1692 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1693 1694 /* 1695 * Let MLD6 know that we have joined a new IP6 multicast 1696 * group. 1697 */ 1698 mld6_start_listening(in6m); 1699 splx(s); 1700 return(in6m); 1701 } 1702 1703 /* 1704 * Delete a multicast address record. 1705 */ 1706 void 1707 in6_delmulti(in6m) 1708 struct in6_multi *in6m; 1709 { 1710 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1711 int s = splnet(); 1712 1713 if (ifma->ifma_refcount == 1) { 1714 /* 1715 * No remaining claims to this record; let MLD6 know 1716 * that we are leaving the multicast group. 1717 */ 1718 mld6_stop_listening(in6m); 1719 ifma->ifma_protospec = 0; 1720 LIST_REMOVE(in6m, in6m_entry); 1721 free(in6m, M_IPMADDR); 1722 } 1723 /* XXX - should be separate API for when we have an ifma? */ 1724 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1725 splx(s); 1726 } 1727 1728 /* 1729 * Find an IPv6 interface link-local address specific to an interface. 1730 */ 1731 struct in6_ifaddr * 1732 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1733 struct ifnet *ifp; 1734 int ignoreflags; 1735 { 1736 struct ifaddr *ifa; 1737 1738 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1739 { 1740 if (ifa->ifa_addr == NULL) 1741 continue; /* just for safety */ 1742 if (ifa->ifa_addr->sa_family != AF_INET6) 1743 continue; 1744 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1745 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1746 ignoreflags) != 0) 1747 continue; 1748 break; 1749 } 1750 } 1751 1752 return((struct in6_ifaddr *)ifa); 1753 } 1754 1755 1756 /* 1757 * find the internet address corresponding to a given interface and address. 1758 */ 1759 struct in6_ifaddr * 1760 in6ifa_ifpwithaddr(ifp, addr) 1761 struct ifnet *ifp; 1762 struct in6_addr *addr; 1763 { 1764 struct ifaddr *ifa; 1765 1766 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1767 { 1768 if (ifa->ifa_addr == NULL) 1769 continue; /* just for safety */ 1770 if (ifa->ifa_addr->sa_family != AF_INET6) 1771 continue; 1772 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1773 break; 1774 } 1775 1776 return((struct in6_ifaddr *)ifa); 1777 } 1778 1779 /* 1780 * Convert IP6 address to printable (loggable) representation. 1781 */ 1782 static char digits[] = "0123456789abcdef"; 1783 static int ip6round = 0; 1784 char * 1785 ip6_sprintf(addr) 1786 const struct in6_addr *addr; 1787 { 1788 static char ip6buf[8][48]; 1789 int i; 1790 char *cp; 1791 const u_short *a = (const u_short *)addr; 1792 const u_char *d; 1793 int dcolon = 0; 1794 1795 ip6round = (ip6round + 1) & 7; 1796 cp = ip6buf[ip6round]; 1797 1798 for (i = 0; i < 8; i++) { 1799 if (dcolon == 1) { 1800 if (*a == 0) { 1801 if (i == 7) 1802 *cp++ = ':'; 1803 a++; 1804 continue; 1805 } else 1806 dcolon = 2; 1807 } 1808 if (*a == 0) { 1809 if (dcolon == 0 && *(a + 1) == 0) { 1810 if (i == 0) 1811 *cp++ = ':'; 1812 *cp++ = ':'; 1813 dcolon = 1; 1814 } else { 1815 *cp++ = '0'; 1816 *cp++ = ':'; 1817 } 1818 a++; 1819 continue; 1820 } 1821 d = (const u_char *)a; 1822 *cp++ = digits[*d >> 4]; 1823 *cp++ = digits[*d++ & 0xf]; 1824 *cp++ = digits[*d >> 4]; 1825 *cp++ = digits[*d & 0xf]; 1826 *cp++ = ':'; 1827 a++; 1828 } 1829 *--cp = 0; 1830 return(ip6buf[ip6round]); 1831 } 1832 1833 int 1834 in6_localaddr(in6) 1835 struct in6_addr *in6; 1836 { 1837 struct in6_ifaddr *ia; 1838 1839 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1840 return 1; 1841 1842 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1843 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1844 &ia->ia_prefixmask.sin6_addr)) 1845 return 1; 1846 1847 return (0); 1848 } 1849 1850 int 1851 in6_is_addr_deprecated(sa6) 1852 struct sockaddr_in6 *sa6; 1853 { 1854 struct in6_ifaddr *ia; 1855 1856 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1857 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1858 &sa6->sin6_addr) && 1859 #ifdef SCOPEDROUTING 1860 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 1861 #endif 1862 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1863 return(1); /* true */ 1864 1865 /* XXX: do we still have to go thru the rest of the list? */ 1866 } 1867 1868 return(0); /* false */ 1869 } 1870 1871 /* 1872 * return length of part which dst and src are equal 1873 * hard coding... 1874 */ 1875 int 1876 in6_matchlen(src, dst) 1877 struct in6_addr *src, *dst; 1878 { 1879 int match = 0; 1880 u_char *s = (u_char *)src, *d = (u_char *)dst; 1881 u_char *lim = s + 16, r; 1882 1883 while (s < lim) 1884 if ((r = (*d++ ^ *s++)) != 0) { 1885 while (r < 128) { 1886 match++; 1887 r <<= 1; 1888 } 1889 break; 1890 } else 1891 match += 8; 1892 return match; 1893 } 1894 1895 /* XXX: to be scope conscious */ 1896 int 1897 in6_are_prefix_equal(p1, p2, len) 1898 struct in6_addr *p1, *p2; 1899 int len; 1900 { 1901 int bytelen, bitlen; 1902 1903 /* sanity check */ 1904 if (0 > len || len > 128) { 1905 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1906 len); 1907 return(0); 1908 } 1909 1910 bytelen = len / 8; 1911 bitlen = len % 8; 1912 1913 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1914 return(0); 1915 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1916 p2->s6_addr[bytelen] >> (8 - bitlen)) 1917 return(0); 1918 1919 return(1); 1920 } 1921 1922 void 1923 in6_prefixlen2mask(maskp, len) 1924 struct in6_addr *maskp; 1925 int len; 1926 { 1927 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1928 int bytelen, bitlen, i; 1929 1930 /* sanity check */ 1931 if (0 > len || len > 128) { 1932 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1933 len); 1934 return; 1935 } 1936 1937 bzero(maskp, sizeof(*maskp)); 1938 bytelen = len / 8; 1939 bitlen = len % 8; 1940 for (i = 0; i < bytelen; i++) 1941 maskp->s6_addr[i] = 0xff; 1942 if (bitlen) 1943 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1944 } 1945 1946 /* 1947 * return the best address out of the same scope 1948 */ 1949 struct in6_ifaddr * 1950 in6_ifawithscope(oifp, dst) 1951 struct ifnet *oifp; 1952 struct in6_addr *dst; 1953 { 1954 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1955 int blen = -1; 1956 struct ifaddr *ifa; 1957 struct ifnet *ifp; 1958 struct in6_ifaddr *ifa_best = NULL; 1959 1960 if (oifp == NULL) { 1961 #if 0 1962 printf("in6_ifawithscope: output interface is not specified\n"); 1963 #endif 1964 return(NULL); 1965 } 1966 1967 /* 1968 * We search for all addresses on all interfaces from the beginning. 1969 * Comparing an interface with the outgoing interface will be done 1970 * only at the final stage of tiebreaking. 1971 */ 1972 IFNET_RLOCK(); 1973 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1974 { 1975 /* 1976 * We can never take an address that breaks the scope zone 1977 * of the destination. 1978 */ 1979 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1980 continue; 1981 1982 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1983 { 1984 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1985 1986 if (ifa->ifa_addr->sa_family != AF_INET6) 1987 continue; 1988 1989 src_scope = in6_addrscope(IFA_IN6(ifa)); 1990 1991 /* 1992 * Don't use an address before completing DAD 1993 * nor a duplicated address. 1994 */ 1995 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1996 IN6_IFF_NOTREADY) 1997 continue; 1998 1999 /* XXX: is there any case to allow anycasts? */ 2000 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2001 IN6_IFF_ANYCAST) 2002 continue; 2003 2004 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2005 IN6_IFF_DETACHED) 2006 continue; 2007 2008 /* 2009 * If this is the first address we find, 2010 * keep it anyway. 2011 */ 2012 if (ifa_best == NULL) 2013 goto replace; 2014 2015 /* 2016 * ifa_best is never NULL beyond this line except 2017 * within the block labeled "replace". 2018 */ 2019 2020 /* 2021 * If ifa_best has a smaller scope than dst and 2022 * the current address has a larger one than 2023 * (or equal to) dst, always replace ifa_best. 2024 * Also, if the current address has a smaller scope 2025 * than dst, ignore it unless ifa_best also has a 2026 * smaller scope. 2027 * Consequently, after the two if-clause below, 2028 * the followings must be satisfied: 2029 * (scope(src) < scope(dst) && 2030 * scope(best) < scope(dst)) 2031 * OR 2032 * (scope(best) >= scope(dst) && 2033 * scope(src) >= scope(dst)) 2034 */ 2035 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2036 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2037 goto replace; /* (A) */ 2038 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2039 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2040 continue; /* (B) */ 2041 2042 /* 2043 * A deprecated address SHOULD NOT be used in new 2044 * communications if an alternate (non-deprecated) 2045 * address is available and has sufficient scope. 2046 * RFC 2462, Section 5.5.4. 2047 */ 2048 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2049 IN6_IFF_DEPRECATED) { 2050 /* 2051 * Ignore any deprecated addresses if 2052 * specified by configuration. 2053 */ 2054 if (!ip6_use_deprecated) 2055 continue; 2056 2057 /* 2058 * If we have already found a non-deprecated 2059 * candidate, just ignore deprecated addresses. 2060 */ 2061 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2062 == 0) 2063 continue; 2064 } 2065 2066 /* 2067 * A non-deprecated address is always preferred 2068 * to a deprecated one regardless of scopes and 2069 * address matching (Note invariants ensured by the 2070 * conditions (A) and (B) above.) 2071 */ 2072 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2073 (((struct in6_ifaddr *)ifa)->ia6_flags & 2074 IN6_IFF_DEPRECATED) == 0) 2075 goto replace; 2076 2077 /* 2078 * When we use temporary addresses described in 2079 * RFC 3041, we prefer temporary addresses to 2080 * public autoconf addresses. Again, note the 2081 * invariants from (A) and (B). Also note that we 2082 * don't have any preference between static addresses 2083 * and autoconf addresses (despite of whether or not 2084 * the latter is temporary or public.) 2085 */ 2086 if (ip6_use_tempaddr) { 2087 struct in6_ifaddr *ifat; 2088 2089 ifat = (struct in6_ifaddr *)ifa; 2090 if ((ifa_best->ia6_flags & 2091 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2092 == IN6_IFF_AUTOCONF && 2093 (ifat->ia6_flags & 2094 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2095 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2096 goto replace; 2097 } 2098 if ((ifa_best->ia6_flags & 2099 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2100 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2101 (ifat->ia6_flags & 2102 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2103 == IN6_IFF_AUTOCONF) { 2104 continue; 2105 } 2106 } 2107 2108 /* 2109 * At this point, we have two cases: 2110 * 1. we are looking at a non-deprecated address, 2111 * and ifa_best is also non-deprecated. 2112 * 2. we are looking at a deprecated address, 2113 * and ifa_best is also deprecated. 2114 * Also, we do not have to consider a case where 2115 * the scope of if_best is larger(smaller) than dst and 2116 * the scope of the current address is smaller(larger) 2117 * than dst. Such a case has already been covered. 2118 * Tiebreaking is done according to the following 2119 * items: 2120 * - the scope comparison between the address and 2121 * dst (dscopecmp) 2122 * - the scope comparison between the address and 2123 * ifa_best (bscopecmp) 2124 * - if the address match dst longer than ifa_best 2125 * (matchcmp) 2126 * - if the address is on the outgoing I/F (outI/F) 2127 * 2128 * Roughly speaking, the selection policy is 2129 * - the most important item is scope. The same scope 2130 * is best. Then search for a larger scope. 2131 * Smaller scopes are the last resort. 2132 * - A deprecated address is chosen only when we have 2133 * no address that has an enough scope, but is 2134 * prefered to any addresses of smaller scopes 2135 * (this must be already done above.) 2136 * - addresses on the outgoing I/F are preferred to 2137 * ones on other interfaces if none of above 2138 * tiebreaks. In the table below, the column "bI" 2139 * means if the best_ifa is on the outgoing 2140 * interface, and the column "sI" means if the ifa 2141 * is on the outgoing interface. 2142 * - If there is no other reasons to choose one, 2143 * longest address match against dst is considered. 2144 * 2145 * The precise decision table is as follows: 2146 * dscopecmp bscopecmp match bI oI | replace? 2147 * N/A equal N/A Y N | No (1) 2148 * N/A equal N/A N Y | Yes (2) 2149 * N/A equal larger N/A | Yes (3) 2150 * N/A equal !larger N/A | No (4) 2151 * larger larger N/A N/A | No (5) 2152 * larger smaller N/A N/A | Yes (6) 2153 * smaller larger N/A N/A | Yes (7) 2154 * smaller smaller N/A N/A | No (8) 2155 * equal smaller N/A N/A | Yes (9) 2156 * equal larger (already done at A above) 2157 */ 2158 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2159 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2160 2161 if (bscopecmp == 0) { 2162 struct ifnet *bifp = ifa_best->ia_ifp; 2163 2164 if (bifp == oifp && ifp != oifp) /* (1) */ 2165 continue; 2166 if (bifp != oifp && ifp == oifp) /* (2) */ 2167 goto replace; 2168 2169 /* 2170 * Both bifp and ifp are on the outgoing 2171 * interface, or both two are on a different 2172 * interface from the outgoing I/F. 2173 * now we need address matching against dst 2174 * for tiebreaking. 2175 */ 2176 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2177 matchcmp = tlen - blen; 2178 if (matchcmp > 0) /* (3) */ 2179 goto replace; 2180 continue; /* (4) */ 2181 } 2182 if (dscopecmp > 0) { 2183 if (bscopecmp > 0) /* (5) */ 2184 continue; 2185 goto replace; /* (6) */ 2186 } 2187 if (dscopecmp < 0) { 2188 if (bscopecmp > 0) /* (7) */ 2189 goto replace; 2190 continue; /* (8) */ 2191 } 2192 2193 /* now dscopecmp must be 0 */ 2194 if (bscopecmp < 0) 2195 goto replace; /* (9) */ 2196 2197 replace: 2198 ifa_best = (struct in6_ifaddr *)ifa; 2199 blen = tlen >= 0 ? tlen : 2200 in6_matchlen(IFA_IN6(ifa), dst); 2201 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2202 } 2203 } 2204 IFNET_RUNLOCK(); 2205 2206 /* count statistics for future improvements */ 2207 if (ifa_best == NULL) 2208 ip6stat.ip6s_sources_none++; 2209 else { 2210 if (oifp == ifa_best->ia_ifp) 2211 ip6stat.ip6s_sources_sameif[best_scope]++; 2212 else 2213 ip6stat.ip6s_sources_otherif[best_scope]++; 2214 2215 if (best_scope == dst_scope) 2216 ip6stat.ip6s_sources_samescope[best_scope]++; 2217 else 2218 ip6stat.ip6s_sources_otherscope[best_scope]++; 2219 2220 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2221 ip6stat.ip6s_sources_deprecated[best_scope]++; 2222 } 2223 2224 return(ifa_best); 2225 } 2226 2227 /* 2228 * return the best address out of the same scope. if no address was 2229 * found, return the first valid address from designated IF. 2230 */ 2231 struct in6_ifaddr * 2232 in6_ifawithifp(ifp, dst) 2233 struct ifnet *ifp; 2234 struct in6_addr *dst; 2235 { 2236 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2237 struct ifaddr *ifa; 2238 struct in6_ifaddr *besta = 0; 2239 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2240 2241 dep[0] = dep[1] = NULL; 2242 2243 /* 2244 * We first look for addresses in the same scope. 2245 * If there is one, return it. 2246 * If two or more, return one which matches the dst longest. 2247 * If none, return one of global addresses assigned other ifs. 2248 */ 2249 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2250 { 2251 if (ifa->ifa_addr->sa_family != AF_INET6) 2252 continue; 2253 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2254 continue; /* XXX: is there any case to allow anycast? */ 2255 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2256 continue; /* don't use this interface */ 2257 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2258 continue; 2259 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2260 if (ip6_use_deprecated) 2261 dep[0] = (struct in6_ifaddr *)ifa; 2262 continue; 2263 } 2264 2265 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2266 /* 2267 * call in6_matchlen() as few as possible 2268 */ 2269 if (besta) { 2270 if (blen == -1) 2271 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2272 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2273 if (tlen > blen) { 2274 blen = tlen; 2275 besta = (struct in6_ifaddr *)ifa; 2276 } 2277 } else 2278 besta = (struct in6_ifaddr *)ifa; 2279 } 2280 } 2281 if (besta) 2282 return(besta); 2283 2284 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2285 { 2286 if (ifa->ifa_addr->sa_family != AF_INET6) 2287 continue; 2288 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2289 continue; /* XXX: is there any case to allow anycast? */ 2290 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2291 continue; /* don't use this interface */ 2292 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2293 continue; 2294 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2295 if (ip6_use_deprecated) 2296 dep[1] = (struct in6_ifaddr *)ifa; 2297 continue; 2298 } 2299 2300 return (struct in6_ifaddr *)ifa; 2301 } 2302 2303 /* use the last-resort values, that are, deprecated addresses */ 2304 if (dep[0]) 2305 return dep[0]; 2306 if (dep[1]) 2307 return dep[1]; 2308 2309 return NULL; 2310 } 2311 2312 /* 2313 * perform DAD when interface becomes IFF_UP. 2314 */ 2315 void 2316 in6_if_up(ifp) 2317 struct ifnet *ifp; 2318 { 2319 struct ifaddr *ifa; 2320 struct in6_ifaddr *ia; 2321 int dad_delay; /* delay ticks before DAD output */ 2322 2323 /* 2324 * special cases, like 6to4, are handled in in6_ifattach 2325 */ 2326 in6_ifattach(ifp, NULL); 2327 2328 dad_delay = 0; 2329 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2330 { 2331 if (ifa->ifa_addr->sa_family != AF_INET6) 2332 continue; 2333 ia = (struct in6_ifaddr *)ifa; 2334 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2335 nd6_dad_start(ifa, &dad_delay); 2336 } 2337 } 2338 2339 int 2340 in6if_do_dad(ifp) 2341 struct ifnet *ifp; 2342 { 2343 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2344 return(0); 2345 2346 switch (ifp->if_type) { 2347 #ifdef IFT_DUMMY 2348 case IFT_DUMMY: 2349 #endif 2350 case IFT_FAITH: 2351 /* 2352 * These interfaces do not have the IFF_LOOPBACK flag, 2353 * but loop packets back. We do not have to do DAD on such 2354 * interfaces. We should even omit it, because loop-backed 2355 * NS would confuse the DAD procedure. 2356 */ 2357 return(0); 2358 default: 2359 /* 2360 * Our DAD routine requires the interface up and running. 2361 * However, some interfaces can be up before the RUNNING 2362 * status. Additionaly, users may try to assign addresses 2363 * before the interface becomes up (or running). 2364 * We simply skip DAD in such a case as a work around. 2365 * XXX: we should rather mark "tentative" on such addresses, 2366 * and do DAD after the interface becomes ready. 2367 */ 2368 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2369 (IFF_UP|IFF_RUNNING)) 2370 return(0); 2371 2372 return(1); 2373 } 2374 } 2375 2376 /* 2377 * Calculate max IPv6 MTU through all the interfaces and store it 2378 * to in6_maxmtu. 2379 */ 2380 void 2381 in6_setmaxmtu() 2382 { 2383 unsigned long maxmtu = 0; 2384 struct ifnet *ifp; 2385 2386 IFNET_RLOCK(); 2387 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2388 { 2389 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2390 nd_ifinfo[ifp->if_index].linkmtu > maxmtu) 2391 maxmtu = nd_ifinfo[ifp->if_index].linkmtu; 2392 } 2393 IFNET_RUNLOCK(); 2394 if (maxmtu) /* update only when maxmtu is positive */ 2395 in6_maxmtu = maxmtu; 2396 } 2397 2398 /* 2399 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2400 * v4 mapped addr or v4 compat addr 2401 */ 2402 void 2403 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2404 { 2405 bzero(sin, sizeof(*sin)); 2406 sin->sin_len = sizeof(struct sockaddr_in); 2407 sin->sin_family = AF_INET; 2408 sin->sin_port = sin6->sin6_port; 2409 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2410 } 2411 2412 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2413 void 2414 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2415 { 2416 bzero(sin6, sizeof(*sin6)); 2417 sin6->sin6_len = sizeof(struct sockaddr_in6); 2418 sin6->sin6_family = AF_INET6; 2419 sin6->sin6_port = sin->sin_port; 2420 sin6->sin6_addr.s6_addr32[0] = 0; 2421 sin6->sin6_addr.s6_addr32[1] = 0; 2422 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2423 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2424 } 2425 2426 /* Convert sockaddr_in6 into sockaddr_in. */ 2427 void 2428 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2429 { 2430 struct sockaddr_in *sin_p; 2431 struct sockaddr_in6 sin6; 2432 2433 /* 2434 * Save original sockaddr_in6 addr and convert it 2435 * to sockaddr_in. 2436 */ 2437 sin6 = *(struct sockaddr_in6 *)nam; 2438 sin_p = (struct sockaddr_in *)nam; 2439 in6_sin6_2_sin(sin_p, &sin6); 2440 } 2441 2442 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2443 void 2444 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2445 { 2446 struct sockaddr_in *sin_p; 2447 struct sockaddr_in6 *sin6_p; 2448 2449 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2450 M_WAITOK); 2451 sin_p = (struct sockaddr_in *)*nam; 2452 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2453 FREE(*nam, M_SONAME); 2454 *nam = (struct sockaddr *)sin6_p; 2455 } 2456