1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 70 #include <sys/param.h> 71 #include <sys/eventhandler.h> 72 #include <sys/errno.h> 73 #include <sys/jail.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/time.h> 82 #include <sys/kernel.h> 83 #include <sys/syslog.h> 84 85 #include <net/if.h> 86 #include <net/if_var.h> 87 #include <net/if_types.h> 88 #include <net/route.h> 89 #include <net/if_dl.h> 90 #include <net/vnet.h> 91 92 #include <netinet/in.h> 93 #include <netinet/in_var.h> 94 #include <net/if_llatbl.h> 95 #include <netinet/if_ether.h> 96 #include <netinet/in_systm.h> 97 #include <netinet/ip.h> 98 #include <netinet/in_pcb.h> 99 #include <netinet/ip_carp.h> 100 101 #include <netinet/ip6.h> 102 #include <netinet6/ip6_var.h> 103 #include <netinet6/nd6.h> 104 #include <netinet6/mld6_var.h> 105 #include <netinet6/ip6_mroute.h> 106 #include <netinet6/in6_ifattach.h> 107 #include <netinet6/scope6_var.h> 108 #include <netinet6/in6_pcb.h> 109 110 VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); 111 #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) 112 113 /* 114 * Definitions of some costant IP6 addresses. 115 */ 116 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 117 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 118 const struct in6_addr in6addr_nodelocal_allnodes = 119 IN6ADDR_NODELOCAL_ALLNODES_INIT; 120 const struct in6_addr in6addr_linklocal_allnodes = 121 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 122 const struct in6_addr in6addr_linklocal_allrouters = 123 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 124 const struct in6_addr in6addr_linklocal_allv2routers = 125 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 126 127 const struct in6_addr in6mask0 = IN6MASK0; 128 const struct in6_addr in6mask32 = IN6MASK32; 129 const struct in6_addr in6mask64 = IN6MASK64; 130 const struct in6_addr in6mask96 = IN6MASK96; 131 const struct in6_addr in6mask128 = IN6MASK128; 132 133 const struct sockaddr_in6 sa6_any = 134 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 135 136 static int in6_ifinit(struct ifnet *, struct in6_ifaddr *, 137 struct sockaddr_in6 *, int); 138 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 139 140 int (*faithprefix_p)(struct in6_addr *); 141 142 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 143 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 144 145 void 146 in6_ifaddloop(struct ifaddr *ifa) 147 { 148 struct sockaddr_dl gateway; 149 struct sockaddr_in6 mask, addr; 150 struct rtentry rt; 151 struct in6_ifaddr *ia; 152 struct ifnet *ifp; 153 struct llentry *ln; 154 155 ia = ifa2ia6(ifa); 156 ifp = ifa->ifa_ifp; 157 IF_AFDATA_LOCK(ifp); 158 ifa->ifa_rtrequest = nd6_rtrequest; 159 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | 160 LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); 161 IF_AFDATA_UNLOCK(ifp); 162 if (ln != NULL) { 163 ln->la_expire = 0; /* for IPv6 this means permanent */ 164 ln->ln_state = ND6_LLINFO_REACHABLE; 165 /* 166 * initialize for rtmsg generation 167 */ 168 bzero(&gateway, sizeof(gateway)); 169 gateway.sdl_len = sizeof(gateway); 170 gateway.sdl_family = AF_LINK; 171 gateway.sdl_nlen = 0; 172 gateway.sdl_alen = 6; 173 memcpy(gateway.sdl_data, &ln->ll_addr.mac_aligned, 174 sizeof(ln->ll_addr)); 175 LLE_WUNLOCK(ln); 176 } 177 178 bzero(&rt, sizeof(rt)); 179 rt.rt_gateway = (struct sockaddr *)&gateway; 180 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 181 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 182 rt_mask(&rt) = (struct sockaddr *)&mask; 183 rt_key(&rt) = (struct sockaddr *)&addr; 184 rt.rt_flags = RTF_UP | RTF_HOST | RTF_STATIC; 185 /* Announce arrival of local address to all FIBs. */ 186 rt_newaddrmsg(RTM_ADD, ifa, 0, &rt); 187 } 188 189 void 190 in6_ifremloop(struct ifaddr *ifa) 191 { 192 struct sockaddr_dl gateway; 193 struct sockaddr_in6 mask, addr; 194 struct rtentry rt0; 195 struct in6_ifaddr *ia; 196 struct ifnet *ifp; 197 198 ia = ifa2ia6(ifa); 199 ifp = ifa->ifa_ifp; 200 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 201 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 202 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, 203 (struct sockaddr *)&mask, LLE_STATIC); 204 205 /* 206 * initialize for rtmsg generation 207 */ 208 bzero(&gateway, sizeof(gateway)); 209 gateway.sdl_len = sizeof(gateway); 210 gateway.sdl_family = AF_LINK; 211 gateway.sdl_nlen = 0; 212 gateway.sdl_alen = ifp->if_addrlen; 213 bzero(&rt0, sizeof(rt0)); 214 rt0.rt_gateway = (struct sockaddr *)&gateway; 215 rt_mask(&rt0) = (struct sockaddr *)&mask; 216 rt_key(&rt0) = (struct sockaddr *)&addr; 217 rt0.rt_flags = RTF_HOST | RTF_STATIC; 218 /* Announce removal of local address to all FIBs. */ 219 rt_newaddrmsg(RTM_DELETE, ifa, 0, &rt0); 220 } 221 222 int 223 in6_mask2len(struct in6_addr *mask, u_char *lim0) 224 { 225 int x = 0, y; 226 u_char *lim = lim0, *p; 227 228 /* ignore the scope_id part */ 229 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 230 lim = (u_char *)mask + sizeof(*mask); 231 for (p = (u_char *)mask; p < lim; x++, p++) { 232 if (*p != 0xff) 233 break; 234 } 235 y = 0; 236 if (p < lim) { 237 for (y = 0; y < 8; y++) { 238 if ((*p & (0x80 >> y)) == 0) 239 break; 240 } 241 } 242 243 /* 244 * when the limit pointer is given, do a stricter check on the 245 * remaining bits. 246 */ 247 if (p < lim) { 248 if (y != 0 && (*p & (0x00ff >> y)) != 0) 249 return (-1); 250 for (p = p + 1; p < lim; p++) 251 if (*p != 0) 252 return (-1); 253 } 254 255 return x * 8 + y; 256 } 257 258 #ifdef COMPAT_FREEBSD32 259 struct in6_ndifreq32 { 260 char ifname[IFNAMSIZ]; 261 uint32_t ifindex; 262 }; 263 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 264 #endif 265 266 int 267 in6_control(struct socket *so, u_long cmd, caddr_t data, 268 struct ifnet *ifp, struct thread *td) 269 { 270 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 271 struct in6_ifaddr *ia = NULL; 272 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 273 struct sockaddr_in6 *sa6; 274 int carp_attached = 0; 275 int error; 276 u_long ocmd = cmd; 277 278 /* 279 * Compat to make pre-10.x ifconfig(8) operable. 280 */ 281 if (cmd == OSIOCAIFADDR_IN6) 282 cmd = SIOCAIFADDR_IN6; 283 284 switch (cmd) { 285 case SIOCGETSGCNT_IN6: 286 case SIOCGETMIFCNT_IN6: 287 /* 288 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 289 * We cannot see how that would be needed, so do not adjust the 290 * KPI blindly; more likely should clean up the IPv4 variant. 291 */ 292 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 293 } 294 295 switch(cmd) { 296 case SIOCAADDRCTL_POLICY: 297 case SIOCDADDRCTL_POLICY: 298 if (td != NULL) { 299 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 300 if (error) 301 return (error); 302 } 303 return (in6_src_ioctl(cmd, data)); 304 } 305 306 if (ifp == NULL) 307 return (EOPNOTSUPP); 308 309 switch (cmd) { 310 case SIOCSNDFLUSH_IN6: 311 case SIOCSPFXFLUSH_IN6: 312 case SIOCSRTRFLUSH_IN6: 313 case SIOCSDEFIFACE_IN6: 314 case SIOCSIFINFO_FLAGS: 315 case SIOCSIFINFO_IN6: 316 if (td != NULL) { 317 error = priv_check(td, PRIV_NETINET_ND6); 318 if (error) 319 return (error); 320 } 321 /* FALLTHROUGH */ 322 case OSIOCGIFINFO_IN6: 323 case SIOCGIFINFO_IN6: 324 case SIOCGDRLST_IN6: 325 case SIOCGPRLST_IN6: 326 case SIOCGNBRINFO_IN6: 327 case SIOCGDEFIFACE_IN6: 328 return (nd6_ioctl(cmd, data, ifp)); 329 330 #ifdef COMPAT_FREEBSD32 331 case SIOCGDEFIFACE32_IN6: 332 { 333 struct in6_ndifreq ndif; 334 struct in6_ndifreq32 *ndif32; 335 336 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 337 ifp); 338 if (error) 339 return (error); 340 ndif32 = (struct in6_ndifreq32 *)data; 341 ndif32->ifindex = ndif.ifindex; 342 return (0); 343 } 344 #endif 345 } 346 347 switch (cmd) { 348 case SIOCSIFPREFIX_IN6: 349 case SIOCDIFPREFIX_IN6: 350 case SIOCAIFPREFIX_IN6: 351 case SIOCCIFPREFIX_IN6: 352 case SIOCSGIFPREFIX_IN6: 353 case SIOCGIFPREFIX_IN6: 354 log(LOG_NOTICE, 355 "prefix ioctls are now invalidated. " 356 "please use ifconfig.\n"); 357 return (EOPNOTSUPP); 358 } 359 360 switch (cmd) { 361 case SIOCSSCOPE6: 362 if (td != NULL) { 363 error = priv_check(td, PRIV_NETINET_SCOPE6); 364 if (error) 365 return (error); 366 } 367 return (scope6_set(ifp, 368 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 369 case SIOCGSCOPE6: 370 return (scope6_get(ifp, 371 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 372 case SIOCGSCOPE6DEF: 373 return (scope6_get_default((struct scope6_id *) 374 ifr->ifr_ifru.ifru_scope_id)); 375 } 376 377 /* 378 * Find address for this interface, if it exists. 379 * 380 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 381 * only, and used the first interface address as the target of other 382 * operations (without checking ifra_addr). This was because netinet 383 * code/API assumed at most 1 interface address per interface. 384 * Since IPv6 allows a node to assign multiple addresses 385 * on a single interface, we almost always look and check the 386 * presence of ifra_addr, and reject invalid ones here. 387 * It also decreases duplicated code among SIOC*_IN6 operations. 388 */ 389 switch (cmd) { 390 case SIOCAIFADDR_IN6: 391 case SIOCSIFPHYADDR_IN6: 392 sa6 = &ifra->ifra_addr; 393 break; 394 case SIOCSIFADDR_IN6: 395 case SIOCGIFADDR_IN6: 396 case SIOCSIFDSTADDR_IN6: 397 case SIOCSIFNETMASK_IN6: 398 case SIOCGIFDSTADDR_IN6: 399 case SIOCGIFNETMASK_IN6: 400 case SIOCDIFADDR_IN6: 401 case SIOCGIFPSRCADDR_IN6: 402 case SIOCGIFPDSTADDR_IN6: 403 case SIOCGIFAFLAG_IN6: 404 case SIOCSNDFLUSH_IN6: 405 case SIOCSPFXFLUSH_IN6: 406 case SIOCSRTRFLUSH_IN6: 407 case SIOCGIFALIFETIME_IN6: 408 case SIOCSIFALIFETIME_IN6: 409 case SIOCGIFSTAT_IN6: 410 case SIOCGIFSTAT_ICMP6: 411 sa6 = &ifr->ifr_addr; 412 break; 413 case SIOCSIFADDR: 414 case SIOCSIFBRDADDR: 415 case SIOCSIFDSTADDR: 416 case SIOCSIFNETMASK: 417 /* 418 * Although we should pass any non-INET6 ioctl requests 419 * down to driver, we filter some legacy INET requests. 420 * Drivers trust SIOCSIFADDR et al to come from an already 421 * privileged layer, and do not perform any credentials 422 * checks or input validation. 423 */ 424 return (EINVAL); 425 default: 426 sa6 = NULL; 427 break; 428 } 429 if (sa6 && sa6->sin6_family == AF_INET6) { 430 if (sa6->sin6_scope_id != 0) 431 error = sa6_embedscope(sa6, 0); 432 else 433 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 434 if (error != 0) 435 return (error); 436 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 437 &sa6->sin6_addr)) != 0) 438 return (error); 439 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 440 } else 441 ia = NULL; 442 443 switch (cmd) { 444 case SIOCSIFADDR_IN6: 445 case SIOCSIFDSTADDR_IN6: 446 case SIOCSIFNETMASK_IN6: 447 /* 448 * Since IPv6 allows a node to assign multiple addresses 449 * on a single interface, SIOCSIFxxx ioctls are deprecated. 450 */ 451 /* we decided to obsolete this command (20000704) */ 452 error = EINVAL; 453 goto out; 454 455 case SIOCDIFADDR_IN6: 456 /* 457 * for IPv4, we look for existing in_ifaddr here to allow 458 * "ifconfig if0 delete" to remove the first IPv4 address on 459 * the interface. For IPv6, as the spec allows multiple 460 * interface address from the day one, we consider "remove the 461 * first one" semantics to be not preferable. 462 */ 463 if (ia == NULL) { 464 error = EADDRNOTAVAIL; 465 goto out; 466 } 467 /* FALLTHROUGH */ 468 case SIOCAIFADDR_IN6: 469 /* 470 * We always require users to specify a valid IPv6 address for 471 * the corresponding operation. 472 */ 473 if (ifra->ifra_addr.sin6_family != AF_INET6 || 474 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 475 error = EAFNOSUPPORT; 476 goto out; 477 } 478 479 if (td != NULL) { 480 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 481 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 482 if (error) 483 goto out; 484 } 485 break; 486 487 case SIOCGIFADDR_IN6: 488 /* This interface is basically deprecated. use SIOCGIFCONF. */ 489 /* FALLTHROUGH */ 490 case SIOCGIFAFLAG_IN6: 491 case SIOCGIFNETMASK_IN6: 492 case SIOCGIFDSTADDR_IN6: 493 case SIOCGIFALIFETIME_IN6: 494 /* must think again about its semantics */ 495 if (ia == NULL) { 496 error = EADDRNOTAVAIL; 497 goto out; 498 } 499 break; 500 501 case SIOCSIFALIFETIME_IN6: 502 { 503 struct in6_addrlifetime *lt; 504 505 if (td != NULL) { 506 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 507 if (error) 508 goto out; 509 } 510 if (ia == NULL) { 511 error = EADDRNOTAVAIL; 512 goto out; 513 } 514 /* sanity for overflow - beware unsigned */ 515 lt = &ifr->ifr_ifru.ifru_lifetime; 516 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 517 lt->ia6t_vltime + time_uptime < time_uptime) { 518 error = EINVAL; 519 goto out; 520 } 521 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 522 lt->ia6t_pltime + time_uptime < time_uptime) { 523 error = EINVAL; 524 goto out; 525 } 526 break; 527 } 528 } 529 530 switch (cmd) { 531 case SIOCGIFADDR_IN6: 532 ifr->ifr_addr = ia->ia_addr; 533 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 534 goto out; 535 break; 536 537 case SIOCGIFDSTADDR_IN6: 538 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 539 error = EINVAL; 540 goto out; 541 } 542 /* 543 * XXX: should we check if ifa_dstaddr is NULL and return 544 * an error? 545 */ 546 ifr->ifr_dstaddr = ia->ia_dstaddr; 547 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 548 goto out; 549 break; 550 551 case SIOCGIFNETMASK_IN6: 552 ifr->ifr_addr = ia->ia_prefixmask; 553 break; 554 555 case SIOCGIFAFLAG_IN6: 556 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 557 break; 558 559 case SIOCGIFSTAT_IN6: 560 if (ifp == NULL) { 561 error = EINVAL; 562 goto out; 563 } 564 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 565 ifp->if_afdata[AF_INET6])->in6_ifstat, 566 &ifr->ifr_ifru.ifru_stat, 567 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 568 break; 569 570 case SIOCGIFSTAT_ICMP6: 571 if (ifp == NULL) { 572 error = EINVAL; 573 goto out; 574 } 575 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 576 ifp->if_afdata[AF_INET6])->icmp6_ifstat, 577 &ifr->ifr_ifru.ifru_icmp6stat, 578 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 579 break; 580 581 case SIOCGIFALIFETIME_IN6: 582 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 583 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 584 time_t maxexpire; 585 struct in6_addrlifetime *retlt = 586 &ifr->ifr_ifru.ifru_lifetime; 587 588 /* 589 * XXX: adjust expiration time assuming time_t is 590 * signed. 591 */ 592 maxexpire = (-1) & 593 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 594 if (ia->ia6_lifetime.ia6t_vltime < 595 maxexpire - ia->ia6_updatetime) { 596 retlt->ia6t_expire = ia->ia6_updatetime + 597 ia->ia6_lifetime.ia6t_vltime; 598 } else 599 retlt->ia6t_expire = maxexpire; 600 } 601 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 602 time_t maxexpire; 603 struct in6_addrlifetime *retlt = 604 &ifr->ifr_ifru.ifru_lifetime; 605 606 /* 607 * XXX: adjust expiration time assuming time_t is 608 * signed. 609 */ 610 maxexpire = (-1) & 611 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 612 if (ia->ia6_lifetime.ia6t_pltime < 613 maxexpire - ia->ia6_updatetime) { 614 retlt->ia6t_preferred = ia->ia6_updatetime + 615 ia->ia6_lifetime.ia6t_pltime; 616 } else 617 retlt->ia6t_preferred = maxexpire; 618 } 619 break; 620 621 case SIOCSIFALIFETIME_IN6: 622 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 623 /* for sanity */ 624 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 625 ia->ia6_lifetime.ia6t_expire = 626 time_uptime + ia->ia6_lifetime.ia6t_vltime; 627 } else 628 ia->ia6_lifetime.ia6t_expire = 0; 629 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 630 ia->ia6_lifetime.ia6t_preferred = 631 time_uptime + ia->ia6_lifetime.ia6t_pltime; 632 } else 633 ia->ia6_lifetime.ia6t_preferred = 0; 634 break; 635 636 case SIOCAIFADDR_IN6: 637 { 638 int i; 639 struct nd_prefixctl pr0; 640 struct nd_prefix *pr; 641 642 /* 643 * first, make or update the interface address structure, 644 * and link it to the list. 645 */ 646 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 647 goto out; 648 if (ia != NULL) 649 ifa_free(&ia->ia_ifa); 650 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 651 == NULL) { 652 /* 653 * this can happen when the user specify the 0 valid 654 * lifetime. 655 */ 656 break; 657 } 658 659 if (cmd == ocmd && ifra->ifra_vhid > 0) { 660 if (carp_attach_p != NULL) 661 error = (*carp_attach_p)(&ia->ia_ifa, 662 ifra->ifra_vhid); 663 else 664 error = EPROTONOSUPPORT; 665 if (error) 666 goto out; 667 else 668 carp_attached = 1; 669 } 670 671 /* 672 * then, make the prefix on-link on the interface. 673 * XXX: we'd rather create the prefix before the address, but 674 * we need at least one address to install the corresponding 675 * interface route, so we configure the address first. 676 */ 677 678 /* 679 * convert mask to prefix length (prefixmask has already 680 * been validated in in6_update_ifa(). 681 */ 682 bzero(&pr0, sizeof(pr0)); 683 pr0.ndpr_ifp = ifp; 684 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 685 NULL); 686 if (pr0.ndpr_plen == 128) { 687 break; /* we don't need to install a host route. */ 688 } 689 pr0.ndpr_prefix = ifra->ifra_addr; 690 /* apply the mask for safety. */ 691 for (i = 0; i < 4; i++) { 692 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 693 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 694 } 695 /* 696 * XXX: since we don't have an API to set prefix (not address) 697 * lifetimes, we just use the same lifetimes as addresses. 698 * The (temporarily) installed lifetimes can be overridden by 699 * later advertised RAs (when accept_rtadv is non 0), which is 700 * an intended behavior. 701 */ 702 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 703 pr0.ndpr_raf_auto = 704 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 705 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 706 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 707 708 /* add the prefix if not yet. */ 709 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 710 /* 711 * nd6_prelist_add will install the corresponding 712 * interface route. 713 */ 714 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 715 if (carp_attached) 716 (*carp_detach_p)(&ia->ia_ifa); 717 goto out; 718 } 719 if (pr == NULL) { 720 if (carp_attached) 721 (*carp_detach_p)(&ia->ia_ifa); 722 log(LOG_ERR, "nd6_prelist_add succeeded but " 723 "no prefix\n"); 724 error = EINVAL; 725 goto out; 726 } 727 } 728 729 /* relate the address to the prefix */ 730 if (ia->ia6_ndpr == NULL) { 731 ia->ia6_ndpr = pr; 732 pr->ndpr_refcnt++; 733 734 /* 735 * If this is the first autoconf address from the 736 * prefix, create a temporary address as well 737 * (when required). 738 */ 739 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 740 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 741 int e; 742 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 743 log(LOG_NOTICE, "in6_control: failed " 744 "to create a temporary address, " 745 "errno=%d\n", e); 746 } 747 } 748 } 749 750 /* 751 * this might affect the status of autoconfigured addresses, 752 * that is, this address might make other addresses detached. 753 */ 754 pfxlist_onlink_check(); 755 if (error == 0 && ia) { 756 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 757 /* 758 * Try to clear the flag when a new 759 * IPv6 address is added onto an 760 * IFDISABLED interface and it 761 * succeeds. 762 */ 763 struct in6_ndireq nd; 764 765 memset(&nd, 0, sizeof(nd)); 766 nd.ndi.flags = ND_IFINFO(ifp)->flags; 767 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 768 if (nd6_ioctl(SIOCSIFINFO_FLAGS, 769 (caddr_t)&nd, ifp) < 0) 770 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 771 "SIOCSIFINFO_FLAGS for -ifdisabled " 772 "failed."); 773 /* 774 * Ignore failure of clearing the flag 775 * intentionally. The failure means 776 * address duplication was detected. 777 */ 778 } 779 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 780 } 781 break; 782 } 783 784 case SIOCDIFADDR_IN6: 785 { 786 struct nd_prefix *pr; 787 788 /* 789 * If the address being deleted is the only one that owns 790 * the corresponding prefix, expire the prefix as well. 791 * XXX: theoretically, we don't have to worry about such 792 * relationship, since we separate the address management 793 * and the prefix management. We do this, however, to provide 794 * as much backward compatibility as possible in terms of 795 * the ioctl operation. 796 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 797 */ 798 pr = ia->ia6_ndpr; 799 in6_purgeaddr(&ia->ia_ifa); 800 if (pr && pr->ndpr_refcnt == 0) 801 prelist_remove(pr); 802 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 803 break; 804 } 805 806 default: 807 if (ifp == NULL || ifp->if_ioctl == 0) { 808 error = EOPNOTSUPP; 809 goto out; 810 } 811 error = (*ifp->if_ioctl)(ifp, cmd, data); 812 goto out; 813 } 814 815 error = 0; 816 out: 817 if (ia != NULL) 818 ifa_free(&ia->ia_ifa); 819 return (error); 820 } 821 822 823 /* 824 * Join necessary multicast groups. Factored out from in6_update_ifa(). 825 * This entire work should only be done once, for the default FIB. 826 */ 827 static int 828 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 829 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 830 { 831 char ip6buf[INET6_ADDRSTRLEN]; 832 struct sockaddr_in6 mltaddr, mltmask; 833 struct in6_addr llsol; 834 struct in6_multi_mship *imm; 835 struct rtentry *rt; 836 int delay, error; 837 838 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 839 840 /* Join solicited multicast addr for new host id. */ 841 bzero(&llsol, sizeof(struct in6_addr)); 842 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 843 llsol.s6_addr32[1] = 0; 844 llsol.s6_addr32[2] = htonl(1); 845 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 846 llsol.s6_addr8[12] = 0xff; 847 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 848 /* XXX: should not happen */ 849 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 850 goto cleanup; 851 } 852 delay = 0; 853 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 854 /* 855 * We need a random delay for DAD on the address being 856 * configured. It also means delaying transmission of the 857 * corresponding MLD report to avoid report collision. 858 * [RFC 4861, Section 6.3.7] 859 */ 860 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 861 } 862 imm = in6_joingroup(ifp, &llsol, &error, delay); 863 if (imm == NULL) { 864 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 865 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &llsol), 866 if_name(ifp), error)); 867 goto cleanup; 868 } 869 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 870 *in6m_sol = imm->i6mm_maddr; 871 872 bzero(&mltmask, sizeof(mltmask)); 873 mltmask.sin6_len = sizeof(struct sockaddr_in6); 874 mltmask.sin6_family = AF_INET6; 875 mltmask.sin6_addr = in6mask32; 876 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 877 878 /* 879 * Join link-local all-nodes address. 880 */ 881 bzero(&mltaddr, sizeof(mltaddr)); 882 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 883 mltaddr.sin6_family = AF_INET6; 884 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 885 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 886 goto cleanup; /* XXX: should not fail */ 887 888 /* 889 * XXX: do we really need this automatic routes? We should probably 890 * reconsider this stuff. Most applications actually do not need the 891 * routes, since they usually specify the outgoing interface. 892 */ 893 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 894 if (rt != NULL) { 895 /* XXX: only works in !SCOPEDROUTING case. */ 896 if (memcmp(&mltaddr.sin6_addr, 897 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 898 MLTMASK_LEN)) { 899 RTFREE_LOCKED(rt); 900 rt = NULL; 901 } 902 } 903 if (rt == NULL) { 904 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 905 (struct sockaddr *)&ia->ia_addr, 906 (struct sockaddr *)&mltmask, RTF_UP, 907 (struct rtentry **)0, RT_DEFAULT_FIB); 908 if (error) 909 goto cleanup; 910 } else 911 RTFREE_LOCKED(rt); 912 913 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 914 if (imm == NULL) { 915 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 916 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 917 &mltaddr.sin6_addr), if_name(ifp), error)); 918 goto cleanup; 919 } 920 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 921 922 /* 923 * Join node information group address. 924 */ 925 delay = 0; 926 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 927 /* 928 * The spec does not say anything about delay for this group, 929 * but the same logic should apply. 930 */ 931 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 932 } 933 if (in6_nigroup(ifp, NULL, -1, &mltaddr.sin6_addr) == 0) { 934 /* XXX jinmei */ 935 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay); 936 if (imm == NULL) 937 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 938 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 939 &mltaddr.sin6_addr), if_name(ifp), error)); 940 /* XXX not very fatal, go on... */ 941 else 942 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 943 } 944 if (V_icmp6_nodeinfo_oldmcprefix && 945 in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr.sin6_addr) == 0) { 946 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay); 947 if (imm == NULL) 948 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 949 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 950 &mltaddr.sin6_addr), if_name(ifp), error)); 951 /* XXX not very fatal, go on... */ 952 else 953 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 954 } 955 956 /* 957 * Join interface-local all-nodes address. 958 * (ff01::1%ifN, and ff01::%ifN/32) 959 */ 960 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 961 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 962 goto cleanup; /* XXX: should not fail */ 963 /* XXX: again, do we really need the route? */ 964 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 965 if (rt != NULL) { 966 if (memcmp(&mltaddr.sin6_addr, 967 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 968 MLTMASK_LEN)) { 969 RTFREE_LOCKED(rt); 970 rt = NULL; 971 } 972 } 973 if (rt == NULL) { 974 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 975 (struct sockaddr *)&ia->ia_addr, 976 (struct sockaddr *)&mltmask, RTF_UP, 977 (struct rtentry **)0, RT_DEFAULT_FIB); 978 if (error) 979 goto cleanup; 980 } else 981 RTFREE_LOCKED(rt); 982 983 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 984 if (imm == NULL) { 985 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 986 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 987 &mltaddr.sin6_addr), if_name(ifp), error)); 988 goto cleanup; 989 } 990 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 991 #undef MLTMASK_LEN 992 993 cleanup: 994 return (error); 995 } 996 997 /* 998 * Update parameters of an IPv6 interface address. 999 * If necessary, a new entry is created and linked into address chains. 1000 * This function is separated from in6_control(). 1001 */ 1002 int 1003 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1004 struct in6_ifaddr *ia, int flags) 1005 { 1006 int error = 0, hostIsNew = 0, plen = -1; 1007 struct sockaddr_in6 dst6; 1008 struct in6_addrlifetime *lt; 1009 struct in6_multi *in6m_sol; 1010 int delay; 1011 char ip6buf[INET6_ADDRSTRLEN]; 1012 1013 /* Validate parameters */ 1014 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 1015 return (EINVAL); 1016 1017 /* 1018 * The destination address for a p2p link must have a family 1019 * of AF_UNSPEC or AF_INET6. 1020 */ 1021 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1022 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 1023 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 1024 return (EAFNOSUPPORT); 1025 /* 1026 * validate ifra_prefixmask. don't check sin6_family, netmask 1027 * does not carry fields other than sin6_len. 1028 */ 1029 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 1030 return (EINVAL); 1031 /* 1032 * Because the IPv6 address architecture is classless, we require 1033 * users to specify a (non 0) prefix length (mask) for a new address. 1034 * We also require the prefix (when specified) mask is valid, and thus 1035 * reject a non-consecutive mask. 1036 */ 1037 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 1038 return (EINVAL); 1039 if (ifra->ifra_prefixmask.sin6_len != 0) { 1040 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 1041 (u_char *)&ifra->ifra_prefixmask + 1042 ifra->ifra_prefixmask.sin6_len); 1043 if (plen <= 0) 1044 return (EINVAL); 1045 } else { 1046 /* 1047 * In this case, ia must not be NULL. We just use its prefix 1048 * length. 1049 */ 1050 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1051 } 1052 /* 1053 * If the destination address on a p2p interface is specified, 1054 * and the address is a scoped one, validate/set the scope 1055 * zone identifier. 1056 */ 1057 dst6 = ifra->ifra_dstaddr; 1058 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 1059 (dst6.sin6_family == AF_INET6)) { 1060 struct in6_addr in6_tmp; 1061 u_int32_t zoneid; 1062 1063 in6_tmp = dst6.sin6_addr; 1064 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 1065 return (EINVAL); /* XXX: should be impossible */ 1066 1067 if (dst6.sin6_scope_id != 0) { 1068 if (dst6.sin6_scope_id != zoneid) 1069 return (EINVAL); 1070 } else /* user omit to specify the ID. */ 1071 dst6.sin6_scope_id = zoneid; 1072 1073 /* convert into the internal form */ 1074 if (sa6_embedscope(&dst6, 0)) 1075 return (EINVAL); /* XXX: should be impossible */ 1076 } 1077 /* 1078 * The destination address can be specified only for a p2p or a 1079 * loopback interface. If specified, the corresponding prefix length 1080 * must be 128. 1081 */ 1082 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 1083 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 1084 /* XXX: noisy message */ 1085 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 1086 "be specified for a p2p or a loopback IF only\n")); 1087 return (EINVAL); 1088 } 1089 if (plen != 128) { 1090 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1091 "be 128 when dstaddr is specified\n")); 1092 return (EINVAL); 1093 } 1094 } 1095 /* lifetime consistency check */ 1096 lt = &ifra->ifra_lifetime; 1097 if (lt->ia6t_pltime > lt->ia6t_vltime) 1098 return (EINVAL); 1099 if (lt->ia6t_vltime == 0) { 1100 /* 1101 * the following log might be noisy, but this is a typical 1102 * configuration mistake or a tool's bug. 1103 */ 1104 nd6log((LOG_INFO, 1105 "in6_update_ifa: valid lifetime is 0 for %s\n", 1106 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1107 1108 if (ia == NULL) 1109 return (0); /* there's nothing to do */ 1110 } 1111 1112 /* 1113 * If this is a new address, allocate a new ifaddr and link it 1114 * into chains. 1115 */ 1116 if (ia == NULL) { 1117 hostIsNew = 1; 1118 /* 1119 * When in6_update_ifa() is called in a process of a received 1120 * RA, it is called under an interrupt context. So, we should 1121 * call malloc with M_NOWAIT. 1122 */ 1123 ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); 1124 if (ia == NULL) 1125 return (ENOBUFS); 1126 LIST_INIT(&ia->ia6_memberships); 1127 /* Initialize the address and masks, and put time stamp */ 1128 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1129 ia->ia_addr.sin6_family = AF_INET6; 1130 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1131 ia->ia6_createtime = time_uptime; 1132 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1133 /* 1134 * XXX: some functions expect that ifa_dstaddr is not 1135 * NULL for p2p interfaces. 1136 */ 1137 ia->ia_ifa.ifa_dstaddr = 1138 (struct sockaddr *)&ia->ia_dstaddr; 1139 } else { 1140 ia->ia_ifa.ifa_dstaddr = NULL; 1141 } 1142 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1143 ia->ia_ifp = ifp; 1144 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1145 IF_ADDR_WLOCK(ifp); 1146 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1147 IF_ADDR_WUNLOCK(ifp); 1148 1149 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1150 IN6_IFADDR_WLOCK(); 1151 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1152 LIST_INSERT_HEAD(IN6ADDR_HASH(&ifra->ifra_addr.sin6_addr), 1153 ia, ia6_hash); 1154 IN6_IFADDR_WUNLOCK(); 1155 } 1156 1157 /* update timestamp */ 1158 ia->ia6_updatetime = time_uptime; 1159 1160 /* set prefix mask */ 1161 if (ifra->ifra_prefixmask.sin6_len) { 1162 /* 1163 * We prohibit changing the prefix length of an existing 1164 * address, because 1165 * + such an operation should be rare in IPv6, and 1166 * + the operation would confuse prefix management. 1167 */ 1168 if (ia->ia_prefixmask.sin6_len && 1169 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1170 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 1171 " existing (%s) address should not be changed\n", 1172 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1173 error = EINVAL; 1174 goto unlink; 1175 } 1176 ia->ia_prefixmask = ifra->ifra_prefixmask; 1177 ia->ia_prefixmask.sin6_family = AF_INET6; 1178 } 1179 1180 /* 1181 * If a new destination address is specified, scrub the old one and 1182 * install the new destination. Note that the interface must be 1183 * p2p or loopback (see the check above.) 1184 */ 1185 if (dst6.sin6_family == AF_INET6 && 1186 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1187 int e; 1188 1189 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1190 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 1191 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 1192 "a route to the old destination: %s\n", 1193 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1194 /* proceed anyway... */ 1195 } else 1196 ia->ia_flags &= ~IFA_ROUTE; 1197 ia->ia_dstaddr = dst6; 1198 } 1199 1200 /* 1201 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1202 * to see if the address is deprecated or invalidated, but initialize 1203 * these members for applications. 1204 */ 1205 ia->ia6_lifetime = ifra->ifra_lifetime; 1206 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1207 ia->ia6_lifetime.ia6t_expire = 1208 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1209 } else 1210 ia->ia6_lifetime.ia6t_expire = 0; 1211 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1212 ia->ia6_lifetime.ia6t_preferred = 1213 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1214 } else 1215 ia->ia6_lifetime.ia6t_preferred = 0; 1216 1217 /* reset the interface and routing table appropriately. */ 1218 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1219 goto unlink; 1220 1221 /* 1222 * configure address flags. 1223 */ 1224 ia->ia6_flags = ifra->ifra_flags; 1225 /* 1226 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1227 * userland, make it deprecated. 1228 */ 1229 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1230 ia->ia6_lifetime.ia6t_pltime = 0; 1231 ia->ia6_lifetime.ia6t_preferred = time_uptime; 1232 } 1233 /* 1234 * Make the address tentative before joining multicast addresses, 1235 * so that corresponding MLD responses would not have a tentative 1236 * source address. 1237 */ 1238 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1239 if (hostIsNew && in6if_do_dad(ifp)) 1240 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1241 1242 /* DAD should be performed after ND6_IFF_IFDISABLED is cleared. */ 1243 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1244 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1245 1246 /* 1247 * We are done if we have simply modified an existing address. 1248 */ 1249 if (!hostIsNew) 1250 return (error); 1251 1252 /* 1253 * Beyond this point, we should call in6_purgeaddr upon an error, 1254 * not just go to unlink. 1255 */ 1256 1257 /* Join necessary multicast groups. */ 1258 in6m_sol = NULL; 1259 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1260 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1261 if (error) 1262 goto cleanup; 1263 } 1264 1265 /* 1266 * Perform DAD, if needed. 1267 * XXX It may be of use, if we can administratively disable DAD. 1268 */ 1269 if (in6if_do_dad(ifp) && ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1270 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1271 { 1272 int mindelay, maxdelay; 1273 1274 delay = 0; 1275 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1276 /* 1277 * We need to impose a delay before sending an NS 1278 * for DAD. Check if we also needed a delay for the 1279 * corresponding MLD message. If we did, the delay 1280 * should be larger than the MLD delay (this could be 1281 * relaxed a bit, but this simple logic is at least 1282 * safe). 1283 * XXX: Break data hiding guidelines and look at 1284 * state for the solicited multicast group. 1285 */ 1286 mindelay = 0; 1287 if (in6m_sol != NULL && 1288 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1289 mindelay = in6m_sol->in6m_timer; 1290 } 1291 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1292 if (maxdelay - mindelay == 0) 1293 delay = 0; 1294 else { 1295 delay = 1296 (arc4random() % (maxdelay - mindelay)) + 1297 mindelay; 1298 } 1299 } 1300 nd6_dad_start((struct ifaddr *)ia, delay); 1301 } 1302 1303 KASSERT(hostIsNew, ("in6_update_ifa: !hostIsNew")); 1304 ifa_free(&ia->ia_ifa); 1305 return (error); 1306 1307 unlink: 1308 /* 1309 * XXX: if a change of an existing address failed, keep the entry 1310 * anyway. 1311 */ 1312 if (hostIsNew) { 1313 in6_unlink_ifa(ia, ifp); 1314 ifa_free(&ia->ia_ifa); 1315 } 1316 return (error); 1317 1318 cleanup: 1319 KASSERT(hostIsNew, ("in6_update_ifa: cleanup: !hostIsNew")); 1320 ifa_free(&ia->ia_ifa); 1321 in6_purgeaddr(&ia->ia_ifa); 1322 return error; 1323 } 1324 1325 /* 1326 * Leave multicast groups. Factored out from in6_purgeaddr(). 1327 * This entire work should only be done once, for the default FIB. 1328 */ 1329 static int 1330 in6_purgeaddr_mc(struct ifnet *ifp, struct in6_ifaddr *ia, struct ifaddr *ifa0) 1331 { 1332 struct sockaddr_in6 mltaddr, mltmask; 1333 struct in6_multi_mship *imm; 1334 struct rtentry *rt; 1335 struct sockaddr_in6 sin6; 1336 int error; 1337 1338 /* 1339 * Leave from multicast groups we have joined for the interface. 1340 */ 1341 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1342 LIST_REMOVE(imm, i6mm_chain); 1343 in6_leavegroup(imm); 1344 } 1345 1346 /* 1347 * Remove the link-local all-nodes address. 1348 */ 1349 bzero(&mltmask, sizeof(mltmask)); 1350 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1351 mltmask.sin6_family = AF_INET6; 1352 mltmask.sin6_addr = in6mask32; 1353 1354 bzero(&mltaddr, sizeof(mltaddr)); 1355 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1356 mltaddr.sin6_family = AF_INET6; 1357 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1358 1359 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1360 return (error); 1361 1362 /* 1363 * As for the mltaddr above, proactively prepare the sin6 to avoid 1364 * rtentry un- and re-locking. 1365 */ 1366 if (ifa0 != NULL) { 1367 bzero(&sin6, sizeof(sin6)); 1368 sin6.sin6_len = sizeof(sin6); 1369 sin6.sin6_family = AF_INET6; 1370 memcpy(&sin6.sin6_addr, &satosin6(ifa0->ifa_addr)->sin6_addr, 1371 sizeof(sin6.sin6_addr)); 1372 error = in6_setscope(&sin6.sin6_addr, ifa0->ifa_ifp, NULL); 1373 if (error != 0) 1374 return (error); 1375 } 1376 1377 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 1378 if (rt != NULL && rt->rt_gateway != NULL && 1379 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1380 &ia->ia_addr.sin6_addr, 1381 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1382 /* 1383 * If no more IPv6 address exists on this interface then 1384 * remove the multicast address route. 1385 */ 1386 if (ifa0 == NULL) { 1387 memcpy(&mltaddr.sin6_addr, 1388 &satosin6(rt_key(rt))->sin6_addr, 1389 sizeof(mltaddr.sin6_addr)); 1390 RTFREE_LOCKED(rt); 1391 error = in6_rtrequest(RTM_DELETE, 1392 (struct sockaddr *)&mltaddr, 1393 (struct sockaddr *)&ia->ia_addr, 1394 (struct sockaddr *)&mltmask, RTF_UP, 1395 (struct rtentry **)0, RT_DEFAULT_FIB); 1396 if (error) 1397 log(LOG_INFO, "%s: link-local all-nodes " 1398 "multicast address deletion error\n", 1399 __func__); 1400 } else { 1401 /* 1402 * Replace the gateway of the route. 1403 */ 1404 memcpy(rt->rt_gateway, &sin6, sizeof(sin6)); 1405 RTFREE_LOCKED(rt); 1406 } 1407 } else { 1408 if (rt != NULL) 1409 RTFREE_LOCKED(rt); 1410 } 1411 1412 /* 1413 * Remove the node-local all-nodes address. 1414 */ 1415 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1416 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1417 return (error); 1418 1419 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 1420 if (rt != NULL && rt->rt_gateway != NULL && 1421 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1422 &ia->ia_addr.sin6_addr, 1423 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1424 /* 1425 * If no more IPv6 address exists on this interface then 1426 * remove the multicast address route. 1427 */ 1428 if (ifa0 == NULL) { 1429 memcpy(&mltaddr.sin6_addr, 1430 &satosin6(rt_key(rt))->sin6_addr, 1431 sizeof(mltaddr.sin6_addr)); 1432 1433 RTFREE_LOCKED(rt); 1434 error = in6_rtrequest(RTM_DELETE, 1435 (struct sockaddr *)&mltaddr, 1436 (struct sockaddr *)&ia->ia_addr, 1437 (struct sockaddr *)&mltmask, RTF_UP, 1438 (struct rtentry **)0, RT_DEFAULT_FIB); 1439 if (error) 1440 log(LOG_INFO, "%s: node-local all-nodes" 1441 "multicast address deletion error\n", 1442 __func__); 1443 } else { 1444 /* 1445 * Replace the gateway of the route. 1446 */ 1447 memcpy(rt->rt_gateway, &sin6, sizeof(sin6)); 1448 RTFREE_LOCKED(rt); 1449 } 1450 } else { 1451 if (rt != NULL) 1452 RTFREE_LOCKED(rt); 1453 } 1454 1455 return (0); 1456 } 1457 1458 void 1459 in6_purgeaddr(struct ifaddr *ifa) 1460 { 1461 struct ifnet *ifp = ifa->ifa_ifp; 1462 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1463 int plen, error; 1464 struct ifaddr *ifa0; 1465 1466 if (ifa->ifa_carp) 1467 (*carp_detach_p)(ifa); 1468 1469 /* 1470 * find another IPv6 address as the gateway for the 1471 * link-local and node-local all-nodes multicast 1472 * address routes 1473 */ 1474 IF_ADDR_RLOCK(ifp); 1475 TAILQ_FOREACH(ifa0, &ifp->if_addrhead, ifa_link) { 1476 if ((ifa0->ifa_addr->sa_family != AF_INET6) || 1477 memcmp(&satosin6(ifa0->ifa_addr)->sin6_addr, 1478 &ia->ia_addr.sin6_addr, sizeof(struct in6_addr)) == 0) 1479 continue; 1480 else 1481 break; 1482 } 1483 if (ifa0 != NULL) 1484 ifa_ref(ifa0); 1485 IF_ADDR_RUNLOCK(ifp); 1486 1487 /* 1488 * Remove the loopback route to the interface address. 1489 * The check for the current setting of "nd6_useloopback" 1490 * is not needed. 1491 */ 1492 if (ia->ia_flags & IFA_RTSELF) { 1493 error = ifa_del_loopback_route((struct ifaddr *)ia, 1494 (struct sockaddr *)&ia->ia_addr); 1495 if (error == 0) 1496 ia->ia_flags &= ~IFA_RTSELF; 1497 } 1498 1499 /* stop DAD processing */ 1500 nd6_dad_stop(ifa); 1501 1502 /* Remove local address entry from lltable. */ 1503 in6_ifremloop(ifa); 1504 1505 /* Leave multicast groups. */ 1506 error = in6_purgeaddr_mc(ifp, ia, ifa0); 1507 1508 if (ifa0 != NULL) 1509 ifa_free(ifa0); 1510 1511 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1512 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1513 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1514 (ia->ia_dstaddr.sin6_family == AF_INET6) ? RTF_HOST : 0); 1515 if (error != 0) 1516 log(LOG_INFO, "%s: err=%d, destination address delete " 1517 "failed\n", __func__, error); 1518 ia->ia_flags &= ~IFA_ROUTE; 1519 } 1520 1521 in6_unlink_ifa(ia, ifp); 1522 } 1523 1524 static void 1525 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1526 { 1527 1528 IF_ADDR_WLOCK(ifp); 1529 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1530 IF_ADDR_WUNLOCK(ifp); 1531 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1532 1533 /* 1534 * Defer the release of what might be the last reference to the 1535 * in6_ifaddr so that it can't be freed before the remainder of the 1536 * cleanup. 1537 */ 1538 IN6_IFADDR_WLOCK(); 1539 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link); 1540 LIST_REMOVE(ia, ia6_hash); 1541 IN6_IFADDR_WUNLOCK(); 1542 1543 /* 1544 * Release the reference to the base prefix. There should be a 1545 * positive reference. 1546 */ 1547 if (ia->ia6_ndpr == NULL) { 1548 nd6log((LOG_NOTICE, 1549 "in6_unlink_ifa: autoconf'ed address " 1550 "%p has no prefix\n", ia)); 1551 } else { 1552 ia->ia6_ndpr->ndpr_refcnt--; 1553 ia->ia6_ndpr = NULL; 1554 } 1555 1556 /* 1557 * Also, if the address being removed is autoconf'ed, call 1558 * pfxlist_onlink_check() since the release might affect the status of 1559 * other (detached) addresses. 1560 */ 1561 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1562 pfxlist_onlink_check(); 1563 } 1564 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1565 } 1566 1567 void 1568 in6_purgeif(struct ifnet *ifp) 1569 { 1570 struct ifaddr *ifa, *nifa; 1571 1572 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { 1573 if (ifa->ifa_addr->sa_family != AF_INET6) 1574 continue; 1575 in6_purgeaddr(ifa); 1576 } 1577 1578 in6_ifdetach(ifp); 1579 } 1580 1581 /* 1582 * Initialize an interface's IPv6 address and routing table entry. 1583 */ 1584 static int 1585 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1586 struct sockaddr_in6 *sin6, int newhost) 1587 { 1588 int error = 0, plen, ifacount = 0; 1589 struct ifaddr *ifa; 1590 1591 /* 1592 * Give the interface a chance to initialize 1593 * if this is its first address, 1594 * and to validate the address if necessary. 1595 */ 1596 IF_ADDR_RLOCK(ifp); 1597 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1598 if (ifa->ifa_addr->sa_family != AF_INET6) 1599 continue; 1600 ifacount++; 1601 } 1602 IF_ADDR_RUNLOCK(ifp); 1603 1604 ia->ia_addr = *sin6; 1605 1606 if (ifacount <= 1 && ifp->if_ioctl) { 1607 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1608 if (error) 1609 return (error); 1610 } 1611 1612 ia->ia_ifa.ifa_metric = ifp->if_metric; 1613 1614 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1615 1616 /* 1617 * Special case: 1618 * If a new destination address is specified for a point-to-point 1619 * interface, install a route to the destination as an interface 1620 * direct route. 1621 * XXX: the logic below rejects assigning multiple addresses on a p2p 1622 * interface that share the same destination. 1623 */ 1624 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1625 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1626 ia->ia_dstaddr.sin6_family == AF_INET6) { 1627 int rtflags = RTF_UP | RTF_HOST; 1628 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1629 if (error) 1630 return (error); 1631 ia->ia_flags |= IFA_ROUTE; 1632 /* 1633 * Handle the case for ::1 . 1634 */ 1635 if (ifp->if_flags & IFF_LOOPBACK) 1636 ia->ia_flags |= IFA_RTSELF; 1637 } 1638 1639 /* 1640 * add a loopback route to self 1641 */ 1642 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1643 error = ifa_add_loopback_route((struct ifaddr *)ia, 1644 (struct sockaddr *)&ia->ia_addr); 1645 if (error == 0) 1646 ia->ia_flags |= IFA_RTSELF; 1647 } 1648 1649 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1650 if (newhost) 1651 in6_ifaddloop(&(ia->ia_ifa)); 1652 1653 return (error); 1654 } 1655 1656 /* 1657 * Find an IPv6 interface link-local address specific to an interface. 1658 * ifaddr is returned referenced. 1659 */ 1660 struct in6_ifaddr * 1661 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1662 { 1663 struct ifaddr *ifa; 1664 1665 IF_ADDR_RLOCK(ifp); 1666 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1667 if (ifa->ifa_addr->sa_family != AF_INET6) 1668 continue; 1669 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1670 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1671 ignoreflags) != 0) 1672 continue; 1673 ifa_ref(ifa); 1674 break; 1675 } 1676 } 1677 IF_ADDR_RUNLOCK(ifp); 1678 1679 return ((struct in6_ifaddr *)ifa); 1680 } 1681 1682 1683 /* 1684 * find the internet address corresponding to a given interface and address. 1685 * ifaddr is returned referenced. 1686 */ 1687 struct in6_ifaddr * 1688 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1689 { 1690 struct ifaddr *ifa; 1691 1692 IF_ADDR_RLOCK(ifp); 1693 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1694 if (ifa->ifa_addr->sa_family != AF_INET6) 1695 continue; 1696 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1697 ifa_ref(ifa); 1698 break; 1699 } 1700 } 1701 IF_ADDR_RUNLOCK(ifp); 1702 1703 return ((struct in6_ifaddr *)ifa); 1704 } 1705 1706 /* 1707 * Find a link-local scoped address on ifp and return it if any. 1708 */ 1709 struct in6_ifaddr * 1710 in6ifa_llaonifp(struct ifnet *ifp) 1711 { 1712 struct sockaddr_in6 *sin6; 1713 struct ifaddr *ifa; 1714 1715 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1716 return (NULL); 1717 if_addr_rlock(ifp); 1718 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1719 if (ifa->ifa_addr->sa_family != AF_INET6) 1720 continue; 1721 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 1722 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1723 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1724 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1725 break; 1726 } 1727 if_addr_runlock(ifp); 1728 1729 return ((struct in6_ifaddr *)ifa); 1730 } 1731 1732 /* 1733 * Convert IP6 address to printable (loggable) representation. Caller 1734 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1735 */ 1736 static char digits[] = "0123456789abcdef"; 1737 char * 1738 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1739 { 1740 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1741 char *cp; 1742 const u_int16_t *a = (const u_int16_t *)addr; 1743 const u_int8_t *d; 1744 int dcolon = 0, zero = 0; 1745 1746 cp = ip6buf; 1747 1748 for (i = 0; i < 8; i++) { 1749 if (*(a + i) == 0) { 1750 cnt++; 1751 if (cnt == 1) 1752 idx = i; 1753 } 1754 else if (maxcnt < cnt) { 1755 maxcnt = cnt; 1756 index = idx; 1757 cnt = 0; 1758 } 1759 } 1760 if (maxcnt < cnt) { 1761 maxcnt = cnt; 1762 index = idx; 1763 } 1764 1765 for (i = 0; i < 8; i++) { 1766 if (dcolon == 1) { 1767 if (*a == 0) { 1768 if (i == 7) 1769 *cp++ = ':'; 1770 a++; 1771 continue; 1772 } else 1773 dcolon = 2; 1774 } 1775 if (*a == 0) { 1776 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 1777 if (i == 0) 1778 *cp++ = ':'; 1779 *cp++ = ':'; 1780 dcolon = 1; 1781 } else { 1782 *cp++ = '0'; 1783 *cp++ = ':'; 1784 } 1785 a++; 1786 continue; 1787 } 1788 d = (const u_char *)a; 1789 /* Try to eliminate leading zeros in printout like in :0001. */ 1790 zero = 1; 1791 *cp = digits[*d >> 4]; 1792 if (*cp != '0') { 1793 zero = 0; 1794 cp++; 1795 } 1796 *cp = digits[*d++ & 0xf]; 1797 if (zero == 0 || (*cp != '0')) { 1798 zero = 0; 1799 cp++; 1800 } 1801 *cp = digits[*d >> 4]; 1802 if (zero == 0 || (*cp != '0')) { 1803 zero = 0; 1804 cp++; 1805 } 1806 *cp++ = digits[*d & 0xf]; 1807 *cp++ = ':'; 1808 a++; 1809 } 1810 *--cp = '\0'; 1811 return (ip6buf); 1812 } 1813 1814 int 1815 in6_localaddr(struct in6_addr *in6) 1816 { 1817 struct in6_ifaddr *ia; 1818 1819 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1820 return 1; 1821 1822 IN6_IFADDR_RLOCK(); 1823 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1824 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1825 &ia->ia_prefixmask.sin6_addr)) { 1826 IN6_IFADDR_RUNLOCK(); 1827 return 1; 1828 } 1829 } 1830 IN6_IFADDR_RUNLOCK(); 1831 1832 return (0); 1833 } 1834 1835 /* 1836 * Return 1 if an internet address is for the local host and configured 1837 * on one of its interfaces. 1838 */ 1839 int 1840 in6_localip(struct in6_addr *in6) 1841 { 1842 struct in6_ifaddr *ia; 1843 1844 IN6_IFADDR_RLOCK(); 1845 LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { 1846 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 1847 IN6_IFADDR_RUNLOCK(); 1848 return (1); 1849 } 1850 } 1851 IN6_IFADDR_RUNLOCK(); 1852 return (0); 1853 } 1854 1855 int 1856 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1857 { 1858 struct in6_ifaddr *ia; 1859 1860 IN6_IFADDR_RLOCK(); 1861 LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { 1862 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { 1863 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 1864 IN6_IFADDR_RUNLOCK(); 1865 return (1); /* true */ 1866 } 1867 break; 1868 } 1869 } 1870 IN6_IFADDR_RUNLOCK(); 1871 1872 return (0); /* false */ 1873 } 1874 1875 /* 1876 * return length of part which dst and src are equal 1877 * hard coding... 1878 */ 1879 int 1880 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1881 { 1882 int match = 0; 1883 u_char *s = (u_char *)src, *d = (u_char *)dst; 1884 u_char *lim = s + 16, r; 1885 1886 while (s < lim) 1887 if ((r = (*d++ ^ *s++)) != 0) { 1888 while (r < 128) { 1889 match++; 1890 r <<= 1; 1891 } 1892 break; 1893 } else 1894 match += 8; 1895 return match; 1896 } 1897 1898 /* XXX: to be scope conscious */ 1899 int 1900 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1901 { 1902 int bytelen, bitlen; 1903 1904 /* sanity check */ 1905 if (0 > len || len > 128) { 1906 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1907 len); 1908 return (0); 1909 } 1910 1911 bytelen = len / 8; 1912 bitlen = len % 8; 1913 1914 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1915 return (0); 1916 if (bitlen != 0 && 1917 p1->s6_addr[bytelen] >> (8 - bitlen) != 1918 p2->s6_addr[bytelen] >> (8 - bitlen)) 1919 return (0); 1920 1921 return (1); 1922 } 1923 1924 void 1925 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1926 { 1927 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1928 int bytelen, bitlen, i; 1929 1930 /* sanity check */ 1931 if (0 > len || len > 128) { 1932 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1933 len); 1934 return; 1935 } 1936 1937 bzero(maskp, sizeof(*maskp)); 1938 bytelen = len / 8; 1939 bitlen = len % 8; 1940 for (i = 0; i < bytelen; i++) 1941 maskp->s6_addr[i] = 0xff; 1942 if (bitlen) 1943 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1944 } 1945 1946 /* 1947 * return the best address out of the same scope. if no address was 1948 * found, return the first valid address from designated IF. 1949 */ 1950 struct in6_ifaddr * 1951 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1952 { 1953 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1954 struct ifaddr *ifa; 1955 struct in6_ifaddr *besta = 0; 1956 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1957 1958 dep[0] = dep[1] = NULL; 1959 1960 /* 1961 * We first look for addresses in the same scope. 1962 * If there is one, return it. 1963 * If two or more, return one which matches the dst longest. 1964 * If none, return one of global addresses assigned other ifs. 1965 */ 1966 IF_ADDR_RLOCK(ifp); 1967 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1968 if (ifa->ifa_addr->sa_family != AF_INET6) 1969 continue; 1970 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1971 continue; /* XXX: is there any case to allow anycast? */ 1972 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1973 continue; /* don't use this interface */ 1974 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1975 continue; 1976 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1977 if (V_ip6_use_deprecated) 1978 dep[0] = (struct in6_ifaddr *)ifa; 1979 continue; 1980 } 1981 1982 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1983 /* 1984 * call in6_matchlen() as few as possible 1985 */ 1986 if (besta) { 1987 if (blen == -1) 1988 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1989 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1990 if (tlen > blen) { 1991 blen = tlen; 1992 besta = (struct in6_ifaddr *)ifa; 1993 } 1994 } else 1995 besta = (struct in6_ifaddr *)ifa; 1996 } 1997 } 1998 if (besta) { 1999 ifa_ref(&besta->ia_ifa); 2000 IF_ADDR_RUNLOCK(ifp); 2001 return (besta); 2002 } 2003 2004 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2005 if (ifa->ifa_addr->sa_family != AF_INET6) 2006 continue; 2007 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2008 continue; /* XXX: is there any case to allow anycast? */ 2009 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2010 continue; /* don't use this interface */ 2011 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2012 continue; 2013 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2014 if (V_ip6_use_deprecated) 2015 dep[1] = (struct in6_ifaddr *)ifa; 2016 continue; 2017 } 2018 2019 if (ifa != NULL) 2020 ifa_ref(ifa); 2021 IF_ADDR_RUNLOCK(ifp); 2022 return (struct in6_ifaddr *)ifa; 2023 } 2024 2025 /* use the last-resort values, that are, deprecated addresses */ 2026 if (dep[0]) { 2027 ifa_ref((struct ifaddr *)dep[0]); 2028 IF_ADDR_RUNLOCK(ifp); 2029 return dep[0]; 2030 } 2031 if (dep[1]) { 2032 ifa_ref((struct ifaddr *)dep[1]); 2033 IF_ADDR_RUNLOCK(ifp); 2034 return dep[1]; 2035 } 2036 2037 IF_ADDR_RUNLOCK(ifp); 2038 return NULL; 2039 } 2040 2041 /* 2042 * perform DAD when interface becomes IFF_UP. 2043 */ 2044 void 2045 in6_if_up(struct ifnet *ifp) 2046 { 2047 struct ifaddr *ifa; 2048 struct in6_ifaddr *ia; 2049 2050 IF_ADDR_RLOCK(ifp); 2051 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2052 if (ifa->ifa_addr->sa_family != AF_INET6) 2053 continue; 2054 ia = (struct in6_ifaddr *)ifa; 2055 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2056 /* 2057 * The TENTATIVE flag was likely set by hand 2058 * beforehand, implicitly indicating the need for DAD. 2059 * We may be able to skip the random delay in this 2060 * case, but we impose delays just in case. 2061 */ 2062 nd6_dad_start(ifa, 2063 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2064 } 2065 } 2066 IF_ADDR_RUNLOCK(ifp); 2067 2068 /* 2069 * special cases, like 6to4, are handled in in6_ifattach 2070 */ 2071 in6_ifattach(ifp, NULL); 2072 } 2073 2074 int 2075 in6if_do_dad(struct ifnet *ifp) 2076 { 2077 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2078 return (0); 2079 2080 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 2081 return (0); 2082 2083 switch (ifp->if_type) { 2084 #ifdef IFT_DUMMY 2085 case IFT_DUMMY: 2086 #endif 2087 case IFT_FAITH: 2088 /* 2089 * These interfaces do not have the IFF_LOOPBACK flag, 2090 * but loop packets back. We do not have to do DAD on such 2091 * interfaces. We should even omit it, because loop-backed 2092 * NS would confuse the DAD procedure. 2093 */ 2094 return (0); 2095 default: 2096 /* 2097 * Our DAD routine requires the interface up and running. 2098 * However, some interfaces can be up before the RUNNING 2099 * status. Additionaly, users may try to assign addresses 2100 * before the interface becomes up (or running). 2101 * We simply skip DAD in such a case as a work around. 2102 * XXX: we should rather mark "tentative" on such addresses, 2103 * and do DAD after the interface becomes ready. 2104 */ 2105 if (!((ifp->if_flags & IFF_UP) && 2106 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2107 return (0); 2108 2109 return (1); 2110 } 2111 } 2112 2113 /* 2114 * Calculate max IPv6 MTU through all the interfaces and store it 2115 * to in6_maxmtu. 2116 */ 2117 void 2118 in6_setmaxmtu(void) 2119 { 2120 unsigned long maxmtu = 0; 2121 struct ifnet *ifp; 2122 2123 IFNET_RLOCK_NOSLEEP(); 2124 TAILQ_FOREACH(ifp, &V_ifnet, if_list) { 2125 /* this function can be called during ifnet initialization */ 2126 if (!ifp->if_afdata[AF_INET6]) 2127 continue; 2128 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2129 IN6_LINKMTU(ifp) > maxmtu) 2130 maxmtu = IN6_LINKMTU(ifp); 2131 } 2132 IFNET_RUNLOCK_NOSLEEP(); 2133 if (maxmtu) /* update only when maxmtu is positive */ 2134 V_in6_maxmtu = maxmtu; 2135 } 2136 2137 /* 2138 * Provide the length of interface identifiers to be used for the link attached 2139 * to the given interface. The length should be defined in "IPv6 over 2140 * xxx-link" document. Note that address architecture might also define 2141 * the length for a particular set of address prefixes, regardless of the 2142 * link type. As clarified in rfc2462bis, those two definitions should be 2143 * consistent, and those really are as of August 2004. 2144 */ 2145 int 2146 in6_if2idlen(struct ifnet *ifp) 2147 { 2148 switch (ifp->if_type) { 2149 case IFT_ETHER: /* RFC2464 */ 2150 #ifdef IFT_PROPVIRTUAL 2151 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2152 #endif 2153 #ifdef IFT_L2VLAN 2154 case IFT_L2VLAN: /* ditto */ 2155 #endif 2156 #ifdef IFT_IEEE80211 2157 case IFT_IEEE80211: /* ditto */ 2158 #endif 2159 #ifdef IFT_MIP 2160 case IFT_MIP: /* ditto */ 2161 #endif 2162 case IFT_INFINIBAND: 2163 return (64); 2164 case IFT_FDDI: /* RFC2467 */ 2165 return (64); 2166 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2167 return (64); 2168 case IFT_PPP: /* RFC2472 */ 2169 return (64); 2170 case IFT_ARCNET: /* RFC2497 */ 2171 return (64); 2172 case IFT_FRELAY: /* RFC2590 */ 2173 return (64); 2174 case IFT_IEEE1394: /* RFC3146 */ 2175 return (64); 2176 case IFT_GIF: 2177 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2178 case IFT_LOOP: 2179 return (64); /* XXX: is this really correct? */ 2180 default: 2181 /* 2182 * Unknown link type: 2183 * It might be controversial to use the today's common constant 2184 * of 64 for these cases unconditionally. For full compliance, 2185 * we should return an error in this case. On the other hand, 2186 * if we simply miss the standard for the link type or a new 2187 * standard is defined for a new link type, the IFID length 2188 * is very likely to be the common constant. As a compromise, 2189 * we always use the constant, but make an explicit notice 2190 * indicating the "unknown" case. 2191 */ 2192 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2193 return (64); 2194 } 2195 } 2196 2197 #include <sys/sysctl.h> 2198 2199 struct in6_llentry { 2200 struct llentry base; 2201 struct sockaddr_in6 l3_addr6; 2202 }; 2203 2204 /* 2205 * Deletes an address from the address table. 2206 * This function is called by the timer functions 2207 * such as arptimer() and nd6_llinfo_timer(), and 2208 * the caller does the locking. 2209 */ 2210 static void 2211 in6_lltable_free(struct lltable *llt, struct llentry *lle) 2212 { 2213 LLE_WUNLOCK(lle); 2214 LLE_LOCK_DESTROY(lle); 2215 free(lle, M_LLTABLE); 2216 } 2217 2218 static struct llentry * 2219 in6_lltable_new(const struct sockaddr *l3addr, u_int flags) 2220 { 2221 struct in6_llentry *lle; 2222 2223 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2224 if (lle == NULL) /* NB: caller generates msg */ 2225 return NULL; 2226 2227 lle->l3_addr6 = *(const struct sockaddr_in6 *)l3addr; 2228 lle->base.lle_refcnt = 1; 2229 lle->base.lle_free = in6_lltable_free; 2230 LLE_LOCK_INIT(&lle->base); 2231 callout_init_rw(&lle->base.ln_timer_ch, &lle->base.lle_lock, 2232 CALLOUT_RETURNUNLOCKED); 2233 2234 return (&lle->base); 2235 } 2236 2237 static void 2238 in6_lltable_prefix_free(struct lltable *llt, const struct sockaddr *prefix, 2239 const struct sockaddr *mask, u_int flags) 2240 { 2241 const struct sockaddr_in6 *pfx = (const struct sockaddr_in6 *)prefix; 2242 const struct sockaddr_in6 *msk = (const struct sockaddr_in6 *)mask; 2243 struct llentry *lle, *next; 2244 int i; 2245 2246 /* 2247 * (flags & LLE_STATIC) means deleting all entries 2248 * including static ND6 entries. 2249 */ 2250 IF_AFDATA_WLOCK(llt->llt_ifp); 2251 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2252 LIST_FOREACH_SAFE(lle, &llt->lle_head[i], lle_next, next) { 2253 if (IN6_ARE_MASKED_ADDR_EQUAL( 2254 &satosin6(L3_ADDR(lle))->sin6_addr, 2255 &pfx->sin6_addr, &msk->sin6_addr) && 2256 ((flags & LLE_STATIC) || 2257 !(lle->la_flags & LLE_STATIC))) { 2258 LLE_WLOCK(lle); 2259 if (callout_stop(&lle->la_timer)) 2260 LLE_REMREF(lle); 2261 llentry_free(lle); 2262 } 2263 } 2264 } 2265 IF_AFDATA_WUNLOCK(llt->llt_ifp); 2266 } 2267 2268 static int 2269 in6_lltable_rtcheck(struct ifnet *ifp, 2270 u_int flags, 2271 const struct sockaddr *l3addr) 2272 { 2273 struct rtentry *rt; 2274 char ip6buf[INET6_ADDRSTRLEN]; 2275 2276 KASSERT(l3addr->sa_family == AF_INET6, 2277 ("sin_family %d", l3addr->sa_family)); 2278 2279 /* Our local addresses are always only installed on the default FIB. */ 2280 /* XXX rtalloc1 should take a const param */ 2281 rt = in6_rtalloc1(__DECONST(struct sockaddr *, l3addr), 0, 0, 2282 RT_DEFAULT_FIB); 2283 if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) || rt->rt_ifp != ifp) { 2284 struct ifaddr *ifa; 2285 /* 2286 * Create an ND6 cache for an IPv6 neighbor 2287 * that is not covered by our own prefix. 2288 */ 2289 /* XXX ifaof_ifpforaddr should take a const param */ 2290 ifa = ifaof_ifpforaddr(__DECONST(struct sockaddr *, l3addr), ifp); 2291 if (ifa != NULL) { 2292 ifa_free(ifa); 2293 if (rt != NULL) 2294 RTFREE_LOCKED(rt); 2295 return 0; 2296 } 2297 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2298 ip6_sprintf(ip6buf, &((const struct sockaddr_in6 *)l3addr)->sin6_addr)); 2299 if (rt != NULL) 2300 RTFREE_LOCKED(rt); 2301 return EINVAL; 2302 } 2303 RTFREE_LOCKED(rt); 2304 return 0; 2305 } 2306 2307 static struct llentry * 2308 in6_lltable_lookup(struct lltable *llt, u_int flags, 2309 const struct sockaddr *l3addr) 2310 { 2311 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2312 struct ifnet *ifp = llt->llt_ifp; 2313 struct llentry *lle; 2314 struct llentries *lleh; 2315 u_int hashkey; 2316 2317 IF_AFDATA_LOCK_ASSERT(ifp); 2318 KASSERT(l3addr->sa_family == AF_INET6, 2319 ("sin_family %d", l3addr->sa_family)); 2320 2321 hashkey = sin6->sin6_addr.s6_addr32[3]; 2322 lleh = &llt->lle_head[LLATBL_HASH(hashkey, LLTBL_HASHMASK)]; 2323 LIST_FOREACH(lle, lleh, lle_next) { 2324 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)L3_ADDR(lle); 2325 if (lle->la_flags & LLE_DELETED) 2326 continue; 2327 if (bcmp(&sa6->sin6_addr, &sin6->sin6_addr, 2328 sizeof(struct in6_addr)) == 0) 2329 break; 2330 } 2331 2332 if (lle == NULL) { 2333 if (!(flags & LLE_CREATE)) 2334 return (NULL); 2335 /* 2336 * A route that covers the given address must have 2337 * been installed 1st because we are doing a resolution, 2338 * verify this. 2339 */ 2340 if (!(flags & LLE_IFADDR) && 2341 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2342 return NULL; 2343 2344 lle = in6_lltable_new(l3addr, flags); 2345 if (lle == NULL) { 2346 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2347 return NULL; 2348 } 2349 lle->la_flags = flags & ~LLE_CREATE; 2350 if ((flags & (LLE_CREATE | LLE_IFADDR)) == (LLE_CREATE | LLE_IFADDR)) { 2351 bcopy(IF_LLADDR(ifp), &lle->ll_addr, ifp->if_addrlen); 2352 lle->la_flags |= (LLE_VALID | LLE_STATIC); 2353 } 2354 2355 lle->lle_tbl = llt; 2356 lle->lle_head = lleh; 2357 lle->la_flags |= LLE_LINKED; 2358 LIST_INSERT_HEAD(lleh, lle, lle_next); 2359 } else if (flags & LLE_DELETE) { 2360 if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) { 2361 LLE_WLOCK(lle); 2362 lle->la_flags |= LLE_DELETED; 2363 #ifdef DIAGNOSTIC 2364 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2365 #endif 2366 if ((lle->la_flags & 2367 (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC) 2368 llentry_free(lle); 2369 else 2370 LLE_WUNLOCK(lle); 2371 } 2372 lle = (void *)-1; 2373 } 2374 if (LLE_IS_VALID(lle)) { 2375 if (flags & LLE_EXCLUSIVE) 2376 LLE_WLOCK(lle); 2377 else 2378 LLE_RLOCK(lle); 2379 } 2380 return (lle); 2381 } 2382 2383 static int 2384 in6_lltable_dump(struct lltable *llt, struct sysctl_req *wr) 2385 { 2386 struct ifnet *ifp = llt->llt_ifp; 2387 struct llentry *lle; 2388 /* XXX stack use */ 2389 struct { 2390 struct rt_msghdr rtm; 2391 struct sockaddr_in6 sin6; 2392 /* 2393 * ndp.c assumes that sdl is word aligned 2394 */ 2395 #ifdef __LP64__ 2396 uint32_t pad; 2397 #endif 2398 struct sockaddr_dl sdl; 2399 } ndpc; 2400 int i, error; 2401 2402 if (ifp->if_flags & IFF_LOOPBACK) 2403 return 0; 2404 2405 LLTABLE_LOCK_ASSERT(); 2406 2407 error = 0; 2408 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2409 LIST_FOREACH(lle, &llt->lle_head[i], lle_next) { 2410 struct sockaddr_dl *sdl; 2411 2412 /* skip deleted or invalid entries */ 2413 if ((lle->la_flags & (LLE_DELETED|LLE_VALID)) != LLE_VALID) 2414 continue; 2415 /* Skip if jailed and not a valid IP of the prison. */ 2416 if (prison_if(wr->td->td_ucred, L3_ADDR(lle)) != 0) 2417 continue; 2418 /* 2419 * produce a msg made of: 2420 * struct rt_msghdr; 2421 * struct sockaddr_in6 (IPv6) 2422 * struct sockaddr_dl; 2423 */ 2424 bzero(&ndpc, sizeof(ndpc)); 2425 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2426 ndpc.rtm.rtm_version = RTM_VERSION; 2427 ndpc.rtm.rtm_type = RTM_GET; 2428 ndpc.rtm.rtm_flags = RTF_UP; 2429 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2430 ndpc.sin6.sin6_family = AF_INET6; 2431 ndpc.sin6.sin6_len = sizeof(ndpc.sin6); 2432 bcopy(L3_ADDR(lle), &ndpc.sin6, L3_ADDR_LEN(lle)); 2433 if (V_deembed_scopeid) 2434 sa6_recoverscope(&ndpc.sin6); 2435 2436 /* publish */ 2437 if (lle->la_flags & LLE_PUB) 2438 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2439 2440 sdl = &ndpc.sdl; 2441 sdl->sdl_family = AF_LINK; 2442 sdl->sdl_len = sizeof(*sdl); 2443 sdl->sdl_alen = ifp->if_addrlen; 2444 sdl->sdl_index = ifp->if_index; 2445 sdl->sdl_type = ifp->if_type; 2446 bcopy(&lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2447 ndpc.rtm.rtm_rmx.rmx_expire = 2448 lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; 2449 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2450 if (lle->la_flags & LLE_STATIC) 2451 ndpc.rtm.rtm_flags |= RTF_STATIC; 2452 ndpc.rtm.rtm_index = ifp->if_index; 2453 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2454 if (error) 2455 break; 2456 } 2457 } 2458 return error; 2459 } 2460 2461 void * 2462 in6_domifattach(struct ifnet *ifp) 2463 { 2464 struct in6_ifextra *ext; 2465 2466 /* There are not IPv6-capable interfaces. */ 2467 switch (ifp->if_type) { 2468 case IFT_PFLOG: 2469 case IFT_PFSYNC: 2470 case IFT_USB: 2471 return (NULL); 2472 } 2473 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2474 bzero(ext, sizeof(*ext)); 2475 2476 ext->in6_ifstat = malloc(sizeof(counter_u64_t) * 2477 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); 2478 COUNTER_ARRAY_ALLOC(ext->in6_ifstat, 2479 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); 2480 2481 ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * 2482 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, 2483 M_WAITOK); 2484 COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, 2485 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); 2486 2487 ext->nd_ifinfo = nd6_ifattach(ifp); 2488 ext->scope6_id = scope6_ifattach(ifp); 2489 ext->lltable = lltable_init(ifp, AF_INET6); 2490 if (ext->lltable != NULL) { 2491 ext->lltable->llt_prefix_free = in6_lltable_prefix_free; 2492 ext->lltable->llt_lookup = in6_lltable_lookup; 2493 ext->lltable->llt_dump = in6_lltable_dump; 2494 } 2495 2496 ext->mld_ifinfo = mld_domifattach(ifp); 2497 2498 return ext; 2499 } 2500 2501 void 2502 in6_domifdetach(struct ifnet *ifp, void *aux) 2503 { 2504 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2505 2506 mld_domifdetach(ifp); 2507 scope6_ifdetach(ext->scope6_id); 2508 nd6_ifdetach(ext->nd_ifinfo); 2509 lltable_free(ext->lltable); 2510 COUNTER_ARRAY_FREE(ext->in6_ifstat, 2511 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 2512 free(ext->in6_ifstat, M_IFADDR); 2513 COUNTER_ARRAY_FREE(ext->icmp6_ifstat, 2514 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 2515 free(ext->icmp6_ifstat, M_IFADDR); 2516 free(ext, M_IFADDR); 2517 } 2518 2519 /* 2520 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2521 * v4 mapped addr or v4 compat addr 2522 */ 2523 void 2524 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2525 { 2526 2527 bzero(sin, sizeof(*sin)); 2528 sin->sin_len = sizeof(struct sockaddr_in); 2529 sin->sin_family = AF_INET; 2530 sin->sin_port = sin6->sin6_port; 2531 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2532 } 2533 2534 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2535 void 2536 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2537 { 2538 bzero(sin6, sizeof(*sin6)); 2539 sin6->sin6_len = sizeof(struct sockaddr_in6); 2540 sin6->sin6_family = AF_INET6; 2541 sin6->sin6_port = sin->sin_port; 2542 sin6->sin6_addr.s6_addr32[0] = 0; 2543 sin6->sin6_addr.s6_addr32[1] = 0; 2544 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2545 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2546 } 2547 2548 /* Convert sockaddr_in6 into sockaddr_in. */ 2549 void 2550 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2551 { 2552 struct sockaddr_in *sin_p; 2553 struct sockaddr_in6 sin6; 2554 2555 /* 2556 * Save original sockaddr_in6 addr and convert it 2557 * to sockaddr_in. 2558 */ 2559 sin6 = *(struct sockaddr_in6 *)nam; 2560 sin_p = (struct sockaddr_in *)nam; 2561 in6_sin6_2_sin(sin_p, &sin6); 2562 } 2563 2564 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2565 void 2566 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2567 { 2568 struct sockaddr_in *sin_p; 2569 struct sockaddr_in6 *sin6_p; 2570 2571 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2572 sin_p = (struct sockaddr_in *)*nam; 2573 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2574 free(*nam, M_SONAME); 2575 *nam = (struct sockaddr *)sin6_p; 2576 } 2577