1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)in.c 8.2 (Berkeley) 11/15/93 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/eventhandler.h> 73 #include <sys/errno.h> 74 #include <sys/jail.h> 75 #include <sys/malloc.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/sockio.h> 79 #include <sys/systm.h> 80 #include <sys/priv.h> 81 #include <sys/proc.h> 82 #include <sys/protosw.h> 83 #include <sys/time.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/rmlock.h> 87 #include <sys/syslog.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_types.h> 92 #include <net/route.h> 93 #include <net/if_dl.h> 94 #include <net/vnet.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <net/if_llatbl.h> 99 #include <netinet/if_ether.h> 100 #include <netinet/in_systm.h> 101 #include <netinet/ip.h> 102 #include <netinet/in_pcb.h> 103 #include <netinet/ip_carp.h> 104 105 #include <netinet/ip6.h> 106 #include <netinet6/ip6_var.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/mld6_var.h> 109 #include <netinet6/ip6_mroute.h> 110 #include <netinet6/in6_ifattach.h> 111 #include <netinet6/scope6_var.h> 112 #include <netinet6/in6_fib.h> 113 #include <netinet6/in6_pcb.h> 114 115 116 /* 117 * struct in6_ifreq and struct ifreq must be type punnable for common members 118 * of ifr_ifru to allow accessors to be shared. 119 */ 120 _Static_assert(offsetof(struct in6_ifreq, ifr_ifru) == 121 offsetof(struct ifreq, ifr_ifru), 122 "struct in6_ifreq and struct ifreq are not type punnable"); 123 124 VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); 125 #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) 126 127 /* 128 * Definitions of some costant IP6 addresses. 129 */ 130 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 131 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 132 const struct in6_addr in6addr_nodelocal_allnodes = 133 IN6ADDR_NODELOCAL_ALLNODES_INIT; 134 const struct in6_addr in6addr_linklocal_allnodes = 135 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 136 const struct in6_addr in6addr_linklocal_allrouters = 137 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 138 const struct in6_addr in6addr_linklocal_allv2routers = 139 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 140 141 const struct in6_addr in6mask0 = IN6MASK0; 142 const struct in6_addr in6mask32 = IN6MASK32; 143 const struct in6_addr in6mask64 = IN6MASK64; 144 const struct in6_addr in6mask96 = IN6MASK96; 145 const struct in6_addr in6mask128 = IN6MASK128; 146 147 const struct sockaddr_in6 sa6_any = 148 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 149 150 static int in6_notify_ifa(struct ifnet *, struct in6_ifaddr *, 151 struct in6_aliasreq *, int); 152 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 153 154 static int in6_validate_ifra(struct ifnet *, struct in6_aliasreq *, 155 struct in6_ifaddr *, int); 156 static struct in6_ifaddr *in6_alloc_ifa(struct ifnet *, 157 struct in6_aliasreq *, int flags); 158 static int in6_update_ifa_internal(struct ifnet *, struct in6_aliasreq *, 159 struct in6_ifaddr *, int, int); 160 static int in6_broadcast_ifa(struct ifnet *, struct in6_aliasreq *, 161 struct in6_ifaddr *, int); 162 163 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 164 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 165 166 167 void 168 in6_newaddrmsg(struct in6_ifaddr *ia, int cmd) 169 { 170 struct sockaddr_dl gateway; 171 struct sockaddr_in6 mask, addr; 172 struct rtentry rt; 173 int fibnum; 174 175 /* 176 * initialize for rtmsg generation 177 */ 178 bzero(&gateway, sizeof(gateway)); 179 gateway.sdl_len = sizeof(gateway); 180 gateway.sdl_family = AF_LINK; 181 182 bzero(&rt, sizeof(rt)); 183 rt.rt_gateway = (struct sockaddr *)&gateway; 184 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 185 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 186 rt_mask(&rt) = (struct sockaddr *)&mask; 187 rt_key(&rt) = (struct sockaddr *)&addr; 188 rt.rt_flags = RTF_HOST | RTF_STATIC; 189 if (cmd == RTM_ADD) 190 rt.rt_flags |= RTF_UP; 191 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ia62ifa(ia)->ifa_ifp->if_fib; 192 /* Announce arrival of local address to this FIB. */ 193 rt_newaddrmsg_fib(cmd, &ia->ia_ifa, 0, &rt, fibnum); 194 } 195 196 int 197 in6_mask2len(struct in6_addr *mask, u_char *lim0) 198 { 199 int x = 0, y; 200 u_char *lim = lim0, *p; 201 202 /* ignore the scope_id part */ 203 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 204 lim = (u_char *)mask + sizeof(*mask); 205 for (p = (u_char *)mask; p < lim; x++, p++) { 206 if (*p != 0xff) 207 break; 208 } 209 y = 0; 210 if (p < lim) { 211 for (y = 0; y < 8; y++) { 212 if ((*p & (0x80 >> y)) == 0) 213 break; 214 } 215 } 216 217 /* 218 * when the limit pointer is given, do a stricter check on the 219 * remaining bits. 220 */ 221 if (p < lim) { 222 if (y != 0 && (*p & (0x00ff >> y)) != 0) 223 return (-1); 224 for (p = p + 1; p < lim; p++) 225 if (*p != 0) 226 return (-1); 227 } 228 229 return x * 8 + y; 230 } 231 232 #ifdef COMPAT_FREEBSD32 233 struct in6_ndifreq32 { 234 char ifname[IFNAMSIZ]; 235 uint32_t ifindex; 236 }; 237 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 238 #endif 239 240 int 241 in6_control(struct socket *so, u_long cmd, caddr_t data, 242 struct ifnet *ifp, struct thread *td) 243 { 244 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 245 struct in6_ifaddr *ia = NULL; 246 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 247 struct sockaddr_in6 *sa6; 248 int carp_attached = 0; 249 int error; 250 u_long ocmd = cmd; 251 252 /* 253 * Compat to make pre-10.x ifconfig(8) operable. 254 */ 255 if (cmd == OSIOCAIFADDR_IN6) 256 cmd = SIOCAIFADDR_IN6; 257 258 switch (cmd) { 259 case SIOCGETSGCNT_IN6: 260 case SIOCGETMIFCNT_IN6: 261 /* 262 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 263 * We cannot see how that would be needed, so do not adjust the 264 * KPI blindly; more likely should clean up the IPv4 variant. 265 */ 266 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 267 } 268 269 switch (cmd) { 270 case SIOCAADDRCTL_POLICY: 271 case SIOCDADDRCTL_POLICY: 272 if (td != NULL) { 273 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 274 if (error) 275 return (error); 276 } 277 return (in6_src_ioctl(cmd, data)); 278 } 279 280 if (ifp == NULL) 281 return (EOPNOTSUPP); 282 283 switch (cmd) { 284 case SIOCSNDFLUSH_IN6: 285 case SIOCSPFXFLUSH_IN6: 286 case SIOCSRTRFLUSH_IN6: 287 case SIOCSDEFIFACE_IN6: 288 case SIOCSIFINFO_FLAGS: 289 case SIOCSIFINFO_IN6: 290 if (td != NULL) { 291 error = priv_check(td, PRIV_NETINET_ND6); 292 if (error) 293 return (error); 294 } 295 /* FALLTHROUGH */ 296 case OSIOCGIFINFO_IN6: 297 case SIOCGIFINFO_IN6: 298 case SIOCGNBRINFO_IN6: 299 case SIOCGDEFIFACE_IN6: 300 return (nd6_ioctl(cmd, data, ifp)); 301 302 #ifdef COMPAT_FREEBSD32 303 case SIOCGDEFIFACE32_IN6: 304 { 305 struct in6_ndifreq ndif; 306 struct in6_ndifreq32 *ndif32; 307 308 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 309 ifp); 310 if (error) 311 return (error); 312 ndif32 = (struct in6_ndifreq32 *)data; 313 ndif32->ifindex = ndif.ifindex; 314 return (0); 315 } 316 #endif 317 } 318 319 switch (cmd) { 320 case SIOCSIFPREFIX_IN6: 321 case SIOCDIFPREFIX_IN6: 322 case SIOCAIFPREFIX_IN6: 323 case SIOCCIFPREFIX_IN6: 324 case SIOCSGIFPREFIX_IN6: 325 case SIOCGIFPREFIX_IN6: 326 log(LOG_NOTICE, 327 "prefix ioctls are now invalidated. " 328 "please use ifconfig.\n"); 329 return (EOPNOTSUPP); 330 } 331 332 switch (cmd) { 333 case SIOCSSCOPE6: 334 if (td != NULL) { 335 error = priv_check(td, PRIV_NETINET_SCOPE6); 336 if (error) 337 return (error); 338 } 339 /* FALLTHROUGH */ 340 case SIOCGSCOPE6: 341 case SIOCGSCOPE6DEF: 342 return (scope6_ioctl(cmd, data, ifp)); 343 } 344 345 /* 346 * Find address for this interface, if it exists. 347 * 348 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 349 * only, and used the first interface address as the target of other 350 * operations (without checking ifra_addr). This was because netinet 351 * code/API assumed at most 1 interface address per interface. 352 * Since IPv6 allows a node to assign multiple addresses 353 * on a single interface, we almost always look and check the 354 * presence of ifra_addr, and reject invalid ones here. 355 * It also decreases duplicated code among SIOC*_IN6 operations. 356 */ 357 switch (cmd) { 358 case SIOCAIFADDR_IN6: 359 case SIOCSIFPHYADDR_IN6: 360 sa6 = &ifra->ifra_addr; 361 break; 362 case SIOCSIFADDR_IN6: 363 case SIOCGIFADDR_IN6: 364 case SIOCSIFDSTADDR_IN6: 365 case SIOCSIFNETMASK_IN6: 366 case SIOCGIFDSTADDR_IN6: 367 case SIOCGIFNETMASK_IN6: 368 case SIOCDIFADDR_IN6: 369 case SIOCGIFPSRCADDR_IN6: 370 case SIOCGIFPDSTADDR_IN6: 371 case SIOCGIFAFLAG_IN6: 372 case SIOCSNDFLUSH_IN6: 373 case SIOCSPFXFLUSH_IN6: 374 case SIOCSRTRFLUSH_IN6: 375 case SIOCGIFALIFETIME_IN6: 376 case SIOCGIFSTAT_IN6: 377 case SIOCGIFSTAT_ICMP6: 378 sa6 = &ifr->ifr_addr; 379 break; 380 case SIOCSIFADDR: 381 case SIOCSIFBRDADDR: 382 case SIOCSIFDSTADDR: 383 case SIOCSIFNETMASK: 384 /* 385 * Although we should pass any non-INET6 ioctl requests 386 * down to driver, we filter some legacy INET requests. 387 * Drivers trust SIOCSIFADDR et al to come from an already 388 * privileged layer, and do not perform any credentials 389 * checks or input validation. 390 */ 391 return (EINVAL); 392 default: 393 sa6 = NULL; 394 break; 395 } 396 if (sa6 && sa6->sin6_family == AF_INET6) { 397 if (sa6->sin6_scope_id != 0) 398 error = sa6_embedscope(sa6, 0); 399 else 400 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 401 if (error != 0) 402 return (error); 403 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 404 &sa6->sin6_addr)) != 0) 405 return (error); 406 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 407 } else 408 ia = NULL; 409 410 switch (cmd) { 411 case SIOCSIFADDR_IN6: 412 case SIOCSIFDSTADDR_IN6: 413 case SIOCSIFNETMASK_IN6: 414 /* 415 * Since IPv6 allows a node to assign multiple addresses 416 * on a single interface, SIOCSIFxxx ioctls are deprecated. 417 */ 418 /* we decided to obsolete this command (20000704) */ 419 error = EINVAL; 420 goto out; 421 422 case SIOCDIFADDR_IN6: 423 /* 424 * for IPv4, we look for existing in_ifaddr here to allow 425 * "ifconfig if0 delete" to remove the first IPv4 address on 426 * the interface. For IPv6, as the spec allows multiple 427 * interface address from the day one, we consider "remove the 428 * first one" semantics to be not preferable. 429 */ 430 if (ia == NULL) { 431 error = EADDRNOTAVAIL; 432 goto out; 433 } 434 /* FALLTHROUGH */ 435 case SIOCAIFADDR_IN6: 436 /* 437 * We always require users to specify a valid IPv6 address for 438 * the corresponding operation. 439 */ 440 if (ifra->ifra_addr.sin6_family != AF_INET6 || 441 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 442 error = EAFNOSUPPORT; 443 goto out; 444 } 445 446 if (td != NULL) { 447 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 448 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 449 if (error) 450 goto out; 451 } 452 /* FALLTHROUGH */ 453 case SIOCGIFSTAT_IN6: 454 case SIOCGIFSTAT_ICMP6: 455 if (ifp->if_afdata[AF_INET6] == NULL) { 456 error = EPFNOSUPPORT; 457 goto out; 458 } 459 break; 460 461 case SIOCGIFADDR_IN6: 462 /* This interface is basically deprecated. use SIOCGIFCONF. */ 463 /* FALLTHROUGH */ 464 case SIOCGIFAFLAG_IN6: 465 case SIOCGIFNETMASK_IN6: 466 case SIOCGIFDSTADDR_IN6: 467 case SIOCGIFALIFETIME_IN6: 468 /* must think again about its semantics */ 469 if (ia == NULL) { 470 error = EADDRNOTAVAIL; 471 goto out; 472 } 473 break; 474 } 475 476 switch (cmd) { 477 case SIOCGIFADDR_IN6: 478 ifr->ifr_addr = ia->ia_addr; 479 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 480 goto out; 481 break; 482 483 case SIOCGIFDSTADDR_IN6: 484 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 485 error = EINVAL; 486 goto out; 487 } 488 ifr->ifr_dstaddr = ia->ia_dstaddr; 489 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 490 goto out; 491 break; 492 493 case SIOCGIFNETMASK_IN6: 494 ifr->ifr_addr = ia->ia_prefixmask; 495 break; 496 497 case SIOCGIFAFLAG_IN6: 498 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 499 break; 500 501 case SIOCGIFSTAT_IN6: 502 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 503 ifp->if_afdata[AF_INET6])->in6_ifstat, 504 &ifr->ifr_ifru.ifru_stat, 505 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 506 break; 507 508 case SIOCGIFSTAT_ICMP6: 509 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 510 ifp->if_afdata[AF_INET6])->icmp6_ifstat, 511 &ifr->ifr_ifru.ifru_icmp6stat, 512 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 513 break; 514 515 case SIOCGIFALIFETIME_IN6: 516 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 517 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 518 time_t maxexpire; 519 struct in6_addrlifetime *retlt = 520 &ifr->ifr_ifru.ifru_lifetime; 521 522 /* 523 * XXX: adjust expiration time assuming time_t is 524 * signed. 525 */ 526 maxexpire = (-1) & 527 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 528 if (ia->ia6_lifetime.ia6t_vltime < 529 maxexpire - ia->ia6_updatetime) { 530 retlt->ia6t_expire = ia->ia6_updatetime + 531 ia->ia6_lifetime.ia6t_vltime; 532 } else 533 retlt->ia6t_expire = maxexpire; 534 } 535 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 536 time_t maxexpire; 537 struct in6_addrlifetime *retlt = 538 &ifr->ifr_ifru.ifru_lifetime; 539 540 /* 541 * XXX: adjust expiration time assuming time_t is 542 * signed. 543 */ 544 maxexpire = (-1) & 545 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 546 if (ia->ia6_lifetime.ia6t_pltime < 547 maxexpire - ia->ia6_updatetime) { 548 retlt->ia6t_preferred = ia->ia6_updatetime + 549 ia->ia6_lifetime.ia6t_pltime; 550 } else 551 retlt->ia6t_preferred = maxexpire; 552 } 553 break; 554 555 case SIOCAIFADDR_IN6: 556 { 557 struct nd_prefixctl pr0; 558 struct nd_prefix *pr; 559 560 /* 561 * first, make or update the interface address structure, 562 * and link it to the list. 563 */ 564 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 565 goto out; 566 if (ia != NULL) { 567 if (ia->ia_ifa.ifa_carp) 568 (*carp_detach_p)(&ia->ia_ifa, true); 569 ifa_free(&ia->ia_ifa); 570 } 571 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 572 == NULL) { 573 /* 574 * this can happen when the user specify the 0 valid 575 * lifetime. 576 */ 577 break; 578 } 579 580 if (cmd == ocmd && ifra->ifra_vhid > 0) { 581 if (carp_attach_p != NULL) 582 error = (*carp_attach_p)(&ia->ia_ifa, 583 ifra->ifra_vhid); 584 else 585 error = EPROTONOSUPPORT; 586 if (error) 587 goto out; 588 else 589 carp_attached = 1; 590 } 591 592 /* 593 * then, make the prefix on-link on the interface. 594 * XXX: we'd rather create the prefix before the address, but 595 * we need at least one address to install the corresponding 596 * interface route, so we configure the address first. 597 */ 598 599 /* 600 * convert mask to prefix length (prefixmask has already 601 * been validated in in6_update_ifa(). 602 */ 603 bzero(&pr0, sizeof(pr0)); 604 pr0.ndpr_ifp = ifp; 605 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 606 NULL); 607 if (pr0.ndpr_plen == 128) { 608 /* we don't need to install a host route. */ 609 goto aifaddr_out; 610 } 611 pr0.ndpr_prefix = ifra->ifra_addr; 612 /* apply the mask for safety. */ 613 IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, 614 &ifra->ifra_prefixmask.sin6_addr); 615 616 /* 617 * XXX: since we don't have an API to set prefix (not address) 618 * lifetimes, we just use the same lifetimes as addresses. 619 * The (temporarily) installed lifetimes can be overridden by 620 * later advertised RAs (when accept_rtadv is non 0), which is 621 * an intended behavior. 622 */ 623 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 624 pr0.ndpr_raf_auto = 625 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 626 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 627 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 628 629 /* add the prefix if not yet. */ 630 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 631 /* 632 * nd6_prelist_add will install the corresponding 633 * interface route. 634 */ 635 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 636 if (carp_attached) 637 (*carp_detach_p)(&ia->ia_ifa, false); 638 goto out; 639 } 640 } 641 642 /* relate the address to the prefix */ 643 if (ia->ia6_ndpr == NULL) { 644 ia->ia6_ndpr = pr; 645 pr->ndpr_addrcnt++; 646 647 /* 648 * If this is the first autoconf address from the 649 * prefix, create a temporary address as well 650 * (when required). 651 */ 652 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 653 V_ip6_use_tempaddr && pr->ndpr_addrcnt == 1) { 654 int e; 655 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 656 log(LOG_NOTICE, "in6_control: failed " 657 "to create a temporary address, " 658 "errno=%d\n", e); 659 } 660 } 661 } 662 nd6_prefix_rele(pr); 663 664 /* 665 * this might affect the status of autoconfigured addresses, 666 * that is, this address might make other addresses detached. 667 */ 668 pfxlist_onlink_check(); 669 670 aifaddr_out: 671 /* 672 * Try to clear the flag when a new IPv6 address is added 673 * onto an IFDISABLED interface and it succeeds. 674 */ 675 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 676 struct in6_ndireq nd; 677 678 memset(&nd, 0, sizeof(nd)); 679 nd.ndi.flags = ND_IFINFO(ifp)->flags; 680 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 681 if (nd6_ioctl(SIOCSIFINFO_FLAGS, (caddr_t)&nd, ifp) < 0) 682 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 683 "SIOCSIFINFO_FLAGS for -ifdisabled " 684 "failed."); 685 /* 686 * Ignore failure of clearing the flag intentionally. 687 * The failure means address duplication was detected. 688 */ 689 } 690 break; 691 } 692 693 case SIOCDIFADDR_IN6: 694 { 695 struct nd_prefix *pr; 696 697 /* 698 * If the address being deleted is the only one that owns 699 * the corresponding prefix, expire the prefix as well. 700 * XXX: theoretically, we don't have to worry about such 701 * relationship, since we separate the address management 702 * and the prefix management. We do this, however, to provide 703 * as much backward compatibility as possible in terms of 704 * the ioctl operation. 705 * Note that in6_purgeaddr() will decrement ndpr_addrcnt. 706 */ 707 pr = ia->ia6_ndpr; 708 in6_purgeaddr(&ia->ia_ifa); 709 if (pr != NULL && pr->ndpr_addrcnt == 0) { 710 ND6_WLOCK(); 711 nd6_prefix_unlink(pr, NULL); 712 ND6_WUNLOCK(); 713 nd6_prefix_del(pr); 714 } 715 EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, 716 IFADDR_EVENT_DEL); 717 break; 718 } 719 720 default: 721 if (ifp->if_ioctl == NULL) { 722 error = EOPNOTSUPP; 723 goto out; 724 } 725 error = (*ifp->if_ioctl)(ifp, cmd, data); 726 goto out; 727 } 728 729 error = 0; 730 out: 731 if (ia != NULL) 732 ifa_free(&ia->ia_ifa); 733 return (error); 734 } 735 736 737 static struct in6_multi_mship * 738 in6_joingroup_legacy(struct ifnet *ifp, const struct in6_addr *mcaddr, 739 int *errorp, int delay) 740 { 741 struct in6_multi_mship *imm; 742 int error; 743 744 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 745 if (imm == NULL) { 746 *errorp = ENOBUFS; 747 return (NULL); 748 } 749 750 delay = (delay * PR_FASTHZ) / hz; 751 752 error = in6_joingroup(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 753 if (error) { 754 *errorp = error; 755 free(imm, M_IP6MADDR); 756 return (NULL); 757 } 758 759 return (imm); 760 } 761 /* 762 * Join necessary multicast groups. Factored out from in6_update_ifa(). 763 * This entire work should only be done once, for the default FIB. 764 */ 765 static int 766 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 767 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 768 { 769 char ip6buf[INET6_ADDRSTRLEN]; 770 struct in6_addr mltaddr; 771 struct in6_multi_mship *imm; 772 int delay, error; 773 774 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 775 776 /* Join solicited multicast addr for new host id. */ 777 bzero(&mltaddr, sizeof(struct in6_addr)); 778 mltaddr.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 779 mltaddr.s6_addr32[2] = htonl(1); 780 mltaddr.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 781 mltaddr.s6_addr8[12] = 0xff; 782 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) { 783 /* XXX: should not happen */ 784 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 785 goto cleanup; 786 } 787 delay = error = 0; 788 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 789 /* 790 * We need a random delay for DAD on the address being 791 * configured. It also means delaying transmission of the 792 * corresponding MLD report to avoid report collision. 793 * [RFC 4861, Section 6.3.7] 794 */ 795 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 796 } 797 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); 798 if (imm == NULL) { 799 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 800 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 801 if_name(ifp), error)); 802 goto cleanup; 803 } 804 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 805 *in6m_sol = imm->i6mm_maddr; 806 807 /* 808 * Join link-local all-nodes address. 809 */ 810 mltaddr = in6addr_linklocal_allnodes; 811 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 812 goto cleanup; /* XXX: should not fail */ 813 814 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); 815 if (imm == NULL) { 816 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 817 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 818 if_name(ifp), error)); 819 goto cleanup; 820 } 821 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 822 823 /* 824 * Join node information group address. 825 */ 826 delay = 0; 827 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 828 /* 829 * The spec does not say anything about delay for this group, 830 * but the same logic should apply. 831 */ 832 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 833 } 834 if (in6_nigroup(ifp, NULL, -1, &mltaddr) == 0) { 835 /* XXX jinmei */ 836 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); 837 if (imm == NULL) 838 nd6log((LOG_WARNING, 839 "%s: in6_joingroup failed for %s on %s " 840 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 841 &mltaddr), if_name(ifp), error)); 842 /* XXX not very fatal, go on... */ 843 else 844 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 845 } 846 if (V_icmp6_nodeinfo_oldmcprefix && 847 in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr) == 0) { 848 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); 849 if (imm == NULL) 850 nd6log((LOG_WARNING, 851 "%s: in6_joingroup failed for %s on %s " 852 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 853 &mltaddr), if_name(ifp), error)); 854 /* XXX not very fatal, go on... */ 855 else 856 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 857 } 858 859 /* 860 * Join interface-local all-nodes address. 861 * (ff01::1%ifN, and ff01::%ifN/32) 862 */ 863 mltaddr = in6addr_nodelocal_allnodes; 864 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 865 goto cleanup; /* XXX: should not fail */ 866 867 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); 868 if (imm == NULL) { 869 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 870 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 871 &mltaddr), if_name(ifp), error)); 872 goto cleanup; 873 } 874 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 875 876 cleanup: 877 return (error); 878 } 879 880 /* 881 * Update parameters of an IPv6 interface address. 882 * If necessary, a new entry is created and linked into address chains. 883 * This function is separated from in6_control(). 884 */ 885 int 886 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 887 struct in6_ifaddr *ia, int flags) 888 { 889 int error, hostIsNew = 0; 890 891 if ((error = in6_validate_ifra(ifp, ifra, ia, flags)) != 0) 892 return (error); 893 894 if (ia == NULL) { 895 hostIsNew = 1; 896 if ((ia = in6_alloc_ifa(ifp, ifra, flags)) == NULL) 897 return (ENOBUFS); 898 } 899 900 error = in6_update_ifa_internal(ifp, ifra, ia, hostIsNew, flags); 901 if (error != 0) { 902 if (hostIsNew != 0) { 903 in6_unlink_ifa(ia, ifp); 904 ifa_free(&ia->ia_ifa); 905 } 906 return (error); 907 } 908 909 if (hostIsNew) 910 error = in6_broadcast_ifa(ifp, ifra, ia, flags); 911 912 return (error); 913 } 914 915 /* 916 * Fill in basic IPv6 address request info. 917 */ 918 void 919 in6_prepare_ifra(struct in6_aliasreq *ifra, const struct in6_addr *addr, 920 const struct in6_addr *mask) 921 { 922 923 memset(ifra, 0, sizeof(struct in6_aliasreq)); 924 925 ifra->ifra_addr.sin6_family = AF_INET6; 926 ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); 927 if (addr != NULL) 928 ifra->ifra_addr.sin6_addr = *addr; 929 930 ifra->ifra_prefixmask.sin6_family = AF_INET6; 931 ifra->ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 932 if (mask != NULL) 933 ifra->ifra_prefixmask.sin6_addr = *mask; 934 } 935 936 static int 937 in6_validate_ifra(struct ifnet *ifp, struct in6_aliasreq *ifra, 938 struct in6_ifaddr *ia, int flags) 939 { 940 int plen = -1; 941 struct sockaddr_in6 dst6; 942 struct in6_addrlifetime *lt; 943 char ip6buf[INET6_ADDRSTRLEN]; 944 945 /* Validate parameters */ 946 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 947 return (EINVAL); 948 949 /* 950 * The destination address for a p2p link must have a family 951 * of AF_UNSPEC or AF_INET6. 952 */ 953 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 954 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 955 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 956 return (EAFNOSUPPORT); 957 958 /* 959 * Validate address 960 */ 961 if (ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6) || 962 ifra->ifra_addr.sin6_family != AF_INET6) 963 return (EINVAL); 964 965 /* 966 * validate ifra_prefixmask. don't check sin6_family, netmask 967 * does not carry fields other than sin6_len. 968 */ 969 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 970 return (EINVAL); 971 /* 972 * Because the IPv6 address architecture is classless, we require 973 * users to specify a (non 0) prefix length (mask) for a new address. 974 * We also require the prefix (when specified) mask is valid, and thus 975 * reject a non-consecutive mask. 976 */ 977 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 978 return (EINVAL); 979 if (ifra->ifra_prefixmask.sin6_len != 0) { 980 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 981 (u_char *)&ifra->ifra_prefixmask + 982 ifra->ifra_prefixmask.sin6_len); 983 if (plen <= 0) 984 return (EINVAL); 985 } else { 986 /* 987 * In this case, ia must not be NULL. We just use its prefix 988 * length. 989 */ 990 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 991 } 992 /* 993 * If the destination address on a p2p interface is specified, 994 * and the address is a scoped one, validate/set the scope 995 * zone identifier. 996 */ 997 dst6 = ifra->ifra_dstaddr; 998 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 999 (dst6.sin6_family == AF_INET6)) { 1000 struct in6_addr in6_tmp; 1001 u_int32_t zoneid; 1002 1003 in6_tmp = dst6.sin6_addr; 1004 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 1005 return (EINVAL); /* XXX: should be impossible */ 1006 1007 if (dst6.sin6_scope_id != 0) { 1008 if (dst6.sin6_scope_id != zoneid) 1009 return (EINVAL); 1010 } else /* user omit to specify the ID. */ 1011 dst6.sin6_scope_id = zoneid; 1012 1013 /* convert into the internal form */ 1014 if (sa6_embedscope(&dst6, 0)) 1015 return (EINVAL); /* XXX: should be impossible */ 1016 } 1017 /* Modify original ifra_dstaddr to reflect changes */ 1018 ifra->ifra_dstaddr = dst6; 1019 1020 /* 1021 * The destination address can be specified only for a p2p or a 1022 * loopback interface. If specified, the corresponding prefix length 1023 * must be 128. 1024 */ 1025 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 1026 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 1027 /* XXX: noisy message */ 1028 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 1029 "be specified for a p2p or a loopback IF only\n")); 1030 return (EINVAL); 1031 } 1032 if (plen != 128) { 1033 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1034 "be 128 when dstaddr is specified\n")); 1035 return (EINVAL); 1036 } 1037 } 1038 /* lifetime consistency check */ 1039 lt = &ifra->ifra_lifetime; 1040 if (lt->ia6t_pltime > lt->ia6t_vltime) 1041 return (EINVAL); 1042 if (lt->ia6t_vltime == 0) { 1043 /* 1044 * the following log might be noisy, but this is a typical 1045 * configuration mistake or a tool's bug. 1046 */ 1047 nd6log((LOG_INFO, 1048 "in6_update_ifa: valid lifetime is 0 for %s\n", 1049 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1050 1051 if (ia == NULL) 1052 return (0); /* there's nothing to do */ 1053 } 1054 1055 /* Check prefix mask */ 1056 if (ia != NULL && ifra->ifra_prefixmask.sin6_len != 0) { 1057 /* 1058 * We prohibit changing the prefix length of an existing 1059 * address, because 1060 * + such an operation should be rare in IPv6, and 1061 * + the operation would confuse prefix management. 1062 */ 1063 if (ia->ia_prefixmask.sin6_len != 0 && 1064 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1065 nd6log((LOG_INFO, "in6_validate_ifa: the prefix length " 1066 "of an existing %s address should not be changed\n", 1067 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1068 1069 return (EINVAL); 1070 } 1071 } 1072 1073 return (0); 1074 } 1075 1076 1077 /* 1078 * Allocate a new ifaddr and link it into chains. 1079 */ 1080 static struct in6_ifaddr * 1081 in6_alloc_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int flags) 1082 { 1083 struct in6_ifaddr *ia; 1084 1085 /* 1086 * When in6_alloc_ifa() is called in a process of a received 1087 * RA, it is called under an interrupt context. So, we should 1088 * call malloc with M_NOWAIT. 1089 */ 1090 ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); 1091 if (ia == NULL) 1092 return (NULL); 1093 LIST_INIT(&ia->ia6_memberships); 1094 /* Initialize the address and masks, and put time stamp */ 1095 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1096 ia->ia_addr.sin6_family = AF_INET6; 1097 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1098 /* XXX: Can we assign ,sin6_addr and skip the rest? */ 1099 ia->ia_addr = ifra->ifra_addr; 1100 ia->ia6_createtime = time_uptime; 1101 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1102 /* 1103 * Some functions expect that ifa_dstaddr is not 1104 * NULL for p2p interfaces. 1105 */ 1106 ia->ia_ifa.ifa_dstaddr = 1107 (struct sockaddr *)&ia->ia_dstaddr; 1108 } else { 1109 ia->ia_ifa.ifa_dstaddr = NULL; 1110 } 1111 1112 /* set prefix mask if any */ 1113 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1114 if (ifra->ifra_prefixmask.sin6_len != 0) { 1115 ia->ia_prefixmask.sin6_family = AF_INET6; 1116 ia->ia_prefixmask.sin6_len = ifra->ifra_prefixmask.sin6_len; 1117 ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; 1118 } 1119 1120 ia->ia_ifp = ifp; 1121 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1122 IF_ADDR_WLOCK(ifp); 1123 CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1124 IF_ADDR_WUNLOCK(ifp); 1125 1126 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1127 IN6_IFADDR_WLOCK(); 1128 CK_STAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1129 CK_LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); 1130 IN6_IFADDR_WUNLOCK(); 1131 1132 return (ia); 1133 } 1134 1135 /* 1136 * Update/configure interface address parameters: 1137 * 1138 * 1) Update lifetime 1139 * 2) Update interface metric ad flags 1140 * 3) Notify other subsystems 1141 */ 1142 static int 1143 in6_update_ifa_internal(struct ifnet *ifp, struct in6_aliasreq *ifra, 1144 struct in6_ifaddr *ia, int hostIsNew, int flags) 1145 { 1146 int error; 1147 1148 /* update timestamp */ 1149 ia->ia6_updatetime = time_uptime; 1150 1151 /* 1152 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1153 * to see if the address is deprecated or invalidated, but initialize 1154 * these members for applications. 1155 */ 1156 ia->ia6_lifetime = ifra->ifra_lifetime; 1157 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1158 ia->ia6_lifetime.ia6t_expire = 1159 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1160 } else 1161 ia->ia6_lifetime.ia6t_expire = 0; 1162 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1163 ia->ia6_lifetime.ia6t_preferred = 1164 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1165 } else 1166 ia->ia6_lifetime.ia6t_preferred = 0; 1167 1168 /* 1169 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1170 * userland, make it deprecated. 1171 */ 1172 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1173 ia->ia6_lifetime.ia6t_pltime = 0; 1174 ia->ia6_lifetime.ia6t_preferred = time_uptime; 1175 } 1176 1177 /* 1178 * configure address flags. 1179 */ 1180 ia->ia6_flags = ifra->ifra_flags; 1181 1182 /* 1183 * Make the address tentative before joining multicast addresses, 1184 * so that corresponding MLD responses would not have a tentative 1185 * source address. 1186 */ 1187 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1188 1189 /* 1190 * DAD should be performed for an new address or addresses on 1191 * an interface with ND6_IFF_IFDISABLED. 1192 */ 1193 if (in6if_do_dad(ifp) && 1194 (hostIsNew || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED))) 1195 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1196 1197 /* notify other subsystems */ 1198 error = in6_notify_ifa(ifp, ia, ifra, hostIsNew); 1199 1200 return (error); 1201 } 1202 1203 /* 1204 * Do link-level ifa job: 1205 * 1) Add lle entry for added address 1206 * 2) Notifies routing socket users about new address 1207 * 3) join appropriate multicast group 1208 * 4) start DAD if enabled 1209 */ 1210 static int 1211 in6_broadcast_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1212 struct in6_ifaddr *ia, int flags) 1213 { 1214 struct in6_multi *in6m_sol; 1215 int error = 0; 1216 1217 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1218 if ((error = nd6_add_ifa_lle(ia)) != 0) { 1219 in6_purgeaddr(&ia->ia_ifa); 1220 ifa_free(&ia->ia_ifa); 1221 return (error); 1222 } 1223 1224 /* Join necessary multicast groups. */ 1225 in6m_sol = NULL; 1226 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1227 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1228 if (error != 0) { 1229 in6_purgeaddr(&ia->ia_ifa); 1230 ifa_free(&ia->ia_ifa); 1231 return (error); 1232 } 1233 } 1234 1235 /* Perform DAD, if the address is TENTATIVE. */ 1236 if ((ia->ia6_flags & IN6_IFF_TENTATIVE)) { 1237 int delay, mindelay, maxdelay; 1238 1239 delay = 0; 1240 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1241 /* 1242 * We need to impose a delay before sending an NS 1243 * for DAD. Check if we also needed a delay for the 1244 * corresponding MLD message. If we did, the delay 1245 * should be larger than the MLD delay (this could be 1246 * relaxed a bit, but this simple logic is at least 1247 * safe). 1248 * XXX: Break data hiding guidelines and look at 1249 * state for the solicited multicast group. 1250 */ 1251 mindelay = 0; 1252 if (in6m_sol != NULL && 1253 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1254 mindelay = in6m_sol->in6m_timer; 1255 } 1256 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1257 if (maxdelay - mindelay == 0) 1258 delay = 0; 1259 else { 1260 delay = 1261 (arc4random() % (maxdelay - mindelay)) + 1262 mindelay; 1263 } 1264 } 1265 nd6_dad_start((struct ifaddr *)ia, delay); 1266 } 1267 1268 in6_newaddrmsg(ia, RTM_ADD); 1269 ifa_free(&ia->ia_ifa); 1270 return (error); 1271 } 1272 1273 void 1274 in6_purgeaddr(struct ifaddr *ifa) 1275 { 1276 struct ifnet *ifp = ifa->ifa_ifp; 1277 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1278 struct in6_multi_mship *imm; 1279 int plen, error; 1280 1281 if (ifa->ifa_carp) 1282 (*carp_detach_p)(ifa, false); 1283 1284 /* 1285 * Remove the loopback route to the interface address. 1286 * The check for the current setting of "nd6_useloopback" 1287 * is not needed. 1288 */ 1289 if (ia->ia_flags & IFA_RTSELF) { 1290 error = ifa_del_loopback_route((struct ifaddr *)ia, 1291 (struct sockaddr *)&ia->ia_addr); 1292 if (error == 0) 1293 ia->ia_flags &= ~IFA_RTSELF; 1294 } 1295 1296 /* stop DAD processing */ 1297 nd6_dad_stop(ifa); 1298 1299 /* Leave multicast groups. */ 1300 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1301 LIST_REMOVE(imm, i6mm_chain); 1302 if (imm->i6mm_maddr != NULL) 1303 in6_leavegroup(imm->i6mm_maddr, NULL); 1304 free(imm, M_IP6MADDR); 1305 } 1306 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1307 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1308 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1309 (ia->ia_dstaddr.sin6_family == AF_INET6 ? RTF_HOST : 0)); 1310 if (error != 0) 1311 log(LOG_INFO, "%s: err=%d, destination address delete " 1312 "failed\n", __func__, error); 1313 ia->ia_flags &= ~IFA_ROUTE; 1314 } 1315 1316 in6_newaddrmsg(ia, RTM_DELETE); 1317 in6_unlink_ifa(ia, ifp); 1318 } 1319 1320 static void 1321 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1322 { 1323 char ip6buf[INET6_ADDRSTRLEN]; 1324 int remove_lle; 1325 1326 IF_ADDR_WLOCK(ifp); 1327 CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); 1328 IF_ADDR_WUNLOCK(ifp); 1329 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1330 1331 /* 1332 * Defer the release of what might be the last reference to the 1333 * in6_ifaddr so that it can't be freed before the remainder of the 1334 * cleanup. 1335 */ 1336 IN6_IFADDR_WLOCK(); 1337 CK_STAILQ_REMOVE(&V_in6_ifaddrhead, ia, in6_ifaddr, ia_link); 1338 CK_LIST_REMOVE(ia, ia6_hash); 1339 IN6_IFADDR_WUNLOCK(); 1340 1341 /* 1342 * Release the reference to the base prefix. There should be a 1343 * positive reference. 1344 */ 1345 remove_lle = 0; 1346 if (ia->ia6_ndpr == NULL) { 1347 nd6log((LOG_NOTICE, 1348 "in6_unlink_ifa: autoconf'ed address " 1349 "%s has no prefix\n", ip6_sprintf(ip6buf, IA6_IN6(ia)))); 1350 } else { 1351 ia->ia6_ndpr->ndpr_addrcnt--; 1352 /* Do not delete lles within prefix if refcont != 0 */ 1353 if (ia->ia6_ndpr->ndpr_addrcnt == 0) 1354 remove_lle = 1; 1355 ia->ia6_ndpr = NULL; 1356 } 1357 1358 nd6_rem_ifa_lle(ia, remove_lle); 1359 1360 /* 1361 * Also, if the address being removed is autoconf'ed, call 1362 * pfxlist_onlink_check() since the release might affect the status of 1363 * other (detached) addresses. 1364 */ 1365 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1366 pfxlist_onlink_check(); 1367 } 1368 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1369 } 1370 1371 /* 1372 * Notifies other subsystems about address change/arrival: 1373 * 1) Notifies device handler on the first IPv6 address assignment 1374 * 2) Handle routing table changes for P2P links and route 1375 * 3) Handle routing table changes for address host route 1376 */ 1377 static int 1378 in6_notify_ifa(struct ifnet *ifp, struct in6_ifaddr *ia, 1379 struct in6_aliasreq *ifra, int hostIsNew) 1380 { 1381 int error = 0, plen, ifacount = 0; 1382 struct ifaddr *ifa; 1383 struct sockaddr_in6 *pdst; 1384 char ip6buf[INET6_ADDRSTRLEN]; 1385 1386 /* 1387 * Give the interface a chance to initialize 1388 * if this is its first address, 1389 */ 1390 if (hostIsNew != 0) { 1391 struct epoch_tracker et; 1392 1393 NET_EPOCH_ENTER(et); 1394 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1395 if (ifa->ifa_addr->sa_family != AF_INET6) 1396 continue; 1397 ifacount++; 1398 } 1399 NET_EPOCH_EXIT(et); 1400 } 1401 1402 if (ifacount <= 1 && ifp->if_ioctl) { 1403 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1404 if (error) 1405 goto done; 1406 } 1407 1408 /* 1409 * If a new destination address is specified, scrub the old one and 1410 * install the new destination. Note that the interface must be 1411 * p2p or loopback. 1412 */ 1413 pdst = &ifra->ifra_dstaddr; 1414 if (pdst->sin6_family == AF_INET6 && 1415 !IN6_ARE_ADDR_EQUAL(&pdst->sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1416 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1417 (rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0)) { 1418 nd6log((LOG_ERR, "in6_update_ifa_internal: failed to " 1419 "remove a route to the old destination: %s\n", 1420 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1421 /* proceed anyway... */ 1422 } else 1423 ia->ia_flags &= ~IFA_ROUTE; 1424 ia->ia_dstaddr = *pdst; 1425 } 1426 1427 /* 1428 * If a new destination address is specified for a point-to-point 1429 * interface, install a route to the destination as an interface 1430 * direct route. 1431 * XXX: the logic below rejects assigning multiple addresses on a p2p 1432 * interface that share the same destination. 1433 */ 1434 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1435 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1436 ia->ia_dstaddr.sin6_family == AF_INET6) { 1437 int rtflags = RTF_UP | RTF_HOST; 1438 /* 1439 * Handle the case for ::1 . 1440 */ 1441 if (ifp->if_flags & IFF_LOOPBACK) 1442 ia->ia_flags |= IFA_RTSELF; 1443 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1444 if (error) 1445 goto done; 1446 ia->ia_flags |= IFA_ROUTE; 1447 } 1448 1449 /* 1450 * add a loopback route to self if not exists 1451 */ 1452 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1453 error = ifa_add_loopback_route((struct ifaddr *)ia, 1454 (struct sockaddr *)&ia->ia_addr); 1455 if (error == 0) 1456 ia->ia_flags |= IFA_RTSELF; 1457 } 1458 done: 1459 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1460 "Invoking IPv6 network device address event may sleep"); 1461 1462 ifa_ref(&ia->ia_ifa); 1463 EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, 1464 IFADDR_EVENT_ADD); 1465 ifa_free(&ia->ia_ifa); 1466 1467 return (error); 1468 } 1469 1470 /* 1471 * Find an IPv6 interface link-local address specific to an interface. 1472 * ifaddr is returned referenced. 1473 */ 1474 struct in6_ifaddr * 1475 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1476 { 1477 struct epoch_tracker et; 1478 struct ifaddr *ifa; 1479 1480 NET_EPOCH_ENTER(et); 1481 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1482 if (ifa->ifa_addr->sa_family != AF_INET6) 1483 continue; 1484 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1485 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1486 ignoreflags) != 0) 1487 continue; 1488 ifa_ref(ifa); 1489 break; 1490 } 1491 } 1492 NET_EPOCH_EXIT(et); 1493 1494 return ((struct in6_ifaddr *)ifa); 1495 } 1496 1497 1498 /* 1499 * find the interface address corresponding to a given IPv6 address. 1500 * ifaddr is returned referenced. 1501 */ 1502 struct in6_ifaddr * 1503 in6ifa_ifwithaddr(const struct in6_addr *addr, uint32_t zoneid) 1504 { 1505 struct rm_priotracker in6_ifa_tracker; 1506 struct in6_ifaddr *ia; 1507 1508 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1509 CK_LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { 1510 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), addr)) { 1511 if (zoneid != 0 && 1512 zoneid != ia->ia_addr.sin6_scope_id) 1513 continue; 1514 ifa_ref(&ia->ia_ifa); 1515 break; 1516 } 1517 } 1518 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1519 return (ia); 1520 } 1521 1522 /* 1523 * find the internet address corresponding to a given interface and address. 1524 * ifaddr is returned referenced. 1525 */ 1526 struct in6_ifaddr * 1527 in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr) 1528 { 1529 struct epoch_tracker et; 1530 struct ifaddr *ifa; 1531 1532 NET_EPOCH_ENTER(et); 1533 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1534 if (ifa->ifa_addr->sa_family != AF_INET6) 1535 continue; 1536 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1537 ifa_ref(ifa); 1538 break; 1539 } 1540 } 1541 NET_EPOCH_EXIT(et); 1542 1543 return ((struct in6_ifaddr *)ifa); 1544 } 1545 1546 /* 1547 * Find a link-local scoped address on ifp and return it if any. 1548 */ 1549 struct in6_ifaddr * 1550 in6ifa_llaonifp(struct ifnet *ifp) 1551 { 1552 struct epoch_tracker et; 1553 struct sockaddr_in6 *sin6; 1554 struct ifaddr *ifa; 1555 1556 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1557 return (NULL); 1558 NET_EPOCH_ENTER(et); 1559 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1560 if (ifa->ifa_addr->sa_family != AF_INET6) 1561 continue; 1562 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 1563 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1564 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1565 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1566 break; 1567 } 1568 NET_EPOCH_EXIT(et); 1569 1570 return ((struct in6_ifaddr *)ifa); 1571 } 1572 1573 /* 1574 * Convert IP6 address to printable (loggable) representation. Caller 1575 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1576 */ 1577 static char digits[] = "0123456789abcdef"; 1578 char * 1579 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1580 { 1581 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1582 char *cp; 1583 const u_int16_t *a = (const u_int16_t *)addr; 1584 const u_int8_t *d; 1585 int dcolon = 0, zero = 0; 1586 1587 cp = ip6buf; 1588 1589 for (i = 0; i < 8; i++) { 1590 if (*(a + i) == 0) { 1591 cnt++; 1592 if (cnt == 1) 1593 idx = i; 1594 } 1595 else if (maxcnt < cnt) { 1596 maxcnt = cnt; 1597 index = idx; 1598 cnt = 0; 1599 } 1600 } 1601 if (maxcnt < cnt) { 1602 maxcnt = cnt; 1603 index = idx; 1604 } 1605 1606 for (i = 0; i < 8; i++) { 1607 if (dcolon == 1) { 1608 if (*a == 0) { 1609 if (i == 7) 1610 *cp++ = ':'; 1611 a++; 1612 continue; 1613 } else 1614 dcolon = 2; 1615 } 1616 if (*a == 0) { 1617 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 1618 if (i == 0) 1619 *cp++ = ':'; 1620 *cp++ = ':'; 1621 dcolon = 1; 1622 } else { 1623 *cp++ = '0'; 1624 *cp++ = ':'; 1625 } 1626 a++; 1627 continue; 1628 } 1629 d = (const u_char *)a; 1630 /* Try to eliminate leading zeros in printout like in :0001. */ 1631 zero = 1; 1632 *cp = digits[*d >> 4]; 1633 if (*cp != '0') { 1634 zero = 0; 1635 cp++; 1636 } 1637 *cp = digits[*d++ & 0xf]; 1638 if (zero == 0 || (*cp != '0')) { 1639 zero = 0; 1640 cp++; 1641 } 1642 *cp = digits[*d >> 4]; 1643 if (zero == 0 || (*cp != '0')) { 1644 zero = 0; 1645 cp++; 1646 } 1647 *cp++ = digits[*d & 0xf]; 1648 *cp++ = ':'; 1649 a++; 1650 } 1651 *--cp = '\0'; 1652 return (ip6buf); 1653 } 1654 1655 int 1656 in6_localaddr(struct in6_addr *in6) 1657 { 1658 struct rm_priotracker in6_ifa_tracker; 1659 struct in6_ifaddr *ia; 1660 1661 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1662 return 1; 1663 1664 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1665 CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1666 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1667 &ia->ia_prefixmask.sin6_addr)) { 1668 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1669 return 1; 1670 } 1671 } 1672 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1673 1674 return (0); 1675 } 1676 1677 /* 1678 * Return 1 if an internet address is for the local host and configured 1679 * on one of its interfaces. 1680 */ 1681 int 1682 in6_localip(struct in6_addr *in6) 1683 { 1684 struct rm_priotracker in6_ifa_tracker; 1685 struct in6_ifaddr *ia; 1686 1687 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1688 CK_LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { 1689 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 1690 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1691 return (1); 1692 } 1693 } 1694 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1695 return (0); 1696 } 1697 1698 /* 1699 * Return 1 if an internet address is configured on an interface. 1700 */ 1701 int 1702 in6_ifhasaddr(struct ifnet *ifp, struct in6_addr *addr) 1703 { 1704 struct in6_addr in6; 1705 struct epoch_tracker et; 1706 struct ifaddr *ifa; 1707 struct in6_ifaddr *ia6; 1708 1709 in6 = *addr; 1710 if (in6_clearscope(&in6)) 1711 return (0); 1712 in6_setscope(&in6, ifp, NULL); 1713 1714 NET_EPOCH_ENTER(et); 1715 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1716 if (ifa->ifa_addr->sa_family != AF_INET6) 1717 continue; 1718 ia6 = (struct in6_ifaddr *)ifa; 1719 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &in6)) { 1720 NET_EPOCH_EXIT(et); 1721 return (1); 1722 } 1723 } 1724 NET_EPOCH_EXIT(et); 1725 1726 return (0); 1727 } 1728 1729 int 1730 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1731 { 1732 struct rm_priotracker in6_ifa_tracker; 1733 struct in6_ifaddr *ia; 1734 1735 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1736 CK_LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { 1737 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { 1738 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 1739 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1740 return (1); /* true */ 1741 } 1742 break; 1743 } 1744 } 1745 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1746 1747 return (0); /* false */ 1748 } 1749 1750 /* 1751 * return length of part which dst and src are equal 1752 * hard coding... 1753 */ 1754 int 1755 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1756 { 1757 int match = 0; 1758 u_char *s = (u_char *)src, *d = (u_char *)dst; 1759 u_char *lim = s + 16, r; 1760 1761 while (s < lim) 1762 if ((r = (*d++ ^ *s++)) != 0) { 1763 while (r < 128) { 1764 match++; 1765 r <<= 1; 1766 } 1767 break; 1768 } else 1769 match += 8; 1770 return match; 1771 } 1772 1773 /* XXX: to be scope conscious */ 1774 int 1775 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1776 { 1777 int bytelen, bitlen; 1778 1779 /* sanity check */ 1780 if (0 > len || len > 128) { 1781 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1782 len); 1783 return (0); 1784 } 1785 1786 bytelen = len / 8; 1787 bitlen = len % 8; 1788 1789 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1790 return (0); 1791 if (bitlen != 0 && 1792 p1->s6_addr[bytelen] >> (8 - bitlen) != 1793 p2->s6_addr[bytelen] >> (8 - bitlen)) 1794 return (0); 1795 1796 return (1); 1797 } 1798 1799 void 1800 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1801 { 1802 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1803 int bytelen, bitlen, i; 1804 1805 /* sanity check */ 1806 if (0 > len || len > 128) { 1807 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1808 len); 1809 return; 1810 } 1811 1812 bzero(maskp, sizeof(*maskp)); 1813 bytelen = len / 8; 1814 bitlen = len % 8; 1815 for (i = 0; i < bytelen; i++) 1816 maskp->s6_addr[i] = 0xff; 1817 if (bitlen) 1818 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1819 } 1820 1821 /* 1822 * return the best address out of the same scope. if no address was 1823 * found, return the first valid address from designated IF. 1824 */ 1825 struct in6_ifaddr * 1826 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1827 { 1828 struct epoch_tracker et; 1829 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1830 struct ifaddr *ifa; 1831 struct in6_ifaddr *besta = NULL; 1832 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1833 1834 dep[0] = dep[1] = NULL; 1835 1836 /* 1837 * We first look for addresses in the same scope. 1838 * If there is one, return it. 1839 * If two or more, return one which matches the dst longest. 1840 * If none, return one of global addresses assigned other ifs. 1841 */ 1842 NET_EPOCH_ENTER(et); 1843 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1844 if (ifa->ifa_addr->sa_family != AF_INET6) 1845 continue; 1846 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1847 continue; /* XXX: is there any case to allow anycast? */ 1848 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1849 continue; /* don't use this interface */ 1850 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1851 continue; 1852 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1853 if (V_ip6_use_deprecated) 1854 dep[0] = (struct in6_ifaddr *)ifa; 1855 continue; 1856 } 1857 1858 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1859 /* 1860 * call in6_matchlen() as few as possible 1861 */ 1862 if (besta) { 1863 if (blen == -1) 1864 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1865 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1866 if (tlen > blen) { 1867 blen = tlen; 1868 besta = (struct in6_ifaddr *)ifa; 1869 } 1870 } else 1871 besta = (struct in6_ifaddr *)ifa; 1872 } 1873 } 1874 if (besta) { 1875 ifa_ref(&besta->ia_ifa); 1876 NET_EPOCH_EXIT(et); 1877 return (besta); 1878 } 1879 1880 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1881 if (ifa->ifa_addr->sa_family != AF_INET6) 1882 continue; 1883 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1884 continue; /* XXX: is there any case to allow anycast? */ 1885 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1886 continue; /* don't use this interface */ 1887 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1888 continue; 1889 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1890 if (V_ip6_use_deprecated) 1891 dep[1] = (struct in6_ifaddr *)ifa; 1892 continue; 1893 } 1894 1895 if (ifa != NULL) 1896 ifa_ref(ifa); 1897 NET_EPOCH_EXIT(et); 1898 return (struct in6_ifaddr *)ifa; 1899 } 1900 1901 /* use the last-resort values, that are, deprecated addresses */ 1902 if (dep[0]) { 1903 ifa_ref((struct ifaddr *)dep[0]); 1904 NET_EPOCH_EXIT(et); 1905 return dep[0]; 1906 } 1907 if (dep[1]) { 1908 ifa_ref((struct ifaddr *)dep[1]); 1909 NET_EPOCH_EXIT(et); 1910 return dep[1]; 1911 } 1912 1913 NET_EPOCH_EXIT(et); 1914 return NULL; 1915 } 1916 1917 /* 1918 * perform DAD when interface becomes IFF_UP. 1919 */ 1920 void 1921 in6_if_up(struct ifnet *ifp) 1922 { 1923 struct epoch_tracker et; 1924 struct ifaddr *ifa; 1925 struct in6_ifaddr *ia; 1926 1927 NET_EPOCH_ENTER(et); 1928 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1929 if (ifa->ifa_addr->sa_family != AF_INET6) 1930 continue; 1931 ia = (struct in6_ifaddr *)ifa; 1932 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 1933 /* 1934 * The TENTATIVE flag was likely set by hand 1935 * beforehand, implicitly indicating the need for DAD. 1936 * We may be able to skip the random delay in this 1937 * case, but we impose delays just in case. 1938 */ 1939 nd6_dad_start(ifa, 1940 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 1941 } 1942 } 1943 NET_EPOCH_EXIT(et); 1944 1945 /* 1946 * special cases, like 6to4, are handled in in6_ifattach 1947 */ 1948 in6_ifattach(ifp, NULL); 1949 } 1950 1951 int 1952 in6if_do_dad(struct ifnet *ifp) 1953 { 1954 1955 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1956 return (0); 1957 if ((ifp->if_flags & IFF_MULTICAST) == 0) 1958 return (0); 1959 if ((ND_IFINFO(ifp)->flags & 1960 (ND6_IFF_IFDISABLED | ND6_IFF_NO_DAD)) != 0) 1961 return (0); 1962 return (1); 1963 } 1964 1965 /* 1966 * Calculate max IPv6 MTU through all the interfaces and store it 1967 * to in6_maxmtu. 1968 */ 1969 void 1970 in6_setmaxmtu(void) 1971 { 1972 struct epoch_tracker et; 1973 unsigned long maxmtu = 0; 1974 struct ifnet *ifp; 1975 1976 NET_EPOCH_ENTER(et); 1977 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1978 /* this function can be called during ifnet initialization */ 1979 if (!ifp->if_afdata[AF_INET6]) 1980 continue; 1981 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 1982 IN6_LINKMTU(ifp) > maxmtu) 1983 maxmtu = IN6_LINKMTU(ifp); 1984 } 1985 NET_EPOCH_EXIT(et); 1986 if (maxmtu) /* update only when maxmtu is positive */ 1987 V_in6_maxmtu = maxmtu; 1988 } 1989 1990 /* 1991 * Provide the length of interface identifiers to be used for the link attached 1992 * to the given interface. The length should be defined in "IPv6 over 1993 * xxx-link" document. Note that address architecture might also define 1994 * the length for a particular set of address prefixes, regardless of the 1995 * link type. As clarified in rfc2462bis, those two definitions should be 1996 * consistent, and those really are as of August 2004. 1997 */ 1998 int 1999 in6_if2idlen(struct ifnet *ifp) 2000 { 2001 switch (ifp->if_type) { 2002 case IFT_ETHER: /* RFC2464 */ 2003 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2004 case IFT_L2VLAN: /* ditto */ 2005 case IFT_BRIDGE: /* bridge(4) only does Ethernet-like links */ 2006 case IFT_INFINIBAND: 2007 return (64); 2008 case IFT_PPP: /* RFC2472 */ 2009 return (64); 2010 case IFT_FRELAY: /* RFC2590 */ 2011 return (64); 2012 case IFT_IEEE1394: /* RFC3146 */ 2013 return (64); 2014 case IFT_GIF: 2015 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2016 case IFT_LOOP: 2017 return (64); /* XXX: is this really correct? */ 2018 default: 2019 /* 2020 * Unknown link type: 2021 * It might be controversial to use the today's common constant 2022 * of 64 for these cases unconditionally. For full compliance, 2023 * we should return an error in this case. On the other hand, 2024 * if we simply miss the standard for the link type or a new 2025 * standard is defined for a new link type, the IFID length 2026 * is very likely to be the common constant. As a compromise, 2027 * we always use the constant, but make an explicit notice 2028 * indicating the "unknown" case. 2029 */ 2030 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2031 return (64); 2032 } 2033 } 2034 2035 #include <sys/sysctl.h> 2036 2037 struct in6_llentry { 2038 struct llentry base; 2039 }; 2040 2041 #define IN6_LLTBL_DEFAULT_HSIZE 32 2042 #define IN6_LLTBL_HASH(k, h) \ 2043 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) 2044 2045 /* 2046 * Do actual deallocation of @lle. 2047 */ 2048 static void 2049 in6_lltable_destroy_lle_unlocked(epoch_context_t ctx) 2050 { 2051 struct llentry *lle; 2052 2053 lle = __containerof(ctx, struct llentry, lle_epoch_ctx); 2054 LLE_LOCK_DESTROY(lle); 2055 LLE_REQ_DESTROY(lle); 2056 free(lle, M_LLTABLE); 2057 } 2058 2059 /* 2060 * Called by LLE_FREE_LOCKED when number of references 2061 * drops to zero. 2062 */ 2063 static void 2064 in6_lltable_destroy_lle(struct llentry *lle) 2065 { 2066 2067 LLE_WUNLOCK(lle); 2068 epoch_call(net_epoch_preempt, &lle->lle_epoch_ctx, in6_lltable_destroy_lle_unlocked); 2069 } 2070 2071 static struct llentry * 2072 in6_lltable_new(const struct in6_addr *addr6, u_int flags) 2073 { 2074 struct in6_llentry *lle; 2075 2076 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2077 if (lle == NULL) /* NB: caller generates msg */ 2078 return NULL; 2079 2080 lle->base.r_l3addr.addr6 = *addr6; 2081 lle->base.lle_refcnt = 1; 2082 lle->base.lle_free = in6_lltable_destroy_lle; 2083 LLE_LOCK_INIT(&lle->base); 2084 LLE_REQ_INIT(&lle->base); 2085 callout_init(&lle->base.lle_timer, 1); 2086 2087 return (&lle->base); 2088 } 2089 2090 static int 2091 in6_lltable_match_prefix(const struct sockaddr *saddr, 2092 const struct sockaddr *smask, u_int flags, struct llentry *lle) 2093 { 2094 const struct in6_addr *addr, *mask, *lle_addr; 2095 2096 addr = &((const struct sockaddr_in6 *)saddr)->sin6_addr; 2097 mask = &((const struct sockaddr_in6 *)smask)->sin6_addr; 2098 lle_addr = &lle->r_l3addr.addr6; 2099 2100 if (IN6_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) 2101 return (0); 2102 2103 if (lle->la_flags & LLE_IFADDR) { 2104 2105 /* 2106 * Delete LLE_IFADDR records IFF address & flag matches. 2107 * Note that addr is the interface address within prefix 2108 * being matched. 2109 */ 2110 if (IN6_ARE_ADDR_EQUAL(addr, lle_addr) && 2111 (flags & LLE_STATIC) != 0) 2112 return (1); 2113 return (0); 2114 } 2115 2116 /* flags & LLE_STATIC means deleting both dynamic and static entries */ 2117 if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) 2118 return (1); 2119 2120 return (0); 2121 } 2122 2123 static void 2124 in6_lltable_free_entry(struct lltable *llt, struct llentry *lle) 2125 { 2126 struct ifnet *ifp; 2127 2128 LLE_WLOCK_ASSERT(lle); 2129 KASSERT(llt != NULL, ("lltable is NULL")); 2130 2131 /* Unlink entry from table */ 2132 if ((lle->la_flags & LLE_LINKED) != 0) { 2133 2134 ifp = llt->llt_ifp; 2135 IF_AFDATA_WLOCK_ASSERT(ifp); 2136 lltable_unlink_entry(llt, lle); 2137 } 2138 2139 llentry_free(lle); 2140 } 2141 2142 static int 2143 in6_lltable_rtcheck(struct ifnet *ifp, 2144 u_int flags, 2145 const struct sockaddr *l3addr) 2146 { 2147 const struct sockaddr_in6 *sin6; 2148 struct nhop6_basic nh6; 2149 struct in6_addr dst; 2150 uint32_t scopeid; 2151 int error; 2152 char ip6buf[INET6_ADDRSTRLEN]; 2153 int fibnum; 2154 2155 KASSERT(l3addr->sa_family == AF_INET6, 2156 ("sin_family %d", l3addr->sa_family)); 2157 2158 sin6 = (const struct sockaddr_in6 *)l3addr; 2159 in6_splitscope(&sin6->sin6_addr, &dst, &scopeid); 2160 fibnum = V_rt_add_addr_allfibs ? RT_DEFAULT_FIB : ifp->if_fib; 2161 error = fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6); 2162 if (error != 0 || (nh6.nh_flags & NHF_GATEWAY) || nh6.nh_ifp != ifp) { 2163 struct epoch_tracker et; 2164 struct ifaddr *ifa; 2165 /* 2166 * Create an ND6 cache for an IPv6 neighbor 2167 * that is not covered by our own prefix. 2168 */ 2169 NET_EPOCH_ENTER(et); 2170 ifa = ifaof_ifpforaddr(l3addr, ifp); 2171 if (ifa != NULL) { 2172 NET_EPOCH_EXIT(et); 2173 return 0; 2174 } 2175 NET_EPOCH_EXIT(et); 2176 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2177 ip6_sprintf(ip6buf, &sin6->sin6_addr)); 2178 return EINVAL; 2179 } 2180 return 0; 2181 } 2182 2183 /* 2184 * Called by the datapath to indicate that the entry was used. 2185 */ 2186 static void 2187 in6_lltable_mark_used(struct llentry *lle) 2188 { 2189 2190 LLE_REQ_LOCK(lle); 2191 lle->r_skip_req = 0; 2192 2193 /* 2194 * Set the hit time so the callback function 2195 * can determine the remaining time before 2196 * transiting to the DELAY state. 2197 */ 2198 lle->lle_hittime = time_uptime; 2199 LLE_REQ_UNLOCK(lle); 2200 } 2201 2202 static inline uint32_t 2203 in6_lltable_hash_dst(const struct in6_addr *dst, uint32_t hsize) 2204 { 2205 2206 return (IN6_LLTBL_HASH(dst->s6_addr32[3], hsize)); 2207 } 2208 2209 static uint32_t 2210 in6_lltable_hash(const struct llentry *lle, uint32_t hsize) 2211 { 2212 2213 return (in6_lltable_hash_dst(&lle->r_l3addr.addr6, hsize)); 2214 } 2215 2216 static void 2217 in6_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) 2218 { 2219 struct sockaddr_in6 *sin6; 2220 2221 sin6 = (struct sockaddr_in6 *)sa; 2222 bzero(sin6, sizeof(*sin6)); 2223 sin6->sin6_family = AF_INET6; 2224 sin6->sin6_len = sizeof(*sin6); 2225 sin6->sin6_addr = lle->r_l3addr.addr6; 2226 } 2227 2228 static inline struct llentry * 2229 in6_lltable_find_dst(struct lltable *llt, const struct in6_addr *dst) 2230 { 2231 struct llentry *lle; 2232 struct llentries *lleh; 2233 u_int hashidx; 2234 2235 hashidx = in6_lltable_hash_dst(dst, llt->llt_hsize); 2236 lleh = &llt->lle_head[hashidx]; 2237 CK_LIST_FOREACH(lle, lleh, lle_next) { 2238 if (lle->la_flags & LLE_DELETED) 2239 continue; 2240 if (IN6_ARE_ADDR_EQUAL(&lle->r_l3addr.addr6, dst)) 2241 break; 2242 } 2243 2244 return (lle); 2245 } 2246 2247 static void 2248 in6_lltable_delete_entry(struct lltable *llt, struct llentry *lle) 2249 { 2250 2251 lle->la_flags |= LLE_DELETED; 2252 EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); 2253 #ifdef DIAGNOSTIC 2254 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2255 #endif 2256 llentry_free(lle); 2257 } 2258 2259 static struct llentry * 2260 in6_lltable_alloc(struct lltable *llt, u_int flags, 2261 const struct sockaddr *l3addr) 2262 { 2263 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2264 struct ifnet *ifp = llt->llt_ifp; 2265 struct llentry *lle; 2266 char linkhdr[LLE_MAX_LINKHDR]; 2267 size_t linkhdrsize; 2268 int lladdr_off; 2269 2270 KASSERT(l3addr->sa_family == AF_INET6, 2271 ("sin_family %d", l3addr->sa_family)); 2272 2273 /* 2274 * A route that covers the given address must have 2275 * been installed 1st because we are doing a resolution, 2276 * verify this. 2277 */ 2278 if (!(flags & LLE_IFADDR) && 2279 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2280 return (NULL); 2281 2282 lle = in6_lltable_new(&sin6->sin6_addr, flags); 2283 if (lle == NULL) { 2284 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2285 return (NULL); 2286 } 2287 lle->la_flags = flags; 2288 if ((flags & LLE_IFADDR) == LLE_IFADDR) { 2289 linkhdrsize = LLE_MAX_LINKHDR; 2290 if (lltable_calc_llheader(ifp, AF_INET6, IF_LLADDR(ifp), 2291 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 2292 epoch_call(net_epoch_preempt, &lle->lle_epoch_ctx, in6_lltable_destroy_lle_unlocked); 2293 return (NULL); 2294 } 2295 lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, 2296 lladdr_off); 2297 lle->la_flags |= LLE_STATIC; 2298 } 2299 2300 if ((lle->la_flags & LLE_STATIC) != 0) 2301 lle->ln_state = ND6_LLINFO_REACHABLE; 2302 2303 return (lle); 2304 } 2305 2306 static struct llentry * 2307 in6_lltable_lookup(struct lltable *llt, u_int flags, 2308 const struct sockaddr *l3addr) 2309 { 2310 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2311 struct llentry *lle; 2312 2313 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); 2314 KASSERT(l3addr->sa_family == AF_INET6, 2315 ("sin_family %d", l3addr->sa_family)); 2316 KASSERT((flags & (LLE_UNLOCKED | LLE_EXCLUSIVE)) != 2317 (LLE_UNLOCKED | LLE_EXCLUSIVE), 2318 ("wrong lle request flags: %#x", flags)); 2319 2320 lle = in6_lltable_find_dst(llt, &sin6->sin6_addr); 2321 if (lle == NULL) 2322 return (NULL); 2323 if (flags & LLE_UNLOCKED) 2324 return (lle); 2325 2326 if (flags & LLE_EXCLUSIVE) 2327 LLE_WLOCK(lle); 2328 else 2329 LLE_RLOCK(lle); 2330 2331 /* 2332 * If the afdata lock is not held, the LLE may have been unlinked while 2333 * we were blocked on the LLE lock. Check for this case. 2334 */ 2335 if (__predict_false((lle->la_flags & LLE_LINKED) == 0)) { 2336 if (flags & LLE_EXCLUSIVE) 2337 LLE_WUNLOCK(lle); 2338 else 2339 LLE_RUNLOCK(lle); 2340 return (NULL); 2341 } 2342 return (lle); 2343 } 2344 2345 static int 2346 in6_lltable_dump_entry(struct lltable *llt, struct llentry *lle, 2347 struct sysctl_req *wr) 2348 { 2349 struct ifnet *ifp = llt->llt_ifp; 2350 /* XXX stack use */ 2351 struct { 2352 struct rt_msghdr rtm; 2353 struct sockaddr_in6 sin6; 2354 /* 2355 * ndp.c assumes that sdl is word aligned 2356 */ 2357 #ifdef __LP64__ 2358 uint32_t pad; 2359 #endif 2360 struct sockaddr_dl sdl; 2361 } ndpc; 2362 struct sockaddr_dl *sdl; 2363 int error; 2364 2365 bzero(&ndpc, sizeof(ndpc)); 2366 /* skip deleted entries */ 2367 if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) 2368 return (0); 2369 /* Skip if jailed and not a valid IP of the prison. */ 2370 lltable_fill_sa_entry(lle, (struct sockaddr *)&ndpc.sin6); 2371 if (prison_if(wr->td->td_ucred, (struct sockaddr *)&ndpc.sin6) != 0) 2372 return (0); 2373 /* 2374 * produce a msg made of: 2375 * struct rt_msghdr; 2376 * struct sockaddr_in6 (IPv6) 2377 * struct sockaddr_dl; 2378 */ 2379 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2380 ndpc.rtm.rtm_version = RTM_VERSION; 2381 ndpc.rtm.rtm_type = RTM_GET; 2382 ndpc.rtm.rtm_flags = RTF_UP; 2383 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2384 if (V_deembed_scopeid) 2385 sa6_recoverscope(&ndpc.sin6); 2386 2387 /* publish */ 2388 if (lle->la_flags & LLE_PUB) 2389 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2390 2391 sdl = &ndpc.sdl; 2392 sdl->sdl_family = AF_LINK; 2393 sdl->sdl_len = sizeof(*sdl); 2394 sdl->sdl_index = ifp->if_index; 2395 sdl->sdl_type = ifp->if_type; 2396 if ((lle->la_flags & LLE_VALID) == LLE_VALID) { 2397 sdl->sdl_alen = ifp->if_addrlen; 2398 bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2399 } else { 2400 sdl->sdl_alen = 0; 2401 bzero(LLADDR(sdl), ifp->if_addrlen); 2402 } 2403 if (lle->la_expire != 0) 2404 ndpc.rtm.rtm_rmx.rmx_expire = lle->la_expire + 2405 lle->lle_remtime / hz + time_second - time_uptime; 2406 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2407 if (lle->la_flags & LLE_STATIC) 2408 ndpc.rtm.rtm_flags |= RTF_STATIC; 2409 if (lle->la_flags & LLE_IFADDR) 2410 ndpc.rtm.rtm_flags |= RTF_PINNED; 2411 if (lle->ln_router != 0) 2412 ndpc.rtm.rtm_flags |= RTF_GATEWAY; 2413 ndpc.rtm.rtm_rmx.rmx_pksent = lle->la_asked; 2414 /* Store state in rmx_weight value */ 2415 ndpc.rtm.rtm_rmx.rmx_state = lle->ln_state; 2416 ndpc.rtm.rtm_index = ifp->if_index; 2417 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2418 2419 return (error); 2420 } 2421 2422 static struct lltable * 2423 in6_lltattach(struct ifnet *ifp) 2424 { 2425 struct lltable *llt; 2426 2427 llt = lltable_allocate_htbl(IN6_LLTBL_DEFAULT_HSIZE); 2428 llt->llt_af = AF_INET6; 2429 llt->llt_ifp = ifp; 2430 2431 llt->llt_lookup = in6_lltable_lookup; 2432 llt->llt_alloc_entry = in6_lltable_alloc; 2433 llt->llt_delete_entry = in6_lltable_delete_entry; 2434 llt->llt_dump_entry = in6_lltable_dump_entry; 2435 llt->llt_hash = in6_lltable_hash; 2436 llt->llt_fill_sa_entry = in6_lltable_fill_sa_entry; 2437 llt->llt_free_entry = in6_lltable_free_entry; 2438 llt->llt_match_prefix = in6_lltable_match_prefix; 2439 llt->llt_mark_used = in6_lltable_mark_used; 2440 lltable_link(llt); 2441 2442 return (llt); 2443 } 2444 2445 void * 2446 in6_domifattach(struct ifnet *ifp) 2447 { 2448 struct in6_ifextra *ext; 2449 2450 /* There are not IPv6-capable interfaces. */ 2451 switch (ifp->if_type) { 2452 case IFT_PFLOG: 2453 case IFT_PFSYNC: 2454 case IFT_USB: 2455 return (NULL); 2456 } 2457 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2458 bzero(ext, sizeof(*ext)); 2459 2460 ext->in6_ifstat = malloc(sizeof(counter_u64_t) * 2461 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); 2462 COUNTER_ARRAY_ALLOC(ext->in6_ifstat, 2463 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); 2464 2465 ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * 2466 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, 2467 M_WAITOK); 2468 COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, 2469 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); 2470 2471 ext->nd_ifinfo = nd6_ifattach(ifp); 2472 ext->scope6_id = scope6_ifattach(ifp); 2473 ext->lltable = in6_lltattach(ifp); 2474 2475 ext->mld_ifinfo = mld_domifattach(ifp); 2476 2477 return ext; 2478 } 2479 2480 int 2481 in6_domifmtu(struct ifnet *ifp) 2482 { 2483 if (ifp->if_afdata[AF_INET6] == NULL) 2484 return ifp->if_mtu; 2485 2486 return (IN6_LINKMTU(ifp)); 2487 } 2488 2489 void 2490 in6_domifdetach(struct ifnet *ifp, void *aux) 2491 { 2492 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2493 2494 mld_domifdetach(ifp); 2495 scope6_ifdetach(ext->scope6_id); 2496 nd6_ifdetach(ifp, ext->nd_ifinfo); 2497 lltable_free(ext->lltable); 2498 COUNTER_ARRAY_FREE(ext->in6_ifstat, 2499 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 2500 free(ext->in6_ifstat, M_IFADDR); 2501 COUNTER_ARRAY_FREE(ext->icmp6_ifstat, 2502 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 2503 free(ext->icmp6_ifstat, M_IFADDR); 2504 free(ext, M_IFADDR); 2505 } 2506 2507 /* 2508 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2509 * v4 mapped addr or v4 compat addr 2510 */ 2511 void 2512 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2513 { 2514 2515 bzero(sin, sizeof(*sin)); 2516 sin->sin_len = sizeof(struct sockaddr_in); 2517 sin->sin_family = AF_INET; 2518 sin->sin_port = sin6->sin6_port; 2519 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2520 } 2521 2522 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2523 void 2524 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2525 { 2526 bzero(sin6, sizeof(*sin6)); 2527 sin6->sin6_len = sizeof(struct sockaddr_in6); 2528 sin6->sin6_family = AF_INET6; 2529 sin6->sin6_port = sin->sin_port; 2530 sin6->sin6_addr.s6_addr32[0] = 0; 2531 sin6->sin6_addr.s6_addr32[1] = 0; 2532 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2533 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2534 } 2535 2536 /* Convert sockaddr_in6 into sockaddr_in. */ 2537 void 2538 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2539 { 2540 struct sockaddr_in *sin_p; 2541 struct sockaddr_in6 sin6; 2542 2543 /* 2544 * Save original sockaddr_in6 addr and convert it 2545 * to sockaddr_in. 2546 */ 2547 sin6 = *(struct sockaddr_in6 *)nam; 2548 sin_p = (struct sockaddr_in *)nam; 2549 in6_sin6_2_sin(sin_p, &sin6); 2550 } 2551 2552 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2553 void 2554 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2555 { 2556 struct sockaddr_in *sin_p; 2557 struct sockaddr_in6 *sin6_p; 2558 2559 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2560 sin_p = (struct sockaddr_in *)*nam; 2561 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2562 free(*nam, M_SONAME); 2563 *nam = (struct sockaddr *)sin6_p; 2564 } 2565