1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 69 #include <sys/param.h> 70 #include <sys/errno.h> 71 #include <sys/jail.h> 72 #include <sys/malloc.h> 73 #include <sys/socket.h> 74 #include <sys/socketvar.h> 75 #include <sys/sockio.h> 76 #include <sys/systm.h> 77 #include <sys/priv.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 #include <net/vnet.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <net/if_llatbl.h> 92 #include <netinet/if_ether.h> 93 #include <netinet/in_systm.h> 94 #include <netinet/ip.h> 95 #include <netinet/in_pcb.h> 96 97 #include <netinet/ip6.h> 98 #include <netinet6/ip6_var.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #include <netinet6/in6_pcb.h> 105 106 /* 107 * Definitions of some costant IP6 addresses. 108 */ 109 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 110 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 111 const struct in6_addr in6addr_nodelocal_allnodes = 112 IN6ADDR_NODELOCAL_ALLNODES_INIT; 113 const struct in6_addr in6addr_linklocal_allnodes = 114 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 115 const struct in6_addr in6addr_linklocal_allrouters = 116 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 117 const struct in6_addr in6addr_linklocal_allv2routers = 118 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 119 120 const struct in6_addr in6mask0 = IN6MASK0; 121 const struct in6_addr in6mask32 = IN6MASK32; 122 const struct in6_addr in6mask64 = IN6MASK64; 123 const struct in6_addr in6mask96 = IN6MASK96; 124 const struct in6_addr in6mask128 = IN6MASK128; 125 126 const struct sockaddr_in6 sa6_any = 127 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 128 129 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 130 struct ifnet *, struct thread *)); 131 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 132 struct sockaddr_in6 *, int)); 133 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 134 135 int (*faithprefix_p)(struct in6_addr *); 136 137 138 139 int 140 in6_mask2len(struct in6_addr *mask, u_char *lim0) 141 { 142 int x = 0, y; 143 u_char *lim = lim0, *p; 144 145 /* ignore the scope_id part */ 146 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 147 lim = (u_char *)mask + sizeof(*mask); 148 for (p = (u_char *)mask; p < lim; x++, p++) { 149 if (*p != 0xff) 150 break; 151 } 152 y = 0; 153 if (p < lim) { 154 for (y = 0; y < 8; y++) { 155 if ((*p & (0x80 >> y)) == 0) 156 break; 157 } 158 } 159 160 /* 161 * when the limit pointer is given, do a stricter check on the 162 * remaining bits. 163 */ 164 if (p < lim) { 165 if (y != 0 && (*p & (0x00ff >> y)) != 0) 166 return (-1); 167 for (p = p + 1; p < lim; p++) 168 if (*p != 0) 169 return (-1); 170 } 171 172 return x * 8 + y; 173 } 174 175 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 176 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 177 178 int 179 in6_control(struct socket *so, u_long cmd, caddr_t data, 180 struct ifnet *ifp, struct thread *td) 181 { 182 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 183 struct in6_ifaddr *ia = NULL; 184 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 185 struct sockaddr_in6 *sa6; 186 int error; 187 188 switch (cmd) { 189 case SIOCGETSGCNT_IN6: 190 case SIOCGETMIFCNT_IN6: 191 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 192 } 193 194 switch(cmd) { 195 case SIOCAADDRCTL_POLICY: 196 case SIOCDADDRCTL_POLICY: 197 if (td != NULL) { 198 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 199 if (error) 200 return (error); 201 } 202 return (in6_src_ioctl(cmd, data)); 203 } 204 205 if (ifp == NULL) 206 return (EOPNOTSUPP); 207 208 switch (cmd) { 209 case SIOCSNDFLUSH_IN6: 210 case SIOCSPFXFLUSH_IN6: 211 case SIOCSRTRFLUSH_IN6: 212 case SIOCSDEFIFACE_IN6: 213 case SIOCSIFINFO_FLAGS: 214 case SIOCSIFINFO_IN6: 215 if (td != NULL) { 216 error = priv_check(td, PRIV_NETINET_ND6); 217 if (error) 218 return (error); 219 } 220 /* FALLTHROUGH */ 221 case OSIOCGIFINFO_IN6: 222 case SIOCGIFINFO_IN6: 223 case SIOCGDRLST_IN6: 224 case SIOCGPRLST_IN6: 225 case SIOCGNBRINFO_IN6: 226 case SIOCGDEFIFACE_IN6: 227 return (nd6_ioctl(cmd, data, ifp)); 228 } 229 230 switch (cmd) { 231 case SIOCSIFPREFIX_IN6: 232 case SIOCDIFPREFIX_IN6: 233 case SIOCAIFPREFIX_IN6: 234 case SIOCCIFPREFIX_IN6: 235 case SIOCSGIFPREFIX_IN6: 236 case SIOCGIFPREFIX_IN6: 237 log(LOG_NOTICE, 238 "prefix ioctls are now invalidated. " 239 "please use ifconfig.\n"); 240 return (EOPNOTSUPP); 241 } 242 243 switch (cmd) { 244 case SIOCSSCOPE6: 245 if (td != NULL) { 246 error = priv_check(td, PRIV_NETINET_SCOPE6); 247 if (error) 248 return (error); 249 } 250 return (scope6_set(ifp, 251 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 252 case SIOCGSCOPE6: 253 return (scope6_get(ifp, 254 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 255 case SIOCGSCOPE6DEF: 256 return (scope6_get_default((struct scope6_id *) 257 ifr->ifr_ifru.ifru_scope_id)); 258 } 259 260 switch (cmd) { 261 case SIOCALIFADDR: 262 if (td != NULL) { 263 error = priv_check(td, PRIV_NET_ADDIFADDR); 264 if (error) 265 return (error); 266 } 267 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 268 269 case SIOCDLIFADDR: 270 if (td != NULL) { 271 error = priv_check(td, PRIV_NET_DELIFADDR); 272 if (error) 273 return (error); 274 } 275 /* FALLTHROUGH */ 276 case SIOCGLIFADDR: 277 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 278 } 279 280 /* 281 * Find address for this interface, if it exists. 282 * 283 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 284 * only, and used the first interface address as the target of other 285 * operations (without checking ifra_addr). This was because netinet 286 * code/API assumed at most 1 interface address per interface. 287 * Since IPv6 allows a node to assign multiple addresses 288 * on a single interface, we almost always look and check the 289 * presence of ifra_addr, and reject invalid ones here. 290 * It also decreases duplicated code among SIOC*_IN6 operations. 291 */ 292 switch (cmd) { 293 case SIOCAIFADDR_IN6: 294 case SIOCSIFPHYADDR_IN6: 295 sa6 = &ifra->ifra_addr; 296 break; 297 case SIOCSIFADDR_IN6: 298 case SIOCGIFADDR_IN6: 299 case SIOCSIFDSTADDR_IN6: 300 case SIOCSIFNETMASK_IN6: 301 case SIOCGIFDSTADDR_IN6: 302 case SIOCGIFNETMASK_IN6: 303 case SIOCDIFADDR_IN6: 304 case SIOCGIFPSRCADDR_IN6: 305 case SIOCGIFPDSTADDR_IN6: 306 case SIOCGIFAFLAG_IN6: 307 case SIOCSNDFLUSH_IN6: 308 case SIOCSPFXFLUSH_IN6: 309 case SIOCSRTRFLUSH_IN6: 310 case SIOCGIFALIFETIME_IN6: 311 case SIOCSIFALIFETIME_IN6: 312 case SIOCGIFSTAT_IN6: 313 case SIOCGIFSTAT_ICMP6: 314 sa6 = &ifr->ifr_addr; 315 break; 316 default: 317 sa6 = NULL; 318 break; 319 } 320 if (sa6 && sa6->sin6_family == AF_INET6) { 321 if (sa6->sin6_scope_id != 0) 322 error = sa6_embedscope(sa6, 0); 323 else 324 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 325 if (error != 0) 326 return (error); 327 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 328 &sa6->sin6_addr)) != 0) 329 return (error); 330 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 331 } else 332 ia = NULL; 333 334 switch (cmd) { 335 case SIOCSIFADDR_IN6: 336 case SIOCSIFDSTADDR_IN6: 337 case SIOCSIFNETMASK_IN6: 338 /* 339 * Since IPv6 allows a node to assign multiple addresses 340 * on a single interface, SIOCSIFxxx ioctls are deprecated. 341 */ 342 /* we decided to obsolete this command (20000704) */ 343 error = EINVAL; 344 goto out; 345 346 case SIOCDIFADDR_IN6: 347 /* 348 * for IPv4, we look for existing in_ifaddr here to allow 349 * "ifconfig if0 delete" to remove the first IPv4 address on 350 * the interface. For IPv6, as the spec allows multiple 351 * interface address from the day one, we consider "remove the 352 * first one" semantics to be not preferable. 353 */ 354 if (ia == NULL) { 355 error = EADDRNOTAVAIL; 356 goto out; 357 } 358 /* FALLTHROUGH */ 359 case SIOCAIFADDR_IN6: 360 /* 361 * We always require users to specify a valid IPv6 address for 362 * the corresponding operation. 363 */ 364 if (ifra->ifra_addr.sin6_family != AF_INET6 || 365 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 366 error = EAFNOSUPPORT; 367 goto out; 368 } 369 370 if (td != NULL) { 371 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 372 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 373 if (error) 374 goto out; 375 } 376 break; 377 378 case SIOCGIFADDR_IN6: 379 /* This interface is basically deprecated. use SIOCGIFCONF. */ 380 /* FALLTHROUGH */ 381 case SIOCGIFAFLAG_IN6: 382 case SIOCGIFNETMASK_IN6: 383 case SIOCGIFDSTADDR_IN6: 384 case SIOCGIFALIFETIME_IN6: 385 /* must think again about its semantics */ 386 if (ia == NULL) { 387 error = EADDRNOTAVAIL; 388 goto out; 389 } 390 break; 391 392 case SIOCSIFALIFETIME_IN6: 393 { 394 struct in6_addrlifetime *lt; 395 396 if (td != NULL) { 397 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 398 if (error) 399 goto out; 400 } 401 if (ia == NULL) { 402 error = EADDRNOTAVAIL; 403 goto out; 404 } 405 /* sanity for overflow - beware unsigned */ 406 lt = &ifr->ifr_ifru.ifru_lifetime; 407 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 408 lt->ia6t_vltime + time_second < time_second) { 409 error = EINVAL; 410 goto out; 411 } 412 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 413 lt->ia6t_pltime + time_second < time_second) { 414 error = EINVAL; 415 goto out; 416 } 417 break; 418 } 419 } 420 421 switch (cmd) { 422 case SIOCGIFADDR_IN6: 423 ifr->ifr_addr = ia->ia_addr; 424 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 425 goto out; 426 break; 427 428 case SIOCGIFDSTADDR_IN6: 429 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 430 error = EINVAL; 431 goto out; 432 } 433 /* 434 * XXX: should we check if ifa_dstaddr is NULL and return 435 * an error? 436 */ 437 ifr->ifr_dstaddr = ia->ia_dstaddr; 438 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 439 goto out; 440 break; 441 442 case SIOCGIFNETMASK_IN6: 443 ifr->ifr_addr = ia->ia_prefixmask; 444 break; 445 446 case SIOCGIFAFLAG_IN6: 447 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 448 break; 449 450 case SIOCGIFSTAT_IN6: 451 if (ifp == NULL) { 452 error = EINVAL; 453 goto out; 454 } 455 bzero(&ifr->ifr_ifru.ifru_stat, 456 sizeof(ifr->ifr_ifru.ifru_stat)); 457 ifr->ifr_ifru.ifru_stat = 458 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 459 break; 460 461 case SIOCGIFSTAT_ICMP6: 462 if (ifp == NULL) { 463 error = EINVAL; 464 goto out; 465 } 466 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 467 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 468 ifr->ifr_ifru.ifru_icmp6stat = 469 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 470 break; 471 472 case SIOCGIFALIFETIME_IN6: 473 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 474 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 475 time_t maxexpire; 476 struct in6_addrlifetime *retlt = 477 &ifr->ifr_ifru.ifru_lifetime; 478 479 /* 480 * XXX: adjust expiration time assuming time_t is 481 * signed. 482 */ 483 maxexpire = (-1) & 484 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 485 if (ia->ia6_lifetime.ia6t_vltime < 486 maxexpire - ia->ia6_updatetime) { 487 retlt->ia6t_expire = ia->ia6_updatetime + 488 ia->ia6_lifetime.ia6t_vltime; 489 } else 490 retlt->ia6t_expire = maxexpire; 491 } 492 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 493 time_t maxexpire; 494 struct in6_addrlifetime *retlt = 495 &ifr->ifr_ifru.ifru_lifetime; 496 497 /* 498 * XXX: adjust expiration time assuming time_t is 499 * signed. 500 */ 501 maxexpire = (-1) & 502 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 503 if (ia->ia6_lifetime.ia6t_pltime < 504 maxexpire - ia->ia6_updatetime) { 505 retlt->ia6t_preferred = ia->ia6_updatetime + 506 ia->ia6_lifetime.ia6t_pltime; 507 } else 508 retlt->ia6t_preferred = maxexpire; 509 } 510 break; 511 512 case SIOCSIFALIFETIME_IN6: 513 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 514 /* for sanity */ 515 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 516 ia->ia6_lifetime.ia6t_expire = 517 time_second + ia->ia6_lifetime.ia6t_vltime; 518 } else 519 ia->ia6_lifetime.ia6t_expire = 0; 520 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 521 ia->ia6_lifetime.ia6t_preferred = 522 time_second + ia->ia6_lifetime.ia6t_pltime; 523 } else 524 ia->ia6_lifetime.ia6t_preferred = 0; 525 break; 526 527 case SIOCAIFADDR_IN6: 528 { 529 int i; 530 struct nd_prefixctl pr0; 531 struct nd_prefix *pr; 532 533 /* 534 * first, make or update the interface address structure, 535 * and link it to the list. 536 */ 537 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 538 goto out; 539 if (ia != NULL) 540 ifa_free(&ia->ia_ifa); 541 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 542 == NULL) { 543 /* 544 * this can happen when the user specify the 0 valid 545 * lifetime. 546 */ 547 break; 548 } 549 550 /* 551 * then, make the prefix on-link on the interface. 552 * XXX: we'd rather create the prefix before the address, but 553 * we need at least one address to install the corresponding 554 * interface route, so we configure the address first. 555 */ 556 557 /* 558 * convert mask to prefix length (prefixmask has already 559 * been validated in in6_update_ifa(). 560 */ 561 bzero(&pr0, sizeof(pr0)); 562 pr0.ndpr_ifp = ifp; 563 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 564 NULL); 565 if (pr0.ndpr_plen == 128) { 566 break; /* we don't need to install a host route. */ 567 } 568 pr0.ndpr_prefix = ifra->ifra_addr; 569 /* apply the mask for safety. */ 570 for (i = 0; i < 4; i++) { 571 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 572 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 573 } 574 /* 575 * XXX: since we don't have an API to set prefix (not address) 576 * lifetimes, we just use the same lifetimes as addresses. 577 * The (temporarily) installed lifetimes can be overridden by 578 * later advertised RAs (when accept_rtadv is non 0), which is 579 * an intended behavior. 580 */ 581 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 582 pr0.ndpr_raf_auto = 583 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 584 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 585 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 586 587 /* add the prefix if not yet. */ 588 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 589 /* 590 * nd6_prelist_add will install the corresponding 591 * interface route. 592 */ 593 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 594 goto out; 595 if (pr == NULL) { 596 log(LOG_ERR, "nd6_prelist_add succeeded but " 597 "no prefix\n"); 598 error = EINVAL; 599 goto out; 600 } 601 } 602 603 /* relate the address to the prefix */ 604 if (ia->ia6_ndpr == NULL) { 605 ia->ia6_ndpr = pr; 606 pr->ndpr_refcnt++; 607 608 /* 609 * If this is the first autoconf address from the 610 * prefix, create a temporary address as well 611 * (when required). 612 */ 613 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 614 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 615 int e; 616 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 617 log(LOG_NOTICE, "in6_control: failed " 618 "to create a temporary address, " 619 "errno=%d\n", e); 620 } 621 } 622 } 623 624 /* 625 * this might affect the status of autoconfigured addresses, 626 * that is, this address might make other addresses detached. 627 */ 628 pfxlist_onlink_check(); 629 if (error == 0 && ia) 630 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 631 break; 632 } 633 634 case SIOCDIFADDR_IN6: 635 { 636 struct nd_prefix *pr; 637 638 /* 639 * If the address being deleted is the only one that owns 640 * the corresponding prefix, expire the prefix as well. 641 * XXX: theoretically, we don't have to worry about such 642 * relationship, since we separate the address management 643 * and the prefix management. We do this, however, to provide 644 * as much backward compatibility as possible in terms of 645 * the ioctl operation. 646 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 647 */ 648 pr = ia->ia6_ndpr; 649 in6_purgeaddr(&ia->ia_ifa); 650 if (pr && pr->ndpr_refcnt == 0) 651 prelist_remove(pr); 652 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 653 break; 654 } 655 656 default: 657 if (ifp == NULL || ifp->if_ioctl == 0) { 658 error = EOPNOTSUPP; 659 goto out; 660 } 661 error = (*ifp->if_ioctl)(ifp, cmd, data); 662 goto out; 663 } 664 665 error = 0; 666 out: 667 if (ia != NULL) 668 ifa_free(&ia->ia_ifa); 669 return (error); 670 } 671 672 /* 673 * Update parameters of an IPv6 interface address. 674 * If necessary, a new entry is created and linked into address chains. 675 * This function is separated from in6_control(). 676 * XXX: should this be performed under splnet()? 677 */ 678 int 679 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 680 struct in6_ifaddr *ia, int flags) 681 { 682 int error = 0, hostIsNew = 0, plen = -1; 683 struct sockaddr_in6 dst6; 684 struct in6_addrlifetime *lt; 685 struct in6_multi_mship *imm; 686 struct in6_multi *in6m_sol; 687 struct rtentry *rt; 688 int delay; 689 char ip6buf[INET6_ADDRSTRLEN]; 690 691 /* Validate parameters */ 692 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 693 return (EINVAL); 694 695 /* 696 * The destination address for a p2p link must have a family 697 * of AF_UNSPEC or AF_INET6. 698 */ 699 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 700 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 701 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 702 return (EAFNOSUPPORT); 703 /* 704 * validate ifra_prefixmask. don't check sin6_family, netmask 705 * does not carry fields other than sin6_len. 706 */ 707 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 708 return (EINVAL); 709 /* 710 * Because the IPv6 address architecture is classless, we require 711 * users to specify a (non 0) prefix length (mask) for a new address. 712 * We also require the prefix (when specified) mask is valid, and thus 713 * reject a non-consecutive mask. 714 */ 715 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 716 return (EINVAL); 717 if (ifra->ifra_prefixmask.sin6_len != 0) { 718 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 719 (u_char *)&ifra->ifra_prefixmask + 720 ifra->ifra_prefixmask.sin6_len); 721 if (plen <= 0) 722 return (EINVAL); 723 } else { 724 /* 725 * In this case, ia must not be NULL. We just use its prefix 726 * length. 727 */ 728 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 729 } 730 /* 731 * If the destination address on a p2p interface is specified, 732 * and the address is a scoped one, validate/set the scope 733 * zone identifier. 734 */ 735 dst6 = ifra->ifra_dstaddr; 736 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 737 (dst6.sin6_family == AF_INET6)) { 738 struct in6_addr in6_tmp; 739 u_int32_t zoneid; 740 741 in6_tmp = dst6.sin6_addr; 742 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 743 return (EINVAL); /* XXX: should be impossible */ 744 745 if (dst6.sin6_scope_id != 0) { 746 if (dst6.sin6_scope_id != zoneid) 747 return (EINVAL); 748 } else /* user omit to specify the ID. */ 749 dst6.sin6_scope_id = zoneid; 750 751 /* convert into the internal form */ 752 if (sa6_embedscope(&dst6, 0)) 753 return (EINVAL); /* XXX: should be impossible */ 754 } 755 /* 756 * The destination address can be specified only for a p2p or a 757 * loopback interface. If specified, the corresponding prefix length 758 * must be 128. 759 */ 760 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 761 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 762 /* XXX: noisy message */ 763 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 764 "be specified for a p2p or a loopback IF only\n")); 765 return (EINVAL); 766 } 767 if (plen != 128) { 768 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 769 "be 128 when dstaddr is specified\n")); 770 return (EINVAL); 771 } 772 } 773 /* lifetime consistency check */ 774 lt = &ifra->ifra_lifetime; 775 if (lt->ia6t_pltime > lt->ia6t_vltime) 776 return (EINVAL); 777 if (lt->ia6t_vltime == 0) { 778 /* 779 * the following log might be noisy, but this is a typical 780 * configuration mistake or a tool's bug. 781 */ 782 nd6log((LOG_INFO, 783 "in6_update_ifa: valid lifetime is 0 for %s\n", 784 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 785 786 if (ia == NULL) 787 return (0); /* there's nothing to do */ 788 } 789 790 /* 791 * If this is a new address, allocate a new ifaddr and link it 792 * into chains. 793 */ 794 if (ia == NULL) { 795 hostIsNew = 1; 796 /* 797 * When in6_update_ifa() is called in a process of a received 798 * RA, it is called under an interrupt context. So, we should 799 * call malloc with M_NOWAIT. 800 */ 801 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 802 M_NOWAIT); 803 if (ia == NULL) 804 return (ENOBUFS); 805 bzero((caddr_t)ia, sizeof(*ia)); 806 ifa_init(&ia->ia_ifa); 807 LIST_INIT(&ia->ia6_memberships); 808 /* Initialize the address and masks, and put time stamp */ 809 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 810 ia->ia_addr.sin6_family = AF_INET6; 811 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 812 ia->ia6_createtime = time_second; 813 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 814 /* 815 * XXX: some functions expect that ifa_dstaddr is not 816 * NULL for p2p interfaces. 817 */ 818 ia->ia_ifa.ifa_dstaddr = 819 (struct sockaddr *)&ia->ia_dstaddr; 820 } else { 821 ia->ia_ifa.ifa_dstaddr = NULL; 822 } 823 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 824 ia->ia_ifp = ifp; 825 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 826 IF_ADDR_LOCK(ifp); 827 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 828 IF_ADDR_UNLOCK(ifp); 829 830 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 831 IN6_IFADDR_WLOCK(); 832 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 833 IN6_IFADDR_WUNLOCK(); 834 } 835 836 /* update timestamp */ 837 ia->ia6_updatetime = time_second; 838 839 /* set prefix mask */ 840 if (ifra->ifra_prefixmask.sin6_len) { 841 /* 842 * We prohibit changing the prefix length of an existing 843 * address, because 844 * + such an operation should be rare in IPv6, and 845 * + the operation would confuse prefix management. 846 */ 847 if (ia->ia_prefixmask.sin6_len && 848 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 849 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 850 " existing (%s) address should not be changed\n", 851 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 852 error = EINVAL; 853 goto unlink; 854 } 855 ia->ia_prefixmask = ifra->ifra_prefixmask; 856 } 857 858 /* 859 * If a new destination address is specified, scrub the old one and 860 * install the new destination. Note that the interface must be 861 * p2p or loopback (see the check above.) 862 */ 863 if (dst6.sin6_family == AF_INET6 && 864 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 865 int e; 866 867 if ((ia->ia_flags & IFA_ROUTE) != 0 && 868 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 869 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 870 "a route to the old destination: %s\n", 871 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 872 /* proceed anyway... */ 873 } else 874 ia->ia_flags &= ~IFA_ROUTE; 875 ia->ia_dstaddr = dst6; 876 } 877 878 /* 879 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 880 * to see if the address is deprecated or invalidated, but initialize 881 * these members for applications. 882 */ 883 ia->ia6_lifetime = ifra->ifra_lifetime; 884 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 885 ia->ia6_lifetime.ia6t_expire = 886 time_second + ia->ia6_lifetime.ia6t_vltime; 887 } else 888 ia->ia6_lifetime.ia6t_expire = 0; 889 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 890 ia->ia6_lifetime.ia6t_preferred = 891 time_second + ia->ia6_lifetime.ia6t_pltime; 892 } else 893 ia->ia6_lifetime.ia6t_preferred = 0; 894 895 /* reset the interface and routing table appropriately. */ 896 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 897 goto unlink; 898 899 /* 900 * configure address flags. 901 */ 902 ia->ia6_flags = ifra->ifra_flags; 903 /* 904 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 905 * userland, make it deprecated. 906 */ 907 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 908 ia->ia6_lifetime.ia6t_pltime = 0; 909 ia->ia6_lifetime.ia6t_preferred = time_second; 910 } 911 /* 912 * Make the address tentative before joining multicast addresses, 913 * so that corresponding MLD responses would not have a tentative 914 * source address. 915 */ 916 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 917 if (hostIsNew && in6if_do_dad(ifp)) 918 ia->ia6_flags |= IN6_IFF_TENTATIVE; 919 920 /* 921 * We are done if we have simply modified an existing address. 922 */ 923 if (!hostIsNew) 924 return (error); 925 926 /* 927 * Beyond this point, we should call in6_purgeaddr upon an error, 928 * not just go to unlink. 929 */ 930 931 /* Join necessary multicast groups */ 932 in6m_sol = NULL; 933 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 934 struct sockaddr_in6 mltaddr, mltmask; 935 struct in6_addr llsol; 936 937 /* join solicited multicast addr for new host id */ 938 bzero(&llsol, sizeof(struct in6_addr)); 939 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 940 llsol.s6_addr32[1] = 0; 941 llsol.s6_addr32[2] = htonl(1); 942 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 943 llsol.s6_addr8[12] = 0xff; 944 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 945 /* XXX: should not happen */ 946 log(LOG_ERR, "in6_update_ifa: " 947 "in6_setscope failed\n"); 948 goto cleanup; 949 } 950 delay = 0; 951 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 952 /* 953 * We need a random delay for DAD on the address 954 * being configured. It also means delaying 955 * transmission of the corresponding MLD report to 956 * avoid report collision. 957 * [draft-ietf-ipv6-rfc2462bis-02.txt] 958 */ 959 delay = arc4random() % 960 (MAX_RTR_SOLICITATION_DELAY * hz); 961 } 962 imm = in6_joingroup(ifp, &llsol, &error, delay); 963 if (imm == NULL) { 964 nd6log((LOG_WARNING, 965 "in6_update_ifa: addmulti failed for " 966 "%s on %s (errno=%d)\n", 967 ip6_sprintf(ip6buf, &llsol), if_name(ifp), 968 error)); 969 goto cleanup; 970 } 971 LIST_INSERT_HEAD(&ia->ia6_memberships, 972 imm, i6mm_chain); 973 in6m_sol = imm->i6mm_maddr; 974 975 bzero(&mltmask, sizeof(mltmask)); 976 mltmask.sin6_len = sizeof(struct sockaddr_in6); 977 mltmask.sin6_family = AF_INET6; 978 mltmask.sin6_addr = in6mask32; 979 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 980 981 /* 982 * join link-local all-nodes address 983 */ 984 bzero(&mltaddr, sizeof(mltaddr)); 985 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 986 mltaddr.sin6_family = AF_INET6; 987 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 988 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 989 0) 990 goto cleanup; /* XXX: should not fail */ 991 992 /* 993 * XXX: do we really need this automatic routes? 994 * We should probably reconsider this stuff. Most applications 995 * actually do not need the routes, since they usually specify 996 * the outgoing interface. 997 */ 998 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 999 if (rt) { 1000 /* XXX: only works in !SCOPEDROUTING case. */ 1001 if (memcmp(&mltaddr.sin6_addr, 1002 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1003 MLTMASK_LEN)) { 1004 RTFREE_LOCKED(rt); 1005 rt = NULL; 1006 } 1007 } 1008 if (!rt) { 1009 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1010 (struct sockaddr *)&ia->ia_addr, 1011 (struct sockaddr *)&mltmask, RTF_UP, 1012 (struct rtentry **)0); 1013 if (error) 1014 goto cleanup; 1015 } else { 1016 RTFREE_LOCKED(rt); 1017 } 1018 1019 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1020 if (!imm) { 1021 nd6log((LOG_WARNING, 1022 "in6_update_ifa: addmulti failed for " 1023 "%s on %s (errno=%d)\n", 1024 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1025 if_name(ifp), error)); 1026 goto cleanup; 1027 } 1028 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1029 1030 /* 1031 * join node information group address 1032 */ 1033 delay = 0; 1034 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1035 /* 1036 * The spec doesn't say anything about delay for this 1037 * group, but the same logic should apply. 1038 */ 1039 delay = arc4random() % 1040 (MAX_RTR_SOLICITATION_DELAY * hz); 1041 } 1042 if (in6_nigroup(ifp, NULL, -1, &mltaddr.sin6_addr) == 0) { 1043 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1044 delay); /* XXX jinmei */ 1045 if (!imm) { 1046 nd6log((LOG_WARNING, "in6_update_ifa: " 1047 "addmulti failed for %s on %s " 1048 "(errno=%d)\n", 1049 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1050 if_name(ifp), error)); 1051 /* XXX not very fatal, go on... */ 1052 } else { 1053 LIST_INSERT_HEAD(&ia->ia6_memberships, 1054 imm, i6mm_chain); 1055 } 1056 } 1057 1058 /* 1059 * join interface-local all-nodes address. 1060 * (ff01::1%ifN, and ff01::%ifN/32) 1061 */ 1062 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1063 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1064 != 0) 1065 goto cleanup; /* XXX: should not fail */ 1066 /* XXX: again, do we really need the route? */ 1067 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1068 if (rt) { 1069 if (memcmp(&mltaddr.sin6_addr, 1070 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1071 MLTMASK_LEN)) { 1072 RTFREE_LOCKED(rt); 1073 rt = NULL; 1074 } 1075 } 1076 if (!rt) { 1077 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1078 (struct sockaddr *)&ia->ia_addr, 1079 (struct sockaddr *)&mltmask, RTF_UP, 1080 (struct rtentry **)0); 1081 if (error) 1082 goto cleanup; 1083 } else 1084 RTFREE_LOCKED(rt); 1085 1086 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1087 if (!imm) { 1088 nd6log((LOG_WARNING, "in6_update_ifa: " 1089 "addmulti failed for %s on %s " 1090 "(errno=%d)\n", 1091 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1092 if_name(ifp), error)); 1093 goto cleanup; 1094 } 1095 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1096 #undef MLTMASK_LEN 1097 } 1098 1099 /* 1100 * Perform DAD, if needed. 1101 * XXX It may be of use, if we can administratively 1102 * disable DAD. 1103 */ 1104 if (in6if_do_dad(ifp) && ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1105 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1106 { 1107 int mindelay, maxdelay; 1108 1109 delay = 0; 1110 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1111 /* 1112 * We need to impose a delay before sending an NS 1113 * for DAD. Check if we also needed a delay for the 1114 * corresponding MLD message. If we did, the delay 1115 * should be larger than the MLD delay (this could be 1116 * relaxed a bit, but this simple logic is at least 1117 * safe). 1118 * XXX: Break data hiding guidelines and look at 1119 * state for the solicited multicast group. 1120 */ 1121 mindelay = 0; 1122 if (in6m_sol != NULL && 1123 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1124 mindelay = in6m_sol->in6m_timer; 1125 } 1126 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1127 if (maxdelay - mindelay == 0) 1128 delay = 0; 1129 else { 1130 delay = 1131 (arc4random() % (maxdelay - mindelay)) + 1132 mindelay; 1133 } 1134 } 1135 nd6_dad_start((struct ifaddr *)ia, delay); 1136 } 1137 1138 KASSERT(hostIsNew, ("in6_update_ifa: !hostIsNew")); 1139 ifa_free(&ia->ia_ifa); 1140 return (error); 1141 1142 unlink: 1143 /* 1144 * XXX: if a change of an existing address failed, keep the entry 1145 * anyway. 1146 */ 1147 if (hostIsNew) { 1148 in6_unlink_ifa(ia, ifp); 1149 ifa_free(&ia->ia_ifa); 1150 } 1151 return (error); 1152 1153 cleanup: 1154 KASSERT(hostIsNew, ("in6_update_ifa: cleanup: !hostIsNew")); 1155 ifa_free(&ia->ia_ifa); 1156 in6_purgeaddr(&ia->ia_ifa); 1157 return error; 1158 } 1159 1160 void 1161 in6_purgeaddr(struct ifaddr *ifa) 1162 { 1163 struct ifnet *ifp = ifa->ifa_ifp; 1164 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1165 struct in6_multi_mship *imm; 1166 struct sockaddr_in6 mltaddr, mltmask; 1167 struct rtentry rt0; 1168 struct sockaddr_dl gateway; 1169 struct sockaddr_in6 mask, addr; 1170 int plen, error; 1171 struct rtentry *rt; 1172 struct ifaddr *ifa0, *nifa; 1173 1174 /* 1175 * find another IPv6 address as the gateway for the 1176 * link-local and node-local all-nodes multicast 1177 * address routes 1178 */ 1179 IF_ADDR_LOCK(ifp); 1180 TAILQ_FOREACH_SAFE(ifa0, &ifp->if_addrhead, ifa_link, nifa) { 1181 if ((ifa0->ifa_addr->sa_family != AF_INET6) || 1182 memcmp(&satosin6(ifa0->ifa_addr)->sin6_addr, 1183 &ia->ia_addr.sin6_addr, 1184 sizeof(struct in6_addr)) == 0) 1185 continue; 1186 else 1187 break; 1188 } 1189 if (ifa0 != NULL) 1190 ifa_ref(ifa0); 1191 IF_ADDR_UNLOCK(ifp); 1192 1193 /* 1194 * Remove the loopback route to the interface address. 1195 * The check for the current setting of "nd6_useloopback" 1196 * is not needed. 1197 */ 1198 { 1199 struct rt_addrinfo info; 1200 struct sockaddr_dl null_sdl; 1201 1202 bzero(&null_sdl, sizeof(null_sdl)); 1203 null_sdl.sdl_len = sizeof(null_sdl); 1204 null_sdl.sdl_family = AF_LINK; 1205 null_sdl.sdl_type = ia->ia_ifp->if_type; 1206 null_sdl.sdl_index = ia->ia_ifp->if_index; 1207 bzero(&info, sizeof(info)); 1208 info.rti_flags = ia->ia_flags | RTF_HOST | RTF_STATIC; 1209 info.rti_info[RTAX_DST] = (struct sockaddr *)&ia->ia_addr; 1210 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1211 error = rtrequest1_fib(RTM_DELETE, &info, NULL, 0); 1212 1213 if (error != 0) 1214 log(LOG_INFO, "in6_purgeaddr: deletion failed\n"); 1215 } 1216 1217 /* stop DAD processing */ 1218 nd6_dad_stop(ifa); 1219 1220 IF_AFDATA_LOCK(ifp); 1221 lla_lookup(LLTABLE6(ifp), (LLE_DELETE | LLE_IFADDR), 1222 (struct sockaddr *)&ia->ia_addr); 1223 IF_AFDATA_UNLOCK(ifp); 1224 1225 /* 1226 * initialize for rtmsg generation 1227 */ 1228 bzero(&gateway, sizeof(gateway)); 1229 gateway.sdl_len = sizeof(gateway); 1230 gateway.sdl_family = AF_LINK; 1231 gateway.sdl_nlen = 0; 1232 gateway.sdl_alen = ifp->if_addrlen; 1233 /* */ 1234 bzero(&rt0, sizeof(rt0)); 1235 rt0.rt_gateway = (struct sockaddr *)&gateway; 1236 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 1237 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 1238 rt_mask(&rt0) = (struct sockaddr *)&mask; 1239 rt_key(&rt0) = (struct sockaddr *)&addr; 1240 rt0.rt_flags = RTF_HOST | RTF_STATIC; 1241 rt_newaddrmsg(RTM_DELETE, ifa, 0, &rt0); 1242 1243 /* 1244 * leave from multicast groups we have joined for the interface 1245 */ 1246 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1247 LIST_REMOVE(imm, i6mm_chain); 1248 in6_leavegroup(imm); 1249 } 1250 1251 /* 1252 * remove the link-local all-nodes address 1253 */ 1254 bzero(&mltmask, sizeof(mltmask)); 1255 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1256 mltmask.sin6_family = AF_INET6; 1257 mltmask.sin6_addr = in6mask32; 1258 1259 bzero(&mltaddr, sizeof(mltaddr)); 1260 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1261 mltaddr.sin6_family = AF_INET6; 1262 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1263 1264 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1265 0) 1266 goto cleanup; 1267 1268 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1269 if (rt != NULL && rt->rt_gateway != NULL && 1270 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1271 &ia->ia_addr.sin6_addr, 1272 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1273 /* 1274 * if no more IPv6 address exists on this interface 1275 * then remove the multicast address route 1276 */ 1277 if (ifa0 == NULL) { 1278 memcpy(&mltaddr.sin6_addr, &satosin6(rt_key(rt))->sin6_addr, 1279 sizeof(mltaddr.sin6_addr)); 1280 RTFREE_LOCKED(rt); 1281 error = rtrequest(RTM_DELETE, (struct sockaddr *)&mltaddr, 1282 (struct sockaddr *)&ia->ia_addr, 1283 (struct sockaddr *)&mltmask, RTF_UP, 1284 (struct rtentry **)0); 1285 if (error) 1286 log(LOG_INFO, "in6_purgeaddr: link-local all-nodes" 1287 "multicast address deletion error\n"); 1288 } else { 1289 /* 1290 * replace the gateway of the route 1291 */ 1292 struct sockaddr_in6 sa; 1293 1294 bzero(&sa, sizeof(sa)); 1295 sa.sin6_len = sizeof(struct sockaddr_in6); 1296 sa.sin6_family = AF_INET6; 1297 memcpy(&sa.sin6_addr, &satosin6(ifa0->ifa_addr)->sin6_addr, 1298 sizeof(sa.sin6_addr)); 1299 in6_setscope(&sa.sin6_addr, ifa0->ifa_ifp, NULL); 1300 memcpy(rt->rt_gateway, &sa, sizeof(sa)); 1301 RTFREE_LOCKED(rt); 1302 } 1303 } else { 1304 if (rt != NULL) 1305 RTFREE_LOCKED(rt); 1306 } 1307 1308 /* 1309 * remove the node-local all-nodes address 1310 */ 1311 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1312 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1313 0) 1314 goto cleanup; 1315 1316 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1317 if (rt != NULL && rt->rt_gateway != NULL && 1318 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1319 &ia->ia_addr.sin6_addr, 1320 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1321 /* 1322 * if no more IPv6 address exists on this interface 1323 * then remove the multicast address route 1324 */ 1325 if (ifa0 == NULL) { 1326 memcpy(&mltaddr.sin6_addr, &satosin6(rt_key(rt))->sin6_addr, 1327 sizeof(mltaddr.sin6_addr)); 1328 1329 RTFREE_LOCKED(rt); 1330 error = rtrequest(RTM_DELETE, (struct sockaddr *)&mltaddr, 1331 (struct sockaddr *)&ia->ia_addr, 1332 (struct sockaddr *)&mltmask, RTF_UP, 1333 (struct rtentry **)0); 1334 1335 if (error) 1336 log(LOG_INFO, "in6_purgeaddr: node-local all-nodes" 1337 "multicast address deletion error\n"); 1338 } else { 1339 /* 1340 * replace the gateway of the route 1341 */ 1342 struct sockaddr_in6 sa; 1343 1344 bzero(&sa, sizeof(sa)); 1345 sa.sin6_len = sizeof(struct sockaddr_in6); 1346 sa.sin6_family = AF_INET6; 1347 memcpy(&sa.sin6_addr, &satosin6(ifa0->ifa_addr)->sin6_addr, 1348 sizeof(sa.sin6_addr)); 1349 in6_setscope(&sa.sin6_addr, ifa0->ifa_ifp, NULL); 1350 memcpy(rt->rt_gateway, &sa, sizeof(sa)); 1351 RTFREE_LOCKED(rt); 1352 } 1353 } else { 1354 if (rt != NULL) 1355 RTFREE_LOCKED(rt); 1356 } 1357 1358 cleanup: 1359 1360 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1361 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1362 int error; 1363 struct sockaddr *dstaddr; 1364 1365 /* 1366 * use the interface address if configuring an 1367 * interface address with a /128 prefix len 1368 */ 1369 if (ia->ia_dstaddr.sin6_family == AF_INET6) 1370 dstaddr = (struct sockaddr *)&ia->ia_dstaddr; 1371 else 1372 dstaddr = (struct sockaddr *)&ia->ia_addr; 1373 1374 error = rtrequest(RTM_DELETE, 1375 (struct sockaddr *)dstaddr, 1376 (struct sockaddr *)&ia->ia_addr, 1377 (struct sockaddr *)&ia->ia_prefixmask, 1378 ia->ia_flags | RTF_HOST, NULL); 1379 if (error != 0) 1380 return; 1381 ia->ia_flags &= ~IFA_ROUTE; 1382 } 1383 if (ifa0 != NULL) 1384 ifa_free(ifa0); 1385 1386 in6_unlink_ifa(ia, ifp); 1387 } 1388 1389 static void 1390 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1391 { 1392 int s = splnet(); 1393 1394 IF_ADDR_LOCK(ifp); 1395 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1396 IF_ADDR_UNLOCK(ifp); 1397 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1398 1399 /* 1400 * Defer the release of what might be the last reference to the 1401 * in6_ifaddr so that it can't be freed before the remainder of the 1402 * cleanup. 1403 */ 1404 IN6_IFADDR_WLOCK(); 1405 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link); 1406 IN6_IFADDR_WUNLOCK(); 1407 1408 /* 1409 * Release the reference to the base prefix. There should be a 1410 * positive reference. 1411 */ 1412 if (ia->ia6_ndpr == NULL) { 1413 nd6log((LOG_NOTICE, 1414 "in6_unlink_ifa: autoconf'ed address " 1415 "%p has no prefix\n", ia)); 1416 } else { 1417 ia->ia6_ndpr->ndpr_refcnt--; 1418 ia->ia6_ndpr = NULL; 1419 } 1420 1421 /* 1422 * Also, if the address being removed is autoconf'ed, call 1423 * pfxlist_onlink_check() since the release might affect the status of 1424 * other (detached) addresses. 1425 */ 1426 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1427 pfxlist_onlink_check(); 1428 } 1429 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1430 splx(s); 1431 } 1432 1433 void 1434 in6_purgeif(struct ifnet *ifp) 1435 { 1436 struct ifaddr *ifa, *nifa; 1437 1438 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { 1439 if (ifa->ifa_addr->sa_family != AF_INET6) 1440 continue; 1441 in6_purgeaddr(ifa); 1442 } 1443 1444 in6_ifdetach(ifp); 1445 } 1446 1447 /* 1448 * SIOC[GAD]LIFADDR. 1449 * SIOCGLIFADDR: get first address. (?) 1450 * SIOCGLIFADDR with IFLR_PREFIX: 1451 * get first address that matches the specified prefix. 1452 * SIOCALIFADDR: add the specified address. 1453 * SIOCALIFADDR with IFLR_PREFIX: 1454 * add the specified prefix, filling hostid part from 1455 * the first link-local address. prefixlen must be <= 64. 1456 * SIOCDLIFADDR: delete the specified address. 1457 * SIOCDLIFADDR with IFLR_PREFIX: 1458 * delete the first address that matches the specified prefix. 1459 * return values: 1460 * EINVAL on invalid parameters 1461 * EADDRNOTAVAIL on prefix match failed/specified address not found 1462 * other values may be returned from in6_ioctl() 1463 * 1464 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1465 * this is to accomodate address naming scheme other than RFC2374, 1466 * in the future. 1467 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1468 * address encoding scheme. (see figure on page 8) 1469 */ 1470 static int 1471 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1472 struct ifnet *ifp, struct thread *td) 1473 { 1474 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1475 struct ifaddr *ifa; 1476 struct sockaddr *sa; 1477 1478 /* sanity checks */ 1479 if (!data || !ifp) { 1480 panic("invalid argument to in6_lifaddr_ioctl"); 1481 /* NOTREACHED */ 1482 } 1483 1484 switch (cmd) { 1485 case SIOCGLIFADDR: 1486 /* address must be specified on GET with IFLR_PREFIX */ 1487 if ((iflr->flags & IFLR_PREFIX) == 0) 1488 break; 1489 /* FALLTHROUGH */ 1490 case SIOCALIFADDR: 1491 case SIOCDLIFADDR: 1492 /* address must be specified on ADD and DELETE */ 1493 sa = (struct sockaddr *)&iflr->addr; 1494 if (sa->sa_family != AF_INET6) 1495 return EINVAL; 1496 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1497 return EINVAL; 1498 /* XXX need improvement */ 1499 sa = (struct sockaddr *)&iflr->dstaddr; 1500 if (sa->sa_family && sa->sa_family != AF_INET6) 1501 return EINVAL; 1502 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1503 return EINVAL; 1504 break; 1505 default: /* shouldn't happen */ 1506 #if 0 1507 panic("invalid cmd to in6_lifaddr_ioctl"); 1508 /* NOTREACHED */ 1509 #else 1510 return EOPNOTSUPP; 1511 #endif 1512 } 1513 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1514 return EINVAL; 1515 1516 switch (cmd) { 1517 case SIOCALIFADDR: 1518 { 1519 struct in6_aliasreq ifra; 1520 struct in6_addr *hostid = NULL; 1521 int prefixlen; 1522 1523 ifa = NULL; 1524 if ((iflr->flags & IFLR_PREFIX) != 0) { 1525 struct sockaddr_in6 *sin6; 1526 1527 /* 1528 * hostid is to fill in the hostid part of the 1529 * address. hostid points to the first link-local 1530 * address attached to the interface. 1531 */ 1532 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1533 if (!ifa) 1534 return EADDRNOTAVAIL; 1535 hostid = IFA_IN6(ifa); 1536 1537 /* prefixlen must be <= 64. */ 1538 if (64 < iflr->prefixlen) 1539 return EINVAL; 1540 prefixlen = iflr->prefixlen; 1541 1542 /* hostid part must be zero. */ 1543 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1544 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1545 sin6->sin6_addr.s6_addr32[3] != 0) { 1546 return EINVAL; 1547 } 1548 } else 1549 prefixlen = iflr->prefixlen; 1550 1551 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1552 bzero(&ifra, sizeof(ifra)); 1553 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1554 1555 bcopy(&iflr->addr, &ifra.ifra_addr, 1556 ((struct sockaddr *)&iflr->addr)->sa_len); 1557 if (hostid) { 1558 /* fill in hostid part */ 1559 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1560 hostid->s6_addr32[2]; 1561 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1562 hostid->s6_addr32[3]; 1563 } 1564 1565 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1566 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1567 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1568 if (hostid) { 1569 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1570 hostid->s6_addr32[2]; 1571 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1572 hostid->s6_addr32[3]; 1573 } 1574 } 1575 if (ifa != NULL) 1576 ifa_free(ifa); 1577 1578 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1579 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1580 1581 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1582 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1583 } 1584 case SIOCGLIFADDR: 1585 case SIOCDLIFADDR: 1586 { 1587 struct in6_ifaddr *ia; 1588 struct in6_addr mask, candidate, match; 1589 struct sockaddr_in6 *sin6; 1590 int cmp; 1591 1592 bzero(&mask, sizeof(mask)); 1593 if (iflr->flags & IFLR_PREFIX) { 1594 /* lookup a prefix rather than address. */ 1595 in6_prefixlen2mask(&mask, iflr->prefixlen); 1596 1597 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1598 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1599 match.s6_addr32[0] &= mask.s6_addr32[0]; 1600 match.s6_addr32[1] &= mask.s6_addr32[1]; 1601 match.s6_addr32[2] &= mask.s6_addr32[2]; 1602 match.s6_addr32[3] &= mask.s6_addr32[3]; 1603 1604 /* if you set extra bits, that's wrong */ 1605 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1606 return EINVAL; 1607 1608 cmp = 1; 1609 } else { 1610 if (cmd == SIOCGLIFADDR) { 1611 /* on getting an address, take the 1st match */ 1612 cmp = 0; /* XXX */ 1613 } else { 1614 /* on deleting an address, do exact match */ 1615 in6_prefixlen2mask(&mask, 128); 1616 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1617 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1618 1619 cmp = 1; 1620 } 1621 } 1622 1623 IF_ADDR_LOCK(ifp); 1624 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1625 if (ifa->ifa_addr->sa_family != AF_INET6) 1626 continue; 1627 if (!cmp) 1628 break; 1629 1630 /* 1631 * XXX: this is adhoc, but is necessary to allow 1632 * a user to specify fe80::/64 (not /10) for a 1633 * link-local address. 1634 */ 1635 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1636 in6_clearscope(&candidate); 1637 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1638 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1639 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1640 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1641 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1642 break; 1643 } 1644 IF_ADDR_UNLOCK(ifp); 1645 if (!ifa) 1646 return EADDRNOTAVAIL; 1647 ia = ifa2ia6(ifa); 1648 1649 if (cmd == SIOCGLIFADDR) { 1650 int error; 1651 1652 /* fill in the if_laddrreq structure */ 1653 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1654 error = sa6_recoverscope( 1655 (struct sockaddr_in6 *)&iflr->addr); 1656 if (error != 0) 1657 return (error); 1658 1659 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1660 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1661 ia->ia_dstaddr.sin6_len); 1662 error = sa6_recoverscope( 1663 (struct sockaddr_in6 *)&iflr->dstaddr); 1664 if (error != 0) 1665 return (error); 1666 } else 1667 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1668 1669 iflr->prefixlen = 1670 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1671 1672 iflr->flags = ia->ia6_flags; /* XXX */ 1673 1674 return 0; 1675 } else { 1676 struct in6_aliasreq ifra; 1677 1678 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1679 bzero(&ifra, sizeof(ifra)); 1680 bcopy(iflr->iflr_name, ifra.ifra_name, 1681 sizeof(ifra.ifra_name)); 1682 1683 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1684 ia->ia_addr.sin6_len); 1685 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1686 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1687 ia->ia_dstaddr.sin6_len); 1688 } else { 1689 bzero(&ifra.ifra_dstaddr, 1690 sizeof(ifra.ifra_dstaddr)); 1691 } 1692 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1693 ia->ia_prefixmask.sin6_len); 1694 1695 ifra.ifra_flags = ia->ia6_flags; 1696 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1697 ifp, td); 1698 } 1699 } 1700 } 1701 1702 return EOPNOTSUPP; /* just for safety */ 1703 } 1704 1705 /* 1706 * Initialize an interface's intetnet6 address 1707 * and routing table entry. 1708 */ 1709 static int 1710 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1711 struct sockaddr_in6 *sin6, int newhost) 1712 { 1713 int error = 0, plen, ifacount = 0; 1714 int s = splimp(); 1715 struct ifaddr *ifa; 1716 1717 /* 1718 * Give the interface a chance to initialize 1719 * if this is its first address, 1720 * and to validate the address if necessary. 1721 */ 1722 IF_ADDR_LOCK(ifp); 1723 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1724 if (ifa->ifa_addr->sa_family != AF_INET6) 1725 continue; 1726 ifacount++; 1727 } 1728 IF_ADDR_UNLOCK(ifp); 1729 1730 ia->ia_addr = *sin6; 1731 1732 if (ifacount <= 1 && ifp->if_ioctl) { 1733 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1734 if (error) { 1735 splx(s); 1736 return (error); 1737 } 1738 } 1739 splx(s); 1740 1741 ia->ia_ifa.ifa_metric = ifp->if_metric; 1742 1743 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1744 1745 /* 1746 * Special case: 1747 * If a new destination address is specified for a point-to-point 1748 * interface, install a route to the destination as an interface 1749 * direct route. 1750 * XXX: the logic below rejects assigning multiple addresses on a p2p 1751 * interface that share the same destination. 1752 */ 1753 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1754 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1755 ia->ia_dstaddr.sin6_family == AF_INET6) { 1756 int rtflags = RTF_UP | RTF_HOST; 1757 1758 error = rtrequest(RTM_ADD, 1759 (struct sockaddr *)&ia->ia_dstaddr, 1760 (struct sockaddr *)&ia->ia_addr, 1761 (struct sockaddr *)&ia->ia_prefixmask, 1762 ia->ia_flags | rtflags, NULL); 1763 if (error != 0) 1764 return (error); 1765 ia->ia_flags |= IFA_ROUTE; 1766 } 1767 1768 /* 1769 * add a loopback route to self 1770 */ 1771 if (!(ia->ia_flags & IFA_ROUTE) 1772 && (V_nd6_useloopback 1773 || (ifp->if_flags & IFF_LOOPBACK))) { 1774 struct rt_addrinfo info; 1775 struct rtentry *rt = NULL; 1776 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1777 1778 bzero(&info, sizeof(info)); 1779 info.rti_ifp = V_loif; 1780 info.rti_flags = ia->ia_flags | RTF_HOST | RTF_STATIC; 1781 info.rti_info[RTAX_DST] = (struct sockaddr *)&ia->ia_addr; 1782 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1783 error = rtrequest1_fib(RTM_ADD, &info, &rt, 0); 1784 1785 if (error == 0 && rt != NULL) { 1786 RT_LOCK(rt); 1787 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1788 ifp->if_type; 1789 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1790 ifp->if_index; 1791 RT_REMREF(rt); 1792 RT_UNLOCK(rt); 1793 } else if (error != 0) 1794 log(LOG_INFO, "in6_ifinit: error = %d, insertion failed\n", error); 1795 } 1796 1797 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1798 if (newhost) { 1799 struct llentry *ln; 1800 struct rtentry rt; 1801 struct sockaddr_dl gateway; 1802 struct sockaddr_in6 mask, addr; 1803 1804 IF_AFDATA_LOCK(ifp); 1805 ia->ia_ifa.ifa_rtrequest = NULL; 1806 1807 /* XXX QL 1808 * we need to report rt_newaddrmsg 1809 */ 1810 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | LLE_EXCLUSIVE), 1811 (struct sockaddr *)&ia->ia_addr); 1812 IF_AFDATA_UNLOCK(ifp); 1813 if (ln != NULL) { 1814 ln->la_expire = 0; /* for IPv6 this means permanent */ 1815 ln->ln_state = ND6_LLINFO_REACHABLE; 1816 /* 1817 * initialize for rtmsg generation 1818 */ 1819 bzero(&gateway, sizeof(gateway)); 1820 gateway.sdl_len = sizeof(gateway); 1821 gateway.sdl_family = AF_LINK; 1822 gateway.sdl_nlen = 0; 1823 gateway.sdl_alen = 6; 1824 memcpy(gateway.sdl_data, &ln->ll_addr.mac_aligned, sizeof(ln->ll_addr)); 1825 /* */ 1826 LLE_WUNLOCK(ln); 1827 } 1828 1829 bzero(&rt, sizeof(rt)); 1830 rt.rt_gateway = (struct sockaddr *)&gateway; 1831 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 1832 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 1833 rt_mask(&rt) = (struct sockaddr *)&mask; 1834 rt_key(&rt) = (struct sockaddr *)&addr; 1835 rt.rt_flags = RTF_UP | RTF_HOST | RTF_STATIC; 1836 rt_newaddrmsg(RTM_ADD, &ia->ia_ifa, 0, &rt); 1837 } 1838 1839 return (error); 1840 } 1841 1842 /* 1843 * Find an IPv6 interface link-local address specific to an interface. 1844 * ifaddr is returned referenced. 1845 */ 1846 struct in6_ifaddr * 1847 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1848 { 1849 struct ifaddr *ifa; 1850 1851 IF_ADDR_LOCK(ifp); 1852 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1853 if (ifa->ifa_addr->sa_family != AF_INET6) 1854 continue; 1855 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1856 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1857 ignoreflags) != 0) 1858 continue; 1859 ifa_ref(ifa); 1860 break; 1861 } 1862 } 1863 IF_ADDR_UNLOCK(ifp); 1864 1865 return ((struct in6_ifaddr *)ifa); 1866 } 1867 1868 1869 /* 1870 * find the internet address corresponding to a given interface and address. 1871 * ifaddr is returned referenced. 1872 */ 1873 struct in6_ifaddr * 1874 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1875 { 1876 struct ifaddr *ifa; 1877 1878 IF_ADDR_LOCK(ifp); 1879 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1880 if (ifa->ifa_addr->sa_family != AF_INET6) 1881 continue; 1882 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1883 ifa_ref(ifa); 1884 break; 1885 } 1886 } 1887 IF_ADDR_UNLOCK(ifp); 1888 1889 return ((struct in6_ifaddr *)ifa); 1890 } 1891 1892 /* 1893 * Convert IP6 address to printable (loggable) representation. Caller 1894 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1895 */ 1896 static char digits[] = "0123456789abcdef"; 1897 char * 1898 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1899 { 1900 int i; 1901 char *cp; 1902 const u_int16_t *a = (const u_int16_t *)addr; 1903 const u_int8_t *d; 1904 int dcolon = 0, zero = 0; 1905 1906 cp = ip6buf; 1907 1908 for (i = 0; i < 8; i++) { 1909 if (dcolon == 1) { 1910 if (*a == 0) { 1911 if (i == 7) 1912 *cp++ = ':'; 1913 a++; 1914 continue; 1915 } else 1916 dcolon = 2; 1917 } 1918 if (*a == 0) { 1919 if (dcolon == 0 && *(a + 1) == 0) { 1920 if (i == 0) 1921 *cp++ = ':'; 1922 *cp++ = ':'; 1923 dcolon = 1; 1924 } else { 1925 *cp++ = '0'; 1926 *cp++ = ':'; 1927 } 1928 a++; 1929 continue; 1930 } 1931 d = (const u_char *)a; 1932 /* Try to eliminate leading zeros in printout like in :0001. */ 1933 zero = 1; 1934 *cp = digits[*d >> 4]; 1935 if (*cp != '0') { 1936 zero = 0; 1937 cp++; 1938 } 1939 *cp = digits[*d++ & 0xf]; 1940 if (zero == 0 || (*cp != '0')) { 1941 zero = 0; 1942 cp++; 1943 } 1944 *cp = digits[*d >> 4]; 1945 if (zero == 0 || (*cp != '0')) { 1946 zero = 0; 1947 cp++; 1948 } 1949 *cp++ = digits[*d & 0xf]; 1950 *cp++ = ':'; 1951 a++; 1952 } 1953 *--cp = '\0'; 1954 return (ip6buf); 1955 } 1956 1957 int 1958 in6_localaddr(struct in6_addr *in6) 1959 { 1960 struct in6_ifaddr *ia; 1961 1962 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1963 return 1; 1964 1965 IN6_IFADDR_RLOCK(); 1966 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1967 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1968 &ia->ia_prefixmask.sin6_addr)) { 1969 IN6_IFADDR_RUNLOCK(); 1970 return 1; 1971 } 1972 } 1973 IN6_IFADDR_RUNLOCK(); 1974 1975 return (0); 1976 } 1977 1978 int 1979 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1980 { 1981 struct in6_ifaddr *ia; 1982 1983 IN6_IFADDR_RLOCK(); 1984 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1985 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1986 &sa6->sin6_addr) && 1987 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) { 1988 IN6_IFADDR_RUNLOCK(); 1989 return (1); /* true */ 1990 } 1991 1992 /* XXX: do we still have to go thru the rest of the list? */ 1993 } 1994 IN6_IFADDR_RUNLOCK(); 1995 1996 return (0); /* false */ 1997 } 1998 1999 /* 2000 * return length of part which dst and src are equal 2001 * hard coding... 2002 */ 2003 int 2004 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 2005 { 2006 int match = 0; 2007 u_char *s = (u_char *)src, *d = (u_char *)dst; 2008 u_char *lim = s + 16, r; 2009 2010 while (s < lim) 2011 if ((r = (*d++ ^ *s++)) != 0) { 2012 while (r < 128) { 2013 match++; 2014 r <<= 1; 2015 } 2016 break; 2017 } else 2018 match += 8; 2019 return match; 2020 } 2021 2022 /* XXX: to be scope conscious */ 2023 int 2024 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 2025 { 2026 int bytelen, bitlen; 2027 2028 /* sanity check */ 2029 if (0 > len || len > 128) { 2030 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 2031 len); 2032 return (0); 2033 } 2034 2035 bytelen = len / 8; 2036 bitlen = len % 8; 2037 2038 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 2039 return (0); 2040 if (bitlen != 0 && 2041 p1->s6_addr[bytelen] >> (8 - bitlen) != 2042 p2->s6_addr[bytelen] >> (8 - bitlen)) 2043 return (0); 2044 2045 return (1); 2046 } 2047 2048 void 2049 in6_prefixlen2mask(struct in6_addr *maskp, int len) 2050 { 2051 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 2052 int bytelen, bitlen, i; 2053 2054 /* sanity check */ 2055 if (0 > len || len > 128) { 2056 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 2057 len); 2058 return; 2059 } 2060 2061 bzero(maskp, sizeof(*maskp)); 2062 bytelen = len / 8; 2063 bitlen = len % 8; 2064 for (i = 0; i < bytelen; i++) 2065 maskp->s6_addr[i] = 0xff; 2066 if (bitlen) 2067 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2068 } 2069 2070 /* 2071 * return the best address out of the same scope. if no address was 2072 * found, return the first valid address from designated IF. 2073 */ 2074 struct in6_ifaddr * 2075 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2076 { 2077 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2078 struct ifaddr *ifa; 2079 struct in6_ifaddr *besta = 0; 2080 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2081 2082 dep[0] = dep[1] = NULL; 2083 2084 /* 2085 * We first look for addresses in the same scope. 2086 * If there is one, return it. 2087 * If two or more, return one which matches the dst longest. 2088 * If none, return one of global addresses assigned other ifs. 2089 */ 2090 IF_ADDR_LOCK(ifp); 2091 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2092 if (ifa->ifa_addr->sa_family != AF_INET6) 2093 continue; 2094 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2095 continue; /* XXX: is there any case to allow anycast? */ 2096 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2097 continue; /* don't use this interface */ 2098 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2099 continue; 2100 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2101 if (V_ip6_use_deprecated) 2102 dep[0] = (struct in6_ifaddr *)ifa; 2103 continue; 2104 } 2105 2106 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2107 /* 2108 * call in6_matchlen() as few as possible 2109 */ 2110 if (besta) { 2111 if (blen == -1) 2112 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2113 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2114 if (tlen > blen) { 2115 blen = tlen; 2116 besta = (struct in6_ifaddr *)ifa; 2117 } 2118 } else 2119 besta = (struct in6_ifaddr *)ifa; 2120 } 2121 } 2122 if (besta) { 2123 ifa_ref(&besta->ia_ifa); 2124 IF_ADDR_UNLOCK(ifp); 2125 return (besta); 2126 } 2127 IF_ADDR_UNLOCK(ifp); 2128 2129 IN6_IFADDR_RLOCK(); 2130 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2131 if (ifa->ifa_addr->sa_family != AF_INET6) 2132 continue; 2133 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2134 continue; /* XXX: is there any case to allow anycast? */ 2135 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2136 continue; /* don't use this interface */ 2137 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2138 continue; 2139 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2140 if (V_ip6_use_deprecated) 2141 dep[1] = (struct in6_ifaddr *)ifa; 2142 continue; 2143 } 2144 2145 if (ifa != NULL) 2146 ifa_ref(ifa); 2147 IN6_IFADDR_RUNLOCK(); 2148 return (struct in6_ifaddr *)ifa; 2149 } 2150 IN6_IFADDR_RUNLOCK(); 2151 2152 /* use the last-resort values, that are, deprecated addresses */ 2153 if (dep[0]) 2154 return dep[0]; 2155 if (dep[1]) 2156 return dep[1]; 2157 2158 return NULL; 2159 } 2160 2161 /* 2162 * perform DAD when interface becomes IFF_UP. 2163 */ 2164 void 2165 in6_if_up(struct ifnet *ifp) 2166 { 2167 struct ifaddr *ifa; 2168 struct in6_ifaddr *ia; 2169 2170 IF_ADDR_LOCK(ifp); 2171 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2172 if (ifa->ifa_addr->sa_family != AF_INET6) 2173 continue; 2174 ia = (struct in6_ifaddr *)ifa; 2175 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2176 /* 2177 * The TENTATIVE flag was likely set by hand 2178 * beforehand, implicitly indicating the need for DAD. 2179 * We may be able to skip the random delay in this 2180 * case, but we impose delays just in case. 2181 */ 2182 nd6_dad_start(ifa, 2183 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2184 } 2185 } 2186 IF_ADDR_UNLOCK(ifp); 2187 2188 /* 2189 * special cases, like 6to4, are handled in in6_ifattach 2190 */ 2191 in6_ifattach(ifp, NULL); 2192 } 2193 2194 int 2195 in6if_do_dad(struct ifnet *ifp) 2196 { 2197 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2198 return (0); 2199 2200 switch (ifp->if_type) { 2201 #ifdef IFT_DUMMY 2202 case IFT_DUMMY: 2203 #endif 2204 case IFT_FAITH: 2205 /* 2206 * These interfaces do not have the IFF_LOOPBACK flag, 2207 * but loop packets back. We do not have to do DAD on such 2208 * interfaces. We should even omit it, because loop-backed 2209 * NS would confuse the DAD procedure. 2210 */ 2211 return (0); 2212 default: 2213 /* 2214 * Our DAD routine requires the interface up and running. 2215 * However, some interfaces can be up before the RUNNING 2216 * status. Additionaly, users may try to assign addresses 2217 * before the interface becomes up (or running). 2218 * We simply skip DAD in such a case as a work around. 2219 * XXX: we should rather mark "tentative" on such addresses, 2220 * and do DAD after the interface becomes ready. 2221 */ 2222 if (!((ifp->if_flags & IFF_UP) && 2223 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2224 return (0); 2225 2226 return (1); 2227 } 2228 } 2229 2230 /* 2231 * Calculate max IPv6 MTU through all the interfaces and store it 2232 * to in6_maxmtu. 2233 */ 2234 void 2235 in6_setmaxmtu(void) 2236 { 2237 unsigned long maxmtu = 0; 2238 struct ifnet *ifp; 2239 2240 IFNET_RLOCK_NOSLEEP(); 2241 for (ifp = TAILQ_FIRST(&V_ifnet); ifp; 2242 ifp = TAILQ_NEXT(ifp, if_list)) { 2243 /* this function can be called during ifnet initialization */ 2244 if (!ifp->if_afdata[AF_INET6]) 2245 continue; 2246 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2247 IN6_LINKMTU(ifp) > maxmtu) 2248 maxmtu = IN6_LINKMTU(ifp); 2249 } 2250 IFNET_RUNLOCK_NOSLEEP(); 2251 if (maxmtu) /* update only when maxmtu is positive */ 2252 V_in6_maxmtu = maxmtu; 2253 } 2254 2255 /* 2256 * Provide the length of interface identifiers to be used for the link attached 2257 * to the given interface. The length should be defined in "IPv6 over 2258 * xxx-link" document. Note that address architecture might also define 2259 * the length for a particular set of address prefixes, regardless of the 2260 * link type. As clarified in rfc2462bis, those two definitions should be 2261 * consistent, and those really are as of August 2004. 2262 */ 2263 int 2264 in6_if2idlen(struct ifnet *ifp) 2265 { 2266 switch (ifp->if_type) { 2267 case IFT_ETHER: /* RFC2464 */ 2268 #ifdef IFT_PROPVIRTUAL 2269 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2270 #endif 2271 #ifdef IFT_L2VLAN 2272 case IFT_L2VLAN: /* ditto */ 2273 #endif 2274 #ifdef IFT_IEEE80211 2275 case IFT_IEEE80211: /* ditto */ 2276 #endif 2277 #ifdef IFT_MIP 2278 case IFT_MIP: /* ditto */ 2279 #endif 2280 return (64); 2281 case IFT_FDDI: /* RFC2467 */ 2282 return (64); 2283 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2284 return (64); 2285 case IFT_PPP: /* RFC2472 */ 2286 return (64); 2287 case IFT_ARCNET: /* RFC2497 */ 2288 return (64); 2289 case IFT_FRELAY: /* RFC2590 */ 2290 return (64); 2291 case IFT_IEEE1394: /* RFC3146 */ 2292 return (64); 2293 case IFT_GIF: 2294 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2295 case IFT_LOOP: 2296 return (64); /* XXX: is this really correct? */ 2297 default: 2298 /* 2299 * Unknown link type: 2300 * It might be controversial to use the today's common constant 2301 * of 64 for these cases unconditionally. For full compliance, 2302 * we should return an error in this case. On the other hand, 2303 * if we simply miss the standard for the link type or a new 2304 * standard is defined for a new link type, the IFID length 2305 * is very likely to be the common constant. As a compromise, 2306 * we always use the constant, but make an explicit notice 2307 * indicating the "unknown" case. 2308 */ 2309 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2310 return (64); 2311 } 2312 } 2313 2314 #include <sys/sysctl.h> 2315 2316 struct in6_llentry { 2317 struct llentry base; 2318 struct sockaddr_in6 l3_addr6; 2319 }; 2320 2321 static struct llentry * 2322 in6_lltable_new(const struct sockaddr *l3addr, u_int flags) 2323 { 2324 struct in6_llentry *lle; 2325 2326 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, 2327 M_DONTWAIT | M_ZERO); 2328 if (lle == NULL) /* NB: caller generates msg */ 2329 return NULL; 2330 2331 callout_init(&lle->base.ln_timer_ch, CALLOUT_MPSAFE); 2332 lle->l3_addr6 = *(const struct sockaddr_in6 *)l3addr; 2333 lle->base.lle_refcnt = 1; 2334 LLE_LOCK_INIT(&lle->base); 2335 return &lle->base; 2336 } 2337 2338 /* 2339 * Deletes an address from the address table. 2340 * This function is called by the timer functions 2341 * such as arptimer() and nd6_llinfo_timer(), and 2342 * the caller does the locking. 2343 */ 2344 static void 2345 in6_lltable_free(struct lltable *llt, struct llentry *lle) 2346 { 2347 LLE_WUNLOCK(lle); 2348 LLE_LOCK_DESTROY(lle); 2349 free(lle, M_LLTABLE); 2350 } 2351 2352 static void 2353 in6_lltable_prefix_free(struct lltable *llt, 2354 const struct sockaddr *prefix, 2355 const struct sockaddr *mask) 2356 { 2357 const struct sockaddr_in6 *pfx = (const struct sockaddr_in6 *)prefix; 2358 const struct sockaddr_in6 *msk = (const struct sockaddr_in6 *)mask; 2359 struct llentry *lle, *next; 2360 register int i; 2361 2362 for (i=0; i < LLTBL_HASHTBL_SIZE; i++) { 2363 LIST_FOREACH_SAFE(lle, &llt->lle_head[i], lle_next, next) { 2364 if (IN6_ARE_MASKED_ADDR_EQUAL( 2365 &((struct sockaddr_in6 *)L3_ADDR(lle))->sin6_addr, 2366 &pfx->sin6_addr, 2367 &msk->sin6_addr)) { 2368 callout_drain(&lle->la_timer); 2369 LLE_WLOCK(lle); 2370 llentry_free(lle); 2371 } 2372 } 2373 } 2374 } 2375 2376 static int 2377 in6_lltable_rtcheck(struct ifnet *ifp, const struct sockaddr *l3addr) 2378 { 2379 struct rtentry *rt; 2380 char ip6buf[INET6_ADDRSTRLEN]; 2381 2382 KASSERT(l3addr->sa_family == AF_INET6, 2383 ("sin_family %d", l3addr->sa_family)); 2384 2385 /* XXX rtalloc1 should take a const param */ 2386 rt = rtalloc1(__DECONST(struct sockaddr *, l3addr), 0, 0); 2387 if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) || rt->rt_ifp != ifp) { 2388 struct ifaddr *ifa; 2389 /* 2390 * Create an ND6 cache for an IPv6 neighbor 2391 * that is not covered by our own prefix. 2392 */ 2393 /* XXX ifaof_ifpforaddr should take a const param */ 2394 ifa = ifaof_ifpforaddr(__DECONST(struct sockaddr *, l3addr), ifp); 2395 if (ifa != NULL) { 2396 ifa_free(ifa); 2397 if (rt != NULL) 2398 RTFREE_LOCKED(rt); 2399 return 0; 2400 } 2401 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2402 ip6_sprintf(ip6buf, &((const struct sockaddr_in6 *)l3addr)->sin6_addr)); 2403 if (rt != NULL) 2404 RTFREE_LOCKED(rt); 2405 return EINVAL; 2406 } 2407 RTFREE_LOCKED(rt); 2408 return 0; 2409 } 2410 2411 static struct llentry * 2412 in6_lltable_lookup(struct lltable *llt, u_int flags, 2413 const struct sockaddr *l3addr) 2414 { 2415 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2416 struct ifnet *ifp = llt->llt_ifp; 2417 struct llentry *lle; 2418 struct llentries *lleh; 2419 u_int hashkey; 2420 2421 IF_AFDATA_LOCK_ASSERT(ifp); 2422 KASSERT(l3addr->sa_family == AF_INET6, 2423 ("sin_family %d", l3addr->sa_family)); 2424 2425 hashkey = sin6->sin6_addr.s6_addr32[3]; 2426 lleh = &llt->lle_head[LLATBL_HASH(hashkey, LLTBL_HASHMASK)]; 2427 LIST_FOREACH(lle, lleh, lle_next) { 2428 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)L3_ADDR(lle); 2429 if (lle->la_flags & LLE_DELETED) 2430 continue; 2431 if (bcmp(&sa6->sin6_addr, &sin6->sin6_addr, 2432 sizeof(struct in6_addr)) == 0) 2433 break; 2434 } 2435 2436 if (lle == NULL) { 2437 if (!(flags & LLE_CREATE)) 2438 return (NULL); 2439 /* 2440 * A route that covers the given address must have 2441 * been installed 1st because we are doing a resolution, 2442 * verify this. 2443 */ 2444 if (!(flags & LLE_IFADDR) && 2445 in6_lltable_rtcheck(ifp, l3addr) != 0) 2446 return NULL; 2447 2448 lle = in6_lltable_new(l3addr, flags); 2449 if (lle == NULL) { 2450 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2451 return NULL; 2452 } 2453 lle->la_flags = flags & ~LLE_CREATE; 2454 if ((flags & (LLE_CREATE | LLE_IFADDR)) == (LLE_CREATE | LLE_IFADDR)) { 2455 bcopy(IF_LLADDR(ifp), &lle->ll_addr, ifp->if_addrlen); 2456 lle->la_flags |= (LLE_VALID | LLE_STATIC); 2457 } 2458 2459 lle->lle_tbl = llt; 2460 lle->lle_head = lleh; 2461 LIST_INSERT_HEAD(lleh, lle, lle_next); 2462 } else if (flags & LLE_DELETE) { 2463 if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) { 2464 LLE_WLOCK(lle); 2465 lle->la_flags = LLE_DELETED; 2466 LLE_WUNLOCK(lle); 2467 #ifdef DIAGNOSTICS 2468 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2469 #endif 2470 } 2471 lle = (void *)-1; 2472 } 2473 if (LLE_IS_VALID(lle)) { 2474 if (flags & LLE_EXCLUSIVE) 2475 LLE_WLOCK(lle); 2476 else 2477 LLE_RLOCK(lle); 2478 } 2479 return (lle); 2480 } 2481 2482 static int 2483 in6_lltable_dump(struct lltable *llt, struct sysctl_req *wr) 2484 { 2485 struct ifnet *ifp = llt->llt_ifp; 2486 struct llentry *lle; 2487 /* XXX stack use */ 2488 struct { 2489 struct rt_msghdr rtm; 2490 struct sockaddr_in6 sin6; 2491 /* 2492 * ndp.c assumes that sdl is word aligned 2493 */ 2494 #ifdef __LP64__ 2495 uint32_t pad; 2496 #endif 2497 struct sockaddr_dl sdl; 2498 } ndpc; 2499 int i, error; 2500 2501 if (ifp->if_flags & IFF_LOOPBACK) 2502 return 0; 2503 2504 LLTABLE_LOCK_ASSERT(); 2505 2506 error = 0; 2507 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2508 LIST_FOREACH(lle, &llt->lle_head[i], lle_next) { 2509 struct sockaddr_dl *sdl; 2510 2511 /* skip deleted or invalid entries */ 2512 if ((lle->la_flags & (LLE_DELETED|LLE_VALID)) != LLE_VALID) 2513 continue; 2514 /* Skip if jailed and not a valid IP of the prison. */ 2515 if (prison_if(wr->td->td_ucred, L3_ADDR(lle)) != 0) 2516 continue; 2517 /* 2518 * produce a msg made of: 2519 * struct rt_msghdr; 2520 * struct sockaddr_in6 (IPv6) 2521 * struct sockaddr_dl; 2522 */ 2523 bzero(&ndpc, sizeof(ndpc)); 2524 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2525 ndpc.rtm.rtm_version = RTM_VERSION; 2526 ndpc.rtm.rtm_type = RTM_GET; 2527 ndpc.rtm.rtm_flags = RTF_UP; 2528 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2529 ndpc.sin6.sin6_family = AF_INET6; 2530 ndpc.sin6.sin6_len = sizeof(ndpc.sin6); 2531 bcopy(L3_ADDR(lle), &ndpc.sin6, L3_ADDR_LEN(lle)); 2532 2533 /* publish */ 2534 if (lle->la_flags & LLE_PUB) 2535 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2536 2537 sdl = &ndpc.sdl; 2538 sdl->sdl_family = AF_LINK; 2539 sdl->sdl_len = sizeof(*sdl); 2540 sdl->sdl_alen = ifp->if_addrlen; 2541 sdl->sdl_index = ifp->if_index; 2542 sdl->sdl_type = ifp->if_type; 2543 bcopy(&lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2544 ndpc.rtm.rtm_rmx.rmx_expire = 2545 lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; 2546 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2547 if (lle->la_flags & LLE_STATIC) 2548 ndpc.rtm.rtm_flags |= RTF_STATIC; 2549 ndpc.rtm.rtm_index = ifp->if_index; 2550 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2551 if (error) 2552 break; 2553 } 2554 } 2555 return error; 2556 } 2557 2558 void * 2559 in6_domifattach(struct ifnet *ifp) 2560 { 2561 struct in6_ifextra *ext; 2562 2563 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2564 bzero(ext, sizeof(*ext)); 2565 2566 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2567 M_IFADDR, M_WAITOK); 2568 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2569 2570 ext->icmp6_ifstat = 2571 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2572 M_IFADDR, M_WAITOK); 2573 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2574 2575 ext->nd_ifinfo = nd6_ifattach(ifp); 2576 ext->scope6_id = scope6_ifattach(ifp); 2577 ext->lltable = lltable_init(ifp, AF_INET6); 2578 if (ext->lltable != NULL) { 2579 ext->lltable->llt_new = in6_lltable_new; 2580 ext->lltable->llt_free = in6_lltable_free; 2581 ext->lltable->llt_prefix_free = in6_lltable_prefix_free; 2582 ext->lltable->llt_rtcheck = in6_lltable_rtcheck; 2583 ext->lltable->llt_lookup = in6_lltable_lookup; 2584 ext->lltable->llt_dump = in6_lltable_dump; 2585 } 2586 2587 ext->mld_ifinfo = mld_domifattach(ifp); 2588 2589 return ext; 2590 } 2591 2592 void 2593 in6_domifdetach(struct ifnet *ifp, void *aux) 2594 { 2595 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2596 2597 mld_domifdetach(ifp); 2598 scope6_ifdetach(ext->scope6_id); 2599 nd6_ifdetach(ext->nd_ifinfo); 2600 lltable_free(ext->lltable); 2601 free(ext->in6_ifstat, M_IFADDR); 2602 free(ext->icmp6_ifstat, M_IFADDR); 2603 free(ext, M_IFADDR); 2604 } 2605 2606 /* 2607 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2608 * v4 mapped addr or v4 compat addr 2609 */ 2610 void 2611 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2612 { 2613 2614 bzero(sin, sizeof(*sin)); 2615 sin->sin_len = sizeof(struct sockaddr_in); 2616 sin->sin_family = AF_INET; 2617 sin->sin_port = sin6->sin6_port; 2618 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2619 } 2620 2621 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2622 void 2623 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2624 { 2625 bzero(sin6, sizeof(*sin6)); 2626 sin6->sin6_len = sizeof(struct sockaddr_in6); 2627 sin6->sin6_family = AF_INET6; 2628 sin6->sin6_port = sin->sin_port; 2629 sin6->sin6_addr.s6_addr32[0] = 0; 2630 sin6->sin6_addr.s6_addr32[1] = 0; 2631 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2632 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2633 } 2634 2635 /* Convert sockaddr_in6 into sockaddr_in. */ 2636 void 2637 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2638 { 2639 struct sockaddr_in *sin_p; 2640 struct sockaddr_in6 sin6; 2641 2642 /* 2643 * Save original sockaddr_in6 addr and convert it 2644 * to sockaddr_in. 2645 */ 2646 sin6 = *(struct sockaddr_in6 *)nam; 2647 sin_p = (struct sockaddr_in *)nam; 2648 in6_sin6_2_sin(sin_p, &sin6); 2649 } 2650 2651 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2652 void 2653 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2654 { 2655 struct sockaddr_in *sin_p; 2656 struct sockaddr_in6 *sin6_p; 2657 2658 sin6_p = malloc(sizeof *sin6_p, M_SONAME, 2659 M_WAITOK); 2660 sin_p = (struct sockaddr_in *)*nam; 2661 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2662 free(*nam, M_SONAME); 2663 *nam = (struct sockaddr *)sin6_p; 2664 } 2665