1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 70 #include <sys/param.h> 71 #include <sys/eventhandler.h> 72 #include <sys/errno.h> 73 #include <sys/jail.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/time.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/rmlock.h> 85 #include <sys/syslog.h> 86 87 #include <net/if.h> 88 #include <net/if_var.h> 89 #include <net/if_types.h> 90 #include <net/route.h> 91 #include <net/if_dl.h> 92 #include <net/vnet.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_var.h> 96 #include <net/if_llatbl.h> 97 #include <netinet/if_ether.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/ip.h> 100 #include <netinet/in_pcb.h> 101 #include <netinet/ip_carp.h> 102 103 #include <netinet/ip6.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet6/nd6.h> 106 #include <netinet6/mld6_var.h> 107 #include <netinet6/ip6_mroute.h> 108 #include <netinet6/in6_ifattach.h> 109 #include <netinet6/scope6_var.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/in6_pcb.h> 112 113 VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); 114 #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) 115 116 /* 117 * Definitions of some costant IP6 addresses. 118 */ 119 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 120 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 121 const struct in6_addr in6addr_nodelocal_allnodes = 122 IN6ADDR_NODELOCAL_ALLNODES_INIT; 123 const struct in6_addr in6addr_linklocal_allnodes = 124 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 125 const struct in6_addr in6addr_linklocal_allrouters = 126 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 127 const struct in6_addr in6addr_linklocal_allv2routers = 128 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 129 130 const struct in6_addr in6mask0 = IN6MASK0; 131 const struct in6_addr in6mask32 = IN6MASK32; 132 const struct in6_addr in6mask64 = IN6MASK64; 133 const struct in6_addr in6mask96 = IN6MASK96; 134 const struct in6_addr in6mask128 = IN6MASK128; 135 136 const struct sockaddr_in6 sa6_any = 137 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 138 139 static int in6_notify_ifa(struct ifnet *, struct in6_ifaddr *, 140 struct in6_aliasreq *, int); 141 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 142 143 static int in6_validate_ifra(struct ifnet *, struct in6_aliasreq *, 144 struct in6_ifaddr *, int); 145 static struct in6_ifaddr *in6_alloc_ifa(struct ifnet *, 146 struct in6_aliasreq *, int flags); 147 static int in6_update_ifa_internal(struct ifnet *, struct in6_aliasreq *, 148 struct in6_ifaddr *, int, int); 149 static int in6_broadcast_ifa(struct ifnet *, struct in6_aliasreq *, 150 struct in6_ifaddr *, int); 151 152 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 153 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 154 155 156 void 157 in6_newaddrmsg(struct in6_ifaddr *ia, int cmd) 158 { 159 struct sockaddr_dl gateway; 160 struct sockaddr_in6 mask, addr; 161 struct rtentry rt; 162 163 /* 164 * initialize for rtmsg generation 165 */ 166 bzero(&gateway, sizeof(gateway)); 167 gateway.sdl_len = sizeof(gateway); 168 gateway.sdl_family = AF_LINK; 169 170 bzero(&rt, sizeof(rt)); 171 rt.rt_gateway = (struct sockaddr *)&gateway; 172 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 173 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 174 rt_mask(&rt) = (struct sockaddr *)&mask; 175 rt_key(&rt) = (struct sockaddr *)&addr; 176 rt.rt_flags = RTF_HOST | RTF_STATIC; 177 if (cmd == RTM_ADD) 178 rt.rt_flags |= RTF_UP; 179 /* Announce arrival of local address to all FIBs. */ 180 rt_newaddrmsg(cmd, &ia->ia_ifa, 0, &rt); 181 } 182 183 int 184 in6_mask2len(struct in6_addr *mask, u_char *lim0) 185 { 186 int x = 0, y; 187 u_char *lim = lim0, *p; 188 189 /* ignore the scope_id part */ 190 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 191 lim = (u_char *)mask + sizeof(*mask); 192 for (p = (u_char *)mask; p < lim; x++, p++) { 193 if (*p != 0xff) 194 break; 195 } 196 y = 0; 197 if (p < lim) { 198 for (y = 0; y < 8; y++) { 199 if ((*p & (0x80 >> y)) == 0) 200 break; 201 } 202 } 203 204 /* 205 * when the limit pointer is given, do a stricter check on the 206 * remaining bits. 207 */ 208 if (p < lim) { 209 if (y != 0 && (*p & (0x00ff >> y)) != 0) 210 return (-1); 211 for (p = p + 1; p < lim; p++) 212 if (*p != 0) 213 return (-1); 214 } 215 216 return x * 8 + y; 217 } 218 219 #ifdef COMPAT_FREEBSD32 220 struct in6_ndifreq32 { 221 char ifname[IFNAMSIZ]; 222 uint32_t ifindex; 223 }; 224 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 225 #endif 226 227 int 228 in6_control(struct socket *so, u_long cmd, caddr_t data, 229 struct ifnet *ifp, struct thread *td) 230 { 231 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 232 struct in6_ifaddr *ia = NULL; 233 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 234 struct sockaddr_in6 *sa6; 235 int carp_attached = 0; 236 int error; 237 u_long ocmd = cmd; 238 239 /* 240 * Compat to make pre-10.x ifconfig(8) operable. 241 */ 242 if (cmd == OSIOCAIFADDR_IN6) 243 cmd = SIOCAIFADDR_IN6; 244 245 switch (cmd) { 246 case SIOCGETSGCNT_IN6: 247 case SIOCGETMIFCNT_IN6: 248 /* 249 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 250 * We cannot see how that would be needed, so do not adjust the 251 * KPI blindly; more likely should clean up the IPv4 variant. 252 */ 253 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 254 } 255 256 switch (cmd) { 257 case SIOCAADDRCTL_POLICY: 258 case SIOCDADDRCTL_POLICY: 259 if (td != NULL) { 260 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 261 if (error) 262 return (error); 263 } 264 return (in6_src_ioctl(cmd, data)); 265 } 266 267 if (ifp == NULL) 268 return (EOPNOTSUPP); 269 270 switch (cmd) { 271 case SIOCSNDFLUSH_IN6: 272 case SIOCSPFXFLUSH_IN6: 273 case SIOCSRTRFLUSH_IN6: 274 case SIOCSDEFIFACE_IN6: 275 case SIOCSIFINFO_FLAGS: 276 case SIOCSIFINFO_IN6: 277 if (td != NULL) { 278 error = priv_check(td, PRIV_NETINET_ND6); 279 if (error) 280 return (error); 281 } 282 /* FALLTHROUGH */ 283 case OSIOCGIFINFO_IN6: 284 case SIOCGIFINFO_IN6: 285 case SIOCGNBRINFO_IN6: 286 case SIOCGDEFIFACE_IN6: 287 return (nd6_ioctl(cmd, data, ifp)); 288 289 #ifdef COMPAT_FREEBSD32 290 case SIOCGDEFIFACE32_IN6: 291 { 292 struct in6_ndifreq ndif; 293 struct in6_ndifreq32 *ndif32; 294 295 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 296 ifp); 297 if (error) 298 return (error); 299 ndif32 = (struct in6_ndifreq32 *)data; 300 ndif32->ifindex = ndif.ifindex; 301 return (0); 302 } 303 #endif 304 } 305 306 switch (cmd) { 307 case SIOCSIFPREFIX_IN6: 308 case SIOCDIFPREFIX_IN6: 309 case SIOCAIFPREFIX_IN6: 310 case SIOCCIFPREFIX_IN6: 311 case SIOCSGIFPREFIX_IN6: 312 case SIOCGIFPREFIX_IN6: 313 log(LOG_NOTICE, 314 "prefix ioctls are now invalidated. " 315 "please use ifconfig.\n"); 316 return (EOPNOTSUPP); 317 } 318 319 switch (cmd) { 320 case SIOCSSCOPE6: 321 if (td != NULL) { 322 error = priv_check(td, PRIV_NETINET_SCOPE6); 323 if (error) 324 return (error); 325 } 326 /* FALLTHROUGH */ 327 case SIOCGSCOPE6: 328 case SIOCGSCOPE6DEF: 329 return (scope6_ioctl(cmd, data, ifp)); 330 } 331 332 /* 333 * Find address for this interface, if it exists. 334 * 335 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 336 * only, and used the first interface address as the target of other 337 * operations (without checking ifra_addr). This was because netinet 338 * code/API assumed at most 1 interface address per interface. 339 * Since IPv6 allows a node to assign multiple addresses 340 * on a single interface, we almost always look and check the 341 * presence of ifra_addr, and reject invalid ones here. 342 * It also decreases duplicated code among SIOC*_IN6 operations. 343 */ 344 switch (cmd) { 345 case SIOCAIFADDR_IN6: 346 case SIOCSIFPHYADDR_IN6: 347 sa6 = &ifra->ifra_addr; 348 break; 349 case SIOCSIFADDR_IN6: 350 case SIOCGIFADDR_IN6: 351 case SIOCSIFDSTADDR_IN6: 352 case SIOCSIFNETMASK_IN6: 353 case SIOCGIFDSTADDR_IN6: 354 case SIOCGIFNETMASK_IN6: 355 case SIOCDIFADDR_IN6: 356 case SIOCGIFPSRCADDR_IN6: 357 case SIOCGIFPDSTADDR_IN6: 358 case SIOCGIFAFLAG_IN6: 359 case SIOCSNDFLUSH_IN6: 360 case SIOCSPFXFLUSH_IN6: 361 case SIOCSRTRFLUSH_IN6: 362 case SIOCGIFALIFETIME_IN6: 363 case SIOCSIFALIFETIME_IN6: 364 case SIOCGIFSTAT_IN6: 365 case SIOCGIFSTAT_ICMP6: 366 sa6 = &ifr->ifr_addr; 367 break; 368 case SIOCSIFADDR: 369 case SIOCSIFBRDADDR: 370 case SIOCSIFDSTADDR: 371 case SIOCSIFNETMASK: 372 /* 373 * Although we should pass any non-INET6 ioctl requests 374 * down to driver, we filter some legacy INET requests. 375 * Drivers trust SIOCSIFADDR et al to come from an already 376 * privileged layer, and do not perform any credentials 377 * checks or input validation. 378 */ 379 return (EINVAL); 380 default: 381 sa6 = NULL; 382 break; 383 } 384 if (sa6 && sa6->sin6_family == AF_INET6) { 385 if (sa6->sin6_scope_id != 0) 386 error = sa6_embedscope(sa6, 0); 387 else 388 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 389 if (error != 0) 390 return (error); 391 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 392 &sa6->sin6_addr)) != 0) 393 return (error); 394 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 395 } else 396 ia = NULL; 397 398 switch (cmd) { 399 case SIOCSIFADDR_IN6: 400 case SIOCSIFDSTADDR_IN6: 401 case SIOCSIFNETMASK_IN6: 402 /* 403 * Since IPv6 allows a node to assign multiple addresses 404 * on a single interface, SIOCSIFxxx ioctls are deprecated. 405 */ 406 /* we decided to obsolete this command (20000704) */ 407 error = EINVAL; 408 goto out; 409 410 case SIOCDIFADDR_IN6: 411 /* 412 * for IPv4, we look for existing in_ifaddr here to allow 413 * "ifconfig if0 delete" to remove the first IPv4 address on 414 * the interface. For IPv6, as the spec allows multiple 415 * interface address from the day one, we consider "remove the 416 * first one" semantics to be not preferable. 417 */ 418 if (ia == NULL) { 419 error = EADDRNOTAVAIL; 420 goto out; 421 } 422 /* FALLTHROUGH */ 423 case SIOCAIFADDR_IN6: 424 /* 425 * We always require users to specify a valid IPv6 address for 426 * the corresponding operation. 427 */ 428 if (ifra->ifra_addr.sin6_family != AF_INET6 || 429 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 430 error = EAFNOSUPPORT; 431 goto out; 432 } 433 434 if (td != NULL) { 435 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 436 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 437 if (error) 438 goto out; 439 } 440 /* FALLTHROUGH */ 441 case SIOCGIFSTAT_IN6: 442 case SIOCGIFSTAT_ICMP6: 443 if (ifp->if_afdata[AF_INET6] == NULL) { 444 error = EPFNOSUPPORT; 445 goto out; 446 } 447 break; 448 449 case SIOCGIFADDR_IN6: 450 /* This interface is basically deprecated. use SIOCGIFCONF. */ 451 /* FALLTHROUGH */ 452 case SIOCGIFAFLAG_IN6: 453 case SIOCGIFNETMASK_IN6: 454 case SIOCGIFDSTADDR_IN6: 455 case SIOCGIFALIFETIME_IN6: 456 /* must think again about its semantics */ 457 if (ia == NULL) { 458 error = EADDRNOTAVAIL; 459 goto out; 460 } 461 break; 462 463 case SIOCSIFALIFETIME_IN6: 464 { 465 struct in6_addrlifetime *lt; 466 467 if (td != NULL) { 468 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 469 if (error) 470 goto out; 471 } 472 if (ia == NULL) { 473 error = EADDRNOTAVAIL; 474 goto out; 475 } 476 /* sanity for overflow - beware unsigned */ 477 lt = &ifr->ifr_ifru.ifru_lifetime; 478 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 479 lt->ia6t_vltime + time_uptime < time_uptime) { 480 error = EINVAL; 481 goto out; 482 } 483 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 484 lt->ia6t_pltime + time_uptime < time_uptime) { 485 error = EINVAL; 486 goto out; 487 } 488 break; 489 } 490 } 491 492 switch (cmd) { 493 case SIOCGIFADDR_IN6: 494 ifr->ifr_addr = ia->ia_addr; 495 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 496 goto out; 497 break; 498 499 case SIOCGIFDSTADDR_IN6: 500 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 501 error = EINVAL; 502 goto out; 503 } 504 /* 505 * XXX: should we check if ifa_dstaddr is NULL and return 506 * an error? 507 */ 508 ifr->ifr_dstaddr = ia->ia_dstaddr; 509 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 510 goto out; 511 break; 512 513 case SIOCGIFNETMASK_IN6: 514 ifr->ifr_addr = ia->ia_prefixmask; 515 break; 516 517 case SIOCGIFAFLAG_IN6: 518 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 519 break; 520 521 case SIOCGIFSTAT_IN6: 522 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 523 ifp->if_afdata[AF_INET6])->in6_ifstat, 524 &ifr->ifr_ifru.ifru_stat, 525 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 526 break; 527 528 case SIOCGIFSTAT_ICMP6: 529 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 530 ifp->if_afdata[AF_INET6])->icmp6_ifstat, 531 &ifr->ifr_ifru.ifru_icmp6stat, 532 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 533 break; 534 535 case SIOCGIFALIFETIME_IN6: 536 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 537 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 538 time_t maxexpire; 539 struct in6_addrlifetime *retlt = 540 &ifr->ifr_ifru.ifru_lifetime; 541 542 /* 543 * XXX: adjust expiration time assuming time_t is 544 * signed. 545 */ 546 maxexpire = (-1) & 547 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 548 if (ia->ia6_lifetime.ia6t_vltime < 549 maxexpire - ia->ia6_updatetime) { 550 retlt->ia6t_expire = ia->ia6_updatetime + 551 ia->ia6_lifetime.ia6t_vltime; 552 } else 553 retlt->ia6t_expire = maxexpire; 554 } 555 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 556 time_t maxexpire; 557 struct in6_addrlifetime *retlt = 558 &ifr->ifr_ifru.ifru_lifetime; 559 560 /* 561 * XXX: adjust expiration time assuming time_t is 562 * signed. 563 */ 564 maxexpire = (-1) & 565 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 566 if (ia->ia6_lifetime.ia6t_pltime < 567 maxexpire - ia->ia6_updatetime) { 568 retlt->ia6t_preferred = ia->ia6_updatetime + 569 ia->ia6_lifetime.ia6t_pltime; 570 } else 571 retlt->ia6t_preferred = maxexpire; 572 } 573 break; 574 575 case SIOCSIFALIFETIME_IN6: 576 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 577 /* for sanity */ 578 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 579 ia->ia6_lifetime.ia6t_expire = 580 time_uptime + ia->ia6_lifetime.ia6t_vltime; 581 } else 582 ia->ia6_lifetime.ia6t_expire = 0; 583 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 584 ia->ia6_lifetime.ia6t_preferred = 585 time_uptime + ia->ia6_lifetime.ia6t_pltime; 586 } else 587 ia->ia6_lifetime.ia6t_preferred = 0; 588 break; 589 590 case SIOCAIFADDR_IN6: 591 { 592 struct nd_prefixctl pr0; 593 struct nd_prefix *pr; 594 595 /* 596 * first, make or update the interface address structure, 597 * and link it to the list. 598 */ 599 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 600 goto out; 601 if (ia != NULL) 602 ifa_free(&ia->ia_ifa); 603 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 604 == NULL) { 605 /* 606 * this can happen when the user specify the 0 valid 607 * lifetime. 608 */ 609 break; 610 } 611 612 if (cmd == ocmd && ifra->ifra_vhid > 0) { 613 if (carp_attach_p != NULL) 614 error = (*carp_attach_p)(&ia->ia_ifa, 615 ifra->ifra_vhid); 616 else 617 error = EPROTONOSUPPORT; 618 if (error) 619 goto out; 620 else 621 carp_attached = 1; 622 } 623 624 /* 625 * then, make the prefix on-link on the interface. 626 * XXX: we'd rather create the prefix before the address, but 627 * we need at least one address to install the corresponding 628 * interface route, so we configure the address first. 629 */ 630 631 /* 632 * convert mask to prefix length (prefixmask has already 633 * been validated in in6_update_ifa(). 634 */ 635 bzero(&pr0, sizeof(pr0)); 636 pr0.ndpr_ifp = ifp; 637 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 638 NULL); 639 if (pr0.ndpr_plen == 128) { 640 /* we don't need to install a host route. */ 641 goto aifaddr_out; 642 } 643 pr0.ndpr_prefix = ifra->ifra_addr; 644 /* apply the mask for safety. */ 645 IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, 646 &ifra->ifra_prefixmask.sin6_addr); 647 648 /* 649 * XXX: since we don't have an API to set prefix (not address) 650 * lifetimes, we just use the same lifetimes as addresses. 651 * The (temporarily) installed lifetimes can be overridden by 652 * later advertised RAs (when accept_rtadv is non 0), which is 653 * an intended behavior. 654 */ 655 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 656 pr0.ndpr_raf_auto = 657 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 658 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 659 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 660 661 /* add the prefix if not yet. */ 662 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 663 /* 664 * nd6_prelist_add will install the corresponding 665 * interface route. 666 */ 667 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 668 if (carp_attached) 669 (*carp_detach_p)(&ia->ia_ifa); 670 goto out; 671 } 672 if (pr == NULL) { 673 if (carp_attached) 674 (*carp_detach_p)(&ia->ia_ifa); 675 log(LOG_ERR, "nd6_prelist_add succeeded but " 676 "no prefix\n"); 677 error = EINVAL; 678 goto out; 679 } 680 } 681 682 /* relate the address to the prefix */ 683 if (ia->ia6_ndpr == NULL) { 684 ia->ia6_ndpr = pr; 685 pr->ndpr_refcnt++; 686 687 /* 688 * If this is the first autoconf address from the 689 * prefix, create a temporary address as well 690 * (when required). 691 */ 692 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 693 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 694 int e; 695 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 696 log(LOG_NOTICE, "in6_control: failed " 697 "to create a temporary address, " 698 "errno=%d\n", e); 699 } 700 } 701 } 702 703 /* 704 * this might affect the status of autoconfigured addresses, 705 * that is, this address might make other addresses detached. 706 */ 707 pfxlist_onlink_check(); 708 aifaddr_out: 709 if (error != 0 || ia == NULL) 710 break; 711 /* 712 * Try to clear the flag when a new IPv6 address is added 713 * onto an IFDISABLED interface and it succeeds. 714 */ 715 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 716 struct in6_ndireq nd; 717 718 memset(&nd, 0, sizeof(nd)); 719 nd.ndi.flags = ND_IFINFO(ifp)->flags; 720 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 721 if (nd6_ioctl(SIOCSIFINFO_FLAGS, (caddr_t)&nd, ifp) < 0) 722 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 723 "SIOCSIFINFO_FLAGS for -ifdisabled " 724 "failed."); 725 /* 726 * Ignore failure of clearing the flag intentionally. 727 * The failure means address duplication was detected. 728 */ 729 } 730 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 731 break; 732 } 733 734 case SIOCDIFADDR_IN6: 735 { 736 struct nd_prefix *pr; 737 738 /* 739 * If the address being deleted is the only one that owns 740 * the corresponding prefix, expire the prefix as well. 741 * XXX: theoretically, we don't have to worry about such 742 * relationship, since we separate the address management 743 * and the prefix management. We do this, however, to provide 744 * as much backward compatibility as possible in terms of 745 * the ioctl operation. 746 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 747 */ 748 pr = ia->ia6_ndpr; 749 in6_purgeaddr(&ia->ia_ifa); 750 if (pr && pr->ndpr_refcnt == 0) 751 prelist_remove(pr); 752 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 753 break; 754 } 755 756 default: 757 if (ifp->if_ioctl == NULL) { 758 error = EOPNOTSUPP; 759 goto out; 760 } 761 error = (*ifp->if_ioctl)(ifp, cmd, data); 762 goto out; 763 } 764 765 error = 0; 766 out: 767 if (ia != NULL) 768 ifa_free(&ia->ia_ifa); 769 return (error); 770 } 771 772 773 /* 774 * Join necessary multicast groups. Factored out from in6_update_ifa(). 775 * This entire work should only be done once, for the default FIB. 776 */ 777 static int 778 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 779 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 780 { 781 char ip6buf[INET6_ADDRSTRLEN]; 782 struct in6_addr mltaddr; 783 struct in6_multi_mship *imm; 784 int delay, error; 785 786 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 787 788 /* Join solicited multicast addr for new host id. */ 789 bzero(&mltaddr, sizeof(struct in6_addr)); 790 mltaddr.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 791 mltaddr.s6_addr32[2] = htonl(1); 792 mltaddr.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 793 mltaddr.s6_addr8[12] = 0xff; 794 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) { 795 /* XXX: should not happen */ 796 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 797 goto cleanup; 798 } 799 delay = error = 0; 800 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 801 /* 802 * We need a random delay for DAD on the address being 803 * configured. It also means delaying transmission of the 804 * corresponding MLD report to avoid report collision. 805 * [RFC 4861, Section 6.3.7] 806 */ 807 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 808 } 809 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 810 if (imm == NULL) { 811 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 812 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 813 if_name(ifp), error)); 814 goto cleanup; 815 } 816 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 817 *in6m_sol = imm->i6mm_maddr; 818 819 /* 820 * Join link-local all-nodes address. 821 */ 822 mltaddr = in6addr_linklocal_allnodes; 823 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 824 goto cleanup; /* XXX: should not fail */ 825 826 imm = in6_joingroup(ifp, &mltaddr, &error, 0); 827 if (imm == NULL) { 828 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 829 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 830 if_name(ifp), error)); 831 goto cleanup; 832 } 833 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 834 835 /* 836 * Join node information group address. 837 */ 838 delay = 0; 839 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 840 /* 841 * The spec does not say anything about delay for this group, 842 * but the same logic should apply. 843 */ 844 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 845 } 846 if (in6_nigroup(ifp, NULL, -1, &mltaddr) == 0) { 847 /* XXX jinmei */ 848 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 849 if (imm == NULL) 850 nd6log((LOG_WARNING, 851 "%s: in6_joingroup failed for %s on %s " 852 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 853 &mltaddr), if_name(ifp), error)); 854 /* XXX not very fatal, go on... */ 855 else 856 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 857 } 858 if (V_icmp6_nodeinfo_oldmcprefix && 859 in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr) == 0) { 860 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 861 if (imm == NULL) 862 nd6log((LOG_WARNING, 863 "%s: in6_joingroup failed for %s on %s " 864 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 865 &mltaddr), if_name(ifp), error)); 866 /* XXX not very fatal, go on... */ 867 else 868 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 869 } 870 871 /* 872 * Join interface-local all-nodes address. 873 * (ff01::1%ifN, and ff01::%ifN/32) 874 */ 875 mltaddr = in6addr_nodelocal_allnodes; 876 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 877 goto cleanup; /* XXX: should not fail */ 878 879 imm = in6_joingroup(ifp, &mltaddr, &error, 0); 880 if (imm == NULL) { 881 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 882 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 883 &mltaddr), if_name(ifp), error)); 884 goto cleanup; 885 } 886 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 887 888 cleanup: 889 return (error); 890 } 891 892 /* 893 * Update parameters of an IPv6 interface address. 894 * If necessary, a new entry is created and linked into address chains. 895 * This function is separated from in6_control(). 896 */ 897 int 898 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 899 struct in6_ifaddr *ia, int flags) 900 { 901 int error, hostIsNew = 0; 902 903 if ((error = in6_validate_ifra(ifp, ifra, ia, flags)) != 0) 904 return (error); 905 906 if (ia == NULL) { 907 hostIsNew = 1; 908 if ((ia = in6_alloc_ifa(ifp, ifra, flags)) == NULL) 909 return (ENOBUFS); 910 } 911 912 error = in6_update_ifa_internal(ifp, ifra, ia, hostIsNew, flags); 913 if (error != 0) { 914 if (hostIsNew != 0) { 915 in6_unlink_ifa(ia, ifp); 916 ifa_free(&ia->ia_ifa); 917 } 918 return (error); 919 } 920 921 if (hostIsNew) 922 error = in6_broadcast_ifa(ifp, ifra, ia, flags); 923 924 return (error); 925 } 926 927 /* 928 * Fill in basic IPv6 address request info. 929 */ 930 void 931 in6_prepare_ifra(struct in6_aliasreq *ifra, const struct in6_addr *addr, 932 const struct in6_addr *mask) 933 { 934 935 memset(ifra, 0, sizeof(struct in6_aliasreq)); 936 937 ifra->ifra_addr.sin6_family = AF_INET6; 938 ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); 939 if (addr != NULL) 940 ifra->ifra_addr.sin6_addr = *addr; 941 942 ifra->ifra_prefixmask.sin6_family = AF_INET6; 943 ifra->ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 944 if (mask != NULL) 945 ifra->ifra_prefixmask.sin6_addr = *mask; 946 } 947 948 static int 949 in6_validate_ifra(struct ifnet *ifp, struct in6_aliasreq *ifra, 950 struct in6_ifaddr *ia, int flags) 951 { 952 int plen = -1; 953 struct sockaddr_in6 dst6; 954 struct in6_addrlifetime *lt; 955 char ip6buf[INET6_ADDRSTRLEN]; 956 957 /* Validate parameters */ 958 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 959 return (EINVAL); 960 961 /* 962 * The destination address for a p2p link must have a family 963 * of AF_UNSPEC or AF_INET6. 964 */ 965 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 966 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 967 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 968 return (EAFNOSUPPORT); 969 970 /* 971 * Validate address 972 */ 973 if (ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6) || 974 ifra->ifra_addr.sin6_family != AF_INET6) 975 return (EINVAL); 976 977 /* 978 * validate ifra_prefixmask. don't check sin6_family, netmask 979 * does not carry fields other than sin6_len. 980 */ 981 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 982 return (EINVAL); 983 /* 984 * Because the IPv6 address architecture is classless, we require 985 * users to specify a (non 0) prefix length (mask) for a new address. 986 * We also require the prefix (when specified) mask is valid, and thus 987 * reject a non-consecutive mask. 988 */ 989 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 990 return (EINVAL); 991 if (ifra->ifra_prefixmask.sin6_len != 0) { 992 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 993 (u_char *)&ifra->ifra_prefixmask + 994 ifra->ifra_prefixmask.sin6_len); 995 if (plen <= 0) 996 return (EINVAL); 997 } else { 998 /* 999 * In this case, ia must not be NULL. We just use its prefix 1000 * length. 1001 */ 1002 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1003 } 1004 /* 1005 * If the destination address on a p2p interface is specified, 1006 * and the address is a scoped one, validate/set the scope 1007 * zone identifier. 1008 */ 1009 dst6 = ifra->ifra_dstaddr; 1010 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 1011 (dst6.sin6_family == AF_INET6)) { 1012 struct in6_addr in6_tmp; 1013 u_int32_t zoneid; 1014 1015 in6_tmp = dst6.sin6_addr; 1016 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 1017 return (EINVAL); /* XXX: should be impossible */ 1018 1019 if (dst6.sin6_scope_id != 0) { 1020 if (dst6.sin6_scope_id != zoneid) 1021 return (EINVAL); 1022 } else /* user omit to specify the ID. */ 1023 dst6.sin6_scope_id = zoneid; 1024 1025 /* convert into the internal form */ 1026 if (sa6_embedscope(&dst6, 0)) 1027 return (EINVAL); /* XXX: should be impossible */ 1028 } 1029 /* Modify original ifra_dstaddr to reflect changes */ 1030 ifra->ifra_dstaddr = dst6; 1031 1032 /* 1033 * The destination address can be specified only for a p2p or a 1034 * loopback interface. If specified, the corresponding prefix length 1035 * must be 128. 1036 */ 1037 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 1038 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 1039 /* XXX: noisy message */ 1040 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 1041 "be specified for a p2p or a loopback IF only\n")); 1042 return (EINVAL); 1043 } 1044 if (plen != 128) { 1045 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1046 "be 128 when dstaddr is specified\n")); 1047 return (EINVAL); 1048 } 1049 } 1050 /* lifetime consistency check */ 1051 lt = &ifra->ifra_lifetime; 1052 if (lt->ia6t_pltime > lt->ia6t_vltime) 1053 return (EINVAL); 1054 if (lt->ia6t_vltime == 0) { 1055 /* 1056 * the following log might be noisy, but this is a typical 1057 * configuration mistake or a tool's bug. 1058 */ 1059 nd6log((LOG_INFO, 1060 "in6_update_ifa: valid lifetime is 0 for %s\n", 1061 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1062 1063 if (ia == NULL) 1064 return (0); /* there's nothing to do */ 1065 } 1066 1067 /* Check prefix mask */ 1068 if (ia != NULL && ifra->ifra_prefixmask.sin6_len != 0) { 1069 /* 1070 * We prohibit changing the prefix length of an existing 1071 * address, because 1072 * + such an operation should be rare in IPv6, and 1073 * + the operation would confuse prefix management. 1074 */ 1075 if (ia->ia_prefixmask.sin6_len != 0 && 1076 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1077 nd6log((LOG_INFO, "in6_validate_ifa: the prefix length " 1078 "of an existing %s address should not be changed\n", 1079 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1080 1081 return (EINVAL); 1082 } 1083 } 1084 1085 return (0); 1086 } 1087 1088 1089 /* 1090 * Allocate a new ifaddr and link it into chains. 1091 */ 1092 static struct in6_ifaddr * 1093 in6_alloc_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int flags) 1094 { 1095 struct in6_ifaddr *ia; 1096 1097 /* 1098 * When in6_alloc_ifa() is called in a process of a received 1099 * RA, it is called under an interrupt context. So, we should 1100 * call malloc with M_NOWAIT. 1101 */ 1102 ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); 1103 if (ia == NULL) 1104 return (NULL); 1105 LIST_INIT(&ia->ia6_memberships); 1106 /* Initialize the address and masks, and put time stamp */ 1107 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1108 ia->ia_addr.sin6_family = AF_INET6; 1109 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1110 /* XXX: Can we assign ,sin6_addr and skip the rest? */ 1111 ia->ia_addr = ifra->ifra_addr; 1112 ia->ia6_createtime = time_uptime; 1113 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1114 /* 1115 * Some functions expect that ifa_dstaddr is not 1116 * NULL for p2p interfaces. 1117 */ 1118 ia->ia_ifa.ifa_dstaddr = 1119 (struct sockaddr *)&ia->ia_dstaddr; 1120 } else { 1121 ia->ia_ifa.ifa_dstaddr = NULL; 1122 } 1123 1124 /* set prefix mask if any */ 1125 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1126 if (ifra->ifra_prefixmask.sin6_len != 0) { 1127 ia->ia_prefixmask.sin6_family = AF_INET6; 1128 ia->ia_prefixmask.sin6_len = ifra->ifra_prefixmask.sin6_len; 1129 ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; 1130 } 1131 1132 ia->ia_ifp = ifp; 1133 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1134 IF_ADDR_WLOCK(ifp); 1135 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1136 IF_ADDR_WUNLOCK(ifp); 1137 1138 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1139 IN6_IFADDR_WLOCK(); 1140 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1141 LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); 1142 IN6_IFADDR_WUNLOCK(); 1143 1144 return (ia); 1145 } 1146 1147 /* 1148 * Update/configure interface address parameters: 1149 * 1150 * 1) Update lifetime 1151 * 2) Update interface metric ad flags 1152 * 3) Notify other subsystems 1153 */ 1154 static int 1155 in6_update_ifa_internal(struct ifnet *ifp, struct in6_aliasreq *ifra, 1156 struct in6_ifaddr *ia, int hostIsNew, int flags) 1157 { 1158 int error; 1159 1160 /* update timestamp */ 1161 ia->ia6_updatetime = time_uptime; 1162 1163 /* 1164 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1165 * to see if the address is deprecated or invalidated, but initialize 1166 * these members for applications. 1167 */ 1168 ia->ia6_lifetime = ifra->ifra_lifetime; 1169 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1170 ia->ia6_lifetime.ia6t_expire = 1171 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1172 } else 1173 ia->ia6_lifetime.ia6t_expire = 0; 1174 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1175 ia->ia6_lifetime.ia6t_preferred = 1176 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1177 } else 1178 ia->ia6_lifetime.ia6t_preferred = 0; 1179 1180 /* 1181 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1182 * userland, make it deprecated. 1183 */ 1184 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1185 ia->ia6_lifetime.ia6t_pltime = 0; 1186 ia->ia6_lifetime.ia6t_preferred = time_uptime; 1187 } 1188 1189 /* 1190 * configure address flags. 1191 */ 1192 ia->ia6_flags = ifra->ifra_flags; 1193 1194 /* 1195 * Make the address tentative before joining multicast addresses, 1196 * so that corresponding MLD responses would not have a tentative 1197 * source address. 1198 */ 1199 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1200 1201 /* 1202 * DAD should be performed for an new address or addresses on 1203 * an interface with ND6_IFF_IFDISABLED. 1204 */ 1205 if (in6if_do_dad(ifp) && 1206 (hostIsNew || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED))) 1207 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1208 1209 /* notify other subsystems */ 1210 error = in6_notify_ifa(ifp, ia, ifra, hostIsNew); 1211 1212 return (error); 1213 } 1214 1215 /* 1216 * Do link-level ifa job: 1217 * 1) Add lle entry for added address 1218 * 2) Notifies routing socket users about new address 1219 * 3) join appropriate multicast group 1220 * 4) start DAD if enabled 1221 */ 1222 static int 1223 in6_broadcast_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1224 struct in6_ifaddr *ia, int flags) 1225 { 1226 struct in6_multi *in6m_sol; 1227 int error = 0; 1228 1229 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1230 if ((error = nd6_add_ifa_lle(ia)) != 0) { 1231 in6_purgeaddr(&ia->ia_ifa); 1232 ifa_free(&ia->ia_ifa); 1233 return (error); 1234 } 1235 1236 /* Join necessary multicast groups. */ 1237 in6m_sol = NULL; 1238 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1239 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1240 if (error != 0) { 1241 in6_purgeaddr(&ia->ia_ifa); 1242 ifa_free(&ia->ia_ifa); 1243 return (error); 1244 } 1245 } 1246 1247 /* Perform DAD, if the address is TENTATIVE. */ 1248 if ((ia->ia6_flags & IN6_IFF_TENTATIVE)) { 1249 int delay, mindelay, maxdelay; 1250 1251 delay = 0; 1252 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1253 /* 1254 * We need to impose a delay before sending an NS 1255 * for DAD. Check if we also needed a delay for the 1256 * corresponding MLD message. If we did, the delay 1257 * should be larger than the MLD delay (this could be 1258 * relaxed a bit, but this simple logic is at least 1259 * safe). 1260 * XXX: Break data hiding guidelines and look at 1261 * state for the solicited multicast group. 1262 */ 1263 mindelay = 0; 1264 if (in6m_sol != NULL && 1265 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1266 mindelay = in6m_sol->in6m_timer; 1267 } 1268 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1269 if (maxdelay - mindelay == 0) 1270 delay = 0; 1271 else { 1272 delay = 1273 (arc4random() % (maxdelay - mindelay)) + 1274 mindelay; 1275 } 1276 } 1277 nd6_dad_start((struct ifaddr *)ia, delay); 1278 } 1279 1280 in6_newaddrmsg(ia, RTM_ADD); 1281 ifa_free(&ia->ia_ifa); 1282 return (error); 1283 } 1284 1285 void 1286 in6_purgeaddr(struct ifaddr *ifa) 1287 { 1288 struct ifnet *ifp = ifa->ifa_ifp; 1289 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1290 struct in6_multi_mship *imm; 1291 int plen, error; 1292 1293 if (ifa->ifa_carp) 1294 (*carp_detach_p)(ifa); 1295 1296 /* 1297 * Remove the loopback route to the interface address. 1298 * The check for the current setting of "nd6_useloopback" 1299 * is not needed. 1300 */ 1301 if (ia->ia_flags & IFA_RTSELF) { 1302 error = ifa_del_loopback_route((struct ifaddr *)ia, 1303 (struct sockaddr *)&ia->ia_addr); 1304 if (error == 0) 1305 ia->ia_flags &= ~IFA_RTSELF; 1306 } 1307 1308 /* stop DAD processing */ 1309 nd6_dad_stop(ifa); 1310 1311 /* Leave multicast groups. */ 1312 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1313 LIST_REMOVE(imm, i6mm_chain); 1314 in6_leavegroup(imm); 1315 } 1316 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1317 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1318 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1319 (ia->ia_dstaddr.sin6_family == AF_INET6 ? RTF_HOST : 0)); 1320 if (error != 0) 1321 log(LOG_INFO, "%s: err=%d, destination address delete " 1322 "failed\n", __func__, error); 1323 ia->ia_flags &= ~IFA_ROUTE; 1324 } 1325 1326 in6_newaddrmsg(ia, RTM_DELETE); 1327 in6_unlink_ifa(ia, ifp); 1328 } 1329 1330 static void 1331 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1332 { 1333 char ip6buf[INET6_ADDRSTRLEN]; 1334 int remove_lle; 1335 1336 IF_ADDR_WLOCK(ifp); 1337 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1338 IF_ADDR_WUNLOCK(ifp); 1339 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1340 1341 /* 1342 * Defer the release of what might be the last reference to the 1343 * in6_ifaddr so that it can't be freed before the remainder of the 1344 * cleanup. 1345 */ 1346 IN6_IFADDR_WLOCK(); 1347 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link); 1348 LIST_REMOVE(ia, ia6_hash); 1349 IN6_IFADDR_WUNLOCK(); 1350 1351 /* 1352 * Release the reference to the base prefix. There should be a 1353 * positive reference. 1354 */ 1355 remove_lle = 0; 1356 if (ia->ia6_ndpr == NULL) { 1357 nd6log((LOG_NOTICE, 1358 "in6_unlink_ifa: autoconf'ed address " 1359 "%s has no prefix\n", ip6_sprintf(ip6buf, IA6_IN6(ia)))); 1360 } else { 1361 ia->ia6_ndpr->ndpr_refcnt--; 1362 /* Do not delete lles within prefix if refcont != 0 */ 1363 if (ia->ia6_ndpr->ndpr_refcnt == 0) 1364 remove_lle = 1; 1365 ia->ia6_ndpr = NULL; 1366 } 1367 1368 nd6_rem_ifa_lle(ia, remove_lle); 1369 1370 /* 1371 * Also, if the address being removed is autoconf'ed, call 1372 * pfxlist_onlink_check() since the release might affect the status of 1373 * other (detached) addresses. 1374 */ 1375 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1376 pfxlist_onlink_check(); 1377 } 1378 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1379 } 1380 1381 /* 1382 * Notifies other subsystems about address change/arrival: 1383 * 1) Notifies device handler on the first IPv6 address assignment 1384 * 2) Handle routing table changes for P2P links and route 1385 * 3) Handle routing table changes for address host route 1386 */ 1387 static int 1388 in6_notify_ifa(struct ifnet *ifp, struct in6_ifaddr *ia, 1389 struct in6_aliasreq *ifra, int hostIsNew) 1390 { 1391 int error = 0, plen, ifacount = 0; 1392 struct ifaddr *ifa; 1393 struct sockaddr_in6 *pdst; 1394 char ip6buf[INET6_ADDRSTRLEN]; 1395 1396 /* 1397 * Give the interface a chance to initialize 1398 * if this is its first address, 1399 */ 1400 if (hostIsNew != 0) { 1401 IF_ADDR_RLOCK(ifp); 1402 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1403 if (ifa->ifa_addr->sa_family != AF_INET6) 1404 continue; 1405 ifacount++; 1406 } 1407 IF_ADDR_RUNLOCK(ifp); 1408 } 1409 1410 if (ifacount <= 1 && ifp->if_ioctl) { 1411 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1412 if (error) 1413 return (error); 1414 } 1415 1416 /* 1417 * If a new destination address is specified, scrub the old one and 1418 * install the new destination. Note that the interface must be 1419 * p2p or loopback. 1420 */ 1421 pdst = &ifra->ifra_dstaddr; 1422 if (pdst->sin6_family == AF_INET6 && 1423 !IN6_ARE_ADDR_EQUAL(&pdst->sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1424 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1425 (rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0)) { 1426 nd6log((LOG_ERR, "in6_update_ifa_internal: failed to " 1427 "remove a route to the old destination: %s\n", 1428 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1429 /* proceed anyway... */ 1430 } else 1431 ia->ia_flags &= ~IFA_ROUTE; 1432 ia->ia_dstaddr = *pdst; 1433 } 1434 1435 /* 1436 * If a new destination address is specified for a point-to-point 1437 * interface, install a route to the destination as an interface 1438 * direct route. 1439 * XXX: the logic below rejects assigning multiple addresses on a p2p 1440 * interface that share the same destination. 1441 */ 1442 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1443 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1444 ia->ia_dstaddr.sin6_family == AF_INET6) { 1445 int rtflags = RTF_UP | RTF_HOST; 1446 /* 1447 * Handle the case for ::1 . 1448 */ 1449 if (ifp->if_flags & IFF_LOOPBACK) 1450 ia->ia_flags |= IFA_RTSELF; 1451 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1452 if (error) 1453 return (error); 1454 ia->ia_flags |= IFA_ROUTE; 1455 } 1456 1457 /* 1458 * add a loopback route to self if not exists 1459 */ 1460 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1461 error = ifa_add_loopback_route((struct ifaddr *)ia, 1462 (struct sockaddr *)&ia->ia_addr); 1463 if (error == 0) 1464 ia->ia_flags |= IFA_RTSELF; 1465 } 1466 1467 return (error); 1468 } 1469 1470 /* 1471 * Find an IPv6 interface link-local address specific to an interface. 1472 * ifaddr is returned referenced. 1473 */ 1474 struct in6_ifaddr * 1475 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1476 { 1477 struct ifaddr *ifa; 1478 1479 IF_ADDR_RLOCK(ifp); 1480 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1481 if (ifa->ifa_addr->sa_family != AF_INET6) 1482 continue; 1483 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1484 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1485 ignoreflags) != 0) 1486 continue; 1487 ifa_ref(ifa); 1488 break; 1489 } 1490 } 1491 IF_ADDR_RUNLOCK(ifp); 1492 1493 return ((struct in6_ifaddr *)ifa); 1494 } 1495 1496 1497 /* 1498 * find the internet address corresponding to a given address. 1499 * ifaddr is returned referenced. 1500 */ 1501 struct in6_ifaddr * 1502 in6ifa_ifwithaddr(const struct in6_addr *addr, uint32_t zoneid) 1503 { 1504 struct rm_priotracker in6_ifa_tracker; 1505 struct in6_ifaddr *ia; 1506 1507 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1508 LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { 1509 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), addr)) { 1510 if (zoneid != 0 && 1511 zoneid != ia->ia_addr.sin6_scope_id) 1512 continue; 1513 ifa_ref(&ia->ia_ifa); 1514 break; 1515 } 1516 } 1517 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1518 return (ia); 1519 } 1520 1521 /* 1522 * find the internet address corresponding to a given interface and address. 1523 * ifaddr is returned referenced. 1524 */ 1525 struct in6_ifaddr * 1526 in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr) 1527 { 1528 struct ifaddr *ifa; 1529 1530 IF_ADDR_RLOCK(ifp); 1531 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1532 if (ifa->ifa_addr->sa_family != AF_INET6) 1533 continue; 1534 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1535 ifa_ref(ifa); 1536 break; 1537 } 1538 } 1539 IF_ADDR_RUNLOCK(ifp); 1540 1541 return ((struct in6_ifaddr *)ifa); 1542 } 1543 1544 /* 1545 * Find a link-local scoped address on ifp and return it if any. 1546 */ 1547 struct in6_ifaddr * 1548 in6ifa_llaonifp(struct ifnet *ifp) 1549 { 1550 struct sockaddr_in6 *sin6; 1551 struct ifaddr *ifa; 1552 1553 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1554 return (NULL); 1555 IF_ADDR_RLOCK(ifp); 1556 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1557 if (ifa->ifa_addr->sa_family != AF_INET6) 1558 continue; 1559 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 1560 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1561 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1562 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1563 break; 1564 } 1565 IF_ADDR_RUNLOCK(ifp); 1566 1567 return ((struct in6_ifaddr *)ifa); 1568 } 1569 1570 /* 1571 * Convert IP6 address to printable (loggable) representation. Caller 1572 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1573 */ 1574 static char digits[] = "0123456789abcdef"; 1575 char * 1576 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1577 { 1578 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1579 char *cp; 1580 const u_int16_t *a = (const u_int16_t *)addr; 1581 const u_int8_t *d; 1582 int dcolon = 0, zero = 0; 1583 1584 cp = ip6buf; 1585 1586 for (i = 0; i < 8; i++) { 1587 if (*(a + i) == 0) { 1588 cnt++; 1589 if (cnt == 1) 1590 idx = i; 1591 } 1592 else if (maxcnt < cnt) { 1593 maxcnt = cnt; 1594 index = idx; 1595 cnt = 0; 1596 } 1597 } 1598 if (maxcnt < cnt) { 1599 maxcnt = cnt; 1600 index = idx; 1601 } 1602 1603 for (i = 0; i < 8; i++) { 1604 if (dcolon == 1) { 1605 if (*a == 0) { 1606 if (i == 7) 1607 *cp++ = ':'; 1608 a++; 1609 continue; 1610 } else 1611 dcolon = 2; 1612 } 1613 if (*a == 0) { 1614 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 1615 if (i == 0) 1616 *cp++ = ':'; 1617 *cp++ = ':'; 1618 dcolon = 1; 1619 } else { 1620 *cp++ = '0'; 1621 *cp++ = ':'; 1622 } 1623 a++; 1624 continue; 1625 } 1626 d = (const u_char *)a; 1627 /* Try to eliminate leading zeros in printout like in :0001. */ 1628 zero = 1; 1629 *cp = digits[*d >> 4]; 1630 if (*cp != '0') { 1631 zero = 0; 1632 cp++; 1633 } 1634 *cp = digits[*d++ & 0xf]; 1635 if (zero == 0 || (*cp != '0')) { 1636 zero = 0; 1637 cp++; 1638 } 1639 *cp = digits[*d >> 4]; 1640 if (zero == 0 || (*cp != '0')) { 1641 zero = 0; 1642 cp++; 1643 } 1644 *cp++ = digits[*d & 0xf]; 1645 *cp++ = ':'; 1646 a++; 1647 } 1648 *--cp = '\0'; 1649 return (ip6buf); 1650 } 1651 1652 int 1653 in6_localaddr(struct in6_addr *in6) 1654 { 1655 struct rm_priotracker in6_ifa_tracker; 1656 struct in6_ifaddr *ia; 1657 1658 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1659 return 1; 1660 1661 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1662 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1663 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1664 &ia->ia_prefixmask.sin6_addr)) { 1665 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1666 return 1; 1667 } 1668 } 1669 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1670 1671 return (0); 1672 } 1673 1674 /* 1675 * Return 1 if an internet address is for the local host and configured 1676 * on one of its interfaces. 1677 */ 1678 int 1679 in6_localip(struct in6_addr *in6) 1680 { 1681 struct rm_priotracker in6_ifa_tracker; 1682 struct in6_ifaddr *ia; 1683 1684 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1685 LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { 1686 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 1687 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1688 return (1); 1689 } 1690 } 1691 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1692 return (0); 1693 } 1694 1695 /* 1696 * Return 1 if an internet address is configured on an interface. 1697 */ 1698 int 1699 in6_ifhasaddr(struct ifnet *ifp, struct in6_addr *addr) 1700 { 1701 struct in6_addr in6; 1702 struct ifaddr *ifa; 1703 struct in6_ifaddr *ia6; 1704 1705 in6 = *addr; 1706 if (in6_clearscope(&in6)) 1707 return (0); 1708 in6_setscope(&in6, ifp, NULL); 1709 1710 IF_ADDR_RLOCK(ifp); 1711 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1712 if (ifa->ifa_addr->sa_family != AF_INET6) 1713 continue; 1714 ia6 = (struct in6_ifaddr *)ifa; 1715 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &in6)) { 1716 IF_ADDR_RUNLOCK(ifp); 1717 return (1); 1718 } 1719 } 1720 IF_ADDR_RUNLOCK(ifp); 1721 1722 return (0); 1723 } 1724 1725 int 1726 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1727 { 1728 struct rm_priotracker in6_ifa_tracker; 1729 struct in6_ifaddr *ia; 1730 1731 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1732 LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { 1733 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { 1734 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 1735 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1736 return (1); /* true */ 1737 } 1738 break; 1739 } 1740 } 1741 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1742 1743 return (0); /* false */ 1744 } 1745 1746 /* 1747 * return length of part which dst and src are equal 1748 * hard coding... 1749 */ 1750 int 1751 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1752 { 1753 int match = 0; 1754 u_char *s = (u_char *)src, *d = (u_char *)dst; 1755 u_char *lim = s + 16, r; 1756 1757 while (s < lim) 1758 if ((r = (*d++ ^ *s++)) != 0) { 1759 while (r < 128) { 1760 match++; 1761 r <<= 1; 1762 } 1763 break; 1764 } else 1765 match += 8; 1766 return match; 1767 } 1768 1769 /* XXX: to be scope conscious */ 1770 int 1771 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1772 { 1773 int bytelen, bitlen; 1774 1775 /* sanity check */ 1776 if (0 > len || len > 128) { 1777 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1778 len); 1779 return (0); 1780 } 1781 1782 bytelen = len / 8; 1783 bitlen = len % 8; 1784 1785 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1786 return (0); 1787 if (bitlen != 0 && 1788 p1->s6_addr[bytelen] >> (8 - bitlen) != 1789 p2->s6_addr[bytelen] >> (8 - bitlen)) 1790 return (0); 1791 1792 return (1); 1793 } 1794 1795 void 1796 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1797 { 1798 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1799 int bytelen, bitlen, i; 1800 1801 /* sanity check */ 1802 if (0 > len || len > 128) { 1803 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1804 len); 1805 return; 1806 } 1807 1808 bzero(maskp, sizeof(*maskp)); 1809 bytelen = len / 8; 1810 bitlen = len % 8; 1811 for (i = 0; i < bytelen; i++) 1812 maskp->s6_addr[i] = 0xff; 1813 if (bitlen) 1814 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1815 } 1816 1817 /* 1818 * return the best address out of the same scope. if no address was 1819 * found, return the first valid address from designated IF. 1820 */ 1821 struct in6_ifaddr * 1822 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1823 { 1824 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1825 struct ifaddr *ifa; 1826 struct in6_ifaddr *besta = NULL; 1827 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1828 1829 dep[0] = dep[1] = NULL; 1830 1831 /* 1832 * We first look for addresses in the same scope. 1833 * If there is one, return it. 1834 * If two or more, return one which matches the dst longest. 1835 * If none, return one of global addresses assigned other ifs. 1836 */ 1837 IF_ADDR_RLOCK(ifp); 1838 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1839 if (ifa->ifa_addr->sa_family != AF_INET6) 1840 continue; 1841 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1842 continue; /* XXX: is there any case to allow anycast? */ 1843 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1844 continue; /* don't use this interface */ 1845 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1846 continue; 1847 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1848 if (V_ip6_use_deprecated) 1849 dep[0] = (struct in6_ifaddr *)ifa; 1850 continue; 1851 } 1852 1853 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1854 /* 1855 * call in6_matchlen() as few as possible 1856 */ 1857 if (besta) { 1858 if (blen == -1) 1859 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1860 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1861 if (tlen > blen) { 1862 blen = tlen; 1863 besta = (struct in6_ifaddr *)ifa; 1864 } 1865 } else 1866 besta = (struct in6_ifaddr *)ifa; 1867 } 1868 } 1869 if (besta) { 1870 ifa_ref(&besta->ia_ifa); 1871 IF_ADDR_RUNLOCK(ifp); 1872 return (besta); 1873 } 1874 1875 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1876 if (ifa->ifa_addr->sa_family != AF_INET6) 1877 continue; 1878 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1879 continue; /* XXX: is there any case to allow anycast? */ 1880 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1881 continue; /* don't use this interface */ 1882 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1883 continue; 1884 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1885 if (V_ip6_use_deprecated) 1886 dep[1] = (struct in6_ifaddr *)ifa; 1887 continue; 1888 } 1889 1890 if (ifa != NULL) 1891 ifa_ref(ifa); 1892 IF_ADDR_RUNLOCK(ifp); 1893 return (struct in6_ifaddr *)ifa; 1894 } 1895 1896 /* use the last-resort values, that are, deprecated addresses */ 1897 if (dep[0]) { 1898 ifa_ref((struct ifaddr *)dep[0]); 1899 IF_ADDR_RUNLOCK(ifp); 1900 return dep[0]; 1901 } 1902 if (dep[1]) { 1903 ifa_ref((struct ifaddr *)dep[1]); 1904 IF_ADDR_RUNLOCK(ifp); 1905 return dep[1]; 1906 } 1907 1908 IF_ADDR_RUNLOCK(ifp); 1909 return NULL; 1910 } 1911 1912 /* 1913 * perform DAD when interface becomes IFF_UP. 1914 */ 1915 void 1916 in6_if_up(struct ifnet *ifp) 1917 { 1918 struct ifaddr *ifa; 1919 struct in6_ifaddr *ia; 1920 1921 IF_ADDR_RLOCK(ifp); 1922 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1923 if (ifa->ifa_addr->sa_family != AF_INET6) 1924 continue; 1925 ia = (struct in6_ifaddr *)ifa; 1926 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 1927 /* 1928 * The TENTATIVE flag was likely set by hand 1929 * beforehand, implicitly indicating the need for DAD. 1930 * We may be able to skip the random delay in this 1931 * case, but we impose delays just in case. 1932 */ 1933 nd6_dad_start(ifa, 1934 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 1935 } 1936 } 1937 IF_ADDR_RUNLOCK(ifp); 1938 1939 /* 1940 * special cases, like 6to4, are handled in in6_ifattach 1941 */ 1942 in6_ifattach(ifp, NULL); 1943 } 1944 1945 int 1946 in6if_do_dad(struct ifnet *ifp) 1947 { 1948 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1949 return (0); 1950 1951 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) || 1952 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD)) 1953 return (0); 1954 1955 /* 1956 * Our DAD routine requires the interface up and running. 1957 * However, some interfaces can be up before the RUNNING 1958 * status. Additionaly, users may try to assign addresses 1959 * before the interface becomes up (or running). 1960 * This function returns EAGAIN in that case. 1961 * The caller should mark "tentative" on the address instead of 1962 * performing DAD immediately. 1963 */ 1964 if (!((ifp->if_flags & IFF_UP) && 1965 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 1966 return (EAGAIN); 1967 1968 return (1); 1969 } 1970 1971 /* 1972 * Calculate max IPv6 MTU through all the interfaces and store it 1973 * to in6_maxmtu. 1974 */ 1975 void 1976 in6_setmaxmtu(void) 1977 { 1978 unsigned long maxmtu = 0; 1979 struct ifnet *ifp; 1980 1981 IFNET_RLOCK_NOSLEEP(); 1982 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1983 /* this function can be called during ifnet initialization */ 1984 if (!ifp->if_afdata[AF_INET6]) 1985 continue; 1986 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 1987 IN6_LINKMTU(ifp) > maxmtu) 1988 maxmtu = IN6_LINKMTU(ifp); 1989 } 1990 IFNET_RUNLOCK_NOSLEEP(); 1991 if (maxmtu) /* update only when maxmtu is positive */ 1992 V_in6_maxmtu = maxmtu; 1993 } 1994 1995 /* 1996 * Provide the length of interface identifiers to be used for the link attached 1997 * to the given interface. The length should be defined in "IPv6 over 1998 * xxx-link" document. Note that address architecture might also define 1999 * the length for a particular set of address prefixes, regardless of the 2000 * link type. As clarified in rfc2462bis, those two definitions should be 2001 * consistent, and those really are as of August 2004. 2002 */ 2003 int 2004 in6_if2idlen(struct ifnet *ifp) 2005 { 2006 switch (ifp->if_type) { 2007 case IFT_ETHER: /* RFC2464 */ 2008 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2009 case IFT_L2VLAN: /* ditto */ 2010 case IFT_IEEE80211: /* ditto */ 2011 case IFT_BRIDGE: /* bridge(4) only does Ethernet-like links */ 2012 case IFT_INFINIBAND: 2013 return (64); 2014 case IFT_FDDI: /* RFC2467 */ 2015 return (64); 2016 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2017 return (64); 2018 case IFT_PPP: /* RFC2472 */ 2019 return (64); 2020 case IFT_ARCNET: /* RFC2497 */ 2021 return (64); 2022 case IFT_FRELAY: /* RFC2590 */ 2023 return (64); 2024 case IFT_IEEE1394: /* RFC3146 */ 2025 return (64); 2026 case IFT_GIF: 2027 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2028 case IFT_LOOP: 2029 return (64); /* XXX: is this really correct? */ 2030 default: 2031 /* 2032 * Unknown link type: 2033 * It might be controversial to use the today's common constant 2034 * of 64 for these cases unconditionally. For full compliance, 2035 * we should return an error in this case. On the other hand, 2036 * if we simply miss the standard for the link type or a new 2037 * standard is defined for a new link type, the IFID length 2038 * is very likely to be the common constant. As a compromise, 2039 * we always use the constant, but make an explicit notice 2040 * indicating the "unknown" case. 2041 */ 2042 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2043 return (64); 2044 } 2045 } 2046 2047 #include <sys/sysctl.h> 2048 2049 struct in6_llentry { 2050 struct llentry base; 2051 }; 2052 2053 #define IN6_LLTBL_DEFAULT_HSIZE 32 2054 #define IN6_LLTBL_HASH(k, h) \ 2055 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) 2056 2057 /* 2058 * Do actual deallocation of @lle. 2059 * Called by LLE_FREE_LOCKED when number of references 2060 * drops to zero. 2061 */ 2062 static void 2063 in6_lltable_destroy_lle(struct llentry *lle) 2064 { 2065 2066 LLE_WUNLOCK(lle); 2067 LLE_LOCK_DESTROY(lle); 2068 LLE_REQ_DESTROY(lle); 2069 free(lle, M_LLTABLE); 2070 } 2071 2072 static struct llentry * 2073 in6_lltable_new(const struct in6_addr *addr6, u_int flags) 2074 { 2075 struct in6_llentry *lle; 2076 2077 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2078 if (lle == NULL) /* NB: caller generates msg */ 2079 return NULL; 2080 2081 lle->base.r_l3addr.addr6 = *addr6; 2082 lle->base.lle_refcnt = 1; 2083 lle->base.lle_free = in6_lltable_destroy_lle; 2084 LLE_LOCK_INIT(&lle->base); 2085 LLE_REQ_INIT(&lle->base); 2086 callout_init(&lle->base.lle_timer, 1); 2087 2088 return (&lle->base); 2089 } 2090 2091 static int 2092 in6_lltable_match_prefix(const struct sockaddr *saddr, 2093 const struct sockaddr *smask, u_int flags, struct llentry *lle) 2094 { 2095 const struct in6_addr *addr, *mask, *lle_addr; 2096 2097 addr = &((const struct sockaddr_in6 *)saddr)->sin6_addr; 2098 mask = &((const struct sockaddr_in6 *)smask)->sin6_addr; 2099 lle_addr = &lle->r_l3addr.addr6; 2100 2101 if (IN6_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) 2102 return (0); 2103 2104 if (lle->la_flags & LLE_IFADDR) { 2105 2106 /* 2107 * Delete LLE_IFADDR records IFF address & flag matches. 2108 * Note that addr is the interface address within prefix 2109 * being matched. 2110 */ 2111 if (IN6_ARE_ADDR_EQUAL(addr, lle_addr) && 2112 (flags & LLE_STATIC) != 0) 2113 return (1); 2114 return (0); 2115 } 2116 2117 /* flags & LLE_STATIC means deleting both dynamic and static entries */ 2118 if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) 2119 return (1); 2120 2121 return (0); 2122 } 2123 2124 static void 2125 in6_lltable_free_entry(struct lltable *llt, struct llentry *lle) 2126 { 2127 struct ifnet *ifp; 2128 2129 LLE_WLOCK_ASSERT(lle); 2130 KASSERT(llt != NULL, ("lltable is NULL")); 2131 2132 /* Unlink entry from table */ 2133 if ((lle->la_flags & LLE_LINKED) != 0) { 2134 2135 ifp = llt->llt_ifp; 2136 IF_AFDATA_WLOCK_ASSERT(ifp); 2137 lltable_unlink_entry(llt, lle); 2138 } 2139 2140 if (callout_stop(&lle->lle_timer) > 0) 2141 LLE_REMREF(lle); 2142 2143 llentry_free(lle); 2144 } 2145 2146 static int 2147 in6_lltable_rtcheck(struct ifnet *ifp, 2148 u_int flags, 2149 const struct sockaddr *l3addr) 2150 { 2151 const struct sockaddr_in6 *sin6; 2152 struct nhop6_basic nh6; 2153 struct in6_addr dst; 2154 uint32_t scopeid; 2155 int error; 2156 char ip6buf[INET6_ADDRSTRLEN]; 2157 2158 KASSERT(l3addr->sa_family == AF_INET6, 2159 ("sin_family %d", l3addr->sa_family)); 2160 2161 /* Our local addresses are always only installed on the default FIB. */ 2162 2163 sin6 = (const struct sockaddr_in6 *)l3addr; 2164 in6_splitscope(&sin6->sin6_addr, &dst, &scopeid); 2165 error = fib6_lookup_nh_basic(RT_DEFAULT_FIB, &dst, scopeid, 0, 0, &nh6); 2166 if (error != 0 || (nh6.nh_flags & NHF_GATEWAY) || nh6.nh_ifp != ifp) { 2167 struct ifaddr *ifa; 2168 /* 2169 * Create an ND6 cache for an IPv6 neighbor 2170 * that is not covered by our own prefix. 2171 */ 2172 ifa = ifaof_ifpforaddr(l3addr, ifp); 2173 if (ifa != NULL) { 2174 ifa_free(ifa); 2175 return 0; 2176 } 2177 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2178 ip6_sprintf(ip6buf, &sin6->sin6_addr)); 2179 return EINVAL; 2180 } 2181 return 0; 2182 } 2183 2184 static inline uint32_t 2185 in6_lltable_hash_dst(const struct in6_addr *dst, uint32_t hsize) 2186 { 2187 2188 return (IN6_LLTBL_HASH(dst->s6_addr32[3], hsize)); 2189 } 2190 2191 static uint32_t 2192 in6_lltable_hash(const struct llentry *lle, uint32_t hsize) 2193 { 2194 2195 return (in6_lltable_hash_dst(&lle->r_l3addr.addr6, hsize)); 2196 } 2197 2198 static void 2199 in6_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) 2200 { 2201 struct sockaddr_in6 *sin6; 2202 2203 sin6 = (struct sockaddr_in6 *)sa; 2204 bzero(sin6, sizeof(*sin6)); 2205 sin6->sin6_family = AF_INET6; 2206 sin6->sin6_len = sizeof(*sin6); 2207 sin6->sin6_addr = lle->r_l3addr.addr6; 2208 } 2209 2210 static inline struct llentry * 2211 in6_lltable_find_dst(struct lltable *llt, const struct in6_addr *dst) 2212 { 2213 struct llentry *lle; 2214 struct llentries *lleh; 2215 u_int hashidx; 2216 2217 hashidx = in6_lltable_hash_dst(dst, llt->llt_hsize); 2218 lleh = &llt->lle_head[hashidx]; 2219 LIST_FOREACH(lle, lleh, lle_next) { 2220 if (lle->la_flags & LLE_DELETED) 2221 continue; 2222 if (IN6_ARE_ADDR_EQUAL(&lle->r_l3addr.addr6, dst)) 2223 break; 2224 } 2225 2226 return (lle); 2227 } 2228 2229 static void 2230 in6_lltable_delete_entry(struct lltable *llt, struct llentry *lle) 2231 { 2232 2233 lle->la_flags |= LLE_DELETED; 2234 EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); 2235 #ifdef DIAGNOSTIC 2236 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2237 #endif 2238 llentry_free(lle); 2239 } 2240 2241 static struct llentry * 2242 in6_lltable_alloc(struct lltable *llt, u_int flags, 2243 const struct sockaddr *l3addr) 2244 { 2245 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2246 struct ifnet *ifp = llt->llt_ifp; 2247 struct llentry *lle; 2248 char linkhdr[LLE_MAX_LINKHDR]; 2249 size_t linkhdrsize; 2250 int lladdr_off; 2251 2252 KASSERT(l3addr->sa_family == AF_INET6, 2253 ("sin_family %d", l3addr->sa_family)); 2254 2255 /* 2256 * A route that covers the given address must have 2257 * been installed 1st because we are doing a resolution, 2258 * verify this. 2259 */ 2260 if (!(flags & LLE_IFADDR) && 2261 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2262 return (NULL); 2263 2264 lle = in6_lltable_new(&sin6->sin6_addr, flags); 2265 if (lle == NULL) { 2266 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2267 return (NULL); 2268 } 2269 lle->la_flags = flags; 2270 if ((flags & LLE_IFADDR) == LLE_IFADDR) { 2271 linkhdrsize = LLE_MAX_LINKHDR; 2272 if (lltable_calc_llheader(ifp, AF_INET6, IF_LLADDR(ifp), 2273 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2274 return (NULL); 2275 lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, 2276 lladdr_off); 2277 lle->la_flags |= LLE_STATIC; 2278 } 2279 2280 if ((lle->la_flags & LLE_STATIC) != 0) 2281 lle->ln_state = ND6_LLINFO_REACHABLE; 2282 2283 return (lle); 2284 } 2285 2286 static struct llentry * 2287 in6_lltable_lookup(struct lltable *llt, u_int flags, 2288 const struct sockaddr *l3addr) 2289 { 2290 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2291 struct llentry *lle; 2292 2293 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); 2294 KASSERT(l3addr->sa_family == AF_INET6, 2295 ("sin_family %d", l3addr->sa_family)); 2296 2297 lle = in6_lltable_find_dst(llt, &sin6->sin6_addr); 2298 2299 if (lle == NULL) 2300 return (NULL); 2301 2302 KASSERT((flags & (LLE_UNLOCKED|LLE_EXCLUSIVE)) != 2303 (LLE_UNLOCKED|LLE_EXCLUSIVE),("wrong lle request flags: 0x%X", 2304 flags)); 2305 2306 if (flags & LLE_UNLOCKED) 2307 return (lle); 2308 2309 if (flags & LLE_EXCLUSIVE) 2310 LLE_WLOCK(lle); 2311 else 2312 LLE_RLOCK(lle); 2313 return (lle); 2314 } 2315 2316 static int 2317 in6_lltable_dump_entry(struct lltable *llt, struct llentry *lle, 2318 struct sysctl_req *wr) 2319 { 2320 struct ifnet *ifp = llt->llt_ifp; 2321 /* XXX stack use */ 2322 struct { 2323 struct rt_msghdr rtm; 2324 struct sockaddr_in6 sin6; 2325 /* 2326 * ndp.c assumes that sdl is word aligned 2327 */ 2328 #ifdef __LP64__ 2329 uint32_t pad; 2330 #endif 2331 struct sockaddr_dl sdl; 2332 } ndpc; 2333 struct sockaddr_dl *sdl; 2334 int error; 2335 2336 bzero(&ndpc, sizeof(ndpc)); 2337 /* skip deleted entries */ 2338 if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) 2339 return (0); 2340 /* Skip if jailed and not a valid IP of the prison. */ 2341 lltable_fill_sa_entry(lle, 2342 (struct sockaddr *)&ndpc.sin6); 2343 if (prison_if(wr->td->td_ucred, 2344 (struct sockaddr *)&ndpc.sin6) != 0) 2345 return (0); 2346 /* 2347 * produce a msg made of: 2348 * struct rt_msghdr; 2349 * struct sockaddr_in6 (IPv6) 2350 * struct sockaddr_dl; 2351 */ 2352 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2353 ndpc.rtm.rtm_version = RTM_VERSION; 2354 ndpc.rtm.rtm_type = RTM_GET; 2355 ndpc.rtm.rtm_flags = RTF_UP; 2356 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2357 if (V_deembed_scopeid) 2358 sa6_recoverscope(&ndpc.sin6); 2359 2360 /* publish */ 2361 if (lle->la_flags & LLE_PUB) 2362 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2363 2364 sdl = &ndpc.sdl; 2365 sdl->sdl_family = AF_LINK; 2366 sdl->sdl_len = sizeof(*sdl); 2367 sdl->sdl_alen = ifp->if_addrlen; 2368 sdl->sdl_index = ifp->if_index; 2369 sdl->sdl_type = ifp->if_type; 2370 bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2371 if (lle->la_expire != 0) 2372 ndpc.rtm.rtm_rmx.rmx_expire = lle->la_expire + 2373 lle->lle_remtime / hz + 2374 time_second - time_uptime; 2375 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2376 if (lle->la_flags & LLE_STATIC) 2377 ndpc.rtm.rtm_flags |= RTF_STATIC; 2378 if (lle->la_flags & LLE_IFADDR) 2379 ndpc.rtm.rtm_flags |= RTF_PINNED; 2380 if (lle->ln_router != 0) 2381 ndpc.rtm.rtm_flags |= RTF_GATEWAY; 2382 ndpc.rtm.rtm_rmx.rmx_pksent = lle->la_asked; 2383 /* Store state in rmx_weight value */ 2384 ndpc.rtm.rtm_rmx.rmx_state = lle->ln_state; 2385 ndpc.rtm.rtm_index = ifp->if_index; 2386 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2387 2388 return (error); 2389 } 2390 2391 static struct lltable * 2392 in6_lltattach(struct ifnet *ifp) 2393 { 2394 struct lltable *llt; 2395 2396 llt = lltable_allocate_htbl(IN6_LLTBL_DEFAULT_HSIZE); 2397 llt->llt_af = AF_INET6; 2398 llt->llt_ifp = ifp; 2399 2400 llt->llt_lookup = in6_lltable_lookup; 2401 llt->llt_alloc_entry = in6_lltable_alloc; 2402 llt->llt_delete_entry = in6_lltable_delete_entry; 2403 llt->llt_dump_entry = in6_lltable_dump_entry; 2404 llt->llt_hash = in6_lltable_hash; 2405 llt->llt_fill_sa_entry = in6_lltable_fill_sa_entry; 2406 llt->llt_free_entry = in6_lltable_free_entry; 2407 llt->llt_match_prefix = in6_lltable_match_prefix; 2408 lltable_link(llt); 2409 2410 return (llt); 2411 } 2412 2413 void * 2414 in6_domifattach(struct ifnet *ifp) 2415 { 2416 struct in6_ifextra *ext; 2417 2418 /* There are not IPv6-capable interfaces. */ 2419 switch (ifp->if_type) { 2420 case IFT_PFLOG: 2421 case IFT_PFSYNC: 2422 case IFT_USB: 2423 return (NULL); 2424 } 2425 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2426 bzero(ext, sizeof(*ext)); 2427 2428 ext->in6_ifstat = malloc(sizeof(counter_u64_t) * 2429 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); 2430 COUNTER_ARRAY_ALLOC(ext->in6_ifstat, 2431 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); 2432 2433 ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * 2434 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, 2435 M_WAITOK); 2436 COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, 2437 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); 2438 2439 ext->nd_ifinfo = nd6_ifattach(ifp); 2440 ext->scope6_id = scope6_ifattach(ifp); 2441 ext->lltable = in6_lltattach(ifp); 2442 2443 ext->mld_ifinfo = mld_domifattach(ifp); 2444 2445 return ext; 2446 } 2447 2448 int 2449 in6_domifmtu(struct ifnet *ifp) 2450 { 2451 if (ifp->if_afdata[AF_INET6] == NULL) 2452 return ifp->if_mtu; 2453 2454 return (IN6_LINKMTU(ifp)); 2455 } 2456 2457 void 2458 in6_domifdetach(struct ifnet *ifp, void *aux) 2459 { 2460 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2461 2462 mld_domifdetach(ifp); 2463 scope6_ifdetach(ext->scope6_id); 2464 nd6_ifdetach(ext->nd_ifinfo); 2465 lltable_free(ext->lltable); 2466 COUNTER_ARRAY_FREE(ext->in6_ifstat, 2467 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 2468 free(ext->in6_ifstat, M_IFADDR); 2469 COUNTER_ARRAY_FREE(ext->icmp6_ifstat, 2470 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 2471 free(ext->icmp6_ifstat, M_IFADDR); 2472 free(ext, M_IFADDR); 2473 } 2474 2475 /* 2476 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2477 * v4 mapped addr or v4 compat addr 2478 */ 2479 void 2480 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2481 { 2482 2483 bzero(sin, sizeof(*sin)); 2484 sin->sin_len = sizeof(struct sockaddr_in); 2485 sin->sin_family = AF_INET; 2486 sin->sin_port = sin6->sin6_port; 2487 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2488 } 2489 2490 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2491 void 2492 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2493 { 2494 bzero(sin6, sizeof(*sin6)); 2495 sin6->sin6_len = sizeof(struct sockaddr_in6); 2496 sin6->sin6_family = AF_INET6; 2497 sin6->sin6_port = sin->sin_port; 2498 sin6->sin6_addr.s6_addr32[0] = 0; 2499 sin6->sin6_addr.s6_addr32[1] = 0; 2500 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2501 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2502 } 2503 2504 /* Convert sockaddr_in6 into sockaddr_in. */ 2505 void 2506 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2507 { 2508 struct sockaddr_in *sin_p; 2509 struct sockaddr_in6 sin6; 2510 2511 /* 2512 * Save original sockaddr_in6 addr and convert it 2513 * to sockaddr_in. 2514 */ 2515 sin6 = *(struct sockaddr_in6 *)nam; 2516 sin_p = (struct sockaddr_in *)nam; 2517 in6_sin6_2_sin(sin_p, &sin6); 2518 } 2519 2520 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2521 void 2522 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2523 { 2524 struct sockaddr_in *sin_p; 2525 struct sockaddr_in6 *sin6_p; 2526 2527 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2528 sin_p = (struct sockaddr_in *)*nam; 2529 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2530 free(*nam, M_SONAME); 2531 *nam = (struct sockaddr *)sin6_p; 2532 } 2533