xref: /freebsd/sys/netinet6/in6.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*	$FreeBSD$	*/
2 /*	$KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*-
34  * Copyright (c) 1982, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 4. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)in.c	8.2 (Berkeley) 11/15/93
62  */
63 
64 #include "opt_inet.h"
65 #include "opt_inet6.h"
66 
67 #include <sys/param.h>
68 #include <sys/errno.h>
69 #include <sys/malloc.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/sockio.h>
73 #include <sys/systm.h>
74 #include <sys/priv.h>
75 #include <sys/proc.h>
76 #include <sys/time.h>
77 #include <sys/kernel.h>
78 #include <sys/syslog.h>
79 
80 #include <net/if.h>
81 #include <net/if_types.h>
82 #include <net/route.h>
83 #include <net/if_dl.h>
84 
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/ip.h>
90 #include <netinet/in_pcb.h>
91 
92 #include <netinet/ip6.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/nd6.h>
95 #include <netinet6/mld6_var.h>
96 #include <netinet6/ip6_mroute.h>
97 #include <netinet6/in6_ifattach.h>
98 #include <netinet6/scope6_var.h>
99 #include <netinet6/in6_pcb.h>
100 
101 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address");
102 
103 /*
104  * Definitions of some costant IP6 addresses.
105  */
106 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
107 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
108 const struct in6_addr in6addr_nodelocal_allnodes =
109 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
110 const struct in6_addr in6addr_linklocal_allnodes =
111 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
112 const struct in6_addr in6addr_linklocal_allrouters =
113 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
114 
115 const struct in6_addr in6mask0 = IN6MASK0;
116 const struct in6_addr in6mask32 = IN6MASK32;
117 const struct in6_addr in6mask64 = IN6MASK64;
118 const struct in6_addr in6mask96 = IN6MASK96;
119 const struct in6_addr in6mask128 = IN6MASK128;
120 
121 const struct sockaddr_in6 sa6_any =
122 	{ sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 };
123 
124 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
125 	struct ifnet *, struct thread *));
126 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
127 	struct sockaddr_in6 *, int));
128 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
129 
130 struct in6_multihead in6_multihead;	/* XXX BSS initialization */
131 int	(*faithprefix_p)(struct in6_addr *);
132 
133 /*
134  * Subroutine for in6_ifaddloop() and in6_ifremloop().
135  * This routine does actual work.
136  */
137 static void
138 in6_ifloop_request(int cmd, struct ifaddr *ifa)
139 {
140 	struct sockaddr_in6 all1_sa;
141 	struct rtentry *nrt = NULL;
142 	int e;
143 	char ip6buf[INET6_ADDRSTRLEN];
144 
145 	bzero(&all1_sa, sizeof(all1_sa));
146 	all1_sa.sin6_family = AF_INET6;
147 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
148 	all1_sa.sin6_addr = in6mask128;
149 
150 	/*
151 	 * We specify the address itself as the gateway, and set the
152 	 * RTF_LLINFO flag, so that the corresponding host route would have
153 	 * the flag, and thus applications that assume traditional behavior
154 	 * would be happy.  Note that we assume the caller of the function
155 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
156 	 * which changes the outgoing interface to the loopback interface.
157 	 */
158 	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
159 	    (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
160 	if (e != 0) {
161 		/* XXX need more descriptive message */
162 
163 		log(LOG_ERR, "in6_ifloop_request: "
164 		    "%s operation failed for %s (errno=%d)\n",
165 		    cmd == RTM_ADD ? "ADD" : "DELETE",
166 		    ip6_sprintf(ip6buf,
167 			    &((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e);
168 	}
169 
170 	/*
171 	 * Report the addition/removal of the address to the routing socket.
172 	 * XXX: since we called rtinit for a p2p interface with a destination,
173 	 *      we end up reporting twice in such a case.  Should we rather
174 	 *      omit the second report?
175 	 */
176 	if (nrt) {
177 		RT_LOCK(nrt);
178 		/*
179 		 * Make sure rt_ifa be equal to IFA, the second argument of
180 		 * the function.  We need this because when we refer to
181 		 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa
182 		 * points to the address instead of the loopback address.
183 		 */
184 		if (cmd == RTM_ADD && ifa != nrt->rt_ifa) {
185 			IFAFREE(nrt->rt_ifa);
186 			IFAREF(ifa);
187 			nrt->rt_ifa = ifa;
188 		}
189 
190 		rt_newaddrmsg(cmd, ifa, e, nrt);
191 		if (cmd == RTM_DELETE) {
192 			rtfree(nrt);
193 		} else {
194 			/* the cmd must be RTM_ADD here */
195 			RT_REMREF(nrt);
196 			RT_UNLOCK(nrt);
197 		}
198 	}
199 }
200 
201 /*
202  * Add ownaddr as loopback rtentry.  We previously add the route only if
203  * necessary (ex. on a p2p link).  However, since we now manage addresses
204  * separately from prefixes, we should always add the route.  We can't
205  * rely on the cloning mechanism from the corresponding interface route
206  * any more.
207  */
208 void
209 in6_ifaddloop(struct ifaddr *ifa)
210 {
211 	struct rtentry *rt;
212 	int need_loop;
213 
214 	/* If there is no loopback entry, allocate one. */
215 	rt = rtalloc1(ifa->ifa_addr, 0, 0);
216 	need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
217 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0);
218 	if (rt)
219 		rtfree(rt);
220 	if (need_loop)
221 		in6_ifloop_request(RTM_ADD, ifa);
222 }
223 
224 /*
225  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
226  * if it exists.
227  */
228 void
229 in6_ifremloop(struct ifaddr *ifa)
230 {
231 	struct in6_ifaddr *ia;
232 	struct rtentry *rt;
233 	int ia_count = 0;
234 
235 	/*
236 	 * Some of BSD variants do not remove cloned routes
237 	 * from an interface direct route, when removing the direct route
238 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
239 	 * cloned routes, they could fail to remove the cloned routes when
240 	 * we handle multple addresses that share a common prefix.
241 	 * So, we should remove the route corresponding to the deleted address.
242 	 */
243 
244 	/*
245 	 * Delete the entry only if exact one ifa exists.  More than one ifa
246 	 * can exist if we assign a same single address to multiple
247 	 * (probably p2p) interfaces.
248 	 * XXX: we should avoid such a configuration in IPv6...
249 	 */
250 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
251 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
252 			ia_count++;
253 			if (ia_count > 1)
254 				break;
255 		}
256 	}
257 
258 	if (ia_count == 1) {
259 		/*
260 		 * Before deleting, check if a corresponding loopbacked host
261 		 * route surely exists.  With this check, we can avoid to
262 		 * delete an interface direct route whose destination is same
263 		 * as the address being removed.  This can happen when removing
264 		 * a subnet-router anycast address on an interface attahced
265 		 * to a shared medium.
266 		 */
267 		rt = rtalloc1(ifa->ifa_addr, 0, 0);
268 		if (rt != NULL) {
269 			if ((rt->rt_flags & RTF_HOST) != 0 &&
270 			    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
271 				rtfree(rt);
272 				in6_ifloop_request(RTM_DELETE, ifa);
273 			} else
274 				RT_UNLOCK(rt);
275 		}
276 	}
277 }
278 
279 int
280 in6_mask2len(mask, lim0)
281 	struct in6_addr *mask;
282 	u_char *lim0;
283 {
284 	int x = 0, y;
285 	u_char *lim = lim0, *p;
286 
287 	/* ignore the scope_id part */
288 	if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
289 		lim = (u_char *)mask + sizeof(*mask);
290 	for (p = (u_char *)mask; p < lim; x++, p++) {
291 		if (*p != 0xff)
292 			break;
293 	}
294 	y = 0;
295 	if (p < lim) {
296 		for (y = 0; y < 8; y++) {
297 			if ((*p & (0x80 >> y)) == 0)
298 				break;
299 		}
300 	}
301 
302 	/*
303 	 * when the limit pointer is given, do a stricter check on the
304 	 * remaining bits.
305 	 */
306 	if (p < lim) {
307 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
308 			return (-1);
309 		for (p = p + 1; p < lim; p++)
310 			if (*p != 0)
311 				return (-1);
312 	}
313 
314 	return x * 8 + y;
315 }
316 
317 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
318 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
319 
320 int
321 in6_control(so, cmd, data, ifp, td)
322 	struct	socket *so;
323 	u_long cmd;
324 	caddr_t	data;
325 	struct ifnet *ifp;
326 	struct thread *td;
327 {
328 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
329 	struct	in6_ifaddr *ia = NULL;
330 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
331 	struct sockaddr_in6 *sa6;
332 	int error;
333 
334 	switch (cmd) {
335 	case SIOCGETSGCNT_IN6:
336 	case SIOCGETMIFCNT_IN6:
337 		return (mrt6_ioctl(cmd, data));
338 	}
339 
340 	switch(cmd) {
341 	case SIOCAADDRCTL_POLICY:
342 	case SIOCDADDRCTL_POLICY:
343 		if (td != NULL) {
344 			error = priv_check(td, PRIV_NETINET_ADDRCTRL6);
345 			if (error)
346 				return (error);
347 		}
348 		return (in6_src_ioctl(cmd, data));
349 	}
350 
351 	if (ifp == NULL)
352 		return (EOPNOTSUPP);
353 
354 	switch (cmd) {
355 	case SIOCSNDFLUSH_IN6:
356 	case SIOCSPFXFLUSH_IN6:
357 	case SIOCSRTRFLUSH_IN6:
358 	case SIOCSDEFIFACE_IN6:
359 	case SIOCSIFINFO_FLAGS:
360 		if (td != NULL) {
361 			error = priv_check(td, PRIV_NETINET_ND6);
362 			if (error)
363 				return (error);
364 		}
365 		/* FALLTHROUGH */
366 	case OSIOCGIFINFO_IN6:
367 	case SIOCGIFINFO_IN6:
368 	case SIOCSIFINFO_IN6:
369 	case SIOCGDRLST_IN6:
370 	case SIOCGPRLST_IN6:
371 	case SIOCGNBRINFO_IN6:
372 	case SIOCGDEFIFACE_IN6:
373 		return (nd6_ioctl(cmd, data, ifp));
374 	}
375 
376 	switch (cmd) {
377 	case SIOCSIFPREFIX_IN6:
378 	case SIOCDIFPREFIX_IN6:
379 	case SIOCAIFPREFIX_IN6:
380 	case SIOCCIFPREFIX_IN6:
381 	case SIOCSGIFPREFIX_IN6:
382 	case SIOCGIFPREFIX_IN6:
383 		log(LOG_NOTICE,
384 		    "prefix ioctls are now invalidated. "
385 		    "please use ifconfig.\n");
386 		return (EOPNOTSUPP);
387 	}
388 
389 	switch (cmd) {
390 	case SIOCSSCOPE6:
391 		if (td != NULL) {
392 			error = priv_check(td, PRIV_NETINET_SCOPE6);
393 			if (error)
394 				return (error);
395 		}
396 		return (scope6_set(ifp,
397 		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
398 	case SIOCGSCOPE6:
399 		return (scope6_get(ifp,
400 		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
401 	case SIOCGSCOPE6DEF:
402 		return (scope6_get_default((struct scope6_id *)
403 		    ifr->ifr_ifru.ifru_scope_id));
404 	}
405 
406 	switch (cmd) {
407 	case SIOCALIFADDR:
408 	case SIOCDLIFADDR:
409 		/*
410 		 * XXXRW: Is this checked at another layer?  What priv to use
411 		 * here?
412 		 */
413 		if (td != NULL) {
414 			error = suser(td);
415 			if (error)
416 				return (error);
417 		}
418 		/* FALLTHROUGH */
419 	case SIOCGLIFADDR:
420 		return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
421 	}
422 
423 	/*
424 	 * Find address for this interface, if it exists.
425 	 *
426 	 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
427 	 * only, and used the first interface address as the target of other
428 	 * operations (without checking ifra_addr).  This was because netinet
429 	 * code/API assumed at most 1 interface address per interface.
430 	 * Since IPv6 allows a node to assign multiple addresses
431 	 * on a single interface, we almost always look and check the
432 	 * presence of ifra_addr, and reject invalid ones here.
433 	 * It also decreases duplicated code among SIOC*_IN6 operations.
434 	 */
435 	switch (cmd) {
436 	case SIOCAIFADDR_IN6:
437 	case SIOCSIFPHYADDR_IN6:
438 		sa6 = &ifra->ifra_addr;
439 		break;
440 	case SIOCSIFADDR_IN6:
441 	case SIOCGIFADDR_IN6:
442 	case SIOCSIFDSTADDR_IN6:
443 	case SIOCSIFNETMASK_IN6:
444 	case SIOCGIFDSTADDR_IN6:
445 	case SIOCGIFNETMASK_IN6:
446 	case SIOCDIFADDR_IN6:
447 	case SIOCGIFPSRCADDR_IN6:
448 	case SIOCGIFPDSTADDR_IN6:
449 	case SIOCGIFAFLAG_IN6:
450 	case SIOCSNDFLUSH_IN6:
451 	case SIOCSPFXFLUSH_IN6:
452 	case SIOCSRTRFLUSH_IN6:
453 	case SIOCGIFALIFETIME_IN6:
454 	case SIOCSIFALIFETIME_IN6:
455 	case SIOCGIFSTAT_IN6:
456 	case SIOCGIFSTAT_ICMP6:
457 		sa6 = &ifr->ifr_addr;
458 		break;
459 	default:
460 		sa6 = NULL;
461 		break;
462 	}
463 	if (sa6 && sa6->sin6_family == AF_INET6) {
464 		int error = 0;
465 
466 		if (sa6->sin6_scope_id != 0)
467 			error = sa6_embedscope(sa6, 0);
468 		else
469 			error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
470 		if (error != 0)
471 			return (error);
472 		ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
473 	} else
474 		ia = NULL;
475 
476 	switch (cmd) {
477 	case SIOCSIFADDR_IN6:
478 	case SIOCSIFDSTADDR_IN6:
479 	case SIOCSIFNETMASK_IN6:
480 		/*
481 		 * Since IPv6 allows a node to assign multiple addresses
482 		 * on a single interface, SIOCSIFxxx ioctls are deprecated.
483 		 */
484 		/* we decided to obsolete this command (20000704) */
485 		return (EINVAL);
486 
487 	case SIOCDIFADDR_IN6:
488 		/*
489 		 * for IPv4, we look for existing in_ifaddr here to allow
490 		 * "ifconfig if0 delete" to remove the first IPv4 address on
491 		 * the interface.  For IPv6, as the spec allows multiple
492 		 * interface address from the day one, we consider "remove the
493 		 * first one" semantics to be not preferable.
494 		 */
495 		if (ia == NULL)
496 			return (EADDRNOTAVAIL);
497 		/* FALLTHROUGH */
498 	case SIOCAIFADDR_IN6:
499 		/*
500 		 * We always require users to specify a valid IPv6 address for
501 		 * the corresponding operation.
502 		 */
503 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
504 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
505 			return (EAFNOSUPPORT);
506 
507 		/*
508 		 * XXXRW: Is this checked at another layer?  What priv to use
509 		 * here?
510 		 */
511 		if (td != NULL) {
512 			error = suser(td);
513 			if (error)
514 				return (error);
515 		}
516 
517 		break;
518 
519 	case SIOCGIFADDR_IN6:
520 		/* This interface is basically deprecated. use SIOCGIFCONF. */
521 		/* FALLTHROUGH */
522 	case SIOCGIFAFLAG_IN6:
523 	case SIOCGIFNETMASK_IN6:
524 	case SIOCGIFDSTADDR_IN6:
525 	case SIOCGIFALIFETIME_IN6:
526 		/* must think again about its semantics */
527 		if (ia == NULL)
528 			return (EADDRNOTAVAIL);
529 		break;
530 	case SIOCSIFALIFETIME_IN6:
531 	    {
532 		struct in6_addrlifetime *lt;
533 
534 		if (td != NULL) {
535 			error = priv_check(td, PRIV_NETINET_ALIFETIME6);
536 			if (error)
537 				return (error);
538 		}
539 		if (ia == NULL)
540 			return (EADDRNOTAVAIL);
541 		/* sanity for overflow - beware unsigned */
542 		lt = &ifr->ifr_ifru.ifru_lifetime;
543 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME &&
544 		    lt->ia6t_vltime + time_second < time_second) {
545 			return EINVAL;
546 		}
547 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME &&
548 		    lt->ia6t_pltime + time_second < time_second) {
549 			return EINVAL;
550 		}
551 		break;
552 	    }
553 	}
554 
555 	switch (cmd) {
556 
557 	case SIOCGIFADDR_IN6:
558 		ifr->ifr_addr = ia->ia_addr;
559 		if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
560 			return (error);
561 		break;
562 
563 	case SIOCGIFDSTADDR_IN6:
564 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
565 			return (EINVAL);
566 		/*
567 		 * XXX: should we check if ifa_dstaddr is NULL and return
568 		 * an error?
569 		 */
570 		ifr->ifr_dstaddr = ia->ia_dstaddr;
571 		if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
572 			return (error);
573 		break;
574 
575 	case SIOCGIFNETMASK_IN6:
576 		ifr->ifr_addr = ia->ia_prefixmask;
577 		break;
578 
579 	case SIOCGIFAFLAG_IN6:
580 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
581 		break;
582 
583 	case SIOCGIFSTAT_IN6:
584 		if (ifp == NULL)
585 			return EINVAL;
586 		bzero(&ifr->ifr_ifru.ifru_stat,
587 		    sizeof(ifr->ifr_ifru.ifru_stat));
588 		ifr->ifr_ifru.ifru_stat =
589 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
590 		break;
591 
592 	case SIOCGIFSTAT_ICMP6:
593 		if (ifp == NULL)
594 			return EINVAL;
595 		bzero(&ifr->ifr_ifru.ifru_icmp6stat,
596 		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
597 		ifr->ifr_ifru.ifru_icmp6stat =
598 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
599 		break;
600 
601 	case SIOCGIFALIFETIME_IN6:
602 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
603 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
604 			time_t maxexpire;
605 			struct in6_addrlifetime *retlt =
606 			    &ifr->ifr_ifru.ifru_lifetime;
607 
608 			/*
609 			 * XXX: adjust expiration time assuming time_t is
610 			 * signed.
611 			 */
612 			maxexpire = (-1) &
613 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
614 			if (ia->ia6_lifetime.ia6t_vltime <
615 			    maxexpire - ia->ia6_updatetime) {
616 				retlt->ia6t_expire = ia->ia6_updatetime +
617 				    ia->ia6_lifetime.ia6t_vltime;
618 			} else
619 				retlt->ia6t_expire = maxexpire;
620 		}
621 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
622 			time_t maxexpire;
623 			struct in6_addrlifetime *retlt =
624 			    &ifr->ifr_ifru.ifru_lifetime;
625 
626 			/*
627 			 * XXX: adjust expiration time assuming time_t is
628 			 * signed.
629 			 */
630 			maxexpire = (-1) &
631 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
632 			if (ia->ia6_lifetime.ia6t_pltime <
633 			    maxexpire - ia->ia6_updatetime) {
634 				retlt->ia6t_preferred = ia->ia6_updatetime +
635 				    ia->ia6_lifetime.ia6t_pltime;
636 			} else
637 				retlt->ia6t_preferred = maxexpire;
638 		}
639 		break;
640 
641 	case SIOCSIFALIFETIME_IN6:
642 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
643 		/* for sanity */
644 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
645 			ia->ia6_lifetime.ia6t_expire =
646 				time_second + ia->ia6_lifetime.ia6t_vltime;
647 		} else
648 			ia->ia6_lifetime.ia6t_expire = 0;
649 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
650 			ia->ia6_lifetime.ia6t_preferred =
651 				time_second + ia->ia6_lifetime.ia6t_pltime;
652 		} else
653 			ia->ia6_lifetime.ia6t_preferred = 0;
654 		break;
655 
656 	case SIOCAIFADDR_IN6:
657 	{
658 		int i, error = 0;
659 		struct nd_prefixctl pr0;
660 		struct nd_prefix *pr;
661 
662 		/*
663 		 * first, make or update the interface address structure,
664 		 * and link it to the list.
665 		 */
666 		if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
667 			return (error);
668 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
669 		    == NULL) {
670 		    	/*
671 			 * this can happen when the user specify the 0 valid
672 			 * lifetime.
673 			 */
674 			break;
675 		}
676 
677 		/*
678 		 * then, make the prefix on-link on the interface.
679 		 * XXX: we'd rather create the prefix before the address, but
680 		 * we need at least one address to install the corresponding
681 		 * interface route, so we configure the address first.
682 		 */
683 
684 		/*
685 		 * convert mask to prefix length (prefixmask has already
686 		 * been validated in in6_update_ifa().
687 		 */
688 		bzero(&pr0, sizeof(pr0));
689 		pr0.ndpr_ifp = ifp;
690 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
691 		    NULL);
692 		if (pr0.ndpr_plen == 128) {
693 			break;	/* we don't need to install a host route. */
694 		}
695 		pr0.ndpr_prefix = ifra->ifra_addr;
696 		/* apply the mask for safety. */
697 		for (i = 0; i < 4; i++) {
698 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
699 			    ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
700 		}
701 		/*
702 		 * XXX: since we don't have an API to set prefix (not address)
703 		 * lifetimes, we just use the same lifetimes as addresses.
704 		 * The (temporarily) installed lifetimes can be overridden by
705 		 * later advertised RAs (when accept_rtadv is non 0), which is
706 		 * an intended behavior.
707 		 */
708 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
709 		pr0.ndpr_raf_auto =
710 		    ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
711 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
712 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
713 
714 		/* add the prefix if not yet. */
715 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
716 			/*
717 			 * nd6_prelist_add will install the corresponding
718 			 * interface route.
719 			 */
720 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
721 				return (error);
722 			if (pr == NULL) {
723 				log(LOG_ERR, "nd6_prelist_add succeeded but "
724 				    "no prefix\n");
725 				return (EINVAL); /* XXX panic here? */
726 			}
727 		}
728 
729 		/* relate the address to the prefix */
730 		if (ia->ia6_ndpr == NULL) {
731 			ia->ia6_ndpr = pr;
732 			pr->ndpr_refcnt++;
733 
734 			/*
735 			 * If this is the first autoconf address from the
736 			 * prefix, create a temporary address as well
737 			 * (when required).
738 			 */
739 			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
740 			    ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
741 				int e;
742 				if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
743 					log(LOG_NOTICE, "in6_control: failed "
744 					    "to create a temporary address, "
745 					    "errno=%d\n", e);
746 				}
747 			}
748 		}
749 
750 		/*
751 		 * this might affect the status of autoconfigured addresses,
752 		 * that is, this address might make other addresses detached.
753 		 */
754 		pfxlist_onlink_check();
755 		if (error == 0 && ia)
756 			EVENTHANDLER_INVOKE(ifaddr_event, ifp);
757 		break;
758 	}
759 
760 	case SIOCDIFADDR_IN6:
761 	{
762 		struct nd_prefix *pr;
763 
764 		/*
765 		 * If the address being deleted is the only one that owns
766 		 * the corresponding prefix, expire the prefix as well.
767 		 * XXX: theoretically, we don't have to worry about such
768 		 * relationship, since we separate the address management
769 		 * and the prefix management.  We do this, however, to provide
770 		 * as much backward compatibility as possible in terms of
771 		 * the ioctl operation.
772 		 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
773 		 */
774 		pr = ia->ia6_ndpr;
775 		in6_purgeaddr(&ia->ia_ifa);
776 		if (pr && pr->ndpr_refcnt == 0)
777 			prelist_remove(pr);
778 		EVENTHANDLER_INVOKE(ifaddr_event, ifp);
779 		break;
780 	}
781 
782 	default:
783 		if (ifp == NULL || ifp->if_ioctl == 0)
784 			return (EOPNOTSUPP);
785 		return ((*ifp->if_ioctl)(ifp, cmd, data));
786 	}
787 
788 	return (0);
789 }
790 
791 /*
792  * Update parameters of an IPv6 interface address.
793  * If necessary, a new entry is created and linked into address chains.
794  * This function is separated from in6_control().
795  * XXX: should this be performed under splnet()?
796  */
797 int
798 in6_update_ifa(ifp, ifra, ia, flags)
799 	struct ifnet *ifp;
800 	struct in6_aliasreq *ifra;
801 	struct in6_ifaddr *ia;
802 	int flags;
803 {
804 	int error = 0, hostIsNew = 0, plen = -1;
805 	struct in6_ifaddr *oia;
806 	struct sockaddr_in6 dst6;
807 	struct in6_addrlifetime *lt;
808 	struct in6_multi_mship *imm;
809 	struct in6_multi *in6m_sol;
810 	struct rtentry *rt;
811 	int delay;
812 	char ip6buf[INET6_ADDRSTRLEN];
813 
814 	/* Validate parameters */
815 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
816 		return (EINVAL);
817 
818 	/*
819 	 * The destination address for a p2p link must have a family
820 	 * of AF_UNSPEC or AF_INET6.
821 	 */
822 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
823 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
824 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
825 		return (EAFNOSUPPORT);
826 	/*
827 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
828 	 * does not carry fields other than sin6_len.
829 	 */
830 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
831 		return (EINVAL);
832 	/*
833 	 * Because the IPv6 address architecture is classless, we require
834 	 * users to specify a (non 0) prefix length (mask) for a new address.
835 	 * We also require the prefix (when specified) mask is valid, and thus
836 	 * reject a non-consecutive mask.
837 	 */
838 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
839 		return (EINVAL);
840 	if (ifra->ifra_prefixmask.sin6_len != 0) {
841 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
842 		    (u_char *)&ifra->ifra_prefixmask +
843 		    ifra->ifra_prefixmask.sin6_len);
844 		if (plen <= 0)
845 			return (EINVAL);
846 	} else {
847 		/*
848 		 * In this case, ia must not be NULL.  We just use its prefix
849 		 * length.
850 		 */
851 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
852 	}
853 	/*
854 	 * If the destination address on a p2p interface is specified,
855 	 * and the address is a scoped one, validate/set the scope
856 	 * zone identifier.
857 	 */
858 	dst6 = ifra->ifra_dstaddr;
859 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
860 	    (dst6.sin6_family == AF_INET6)) {
861 		struct in6_addr in6_tmp;
862 		u_int32_t zoneid;
863 
864 		in6_tmp = dst6.sin6_addr;
865 		if (in6_setscope(&in6_tmp, ifp, &zoneid))
866 			return (EINVAL); /* XXX: should be impossible */
867 
868 		if (dst6.sin6_scope_id != 0) {
869 			if (dst6.sin6_scope_id != zoneid)
870 				return (EINVAL);
871 		} else		/* user omit to specify the ID. */
872 			dst6.sin6_scope_id = zoneid;
873 
874 		/* convert into the internal form */
875 		if (sa6_embedscope(&dst6, 0))
876 			return (EINVAL); /* XXX: should be impossible */
877 	}
878 	/*
879 	 * The destination address can be specified only for a p2p or a
880 	 * loopback interface.  If specified, the corresponding prefix length
881 	 * must be 128.
882 	 */
883 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
884 		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
885 			/* XXX: noisy message */
886 			nd6log((LOG_INFO, "in6_update_ifa: a destination can "
887 			    "be specified for a p2p or a loopback IF only\n"));
888 			return (EINVAL);
889 		}
890 		if (plen != 128) {
891 			nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
892 			    "be 128 when dstaddr is specified\n"));
893 			return (EINVAL);
894 		}
895 	}
896 	/* lifetime consistency check */
897 	lt = &ifra->ifra_lifetime;
898 	if (lt->ia6t_pltime > lt->ia6t_vltime)
899 		return (EINVAL);
900 	if (lt->ia6t_vltime == 0) {
901 		/*
902 		 * the following log might be noisy, but this is a typical
903 		 * configuration mistake or a tool's bug.
904 		 */
905 		nd6log((LOG_INFO,
906 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
907 		    ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr)));
908 
909 		if (ia == NULL)
910 			return (0); /* there's nothing to do */
911 	}
912 
913 	/*
914 	 * If this is a new address, allocate a new ifaddr and link it
915 	 * into chains.
916 	 */
917 	if (ia == NULL) {
918 		hostIsNew = 1;
919 		/*
920 		 * When in6_update_ifa() is called in a process of a received
921 		 * RA, it is called under an interrupt context.  So, we should
922 		 * call malloc with M_NOWAIT.
923 		 */
924 		ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
925 		    M_NOWAIT);
926 		if (ia == NULL)
927 			return (ENOBUFS);
928 		bzero((caddr_t)ia, sizeof(*ia));
929 		/* Initialize the address and masks, and put time stamp */
930 		IFA_LOCK_INIT(&ia->ia_ifa);
931 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
932 		ia->ia_addr.sin6_family = AF_INET6;
933 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
934 		ia->ia6_createtime = time_second;
935 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
936 			/*
937 			 * XXX: some functions expect that ifa_dstaddr is not
938 			 * NULL for p2p interfaces.
939 			 */
940 			ia->ia_ifa.ifa_dstaddr =
941 			    (struct sockaddr *)&ia->ia_dstaddr;
942 		} else {
943 			ia->ia_ifa.ifa_dstaddr = NULL;
944 		}
945 		ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
946 
947 		ia->ia_ifp = ifp;
948 		if ((oia = in6_ifaddr) != NULL) {
949 			for ( ; oia->ia_next; oia = oia->ia_next)
950 				continue;
951 			oia->ia_next = ia;
952 		} else
953 			in6_ifaddr = ia;
954 
955 		ia->ia_ifa.ifa_refcnt = 1;
956 		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
957 	}
958 
959 	/* update timestamp */
960 	ia->ia6_updatetime = time_second;
961 
962 	/* set prefix mask */
963 	if (ifra->ifra_prefixmask.sin6_len) {
964 		/*
965 		 * We prohibit changing the prefix length of an existing
966 		 * address, because
967 		 * + such an operation should be rare in IPv6, and
968 		 * + the operation would confuse prefix management.
969 		 */
970 		if (ia->ia_prefixmask.sin6_len &&
971 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
972 			nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
973 			    " existing (%s) address should not be changed\n",
974 			    ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr)));
975 			error = EINVAL;
976 			goto unlink;
977 		}
978 		ia->ia_prefixmask = ifra->ifra_prefixmask;
979 	}
980 
981 	/*
982 	 * If a new destination address is specified, scrub the old one and
983 	 * install the new destination.  Note that the interface must be
984 	 * p2p or loopback (see the check above.)
985 	 */
986 	if (dst6.sin6_family == AF_INET6 &&
987 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
988 		int e;
989 
990 		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
991 		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
992 			nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
993 			    "a route to the old destination: %s\n",
994 			    ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr)));
995 			/* proceed anyway... */
996 		} else
997 			ia->ia_flags &= ~IFA_ROUTE;
998 		ia->ia_dstaddr = dst6;
999 	}
1000 
1001 	/*
1002 	 * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
1003 	 * to see if the address is deprecated or invalidated, but initialize
1004 	 * these members for applications.
1005 	 */
1006 	ia->ia6_lifetime = ifra->ifra_lifetime;
1007 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1008 		ia->ia6_lifetime.ia6t_expire =
1009 		    time_second + ia->ia6_lifetime.ia6t_vltime;
1010 	} else
1011 		ia->ia6_lifetime.ia6t_expire = 0;
1012 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1013 		ia->ia6_lifetime.ia6t_preferred =
1014 		    time_second + ia->ia6_lifetime.ia6t_pltime;
1015 	} else
1016 		ia->ia6_lifetime.ia6t_preferred = 0;
1017 
1018 	/* reset the interface and routing table appropriately. */
1019 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1020 		goto unlink;
1021 
1022 	/*
1023 	 * configure address flags.
1024 	 */
1025 	ia->ia6_flags = ifra->ifra_flags;
1026 	/*
1027 	 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1028 	 * userland, make it deprecated.
1029 	 */
1030 	if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1031 		ia->ia6_lifetime.ia6t_pltime = 0;
1032 		ia->ia6_lifetime.ia6t_preferred = time_second;
1033 	}
1034 	/*
1035 	 * Make the address tentative before joining multicast addresses,
1036 	 * so that corresponding MLD responses would not have a tentative
1037 	 * source address.
1038 	 */
1039 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/* safety */
1040 	if (hostIsNew && in6if_do_dad(ifp))
1041 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1042 
1043 	/*
1044 	 * We are done if we have simply modified an existing address.
1045 	 */
1046 	if (!hostIsNew)
1047 		return (error);
1048 
1049 	/*
1050 	 * Beyond this point, we should call in6_purgeaddr upon an error,
1051 	 * not just go to unlink.
1052 	 */
1053 
1054 	/* Join necessary multicast groups */
1055 	in6m_sol = NULL;
1056 	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1057 		struct sockaddr_in6 mltaddr, mltmask;
1058 		struct in6_addr llsol;
1059 
1060 		/* join solicited multicast addr for new host id */
1061 		bzero(&llsol, sizeof(struct in6_addr));
1062 		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1063 		llsol.s6_addr32[1] = 0;
1064 		llsol.s6_addr32[2] = htonl(1);
1065 		llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
1066 		llsol.s6_addr8[12] = 0xff;
1067 		if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1068 			/* XXX: should not happen */
1069 			log(LOG_ERR, "in6_update_ifa: "
1070 			    "in6_setscope failed\n");
1071 			goto cleanup;
1072 		}
1073 		delay = 0;
1074 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1075 			/*
1076 			 * We need a random delay for DAD on the address
1077 			 * being configured.  It also means delaying
1078 			 * transmission of the corresponding MLD report to
1079 			 * avoid report collision.
1080 			 * [draft-ietf-ipv6-rfc2462bis-02.txt]
1081 			 */
1082 			delay = arc4random() %
1083 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1084 		}
1085 		imm = in6_joingroup(ifp, &llsol, &error, delay);
1086 		if (error != 0) {
1087 			nd6log((LOG_WARNING,
1088 			    "in6_update_ifa: addmulti failed for "
1089 			    "%s on %s (errno=%d)\n",
1090 			    ip6_sprintf(ip6buf, &llsol), if_name(ifp),
1091 			    error));
1092 			in6_purgeaddr((struct ifaddr *)ia);
1093 			return (error);
1094 		}
1095 		in6m_sol = imm->i6mm_maddr;
1096 
1097 		bzero(&mltmask, sizeof(mltmask));
1098 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1099 		mltmask.sin6_family = AF_INET6;
1100 		mltmask.sin6_addr = in6mask32;
1101 #define	MLTMASK_LEN  4	/* mltmask's masklen (=32bit=4octet) */
1102 
1103 		/*
1104 		 * join link-local all-nodes address
1105 		 */
1106 		bzero(&mltaddr, sizeof(mltaddr));
1107 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1108 		mltaddr.sin6_family = AF_INET6;
1109 		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1110 		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) !=
1111 		    0)
1112 			goto cleanup; /* XXX: should not fail */
1113 
1114 		/*
1115 		 * XXX: do we really need this automatic routes?
1116 		 * We should probably reconsider this stuff.  Most applications
1117 		 * actually do not need the routes, since they usually specify
1118 		 * the outgoing interface.
1119 		 */
1120 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1121 		if (rt) {
1122 			if (memcmp(&mltaddr.sin6_addr,
1123 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1124 			    MLTMASK_LEN)) {
1125 				RTFREE_LOCKED(rt);
1126 				rt = NULL;
1127 			}
1128 		}
1129 		if (!rt) {
1130 			/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1131 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1132 			    (struct sockaddr *)&ia->ia_addr,
1133 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1134 			    (struct rtentry **)0);
1135 			if (error)
1136 				goto cleanup;
1137 		} else
1138 			RTFREE_LOCKED(rt);
1139 
1140 		/*
1141 		 * XXX: do we really need this automatic routes?
1142 		 * We should probably reconsider this stuff.  Most applications
1143 		 * actually do not need the routes, since they usually specify
1144 		 * the outgoing interface.
1145 		 */
1146 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1147 		if (rt) {
1148 			/* XXX: only works in !SCOPEDROUTING case. */
1149 			if (memcmp(&mltaddr.sin6_addr,
1150 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1151 			    MLTMASK_LEN)) {
1152 				RTFREE_LOCKED(rt);
1153 				rt = NULL;
1154 			}
1155 		}
1156 		if (!rt) {
1157 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1158 			    (struct sockaddr *)&ia->ia_addr,
1159 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1160 			    (struct rtentry **)0);
1161 			if (error)
1162 				goto cleanup;
1163 		} else {
1164 			RTFREE_LOCKED(rt);
1165 		}
1166 
1167 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1168 		if (!imm) {
1169 			nd6log((LOG_WARNING,
1170 			    "in6_update_ifa: addmulti failed for "
1171 			    "%s on %s (errno=%d)\n",
1172 			    ip6_sprintf(ip6buf, &mltaddr.sin6_addr),
1173 			    if_name(ifp), error));
1174 			goto cleanup;
1175 		}
1176 
1177 		/*
1178 		 * join node information group address
1179 		 */
1180 #define hostnamelen	strlen(hostname)
1181 		delay = 0;
1182 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1183 			/*
1184 			 * The spec doesn't say anything about delay for this
1185 			 * group, but the same logic should apply.
1186 			 */
1187 			delay = arc4random() %
1188 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1189 		}
1190 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1191 		    == 0) {
1192 			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1193 			    delay); /* XXX jinmei */
1194 			if (!imm) {
1195 				nd6log((LOG_WARNING, "in6_update_ifa: "
1196 				    "addmulti failed for %s on %s "
1197 				    "(errno=%d)\n",
1198 				    ip6_sprintf(ip6buf, &mltaddr.sin6_addr),
1199 				    if_name(ifp), error));
1200 				/* XXX not very fatal, go on... */
1201 			}
1202 		}
1203 #undef hostnamelen
1204 
1205 		/*
1206 		 * join interface-local all-nodes address.
1207 		 * (ff01::1%ifN, and ff01::%ifN/32)
1208 		 */
1209 		mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1210 		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL))
1211 		    != 0)
1212 			goto cleanup; /* XXX: should not fail */
1213 		/* XXX: again, do we really need the route? */
1214 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1215 		if (rt) {
1216 			if (memcmp(&mltaddr.sin6_addr,
1217 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1218 			    MLTMASK_LEN)) {
1219 				RTFREE_LOCKED(rt);
1220 				rt = NULL;
1221 			}
1222 		}
1223 		if (!rt) {
1224 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1225 			    (struct sockaddr *)&ia->ia_addr,
1226 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1227 			    (struct rtentry **)0);
1228 			if (error)
1229 				goto cleanup;
1230 		} else
1231 			RTFREE_LOCKED(rt);
1232 
1233 		/* XXX: again, do we really need the route? */
1234 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1235 		if (rt) {
1236 			if (memcmp(&mltaddr.sin6_addr,
1237 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1238 			    MLTMASK_LEN)) {
1239 				RTFREE_LOCKED(rt);
1240 				rt = NULL;
1241 			}
1242 		}
1243 		if (!rt) {
1244 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1245 			    (struct sockaddr *)&ia->ia_addr,
1246 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1247 			    (struct rtentry **)0);
1248 			if (error)
1249 				goto cleanup;
1250 		} else {
1251 			RTFREE_LOCKED(rt);
1252 		}
1253 
1254 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1255 		if (!imm) {
1256 			nd6log((LOG_WARNING, "in6_update_ifa: "
1257 			    "addmulti failed for %s on %s "
1258 			    "(errno=%d)\n",
1259 			    ip6_sprintf(ip6buf, &mltaddr.sin6_addr),
1260 			    if_name(ifp), error));
1261 			goto cleanup;
1262 		}
1263 #undef	MLTMASK_LEN
1264 	}
1265 
1266 	/*
1267 	 * Perform DAD, if needed.
1268 	 * XXX It may be of use, if we can administratively
1269 	 * disable DAD.
1270 	 */
1271 	if (hostIsNew && in6if_do_dad(ifp) &&
1272 	    ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1273 	    (ia->ia6_flags & IN6_IFF_TENTATIVE))
1274 	{
1275 		int mindelay, maxdelay;
1276 
1277 		delay = 0;
1278 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1279 			/*
1280 			 * We need to impose a delay before sending an NS
1281 			 * for DAD.  Check if we also needed a delay for the
1282 			 * corresponding MLD message.  If we did, the delay
1283 			 * should be larger than the MLD delay (this could be
1284 			 * relaxed a bit, but this simple logic is at least
1285 			 * safe).
1286 			 */
1287 			mindelay = 0;
1288 			if (in6m_sol != NULL &&
1289 			    in6m_sol->in6m_state == MLD_REPORTPENDING) {
1290 				mindelay = in6m_sol->in6m_timer;
1291 			}
1292 			maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1293 			if (maxdelay - mindelay == 0)
1294 				delay = 0;
1295 			else {
1296 				delay =
1297 				    (arc4random() % (maxdelay - mindelay)) +
1298 				    mindelay;
1299 			}
1300 		}
1301 		nd6_dad_start((struct ifaddr *)ia, delay);
1302 	}
1303 
1304 	return (error);
1305 
1306   unlink:
1307 	/*
1308 	 * XXX: if a change of an existing address failed, keep the entry
1309 	 * anyway.
1310 	 */
1311 	if (hostIsNew)
1312 		in6_unlink_ifa(ia, ifp);
1313 	return (error);
1314 
1315   cleanup:
1316 	in6_purgeaddr(&ia->ia_ifa);
1317 	return error;
1318 }
1319 
1320 void
1321 in6_purgeaddr(ifa)
1322 	struct ifaddr *ifa;
1323 {
1324 	struct ifnet *ifp = ifa->ifa_ifp;
1325 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1326 	char ip6buf[INET6_ADDRSTRLEN];
1327 
1328 	/* stop DAD processing */
1329 	nd6_dad_stop(ifa);
1330 
1331 	/*
1332 	 * delete route to the destination of the address being purged.
1333 	 * The interface must be p2p or loopback in this case.
1334 	 */
1335 	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1336 		int e;
1337 
1338 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1339 		    != 0) {
1340 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1341 			    "a route to the p2p destination: %s on %s, "
1342 			    "errno=%d\n",
1343 			    ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr),
1344 			    if_name(ifp), e);
1345 			/* proceed anyway... */
1346 		} else
1347 			ia->ia_flags &= ~IFA_ROUTE;
1348 	}
1349 
1350 	/* Remove ownaddr's loopback rtentry, if it exists. */
1351 	in6_ifremloop(&(ia->ia_ifa));
1352 
1353 	if (ifp->if_flags & IFF_MULTICAST) {
1354 		/*
1355 		 * delete solicited multicast addr for deleting host id
1356 		 */
1357 		struct in6_multi *in6m;
1358 		struct in6_addr llsol;
1359 		bzero(&llsol, sizeof(struct in6_addr));
1360 		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1361 		llsol.s6_addr32[1] = 0;
1362 		llsol.s6_addr32[2] = htonl(1);
1363 		llsol.s6_addr32[3] =
1364 			ia->ia_addr.sin6_addr.s6_addr32[3];
1365 		llsol.s6_addr8[12] = 0xff;
1366 		(void)in6_setscope(&llsol, ifp, NULL); /* XXX proceed anyway */
1367 
1368 		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1369 		if (in6m)
1370 			in6_delmulti(in6m);
1371 	}
1372 
1373 	in6_unlink_ifa(ia, ifp);
1374 }
1375 
1376 static void
1377 in6_unlink_ifa(ia, ifp)
1378 	struct in6_ifaddr *ia;
1379 	struct ifnet *ifp;
1380 {
1381 	struct in6_ifaddr *oia;
1382 	int	s = splnet();
1383 
1384 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1385 
1386 	oia = ia;
1387 	if (oia == (ia = in6_ifaddr))
1388 		in6_ifaddr = ia->ia_next;
1389 	else {
1390 		while (ia->ia_next && (ia->ia_next != oia))
1391 			ia = ia->ia_next;
1392 		if (ia->ia_next)
1393 			ia->ia_next = oia->ia_next;
1394 		else {
1395 			/* search failed */
1396 			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * Release the reference to the base prefix.  There should be a
1402 	 * positive reference.
1403 	 */
1404 	if (oia->ia6_ndpr == NULL) {
1405 		nd6log((LOG_NOTICE,
1406 		    "in6_unlink_ifa: autoconf'ed address "
1407 		    "%p has no prefix\n", oia));
1408 	} else {
1409 		oia->ia6_ndpr->ndpr_refcnt--;
1410 		oia->ia6_ndpr = NULL;
1411 	}
1412 
1413 	/*
1414 	 * Also, if the address being removed is autoconf'ed, call
1415 	 * pfxlist_onlink_check() since the release might affect the status of
1416 	 * other (detached) addresses.
1417 	 */
1418 	if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) {
1419 		pfxlist_onlink_check();
1420 	}
1421 
1422 	/*
1423 	 * release another refcnt for the link from in6_ifaddr.
1424 	 * Note that we should decrement the refcnt at least once for all *BSD.
1425 	 */
1426 	IFAFREE(&oia->ia_ifa);
1427 
1428 	splx(s);
1429 }
1430 
1431 void
1432 in6_purgeif(ifp)
1433 	struct ifnet *ifp;
1434 {
1435 	struct ifaddr *ifa, *nifa;
1436 
1437 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
1438 		nifa = TAILQ_NEXT(ifa, ifa_list);
1439 		if (ifa->ifa_addr->sa_family != AF_INET6)
1440 			continue;
1441 		in6_purgeaddr(ifa);
1442 	}
1443 
1444 	in6_ifdetach(ifp);
1445 }
1446 
1447 /*
1448  * SIOC[GAD]LIFADDR.
1449  *	SIOCGLIFADDR: get first address. (?)
1450  *	SIOCGLIFADDR with IFLR_PREFIX:
1451  *		get first address that matches the specified prefix.
1452  *	SIOCALIFADDR: add the specified address.
1453  *	SIOCALIFADDR with IFLR_PREFIX:
1454  *		add the specified prefix, filling hostid part from
1455  *		the first link-local address.  prefixlen must be <= 64.
1456  *	SIOCDLIFADDR: delete the specified address.
1457  *	SIOCDLIFADDR with IFLR_PREFIX:
1458  *		delete the first address that matches the specified prefix.
1459  * return values:
1460  *	EINVAL on invalid parameters
1461  *	EADDRNOTAVAIL on prefix match failed/specified address not found
1462  *	other values may be returned from in6_ioctl()
1463  *
1464  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1465  * this is to accomodate address naming scheme other than RFC2374,
1466  * in the future.
1467  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1468  * address encoding scheme. (see figure on page 8)
1469  */
1470 static int
1471 in6_lifaddr_ioctl(so, cmd, data, ifp, td)
1472 	struct socket *so;
1473 	u_long cmd;
1474 	caddr_t	data;
1475 	struct ifnet *ifp;
1476 	struct thread *td;
1477 {
1478 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1479 	struct ifaddr *ifa;
1480 	struct sockaddr *sa;
1481 
1482 	/* sanity checks */
1483 	if (!data || !ifp) {
1484 		panic("invalid argument to in6_lifaddr_ioctl");
1485 		/* NOTREACHED */
1486 	}
1487 
1488 	switch (cmd) {
1489 	case SIOCGLIFADDR:
1490 		/* address must be specified on GET with IFLR_PREFIX */
1491 		if ((iflr->flags & IFLR_PREFIX) == 0)
1492 			break;
1493 		/* FALLTHROUGH */
1494 	case SIOCALIFADDR:
1495 	case SIOCDLIFADDR:
1496 		/* address must be specified on ADD and DELETE */
1497 		sa = (struct sockaddr *)&iflr->addr;
1498 		if (sa->sa_family != AF_INET6)
1499 			return EINVAL;
1500 		if (sa->sa_len != sizeof(struct sockaddr_in6))
1501 			return EINVAL;
1502 		/* XXX need improvement */
1503 		sa = (struct sockaddr *)&iflr->dstaddr;
1504 		if (sa->sa_family && sa->sa_family != AF_INET6)
1505 			return EINVAL;
1506 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1507 			return EINVAL;
1508 		break;
1509 	default: /* shouldn't happen */
1510 #if 0
1511 		panic("invalid cmd to in6_lifaddr_ioctl");
1512 		/* NOTREACHED */
1513 #else
1514 		return EOPNOTSUPP;
1515 #endif
1516 	}
1517 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1518 		return EINVAL;
1519 
1520 	switch (cmd) {
1521 	case SIOCALIFADDR:
1522 	    {
1523 		struct in6_aliasreq ifra;
1524 		struct in6_addr *hostid = NULL;
1525 		int prefixlen;
1526 
1527 		if ((iflr->flags & IFLR_PREFIX) != 0) {
1528 			struct sockaddr_in6 *sin6;
1529 
1530 			/*
1531 			 * hostid is to fill in the hostid part of the
1532 			 * address.  hostid points to the first link-local
1533 			 * address attached to the interface.
1534 			 */
1535 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1536 			if (!ifa)
1537 				return EADDRNOTAVAIL;
1538 			hostid = IFA_IN6(ifa);
1539 
1540 		 	/* prefixlen must be <= 64. */
1541 			if (64 < iflr->prefixlen)
1542 				return EINVAL;
1543 			prefixlen = iflr->prefixlen;
1544 
1545 			/* hostid part must be zero. */
1546 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1547 			if (sin6->sin6_addr.s6_addr32[2] != 0 ||
1548 			    sin6->sin6_addr.s6_addr32[3] != 0) {
1549 				return EINVAL;
1550 			}
1551 		} else
1552 			prefixlen = iflr->prefixlen;
1553 
1554 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1555 		bzero(&ifra, sizeof(ifra));
1556 		bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1557 
1558 		bcopy(&iflr->addr, &ifra.ifra_addr,
1559 		    ((struct sockaddr *)&iflr->addr)->sa_len);
1560 		if (hostid) {
1561 			/* fill in hostid part */
1562 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1563 			    hostid->s6_addr32[2];
1564 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1565 			    hostid->s6_addr32[3];
1566 		}
1567 
1568 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1569 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1570 			    ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1571 			if (hostid) {
1572 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1573 				    hostid->s6_addr32[2];
1574 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1575 				    hostid->s6_addr32[3];
1576 			}
1577 		}
1578 
1579 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1580 		in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1581 
1582 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1583 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1584 	    }
1585 	case SIOCGLIFADDR:
1586 	case SIOCDLIFADDR:
1587 	    {
1588 		struct in6_ifaddr *ia;
1589 		struct in6_addr mask, candidate, match;
1590 		struct sockaddr_in6 *sin6;
1591 		int cmp;
1592 
1593 		bzero(&mask, sizeof(mask));
1594 		if (iflr->flags & IFLR_PREFIX) {
1595 			/* lookup a prefix rather than address. */
1596 			in6_prefixlen2mask(&mask, iflr->prefixlen);
1597 
1598 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1599 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1600 			match.s6_addr32[0] &= mask.s6_addr32[0];
1601 			match.s6_addr32[1] &= mask.s6_addr32[1];
1602 			match.s6_addr32[2] &= mask.s6_addr32[2];
1603 			match.s6_addr32[3] &= mask.s6_addr32[3];
1604 
1605 			/* if you set extra bits, that's wrong */
1606 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1607 				return EINVAL;
1608 
1609 			cmp = 1;
1610 		} else {
1611 			if (cmd == SIOCGLIFADDR) {
1612 				/* on getting an address, take the 1st match */
1613 				cmp = 0;	/* XXX */
1614 			} else {
1615 				/* on deleting an address, do exact match */
1616 				in6_prefixlen2mask(&mask, 128);
1617 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1618 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1619 
1620 				cmp = 1;
1621 			}
1622 		}
1623 
1624 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1625 			if (ifa->ifa_addr->sa_family != AF_INET6)
1626 				continue;
1627 			if (!cmp)
1628 				break;
1629 
1630 			/*
1631 			 * XXX: this is adhoc, but is necessary to allow
1632 			 * a user to specify fe80::/64 (not /10) for a
1633 			 * link-local address.
1634 			 */
1635 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1636 			in6_clearscope(&candidate);
1637 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1638 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1639 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1640 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1641 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1642 				break;
1643 		}
1644 		if (!ifa)
1645 			return EADDRNOTAVAIL;
1646 		ia = ifa2ia6(ifa);
1647 
1648 		if (cmd == SIOCGLIFADDR) {
1649 			int error;
1650 
1651 			/* fill in the if_laddrreq structure */
1652 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1653 			error = sa6_recoverscope(
1654 			    (struct sockaddr_in6 *)&iflr->addr);
1655 			if (error != 0)
1656 				return (error);
1657 
1658 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1659 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1660 				    ia->ia_dstaddr.sin6_len);
1661 				error = sa6_recoverscope(
1662 				    (struct sockaddr_in6 *)&iflr->dstaddr);
1663 				if (error != 0)
1664 					return (error);
1665 			} else
1666 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1667 
1668 			iflr->prefixlen =
1669 			    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1670 
1671 			iflr->flags = ia->ia6_flags;	/* XXX */
1672 
1673 			return 0;
1674 		} else {
1675 			struct in6_aliasreq ifra;
1676 
1677 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1678 			bzero(&ifra, sizeof(ifra));
1679 			bcopy(iflr->iflr_name, ifra.ifra_name,
1680 			    sizeof(ifra.ifra_name));
1681 
1682 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1683 			    ia->ia_addr.sin6_len);
1684 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1685 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1686 				    ia->ia_dstaddr.sin6_len);
1687 			} else {
1688 				bzero(&ifra.ifra_dstaddr,
1689 				    sizeof(ifra.ifra_dstaddr));
1690 			}
1691 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1692 			    ia->ia_prefixmask.sin6_len);
1693 
1694 			ifra.ifra_flags = ia->ia6_flags;
1695 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1696 			    ifp, td);
1697 		}
1698 	    }
1699 	}
1700 
1701 	return EOPNOTSUPP;	/* just for safety */
1702 }
1703 
1704 /*
1705  * Initialize an interface's intetnet6 address
1706  * and routing table entry.
1707  */
1708 static int
1709 in6_ifinit(ifp, ia, sin6, newhost)
1710 	struct ifnet *ifp;
1711 	struct in6_ifaddr *ia;
1712 	struct sockaddr_in6 *sin6;
1713 	int newhost;
1714 {
1715 	int	error = 0, plen, ifacount = 0;
1716 	int	s = splimp();
1717 	struct ifaddr *ifa;
1718 
1719 	/*
1720 	 * Give the interface a chance to initialize
1721 	 * if this is its first address,
1722 	 * and to validate the address if necessary.
1723 	 */
1724 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1725 		if (ifa->ifa_addr->sa_family != AF_INET6)
1726 			continue;
1727 		ifacount++;
1728 	}
1729 
1730 	ia->ia_addr = *sin6;
1731 
1732 	if (ifacount <= 1 && ifp->if_ioctl) {
1733 		IFF_LOCKGIANT(ifp);
1734 		error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
1735 		IFF_UNLOCKGIANT(ifp);
1736 		if (error) {
1737 			splx(s);
1738 			return (error);
1739 		}
1740 	}
1741 	splx(s);
1742 
1743 	ia->ia_ifa.ifa_metric = ifp->if_metric;
1744 
1745 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1746 
1747 	if (newhost) {
1748 		/*
1749 		 * set the rtrequest function to create llinfo.  It also
1750 		 * adjust outgoing interface of the route for the local
1751 		 * address when called via in6_ifaddloop() below.
1752 		 */
1753 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1754 	}
1755 
1756 	/*
1757 	 * Special case:
1758 	 * If a new destination address is specified for a point-to-point
1759 	 * interface, install a route to the destination as an interface
1760 	 * direct route.  In addition, if the link is expected to have neighbor
1761 	 * cache entries, specify RTF_LLINFO so that a cache entry for the
1762 	 * destination address will be created.
1763 	 * created
1764 	 * XXX: the logic below rejects assigning multiple addresses on a p2p
1765 	 * interface that share the same destination.
1766 	 */
1767 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1768 	if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 &&
1769 	    ia->ia_dstaddr.sin6_family == AF_INET6) {
1770 		int rtflags = RTF_UP | RTF_HOST;
1771 		struct rtentry *rt = NULL, **rtp = NULL;
1772 
1773 		if (nd6_need_cache(ifp) != 0) {
1774 			rtflags |= RTF_LLINFO;
1775 			rtp = &rt;
1776 		}
1777 
1778 		error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr,
1779 		    (struct sockaddr *)&ia->ia_addr,
1780 		    (struct sockaddr *)&ia->ia_prefixmask,
1781 		    ia->ia_flags | rtflags, rtp);
1782 		if (error != 0)
1783 			return (error);
1784 		if (rt != NULL) {
1785 			struct llinfo_nd6 *ln;
1786 
1787 			RT_LOCK(rt);
1788 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1789 			if (ln != NULL) {
1790 				/*
1791 				 * Set the state to STALE because we don't
1792 				 * have to perform address resolution on this
1793 				 * link.
1794 				 */
1795 				ln->ln_state = ND6_LLINFO_STALE;
1796 			}
1797 			RT_REMREF(rt);
1798 			RT_UNLOCK(rt);
1799 		}
1800 		ia->ia_flags |= IFA_ROUTE;
1801 	}
1802 	if (plen < 128) {
1803 		/*
1804 		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1805 		 */
1806 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1807 	}
1808 
1809 	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1810 	if (newhost)
1811 		in6_ifaddloop(&(ia->ia_ifa));
1812 
1813 	return (error);
1814 }
1815 
1816 struct in6_multi_mship *
1817 in6_joingroup(ifp, addr, errorp, delay)
1818 	struct ifnet *ifp;
1819 	struct in6_addr *addr;
1820 	int *errorp;
1821 	int delay;
1822 {
1823 	struct in6_multi_mship *imm;
1824 
1825 	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1826 	if (!imm) {
1827 		*errorp = ENOBUFS;
1828 		return NULL;
1829 	}
1830 	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay);
1831 	if (!imm->i6mm_maddr) {
1832 		/* *errorp is alrady set */
1833 		free(imm, M_IP6MADDR);
1834 		return NULL;
1835 	}
1836 	return imm;
1837 }
1838 
1839 int
1840 in6_leavegroup(imm)
1841 	struct in6_multi_mship *imm;
1842 {
1843 
1844 	if (imm->i6mm_maddr)
1845 		in6_delmulti(imm->i6mm_maddr);
1846 	free(imm,  M_IP6MADDR);
1847 	return 0;
1848 }
1849 
1850 /*
1851  * Find an IPv6 interface link-local address specific to an interface.
1852  */
1853 struct in6_ifaddr *
1854 in6ifa_ifpforlinklocal(ifp, ignoreflags)
1855 	struct ifnet *ifp;
1856 	int ignoreflags;
1857 {
1858 	struct ifaddr *ifa;
1859 
1860 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1861 		if (ifa->ifa_addr->sa_family != AF_INET6)
1862 			continue;
1863 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1864 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1865 			     ignoreflags) != 0)
1866 				continue;
1867 			break;
1868 		}
1869 	}
1870 
1871 	return ((struct in6_ifaddr *)ifa);
1872 }
1873 
1874 
1875 /*
1876  * find the internet address corresponding to a given interface and address.
1877  */
1878 struct in6_ifaddr *
1879 in6ifa_ifpwithaddr(ifp, addr)
1880 	struct ifnet *ifp;
1881 	struct in6_addr *addr;
1882 {
1883 	struct ifaddr *ifa;
1884 
1885 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1886 		if (ifa->ifa_addr->sa_family != AF_INET6)
1887 			continue;
1888 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1889 			break;
1890 	}
1891 
1892 	return ((struct in6_ifaddr *)ifa);
1893 }
1894 
1895 /*
1896  * Convert IP6 address to printable (loggable) representation. Caller
1897  * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long.
1898  */
1899 static char digits[] = "0123456789abcdef";
1900 char *
1901 ip6_sprintf(char *ip6buf, const struct in6_addr *addr)
1902 {
1903 	int i;
1904 	char *cp;
1905 	const u_int16_t *a = (const u_int16_t *)addr;
1906 	const u_int8_t *d;
1907 	int dcolon = 0, zero = 0;
1908 
1909 	cp = ip6buf;
1910 
1911 	for (i = 0; i < 8; i++) {
1912 		if (dcolon == 1) {
1913 			if (*a == 0) {
1914 				if (i == 7)
1915 					*cp++ = ':';
1916 				a++;
1917 				continue;
1918 			} else
1919 				dcolon = 2;
1920 		}
1921 		if (*a == 0) {
1922 			if (dcolon == 0 && *(a + 1) == 0) {
1923 				if (i == 0)
1924 					*cp++ = ':';
1925 				*cp++ = ':';
1926 				dcolon = 1;
1927 			} else {
1928 				*cp++ = '0';
1929 				*cp++ = ':';
1930 			}
1931 			a++;
1932 			continue;
1933 		}
1934 		d = (const u_char *)a;
1935 		/* Try to eliminate leading zeros in printout like in :0001. */
1936 		zero = 1;
1937 		*cp = digits[*d >> 4];
1938 		if (*cp != '0') {
1939 			zero = 0;
1940 			cp++;
1941 		}
1942 		*cp = digits[*d++ & 0xf];
1943 		if (zero == 0 || (*cp != '0')) {
1944 			zero = 0;
1945 			cp++;
1946 		}
1947 		*cp = digits[*d >> 4];
1948 		if (zero == 0 || (*cp != '0')) {
1949 			zero = 0;
1950 			cp++;
1951 		}
1952 		*cp++ = digits[*d & 0xf];
1953 		*cp++ = ':';
1954 		a++;
1955 	}
1956 	*--cp = '\0';
1957 	return (ip6buf);
1958 }
1959 
1960 int
1961 in6_localaddr(in6)
1962 	struct in6_addr *in6;
1963 {
1964 	struct in6_ifaddr *ia;
1965 
1966 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1967 		return 1;
1968 
1969 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1970 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1971 		    &ia->ia_prefixmask.sin6_addr)) {
1972 			return 1;
1973 		}
1974 	}
1975 
1976 	return (0);
1977 }
1978 
1979 int
1980 in6_is_addr_deprecated(sa6)
1981 	struct sockaddr_in6 *sa6;
1982 {
1983 	struct in6_ifaddr *ia;
1984 
1985 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1986 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1987 				       &sa6->sin6_addr) &&
1988 		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1989 			return (1); /* true */
1990 
1991 		/* XXX: do we still have to go thru the rest of the list? */
1992 	}
1993 
1994 	return (0);		/* false */
1995 }
1996 
1997 /*
1998  * return length of part which dst and src are equal
1999  * hard coding...
2000  */
2001 int
2002 in6_matchlen(src, dst)
2003 struct in6_addr *src, *dst;
2004 {
2005 	int match = 0;
2006 	u_char *s = (u_char *)src, *d = (u_char *)dst;
2007 	u_char *lim = s + 16, r;
2008 
2009 	while (s < lim)
2010 		if ((r = (*d++ ^ *s++)) != 0) {
2011 			while (r < 128) {
2012 				match++;
2013 				r <<= 1;
2014 			}
2015 			break;
2016 		} else
2017 			match += 8;
2018 	return match;
2019 }
2020 
2021 /* XXX: to be scope conscious */
2022 int
2023 in6_are_prefix_equal(p1, p2, len)
2024 	struct in6_addr *p1, *p2;
2025 	int len;
2026 {
2027 	int bytelen, bitlen;
2028 
2029 	/* sanity check */
2030 	if (0 > len || len > 128) {
2031 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2032 		    len);
2033 		return (0);
2034 	}
2035 
2036 	bytelen = len / 8;
2037 	bitlen = len % 8;
2038 
2039 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2040 		return (0);
2041 	if (bitlen != 0 &&
2042 	    p1->s6_addr[bytelen] >> (8 - bitlen) !=
2043 	    p2->s6_addr[bytelen] >> (8 - bitlen))
2044 		return (0);
2045 
2046 	return (1);
2047 }
2048 
2049 void
2050 in6_prefixlen2mask(maskp, len)
2051 	struct in6_addr *maskp;
2052 	int len;
2053 {
2054 	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2055 	int bytelen, bitlen, i;
2056 
2057 	/* sanity check */
2058 	if (0 > len || len > 128) {
2059 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2060 		    len);
2061 		return;
2062 	}
2063 
2064 	bzero(maskp, sizeof(*maskp));
2065 	bytelen = len / 8;
2066 	bitlen = len % 8;
2067 	for (i = 0; i < bytelen; i++)
2068 		maskp->s6_addr[i] = 0xff;
2069 	if (bitlen)
2070 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2071 }
2072 
2073 /*
2074  * return the best address out of the same scope. if no address was
2075  * found, return the first valid address from designated IF.
2076  */
2077 struct in6_ifaddr *
2078 in6_ifawithifp(ifp, dst)
2079 	struct ifnet *ifp;
2080 	struct in6_addr *dst;
2081 {
2082 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2083 	struct ifaddr *ifa;
2084 	struct in6_ifaddr *besta = 0;
2085 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
2086 
2087 	dep[0] = dep[1] = NULL;
2088 
2089 	/*
2090 	 * We first look for addresses in the same scope.
2091 	 * If there is one, return it.
2092 	 * If two or more, return one which matches the dst longest.
2093 	 * If none, return one of global addresses assigned other ifs.
2094 	 */
2095 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2096 		if (ifa->ifa_addr->sa_family != AF_INET6)
2097 			continue;
2098 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2099 			continue; /* XXX: is there any case to allow anycast? */
2100 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2101 			continue; /* don't use this interface */
2102 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2103 			continue;
2104 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2105 			if (ip6_use_deprecated)
2106 				dep[0] = (struct in6_ifaddr *)ifa;
2107 			continue;
2108 		}
2109 
2110 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2111 			/*
2112 			 * call in6_matchlen() as few as possible
2113 			 */
2114 			if (besta) {
2115 				if (blen == -1)
2116 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2117 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2118 				if (tlen > blen) {
2119 					blen = tlen;
2120 					besta = (struct in6_ifaddr *)ifa;
2121 				}
2122 			} else
2123 				besta = (struct in6_ifaddr *)ifa;
2124 		}
2125 	}
2126 	if (besta)
2127 		return (besta);
2128 
2129 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2130 		if (ifa->ifa_addr->sa_family != AF_INET6)
2131 			continue;
2132 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2133 			continue; /* XXX: is there any case to allow anycast? */
2134 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2135 			continue; /* don't use this interface */
2136 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2137 			continue;
2138 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2139 			if (ip6_use_deprecated)
2140 				dep[1] = (struct in6_ifaddr *)ifa;
2141 			continue;
2142 		}
2143 
2144 		return (struct in6_ifaddr *)ifa;
2145 	}
2146 
2147 	/* use the last-resort values, that are, deprecated addresses */
2148 	if (dep[0])
2149 		return dep[0];
2150 	if (dep[1])
2151 		return dep[1];
2152 
2153 	return NULL;
2154 }
2155 
2156 /*
2157  * perform DAD when interface becomes IFF_UP.
2158  */
2159 void
2160 in6_if_up(ifp)
2161 	struct ifnet *ifp;
2162 {
2163 	struct ifaddr *ifa;
2164 	struct in6_ifaddr *ia;
2165 
2166 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2167 		if (ifa->ifa_addr->sa_family != AF_INET6)
2168 			continue;
2169 		ia = (struct in6_ifaddr *)ifa;
2170 		if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2171 			/*
2172 			 * The TENTATIVE flag was likely set by hand
2173 			 * beforehand, implicitly indicating the need for DAD.
2174 			 * We may be able to skip the random delay in this
2175 			 * case, but we impose delays just in case.
2176 			 */
2177 			nd6_dad_start(ifa,
2178 			    arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * special cases, like 6to4, are handled in in6_ifattach
2184 	 */
2185 	in6_ifattach(ifp, NULL);
2186 }
2187 
2188 int
2189 in6if_do_dad(ifp)
2190 	struct ifnet *ifp;
2191 {
2192 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2193 		return (0);
2194 
2195 	switch (ifp->if_type) {
2196 #ifdef IFT_DUMMY
2197 	case IFT_DUMMY:
2198 #endif
2199 	case IFT_FAITH:
2200 		/*
2201 		 * These interfaces do not have the IFF_LOOPBACK flag,
2202 		 * but loop packets back.  We do not have to do DAD on such
2203 		 * interfaces.  We should even omit it, because loop-backed
2204 		 * NS would confuse the DAD procedure.
2205 		 */
2206 		return (0);
2207 	default:
2208 		/*
2209 		 * Our DAD routine requires the interface up and running.
2210 		 * However, some interfaces can be up before the RUNNING
2211 		 * status.  Additionaly, users may try to assign addresses
2212 		 * before the interface becomes up (or running).
2213 		 * We simply skip DAD in such a case as a work around.
2214 		 * XXX: we should rather mark "tentative" on such addresses,
2215 		 * and do DAD after the interface becomes ready.
2216 		 */
2217 		if (!((ifp->if_flags & IFF_UP) &&
2218 		    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
2219 			return (0);
2220 
2221 		return (1);
2222 	}
2223 }
2224 
2225 /*
2226  * Calculate max IPv6 MTU through all the interfaces and store it
2227  * to in6_maxmtu.
2228  */
2229 void
2230 in6_setmaxmtu()
2231 {
2232 	unsigned long maxmtu = 0;
2233 	struct ifnet *ifp;
2234 
2235 	IFNET_RLOCK();
2236 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
2237 		/* this function can be called during ifnet initialization */
2238 		if (!ifp->if_afdata[AF_INET6])
2239 			continue;
2240 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2241 		    IN6_LINKMTU(ifp) > maxmtu)
2242 			maxmtu = IN6_LINKMTU(ifp);
2243 	}
2244 	IFNET_RUNLOCK();
2245 	if (maxmtu)	     /* update only when maxmtu is positive */
2246 		in6_maxmtu = maxmtu;
2247 }
2248 
2249 /*
2250  * Provide the length of interface identifiers to be used for the link attached
2251  * to the given interface.  The length should be defined in "IPv6 over
2252  * xxx-link" document.  Note that address architecture might also define
2253  * the length for a particular set of address prefixes, regardless of the
2254  * link type.  As clarified in rfc2462bis, those two definitions should be
2255  * consistent, and those really are as of August 2004.
2256  */
2257 int
2258 in6_if2idlen(ifp)
2259 	struct ifnet *ifp;
2260 {
2261 	switch (ifp->if_type) {
2262 	case IFT_ETHER:		/* RFC2464 */
2263 #ifdef IFT_PROPVIRTUAL
2264 	case IFT_PROPVIRTUAL:	/* XXX: no RFC. treat it as ether */
2265 #endif
2266 #ifdef IFT_L2VLAN
2267 	case IFT_L2VLAN:	/* ditto */
2268 #endif
2269 #ifdef IFT_IEEE80211
2270 	case IFT_IEEE80211:	/* ditto */
2271 #endif
2272 #ifdef IFT_MIP
2273 	case IFT_MIP:	/* ditto */
2274 #endif
2275 		return (64);
2276 	case IFT_FDDI:		/* RFC2467 */
2277 		return (64);
2278 	case IFT_ISO88025:	/* RFC2470 (IPv6 over Token Ring) */
2279 		return (64);
2280 	case IFT_PPP:		/* RFC2472 */
2281 		return (64);
2282 	case IFT_ARCNET:	/* RFC2497 */
2283 		return (64);
2284 	case IFT_FRELAY:	/* RFC2590 */
2285 		return (64);
2286 	case IFT_IEEE1394:	/* RFC3146 */
2287 		return (64);
2288 	case IFT_GIF:
2289 		return (64);	/* draft-ietf-v6ops-mech-v2-07 */
2290 	case IFT_LOOP:
2291 		return (64);	/* XXX: is this really correct? */
2292 	default:
2293 		/*
2294 		 * Unknown link type:
2295 		 * It might be controversial to use the today's common constant
2296 		 * of 64 for these cases unconditionally.  For full compliance,
2297 		 * we should return an error in this case.  On the other hand,
2298 		 * if we simply miss the standard for the link type or a new
2299 		 * standard is defined for a new link type, the IFID length
2300 		 * is very likely to be the common constant.  As a compromise,
2301 		 * we always use the constant, but make an explicit notice
2302 		 * indicating the "unknown" case.
2303 		 */
2304 		printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2305 		return (64);
2306 	}
2307 }
2308 
2309 void *
2310 in6_domifattach(ifp)
2311 	struct ifnet *ifp;
2312 {
2313 	struct in6_ifextra *ext;
2314 
2315 	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2316 	bzero(ext, sizeof(*ext));
2317 
2318 	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2319 	    M_IFADDR, M_WAITOK);
2320 	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2321 
2322 	ext->icmp6_ifstat =
2323 	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2324 	    M_IFADDR, M_WAITOK);
2325 	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2326 
2327 	ext->nd_ifinfo = nd6_ifattach(ifp);
2328 	ext->scope6_id = scope6_ifattach(ifp);
2329 	return ext;
2330 }
2331 
2332 void
2333 in6_domifdetach(ifp, aux)
2334 	struct ifnet *ifp;
2335 	void *aux;
2336 {
2337 	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2338 
2339 	scope6_ifdetach(ext->scope6_id);
2340 	nd6_ifdetach(ext->nd_ifinfo);
2341 	free(ext->in6_ifstat, M_IFADDR);
2342 	free(ext->icmp6_ifstat, M_IFADDR);
2343 	free(ext, M_IFADDR);
2344 }
2345 
2346 /*
2347  * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
2348  * v4 mapped addr or v4 compat addr
2349  */
2350 void
2351 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2352 {
2353 	bzero(sin, sizeof(*sin));
2354 	sin->sin_len = sizeof(struct sockaddr_in);
2355 	sin->sin_family = AF_INET;
2356 	sin->sin_port = sin6->sin6_port;
2357 	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2358 }
2359 
2360 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2361 void
2362 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2363 {
2364 	bzero(sin6, sizeof(*sin6));
2365 	sin6->sin6_len = sizeof(struct sockaddr_in6);
2366 	sin6->sin6_family = AF_INET6;
2367 	sin6->sin6_port = sin->sin_port;
2368 	sin6->sin6_addr.s6_addr32[0] = 0;
2369 	sin6->sin6_addr.s6_addr32[1] = 0;
2370 	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2371 	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2372 }
2373 
2374 /* Convert sockaddr_in6 into sockaddr_in. */
2375 void
2376 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2377 {
2378 	struct sockaddr_in *sin_p;
2379 	struct sockaddr_in6 sin6;
2380 
2381 	/*
2382 	 * Save original sockaddr_in6 addr and convert it
2383 	 * to sockaddr_in.
2384 	 */
2385 	sin6 = *(struct sockaddr_in6 *)nam;
2386 	sin_p = (struct sockaddr_in *)nam;
2387 	in6_sin6_2_sin(sin_p, &sin6);
2388 }
2389 
2390 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2391 void
2392 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2393 {
2394 	struct sockaddr_in *sin_p;
2395 	struct sockaddr_in6 *sin6_p;
2396 
2397 	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2398 	       M_WAITOK);
2399 	sin_p = (struct sockaddr_in *)*nam;
2400 	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2401 	FREE(*nam, M_SONAME);
2402 	*nam = (struct sockaddr *)sin6_p;
2403 }
2404