1 /* $FreeBSD$ */ 2 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /*- 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 4. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)in.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 #include "opt_inet.h" 65 #include "opt_inet6.h" 66 67 #include <sys/param.h> 68 #include <sys/errno.h> 69 #include <sys/malloc.h> 70 #include <sys/socket.h> 71 #include <sys/socketvar.h> 72 #include <sys/sockio.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/time.h> 76 #include <sys/kernel.h> 77 #include <sys/syslog.h> 78 79 #include <net/if.h> 80 #include <net/if_types.h> 81 #include <net/route.h> 82 #include <net/if_dl.h> 83 84 #include <netinet/in.h> 85 #include <netinet/in_var.h> 86 #include <netinet/if_ether.h> 87 #include <netinet/in_systm.h> 88 #include <netinet/ip.h> 89 #include <netinet/in_pcb.h> 90 91 #include <netinet/ip6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/nd6.h> 94 #include <netinet6/mld6_var.h> 95 #include <netinet6/ip6_mroute.h> 96 #include <netinet6/in6_ifattach.h> 97 #include <netinet6/scope6_var.h> 98 #include <netinet6/in6_pcb.h> 99 100 #include <net/net_osdep.h> 101 102 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 103 104 /* 105 * Definitions of some costant IP6 addresses. 106 */ 107 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 108 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 109 const struct in6_addr in6addr_nodelocal_allnodes = 110 IN6ADDR_NODELOCAL_ALLNODES_INIT; 111 const struct in6_addr in6addr_linklocal_allnodes = 112 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 113 const struct in6_addr in6addr_linklocal_allrouters = 114 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 115 116 const struct in6_addr in6mask0 = IN6MASK0; 117 const struct in6_addr in6mask32 = IN6MASK32; 118 const struct in6_addr in6mask64 = IN6MASK64; 119 const struct in6_addr in6mask96 = IN6MASK96; 120 const struct in6_addr in6mask128 = IN6MASK128; 121 122 const struct sockaddr_in6 sa6_any = 123 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 124 125 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 126 struct ifnet *, struct thread *)); 127 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 128 struct sockaddr_in6 *, int)); 129 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 130 131 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 132 int (*faithprefix_p)(struct in6_addr *); 133 134 /* 135 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 136 * This routine does actual work. 137 */ 138 static void 139 in6_ifloop_request(int cmd, struct ifaddr *ifa) 140 { 141 struct sockaddr_in6 all1_sa; 142 struct rtentry *nrt = NULL; 143 int e; 144 145 bzero(&all1_sa, sizeof(all1_sa)); 146 all1_sa.sin6_family = AF_INET6; 147 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 148 all1_sa.sin6_addr = in6mask128; 149 150 /* 151 * We specify the address itself as the gateway, and set the 152 * RTF_LLINFO flag, so that the corresponding host route would have 153 * the flag, and thus applications that assume traditional behavior 154 * would be happy. Note that we assume the caller of the function 155 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 156 * which changes the outgoing interface to the loopback interface. 157 */ 158 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 159 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 160 if (e != 0) { 161 /* XXX need more descriptive message */ 162 log(LOG_ERR, "in6_ifloop_request: " 163 "%s operation failed for %s (errno=%d)\n", 164 cmd == RTM_ADD ? "ADD" : "DELETE", 165 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 166 e); 167 } 168 169 /* 170 * Report the addition/removal of the address to the routing socket. 171 * XXX: since we called rtinit for a p2p interface with a destination, 172 * we end up reporting twice in such a case. Should we rather 173 * omit the second report? 174 */ 175 if (nrt) { 176 RT_LOCK(nrt); 177 /* 178 * Make sure rt_ifa be equal to IFA, the second argument of 179 * the function. We need this because when we refer to 180 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa 181 * points to the address instead of the loopback address. 182 */ 183 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { 184 IFAFREE(nrt->rt_ifa); 185 IFAREF(ifa); 186 nrt->rt_ifa = ifa; 187 } 188 189 rt_newaddrmsg(cmd, ifa, e, nrt); 190 if (cmd == RTM_DELETE) { 191 rtfree(nrt); 192 } else { 193 /* the cmd must be RTM_ADD here */ 194 RT_REMREF(nrt); 195 RT_UNLOCK(nrt); 196 } 197 } 198 } 199 200 /* 201 * Add ownaddr as loopback rtentry. We previously add the route only if 202 * necessary (ex. on a p2p link). However, since we now manage addresses 203 * separately from prefixes, we should always add the route. We can't 204 * rely on the cloning mechanism from the corresponding interface route 205 * any more. 206 */ 207 void 208 in6_ifaddloop(struct ifaddr *ifa) 209 { 210 struct rtentry *rt; 211 int need_loop; 212 213 /* If there is no loopback entry, allocate one. */ 214 rt = rtalloc1(ifa->ifa_addr, 0, 0); 215 need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 216 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); 217 if (rt) 218 rtfree(rt); 219 if (need_loop) 220 in6_ifloop_request(RTM_ADD, ifa); 221 } 222 223 /* 224 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 225 * if it exists. 226 */ 227 void 228 in6_ifremloop(struct ifaddr *ifa) 229 { 230 struct in6_ifaddr *ia; 231 struct rtentry *rt; 232 int ia_count = 0; 233 234 /* 235 * Some of BSD variants do not remove cloned routes 236 * from an interface direct route, when removing the direct route 237 * (see comments in net/net_osdep.h). Even for variants that do remove 238 * cloned routes, they could fail to remove the cloned routes when 239 * we handle multple addresses that share a common prefix. 240 * So, we should remove the route corresponding to the deleted address. 241 */ 242 243 /* 244 * Delete the entry only if exact one ifa exists. More than one ifa 245 * can exist if we assign a same single address to multiple 246 * (probably p2p) interfaces. 247 * XXX: we should avoid such a configuration in IPv6... 248 */ 249 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 250 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 251 ia_count++; 252 if (ia_count > 1) 253 break; 254 } 255 } 256 257 if (ia_count == 1) { 258 /* 259 * Before deleting, check if a corresponding loopbacked host 260 * route surely exists. With this check, we can avoid to 261 * delete an interface direct route whose destination is same 262 * as the address being removed. This can happen when removing 263 * a subnet-router anycast address on an interface attahced 264 * to a shared medium. 265 */ 266 rt = rtalloc1(ifa->ifa_addr, 0, 0); 267 if (rt != NULL) { 268 if ((rt->rt_flags & RTF_HOST) != 0 && 269 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 270 rtfree(rt); 271 in6_ifloop_request(RTM_DELETE, ifa); 272 } else 273 RT_UNLOCK(rt); 274 } 275 } 276 } 277 278 int 279 in6_mask2len(mask, lim0) 280 struct in6_addr *mask; 281 u_char *lim0; 282 { 283 int x = 0, y; 284 u_char *lim = lim0, *p; 285 286 /* ignore the scope_id part */ 287 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 288 lim = (u_char *)mask + sizeof(*mask); 289 for (p = (u_char *)mask; p < lim; x++, p++) { 290 if (*p != 0xff) 291 break; 292 } 293 y = 0; 294 if (p < lim) { 295 for (y = 0; y < 8; y++) { 296 if ((*p & (0x80 >> y)) == 0) 297 break; 298 } 299 } 300 301 /* 302 * when the limit pointer is given, do a stricter check on the 303 * remaining bits. 304 */ 305 if (p < lim) { 306 if (y != 0 && (*p & (0x00ff >> y)) != 0) 307 return (-1); 308 for (p = p + 1; p < lim; p++) 309 if (*p != 0) 310 return (-1); 311 } 312 313 return x * 8 + y; 314 } 315 316 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 317 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 318 319 int 320 in6_control(so, cmd, data, ifp, td) 321 struct socket *so; 322 u_long cmd; 323 caddr_t data; 324 struct ifnet *ifp; 325 struct thread *td; 326 { 327 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 328 struct in6_ifaddr *ia = NULL; 329 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 330 int error, privileged; 331 struct sockaddr_in6 *sa6; 332 333 privileged = 0; 334 if (td == NULL || !suser(td)) 335 privileged++; 336 337 switch (cmd) { 338 case SIOCGETSGCNT_IN6: 339 case SIOCGETMIFCNT_IN6: 340 return (mrt6_ioctl(cmd, data)); 341 } 342 343 switch(cmd) { 344 case SIOCAADDRCTL_POLICY: 345 case SIOCDADDRCTL_POLICY: 346 if (!privileged) 347 return (EPERM); 348 return (in6_src_ioctl(cmd, data)); 349 } 350 351 if (ifp == NULL) 352 return (EOPNOTSUPP); 353 354 switch (cmd) { 355 case SIOCSNDFLUSH_IN6: 356 case SIOCSPFXFLUSH_IN6: 357 case SIOCSRTRFLUSH_IN6: 358 case SIOCSDEFIFACE_IN6: 359 case SIOCSIFINFO_FLAGS: 360 if (!privileged) 361 return (EPERM); 362 /* FALLTHROUGH */ 363 case OSIOCGIFINFO_IN6: 364 case SIOCGIFINFO_IN6: 365 case SIOCSIFINFO_IN6: 366 case SIOCGDRLST_IN6: 367 case SIOCGPRLST_IN6: 368 case SIOCGNBRINFO_IN6: 369 case SIOCGDEFIFACE_IN6: 370 return (nd6_ioctl(cmd, data, ifp)); 371 } 372 373 switch (cmd) { 374 case SIOCSIFPREFIX_IN6: 375 case SIOCDIFPREFIX_IN6: 376 case SIOCAIFPREFIX_IN6: 377 case SIOCCIFPREFIX_IN6: 378 case SIOCSGIFPREFIX_IN6: 379 case SIOCGIFPREFIX_IN6: 380 log(LOG_NOTICE, 381 "prefix ioctls are now invalidated. " 382 "please use ifconfig.\n"); 383 return (EOPNOTSUPP); 384 } 385 386 switch (cmd) { 387 case SIOCSSCOPE6: 388 if (!privileged) 389 return (EPERM); 390 return (scope6_set(ifp, 391 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 392 case SIOCGSCOPE6: 393 return (scope6_get(ifp, 394 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 395 case SIOCGSCOPE6DEF: 396 return (scope6_get_default((struct scope6_id *) 397 ifr->ifr_ifru.ifru_scope_id)); 398 } 399 400 switch (cmd) { 401 case SIOCALIFADDR: 402 case SIOCDLIFADDR: 403 if (!privileged) 404 return (EPERM); 405 /* FALLTHROUGH */ 406 case SIOCGLIFADDR: 407 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 408 } 409 410 /* 411 * Find address for this interface, if it exists. 412 * 413 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 414 * only, and used the first interface address as the target of other 415 * operations (without checking ifra_addr). This was because netinet 416 * code/API assumed at most 1 interface address per interface. 417 * Since IPv6 allows a node to assign multiple addresses 418 * on a single interface, we almost always look and check the 419 * presence of ifra_addr, and reject invalid ones here. 420 * It also decreases duplicated code among SIOC*_IN6 operations. 421 */ 422 switch (cmd) { 423 case SIOCAIFADDR_IN6: 424 case SIOCSIFPHYADDR_IN6: 425 sa6 = &ifra->ifra_addr; 426 break; 427 case SIOCSIFADDR_IN6: 428 case SIOCGIFADDR_IN6: 429 case SIOCSIFDSTADDR_IN6: 430 case SIOCSIFNETMASK_IN6: 431 case SIOCGIFDSTADDR_IN6: 432 case SIOCGIFNETMASK_IN6: 433 case SIOCDIFADDR_IN6: 434 case SIOCGIFPSRCADDR_IN6: 435 case SIOCGIFPDSTADDR_IN6: 436 case SIOCGIFAFLAG_IN6: 437 case SIOCSNDFLUSH_IN6: 438 case SIOCSPFXFLUSH_IN6: 439 case SIOCSRTRFLUSH_IN6: 440 case SIOCGIFALIFETIME_IN6: 441 case SIOCSIFALIFETIME_IN6: 442 case SIOCGIFSTAT_IN6: 443 case SIOCGIFSTAT_ICMP6: 444 sa6 = &ifr->ifr_addr; 445 break; 446 default: 447 sa6 = NULL; 448 break; 449 } 450 if (sa6 && sa6->sin6_family == AF_INET6) { 451 int error = 0; 452 453 if (sa6->sin6_scope_id != 0) 454 error = sa6_embedscope(sa6, 0); 455 else 456 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 457 if (error != 0) 458 return (error); 459 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 460 } else 461 ia = NULL; 462 463 switch (cmd) { 464 case SIOCSIFADDR_IN6: 465 case SIOCSIFDSTADDR_IN6: 466 case SIOCSIFNETMASK_IN6: 467 /* 468 * Since IPv6 allows a node to assign multiple addresses 469 * on a single interface, SIOCSIFxxx ioctls are deprecated. 470 */ 471 /* we decided to obsolete this command (20000704) */ 472 return (EINVAL); 473 474 case SIOCDIFADDR_IN6: 475 /* 476 * for IPv4, we look for existing in_ifaddr here to allow 477 * "ifconfig if0 delete" to remove the first IPv4 address on 478 * the interface. For IPv6, as the spec allows multiple 479 * interface address from the day one, we consider "remove the 480 * first one" semantics to be not preferable. 481 */ 482 if (ia == NULL) 483 return (EADDRNOTAVAIL); 484 /* FALLTHROUGH */ 485 case SIOCAIFADDR_IN6: 486 /* 487 * We always require users to specify a valid IPv6 address for 488 * the corresponding operation. 489 */ 490 if (ifra->ifra_addr.sin6_family != AF_INET6 || 491 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 492 return (EAFNOSUPPORT); 493 if (!privileged) 494 return (EPERM); 495 496 break; 497 498 case SIOCGIFADDR_IN6: 499 /* This interface is basically deprecated. use SIOCGIFCONF. */ 500 /* FALLTHROUGH */ 501 case SIOCGIFAFLAG_IN6: 502 case SIOCGIFNETMASK_IN6: 503 case SIOCGIFDSTADDR_IN6: 504 case SIOCGIFALIFETIME_IN6: 505 /* must think again about its semantics */ 506 if (ia == NULL) 507 return (EADDRNOTAVAIL); 508 break; 509 case SIOCSIFALIFETIME_IN6: 510 { 511 struct in6_addrlifetime *lt; 512 513 if (!privileged) 514 return (EPERM); 515 if (ia == NULL) 516 return (EADDRNOTAVAIL); 517 /* sanity for overflow - beware unsigned */ 518 lt = &ifr->ifr_ifru.ifru_lifetime; 519 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 520 lt->ia6t_vltime + time_second < time_second) { 521 return EINVAL; 522 } 523 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 524 lt->ia6t_pltime + time_second < time_second) { 525 return EINVAL; 526 } 527 break; 528 } 529 } 530 531 switch (cmd) { 532 533 case SIOCGIFADDR_IN6: 534 ifr->ifr_addr = ia->ia_addr; 535 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 536 return (error); 537 break; 538 539 case SIOCGIFDSTADDR_IN6: 540 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 541 return (EINVAL); 542 /* 543 * XXX: should we check if ifa_dstaddr is NULL and return 544 * an error? 545 */ 546 ifr->ifr_dstaddr = ia->ia_dstaddr; 547 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 548 return (error); 549 break; 550 551 case SIOCGIFNETMASK_IN6: 552 ifr->ifr_addr = ia->ia_prefixmask; 553 break; 554 555 case SIOCGIFAFLAG_IN6: 556 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 557 break; 558 559 case SIOCGIFSTAT_IN6: 560 if (ifp == NULL) 561 return EINVAL; 562 bzero(&ifr->ifr_ifru.ifru_stat, 563 sizeof(ifr->ifr_ifru.ifru_stat)); 564 ifr->ifr_ifru.ifru_stat = 565 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 566 break; 567 568 case SIOCGIFSTAT_ICMP6: 569 if (ifp == NULL) 570 return EINVAL; 571 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 572 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 573 ifr->ifr_ifru.ifru_icmp6stat = 574 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 575 break; 576 577 case SIOCGIFALIFETIME_IN6: 578 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 579 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 580 time_t maxexpire; 581 struct in6_addrlifetime *retlt = 582 &ifr->ifr_ifru.ifru_lifetime; 583 584 /* 585 * XXX: adjust expiration time assuming time_t is 586 * signed. 587 */ 588 maxexpire = (-1) & 589 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 590 if (ia->ia6_lifetime.ia6t_vltime < 591 maxexpire - ia->ia6_updatetime) { 592 retlt->ia6t_expire = ia->ia6_updatetime + 593 ia->ia6_lifetime.ia6t_vltime; 594 } else 595 retlt->ia6t_expire = maxexpire; 596 } 597 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 598 time_t maxexpire; 599 struct in6_addrlifetime *retlt = 600 &ifr->ifr_ifru.ifru_lifetime; 601 602 /* 603 * XXX: adjust expiration time assuming time_t is 604 * signed. 605 */ 606 maxexpire = (-1) & 607 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 608 if (ia->ia6_lifetime.ia6t_pltime < 609 maxexpire - ia->ia6_updatetime) { 610 retlt->ia6t_preferred = ia->ia6_updatetime + 611 ia->ia6_lifetime.ia6t_pltime; 612 } else 613 retlt->ia6t_preferred = maxexpire; 614 } 615 break; 616 617 case SIOCSIFALIFETIME_IN6: 618 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 619 /* for sanity */ 620 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 621 ia->ia6_lifetime.ia6t_expire = 622 time_second + ia->ia6_lifetime.ia6t_vltime; 623 } else 624 ia->ia6_lifetime.ia6t_expire = 0; 625 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 626 ia->ia6_lifetime.ia6t_preferred = 627 time_second + ia->ia6_lifetime.ia6t_pltime; 628 } else 629 ia->ia6_lifetime.ia6t_preferred = 0; 630 break; 631 632 case SIOCAIFADDR_IN6: 633 { 634 int i, error = 0; 635 struct nd_prefixctl pr0; 636 struct nd_prefix *pr; 637 638 /* 639 * first, make or update the interface address structure, 640 * and link it to the list. 641 */ 642 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 643 return (error); 644 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 645 == NULL) { 646 /* 647 * this can happen when the user specify the 0 valid 648 * lifetime. 649 */ 650 break; 651 } 652 653 /* 654 * then, make the prefix on-link on the interface. 655 * XXX: we'd rather create the prefix before the address, but 656 * we need at least one address to install the corresponding 657 * interface route, so we configure the address first. 658 */ 659 660 /* 661 * convert mask to prefix length (prefixmask has already 662 * been validated in in6_update_ifa(). 663 */ 664 bzero(&pr0, sizeof(pr0)); 665 pr0.ndpr_ifp = ifp; 666 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 667 NULL); 668 if (pr0.ndpr_plen == 128) { 669 break; /* we don't need to install a host route. */ 670 } 671 pr0.ndpr_prefix = ifra->ifra_addr; 672 /* apply the mask for safety. */ 673 for (i = 0; i < 4; i++) { 674 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 675 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 676 } 677 /* 678 * XXX: since we don't have an API to set prefix (not address) 679 * lifetimes, we just use the same lifetimes as addresses. 680 * The (temporarily) installed lifetimes can be overridden by 681 * later advertised RAs (when accept_rtadv is non 0), which is 682 * an intended behavior. 683 */ 684 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 685 pr0.ndpr_raf_auto = 686 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 687 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 688 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 689 690 /* add the prefix if not yet. */ 691 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 692 /* 693 * nd6_prelist_add will install the corresponding 694 * interface route. 695 */ 696 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 697 return (error); 698 if (pr == NULL) { 699 log(LOG_ERR, "nd6_prelist_add succeeded but " 700 "no prefix\n"); 701 return (EINVAL); /* XXX panic here? */ 702 } 703 } 704 705 /* relate the address to the prefix */ 706 if (ia->ia6_ndpr == NULL) { 707 ia->ia6_ndpr = pr; 708 pr->ndpr_refcnt++; 709 710 /* 711 * If this is the first autoconf address from the 712 * prefix, create a temporary address as well 713 * (when required). 714 */ 715 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 716 ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 717 int e; 718 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 719 log(LOG_NOTICE, "in6_control: failed " 720 "to create a temporary address, " 721 "errno=%d\n", e); 722 } 723 } 724 } 725 726 /* 727 * this might affect the status of autoconfigured addresses, 728 * that is, this address might make other addresses detached. 729 */ 730 pfxlist_onlink_check(); 731 if (error == 0 && ia) 732 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 733 break; 734 } 735 736 case SIOCDIFADDR_IN6: 737 { 738 struct nd_prefix *pr; 739 740 /* 741 * If the address being deleted is the only one that owns 742 * the corresponding prefix, expire the prefix as well. 743 * XXX: theoretically, we don't have to worry about such 744 * relationship, since we separate the address management 745 * and the prefix management. We do this, however, to provide 746 * as much backward compatibility as possible in terms of 747 * the ioctl operation. 748 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 749 */ 750 pr = ia->ia6_ndpr; 751 in6_purgeaddr(&ia->ia_ifa); 752 if (pr && pr->ndpr_refcnt == 0) 753 prelist_remove(pr); 754 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 755 break; 756 } 757 758 default: 759 if (ifp == NULL || ifp->if_ioctl == 0) 760 return (EOPNOTSUPP); 761 return ((*ifp->if_ioctl)(ifp, cmd, data)); 762 } 763 764 return (0); 765 } 766 767 /* 768 * Update parameters of an IPv6 interface address. 769 * If necessary, a new entry is created and linked into address chains. 770 * This function is separated from in6_control(). 771 * XXX: should this be performed under splnet()? 772 */ 773 int 774 in6_update_ifa(ifp, ifra, ia, flags) 775 struct ifnet *ifp; 776 struct in6_aliasreq *ifra; 777 struct in6_ifaddr *ia; 778 int flags; 779 { 780 int error = 0, hostIsNew = 0, plen = -1; 781 struct in6_ifaddr *oia; 782 struct sockaddr_in6 dst6; 783 struct in6_addrlifetime *lt; 784 struct in6_multi_mship *imm; 785 struct in6_multi *in6m_sol; 786 struct rtentry *rt; 787 int delay; 788 789 /* Validate parameters */ 790 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 791 return (EINVAL); 792 793 /* 794 * The destination address for a p2p link must have a family 795 * of AF_UNSPEC or AF_INET6. 796 */ 797 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 798 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 799 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 800 return (EAFNOSUPPORT); 801 /* 802 * validate ifra_prefixmask. don't check sin6_family, netmask 803 * does not carry fields other than sin6_len. 804 */ 805 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 806 return (EINVAL); 807 /* 808 * Because the IPv6 address architecture is classless, we require 809 * users to specify a (non 0) prefix length (mask) for a new address. 810 * We also require the prefix (when specified) mask is valid, and thus 811 * reject a non-consecutive mask. 812 */ 813 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 814 return (EINVAL); 815 if (ifra->ifra_prefixmask.sin6_len != 0) { 816 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 817 (u_char *)&ifra->ifra_prefixmask + 818 ifra->ifra_prefixmask.sin6_len); 819 if (plen <= 0) 820 return (EINVAL); 821 } else { 822 /* 823 * In this case, ia must not be NULL. We just use its prefix 824 * length. 825 */ 826 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 827 } 828 /* 829 * If the destination address on a p2p interface is specified, 830 * and the address is a scoped one, validate/set the scope 831 * zone identifier. 832 */ 833 dst6 = ifra->ifra_dstaddr; 834 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 835 (dst6.sin6_family == AF_INET6)) { 836 struct in6_addr in6_tmp; 837 u_int32_t zoneid; 838 839 in6_tmp = dst6.sin6_addr; 840 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 841 return (EINVAL); /* XXX: should be impossible */ 842 843 if (dst6.sin6_scope_id != 0) { 844 if (dst6.sin6_scope_id != zoneid) 845 return (EINVAL); 846 } else /* user omit to specify the ID. */ 847 dst6.sin6_scope_id = zoneid; 848 849 /* convert into the internal form */ 850 if (sa6_embedscope(&dst6, 0)) 851 return (EINVAL); /* XXX: should be impossible */ 852 } 853 /* 854 * The destination address can be specified only for a p2p or a 855 * loopback interface. If specified, the corresponding prefix length 856 * must be 128. 857 */ 858 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 859 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 860 /* XXX: noisy message */ 861 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 862 "be specified for a p2p or a loopback IF only\n")); 863 return (EINVAL); 864 } 865 if (plen != 128) { 866 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 867 "be 128 when dstaddr is specified\n")); 868 return (EINVAL); 869 } 870 } 871 /* lifetime consistency check */ 872 lt = &ifra->ifra_lifetime; 873 if (lt->ia6t_pltime > lt->ia6t_vltime) 874 return (EINVAL); 875 if (lt->ia6t_vltime == 0) { 876 /* 877 * the following log might be noisy, but this is a typical 878 * configuration mistake or a tool's bug. 879 */ 880 nd6log((LOG_INFO, 881 "in6_update_ifa: valid lifetime is 0 for %s\n", 882 ip6_sprintf(&ifra->ifra_addr.sin6_addr))); 883 884 if (ia == NULL) 885 return (0); /* there's nothing to do */ 886 } 887 888 /* 889 * If this is a new address, allocate a new ifaddr and link it 890 * into chains. 891 */ 892 if (ia == NULL) { 893 hostIsNew = 1; 894 /* 895 * When in6_update_ifa() is called in a process of a received 896 * RA, it is called under an interrupt context. So, we should 897 * call malloc with M_NOWAIT. 898 */ 899 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 900 M_NOWAIT); 901 if (ia == NULL) 902 return (ENOBUFS); 903 bzero((caddr_t)ia, sizeof(*ia)); 904 /* Initialize the address and masks, and put time stamp */ 905 IFA_LOCK_INIT(&ia->ia_ifa); 906 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 907 ia->ia_addr.sin6_family = AF_INET6; 908 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 909 ia->ia6_createtime = time_second; 910 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 911 /* 912 * XXX: some functions expect that ifa_dstaddr is not 913 * NULL for p2p interfaces. 914 */ 915 ia->ia_ifa.ifa_dstaddr = 916 (struct sockaddr *)&ia->ia_dstaddr; 917 } else { 918 ia->ia_ifa.ifa_dstaddr = NULL; 919 } 920 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 921 922 ia->ia_ifp = ifp; 923 if ((oia = in6_ifaddr) != NULL) { 924 for ( ; oia->ia_next; oia = oia->ia_next) 925 continue; 926 oia->ia_next = ia; 927 } else 928 in6_ifaddr = ia; 929 930 ia->ia_ifa.ifa_refcnt = 1; 931 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 932 } 933 934 /* update timestamp */ 935 ia->ia6_updatetime = time_second; 936 937 /* set prefix mask */ 938 if (ifra->ifra_prefixmask.sin6_len) { 939 /* 940 * We prohibit changing the prefix length of an existing 941 * address, because 942 * + such an operation should be rare in IPv6, and 943 * + the operation would confuse prefix management. 944 */ 945 if (ia->ia_prefixmask.sin6_len && 946 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 947 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 948 " existing (%s) address should not be changed\n", 949 ip6_sprintf(&ia->ia_addr.sin6_addr))); 950 error = EINVAL; 951 goto unlink; 952 } 953 ia->ia_prefixmask = ifra->ifra_prefixmask; 954 } 955 956 /* 957 * If a new destination address is specified, scrub the old one and 958 * install the new destination. Note that the interface must be 959 * p2p or loopback (see the check above.) 960 */ 961 if (dst6.sin6_family == AF_INET6 && 962 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 963 int e; 964 965 if ((ia->ia_flags & IFA_ROUTE) != 0 && 966 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 967 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 968 "a route to the old destination: %s\n", 969 ip6_sprintf(&ia->ia_addr.sin6_addr))); 970 /* proceed anyway... */ 971 } else 972 ia->ia_flags &= ~IFA_ROUTE; 973 ia->ia_dstaddr = dst6; 974 } 975 976 /* 977 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 978 * to see if the address is deprecated or invalidated, but initialize 979 * these members for applications. 980 */ 981 ia->ia6_lifetime = ifra->ifra_lifetime; 982 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 983 ia->ia6_lifetime.ia6t_expire = 984 time_second + ia->ia6_lifetime.ia6t_vltime; 985 } else 986 ia->ia6_lifetime.ia6t_expire = 0; 987 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 988 ia->ia6_lifetime.ia6t_preferred = 989 time_second + ia->ia6_lifetime.ia6t_pltime; 990 } else 991 ia->ia6_lifetime.ia6t_preferred = 0; 992 993 /* reset the interface and routing table appropriately. */ 994 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 995 goto unlink; 996 997 /* 998 * configure address flags. 999 */ 1000 ia->ia6_flags = ifra->ifra_flags; 1001 /* 1002 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1003 * userland, make it deprecated. 1004 */ 1005 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1006 ia->ia6_lifetime.ia6t_pltime = 0; 1007 ia->ia6_lifetime.ia6t_preferred = time_second; 1008 } 1009 /* 1010 * Make the address tentative before joining multicast addresses, 1011 * so that corresponding MLD responses would not have a tentative 1012 * source address. 1013 */ 1014 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1015 if (hostIsNew && in6if_do_dad(ifp)) 1016 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1017 1018 /* 1019 * We are done if we have simply modified an existing address. 1020 */ 1021 if (!hostIsNew) 1022 return (error); 1023 1024 /* 1025 * Beyond this point, we should call in6_purgeaddr upon an error, 1026 * not just go to unlink. 1027 */ 1028 1029 /* Join necessary multicast groups */ 1030 in6m_sol = NULL; 1031 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1032 struct sockaddr_in6 mltaddr, mltmask; 1033 struct in6_addr llsol; 1034 1035 /* join solicited multicast addr for new host id */ 1036 bzero(&llsol, sizeof(struct in6_addr)); 1037 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1038 llsol.s6_addr32[1] = 0; 1039 llsol.s6_addr32[2] = htonl(1); 1040 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1041 llsol.s6_addr8[12] = 0xff; 1042 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1043 /* XXX: should not happen */ 1044 log(LOG_ERR, "in6_update_ifa: " 1045 "in6_setscope failed\n"); 1046 goto cleanup; 1047 } 1048 delay = 0; 1049 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1050 /* 1051 * We need a random delay for DAD on the address 1052 * being configured. It also means delaying 1053 * transmission of the corresponding MLD report to 1054 * avoid report collision. 1055 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1056 */ 1057 delay = arc4random() % 1058 (MAX_RTR_SOLICITATION_DELAY * hz); 1059 } 1060 imm = in6_joingroup(ifp, &llsol, &error, delay); 1061 if (error != 0) { 1062 nd6log((LOG_WARNING, 1063 "in6_update_ifa: addmulti failed for " 1064 "%s on %s (errno=%d)\n", 1065 ip6_sprintf(&llsol), if_name(ifp), 1066 error)); 1067 in6_purgeaddr((struct ifaddr *)ia); 1068 return (error); 1069 } 1070 in6m_sol = imm->i6mm_maddr; 1071 1072 bzero(&mltmask, sizeof(mltmask)); 1073 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1074 mltmask.sin6_family = AF_INET6; 1075 mltmask.sin6_addr = in6mask32; 1076 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1077 1078 /* 1079 * join link-local all-nodes address 1080 */ 1081 bzero(&mltaddr, sizeof(mltaddr)); 1082 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1083 mltaddr.sin6_family = AF_INET6; 1084 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1085 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1086 0) 1087 goto cleanup; /* XXX: should not fail */ 1088 1089 /* 1090 * XXX: do we really need this automatic routes? 1091 * We should probably reconsider this stuff. Most applications 1092 * actually do not need the routes, since they usually specify 1093 * the outgoing interface. 1094 */ 1095 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1096 if (rt) { 1097 if (memcmp(&mltaddr.sin6_addr, 1098 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1099 MLTMASK_LEN)) { 1100 RTFREE_LOCKED(rt); 1101 rt = NULL; 1102 } 1103 } 1104 if (!rt) { 1105 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1106 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1107 (struct sockaddr *)&ia->ia_addr, 1108 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1109 (struct rtentry **)0); 1110 if (error) 1111 goto cleanup; 1112 } else 1113 RTFREE_LOCKED(rt); 1114 1115 /* 1116 * XXX: do we really need this automatic routes? 1117 * We should probably reconsider this stuff. Most applications 1118 * actually do not need the routes, since they usually specify 1119 * the outgoing interface. 1120 */ 1121 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1122 if (rt) { 1123 /* XXX: only works in !SCOPEDROUTING case. */ 1124 if (memcmp(&mltaddr.sin6_addr, 1125 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1126 MLTMASK_LEN)) { 1127 RTFREE_LOCKED(rt); 1128 rt = NULL; 1129 } 1130 } 1131 if (!rt) { 1132 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1133 (struct sockaddr *)&ia->ia_addr, 1134 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1135 (struct rtentry **)0); 1136 if (error) 1137 goto cleanup; 1138 } else { 1139 RTFREE_LOCKED(rt); 1140 } 1141 1142 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1143 if (!imm) { 1144 nd6log((LOG_WARNING, 1145 "in6_update_ifa: addmulti failed for " 1146 "%s on %s (errno=%d)\n", 1147 ip6_sprintf(&mltaddr.sin6_addr), 1148 if_name(ifp), error)); 1149 goto cleanup; 1150 } 1151 1152 /* 1153 * join node information group address 1154 */ 1155 #define hostnamelen strlen(hostname) 1156 delay = 0; 1157 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1158 /* 1159 * The spec doesn't say anything about delay for this 1160 * group, but the same logic should apply. 1161 */ 1162 delay = arc4random() % 1163 (MAX_RTR_SOLICITATION_DELAY * hz); 1164 } 1165 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1166 == 0) { 1167 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1168 delay); /* XXX jinmei */ 1169 if (!imm) { 1170 nd6log((LOG_WARNING, "in6_update_ifa: " 1171 "addmulti failed for %s on %s " 1172 "(errno=%d)\n", 1173 ip6_sprintf(&mltaddr.sin6_addr), 1174 if_name(ifp), error)); 1175 /* XXX not very fatal, go on... */ 1176 } 1177 } 1178 #undef hostnamelen 1179 1180 /* 1181 * join interface-local all-nodes address. 1182 * (ff01::1%ifN, and ff01::%ifN/32) 1183 */ 1184 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1185 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1186 != 0) 1187 goto cleanup; /* XXX: should not fail */ 1188 /* XXX: again, do we really need the route? */ 1189 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1190 if (rt) { 1191 if (memcmp(&mltaddr.sin6_addr, 1192 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1193 MLTMASK_LEN)) { 1194 RTFREE_LOCKED(rt); 1195 rt = NULL; 1196 } 1197 } 1198 if (!rt) { 1199 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1200 (struct sockaddr *)&ia->ia_addr, 1201 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1202 (struct rtentry **)0); 1203 if (error) 1204 goto cleanup; 1205 } else 1206 RTFREE_LOCKED(rt); 1207 1208 /* XXX: again, do we really need the route? */ 1209 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1210 if (rt) { 1211 if (memcmp(&mltaddr.sin6_addr, 1212 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1213 MLTMASK_LEN)) { 1214 RTFREE_LOCKED(rt); 1215 rt = NULL; 1216 } 1217 } 1218 if (!rt) { 1219 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1220 (struct sockaddr *)&ia->ia_addr, 1221 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1222 (struct rtentry **)0); 1223 if (error) 1224 goto cleanup; 1225 } else { 1226 RTFREE_LOCKED(rt); 1227 } 1228 1229 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1230 if (!imm) { 1231 nd6log((LOG_WARNING, "in6_update_ifa: " 1232 "addmulti failed for %s on %s " 1233 "(errno=%d)\n", 1234 ip6_sprintf(&mltaddr.sin6_addr), 1235 if_name(ifp), error)); 1236 goto cleanup; 1237 } 1238 #undef MLTMASK_LEN 1239 } 1240 1241 /* 1242 * Perform DAD, if needed. 1243 * XXX It may be of use, if we can administratively 1244 * disable DAD. 1245 */ 1246 if (hostIsNew && in6if_do_dad(ifp) && 1247 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1248 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1249 { 1250 int mindelay, maxdelay; 1251 1252 delay = 0; 1253 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1254 /* 1255 * We need to impose a delay before sending an NS 1256 * for DAD. Check if we also needed a delay for the 1257 * corresponding MLD message. If we did, the delay 1258 * should be larger than the MLD delay (this could be 1259 * relaxed a bit, but this simple logic is at least 1260 * safe). 1261 */ 1262 mindelay = 0; 1263 if (in6m_sol != NULL && 1264 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1265 mindelay = in6m_sol->in6m_timer; 1266 } 1267 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1268 if (maxdelay - mindelay == 0) 1269 delay = 0; 1270 else { 1271 delay = 1272 (arc4random() % (maxdelay - mindelay)) + 1273 mindelay; 1274 } 1275 } 1276 nd6_dad_start((struct ifaddr *)ia, delay); 1277 } 1278 1279 return (error); 1280 1281 unlink: 1282 /* 1283 * XXX: if a change of an existing address failed, keep the entry 1284 * anyway. 1285 */ 1286 if (hostIsNew) 1287 in6_unlink_ifa(ia, ifp); 1288 return (error); 1289 1290 cleanup: 1291 in6_purgeaddr(&ia->ia_ifa); 1292 return error; 1293 } 1294 1295 void 1296 in6_purgeaddr(ifa) 1297 struct ifaddr *ifa; 1298 { 1299 struct ifnet *ifp = ifa->ifa_ifp; 1300 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1301 1302 /* stop DAD processing */ 1303 nd6_dad_stop(ifa); 1304 1305 /* 1306 * delete route to the destination of the address being purged. 1307 * The interface must be p2p or loopback in this case. 1308 */ 1309 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1310 int e; 1311 1312 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1313 != 0) { 1314 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1315 "a route to the p2p destination: %s on %s, " 1316 "errno=%d\n", 1317 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1318 e); 1319 /* proceed anyway... */ 1320 } else 1321 ia->ia_flags &= ~IFA_ROUTE; 1322 } 1323 1324 /* Remove ownaddr's loopback rtentry, if it exists. */ 1325 in6_ifremloop(&(ia->ia_ifa)); 1326 1327 if (ifp->if_flags & IFF_MULTICAST) { 1328 /* 1329 * delete solicited multicast addr for deleting host id 1330 */ 1331 struct in6_multi *in6m; 1332 struct in6_addr llsol; 1333 bzero(&llsol, sizeof(struct in6_addr)); 1334 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1335 llsol.s6_addr32[1] = 0; 1336 llsol.s6_addr32[2] = htonl(1); 1337 llsol.s6_addr32[3] = 1338 ia->ia_addr.sin6_addr.s6_addr32[3]; 1339 llsol.s6_addr8[12] = 0xff; 1340 (void)in6_setscope(&llsol, ifp, NULL); /* XXX proceed anyway */ 1341 1342 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1343 if (in6m) 1344 in6_delmulti(in6m); 1345 } 1346 1347 in6_unlink_ifa(ia, ifp); 1348 } 1349 1350 static void 1351 in6_unlink_ifa(ia, ifp) 1352 struct in6_ifaddr *ia; 1353 struct ifnet *ifp; 1354 { 1355 struct in6_ifaddr *oia; 1356 int s = splnet(); 1357 1358 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1359 1360 oia = ia; 1361 if (oia == (ia = in6_ifaddr)) 1362 in6_ifaddr = ia->ia_next; 1363 else { 1364 while (ia->ia_next && (ia->ia_next != oia)) 1365 ia = ia->ia_next; 1366 if (ia->ia_next) 1367 ia->ia_next = oia->ia_next; 1368 else { 1369 /* search failed */ 1370 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1371 } 1372 } 1373 1374 /* 1375 * Release the reference to the base prefix. There should be a 1376 * positive reference. 1377 */ 1378 if (oia->ia6_ndpr == NULL) { 1379 nd6log((LOG_NOTICE, 1380 "in6_unlink_ifa: autoconf'ed address " 1381 "%p has no prefix\n", oia)); 1382 } else { 1383 oia->ia6_ndpr->ndpr_refcnt--; 1384 oia->ia6_ndpr = NULL; 1385 } 1386 1387 /* 1388 * Also, if the address being removed is autoconf'ed, call 1389 * pfxlist_onlink_check() since the release might affect the status of 1390 * other (detached) addresses. 1391 */ 1392 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1393 pfxlist_onlink_check(); 1394 } 1395 1396 /* 1397 * release another refcnt for the link from in6_ifaddr. 1398 * Note that we should decrement the refcnt at least once for all *BSD. 1399 */ 1400 IFAFREE(&oia->ia_ifa); 1401 1402 splx(s); 1403 } 1404 1405 void 1406 in6_purgeif(ifp) 1407 struct ifnet *ifp; 1408 { 1409 struct ifaddr *ifa, *nifa; 1410 1411 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1412 nifa = TAILQ_NEXT(ifa, ifa_list); 1413 if (ifa->ifa_addr->sa_family != AF_INET6) 1414 continue; 1415 in6_purgeaddr(ifa); 1416 } 1417 1418 in6_ifdetach(ifp); 1419 } 1420 1421 /* 1422 * SIOC[GAD]LIFADDR. 1423 * SIOCGLIFADDR: get first address. (?) 1424 * SIOCGLIFADDR with IFLR_PREFIX: 1425 * get first address that matches the specified prefix. 1426 * SIOCALIFADDR: add the specified address. 1427 * SIOCALIFADDR with IFLR_PREFIX: 1428 * add the specified prefix, filling hostid part from 1429 * the first link-local address. prefixlen must be <= 64. 1430 * SIOCDLIFADDR: delete the specified address. 1431 * SIOCDLIFADDR with IFLR_PREFIX: 1432 * delete the first address that matches the specified prefix. 1433 * return values: 1434 * EINVAL on invalid parameters 1435 * EADDRNOTAVAIL on prefix match failed/specified address not found 1436 * other values may be returned from in6_ioctl() 1437 * 1438 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1439 * this is to accomodate address naming scheme other than RFC2374, 1440 * in the future. 1441 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1442 * address encoding scheme. (see figure on page 8) 1443 */ 1444 static int 1445 in6_lifaddr_ioctl(so, cmd, data, ifp, td) 1446 struct socket *so; 1447 u_long cmd; 1448 caddr_t data; 1449 struct ifnet *ifp; 1450 struct thread *td; 1451 { 1452 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1453 struct ifaddr *ifa; 1454 struct sockaddr *sa; 1455 1456 /* sanity checks */ 1457 if (!data || !ifp) { 1458 panic("invalid argument to in6_lifaddr_ioctl"); 1459 /* NOTREACHED */ 1460 } 1461 1462 switch (cmd) { 1463 case SIOCGLIFADDR: 1464 /* address must be specified on GET with IFLR_PREFIX */ 1465 if ((iflr->flags & IFLR_PREFIX) == 0) 1466 break; 1467 /* FALLTHROUGH */ 1468 case SIOCALIFADDR: 1469 case SIOCDLIFADDR: 1470 /* address must be specified on ADD and DELETE */ 1471 sa = (struct sockaddr *)&iflr->addr; 1472 if (sa->sa_family != AF_INET6) 1473 return EINVAL; 1474 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1475 return EINVAL; 1476 /* XXX need improvement */ 1477 sa = (struct sockaddr *)&iflr->dstaddr; 1478 if (sa->sa_family && sa->sa_family != AF_INET6) 1479 return EINVAL; 1480 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1481 return EINVAL; 1482 break; 1483 default: /* shouldn't happen */ 1484 #if 0 1485 panic("invalid cmd to in6_lifaddr_ioctl"); 1486 /* NOTREACHED */ 1487 #else 1488 return EOPNOTSUPP; 1489 #endif 1490 } 1491 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1492 return EINVAL; 1493 1494 switch (cmd) { 1495 case SIOCALIFADDR: 1496 { 1497 struct in6_aliasreq ifra; 1498 struct in6_addr *hostid = NULL; 1499 int prefixlen; 1500 1501 if ((iflr->flags & IFLR_PREFIX) != 0) { 1502 struct sockaddr_in6 *sin6; 1503 1504 /* 1505 * hostid is to fill in the hostid part of the 1506 * address. hostid points to the first link-local 1507 * address attached to the interface. 1508 */ 1509 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1510 if (!ifa) 1511 return EADDRNOTAVAIL; 1512 hostid = IFA_IN6(ifa); 1513 1514 /* prefixlen must be <= 64. */ 1515 if (64 < iflr->prefixlen) 1516 return EINVAL; 1517 prefixlen = iflr->prefixlen; 1518 1519 /* hostid part must be zero. */ 1520 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1521 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1522 sin6->sin6_addr.s6_addr32[3] != 0) { 1523 return EINVAL; 1524 } 1525 } else 1526 prefixlen = iflr->prefixlen; 1527 1528 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1529 bzero(&ifra, sizeof(ifra)); 1530 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1531 1532 bcopy(&iflr->addr, &ifra.ifra_addr, 1533 ((struct sockaddr *)&iflr->addr)->sa_len); 1534 if (hostid) { 1535 /* fill in hostid part */ 1536 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1537 hostid->s6_addr32[2]; 1538 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1539 hostid->s6_addr32[3]; 1540 } 1541 1542 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1543 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1544 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1545 if (hostid) { 1546 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1547 hostid->s6_addr32[2]; 1548 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1549 hostid->s6_addr32[3]; 1550 } 1551 } 1552 1553 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1554 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1555 1556 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1557 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1558 } 1559 case SIOCGLIFADDR: 1560 case SIOCDLIFADDR: 1561 { 1562 struct in6_ifaddr *ia; 1563 struct in6_addr mask, candidate, match; 1564 struct sockaddr_in6 *sin6; 1565 int cmp; 1566 1567 bzero(&mask, sizeof(mask)); 1568 if (iflr->flags & IFLR_PREFIX) { 1569 /* lookup a prefix rather than address. */ 1570 in6_prefixlen2mask(&mask, iflr->prefixlen); 1571 1572 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1573 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1574 match.s6_addr32[0] &= mask.s6_addr32[0]; 1575 match.s6_addr32[1] &= mask.s6_addr32[1]; 1576 match.s6_addr32[2] &= mask.s6_addr32[2]; 1577 match.s6_addr32[3] &= mask.s6_addr32[3]; 1578 1579 /* if you set extra bits, that's wrong */ 1580 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1581 return EINVAL; 1582 1583 cmp = 1; 1584 } else { 1585 if (cmd == SIOCGLIFADDR) { 1586 /* on getting an address, take the 1st match */ 1587 cmp = 0; /* XXX */ 1588 } else { 1589 /* on deleting an address, do exact match */ 1590 in6_prefixlen2mask(&mask, 128); 1591 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1592 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1593 1594 cmp = 1; 1595 } 1596 } 1597 1598 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1599 if (ifa->ifa_addr->sa_family != AF_INET6) 1600 continue; 1601 if (!cmp) 1602 break; 1603 1604 /* 1605 * XXX: this is adhoc, but is necessary to allow 1606 * a user to specify fe80::/64 (not /10) for a 1607 * link-local address. 1608 */ 1609 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1610 in6_clearscope(&candidate); 1611 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1612 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1613 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1614 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1615 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1616 break; 1617 } 1618 if (!ifa) 1619 return EADDRNOTAVAIL; 1620 ia = ifa2ia6(ifa); 1621 1622 if (cmd == SIOCGLIFADDR) { 1623 int error; 1624 1625 /* fill in the if_laddrreq structure */ 1626 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1627 error = sa6_recoverscope( 1628 (struct sockaddr_in6 *)&iflr->addr); 1629 if (error != 0) 1630 return (error); 1631 1632 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1633 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1634 ia->ia_dstaddr.sin6_len); 1635 error = sa6_recoverscope( 1636 (struct sockaddr_in6 *)&iflr->dstaddr); 1637 if (error != 0) 1638 return (error); 1639 } else 1640 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1641 1642 iflr->prefixlen = 1643 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1644 1645 iflr->flags = ia->ia6_flags; /* XXX */ 1646 1647 return 0; 1648 } else { 1649 struct in6_aliasreq ifra; 1650 1651 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1652 bzero(&ifra, sizeof(ifra)); 1653 bcopy(iflr->iflr_name, ifra.ifra_name, 1654 sizeof(ifra.ifra_name)); 1655 1656 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1657 ia->ia_addr.sin6_len); 1658 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1659 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1660 ia->ia_dstaddr.sin6_len); 1661 } else { 1662 bzero(&ifra.ifra_dstaddr, 1663 sizeof(ifra.ifra_dstaddr)); 1664 } 1665 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1666 ia->ia_prefixmask.sin6_len); 1667 1668 ifra.ifra_flags = ia->ia6_flags; 1669 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1670 ifp, td); 1671 } 1672 } 1673 } 1674 1675 return EOPNOTSUPP; /* just for safety */ 1676 } 1677 1678 /* 1679 * Initialize an interface's intetnet6 address 1680 * and routing table entry. 1681 */ 1682 static int 1683 in6_ifinit(ifp, ia, sin6, newhost) 1684 struct ifnet *ifp; 1685 struct in6_ifaddr *ia; 1686 struct sockaddr_in6 *sin6; 1687 int newhost; 1688 { 1689 int error = 0, plen, ifacount = 0; 1690 int s = splimp(); 1691 struct ifaddr *ifa; 1692 1693 /* 1694 * Give the interface a chance to initialize 1695 * if this is its first address, 1696 * and to validate the address if necessary. 1697 */ 1698 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1699 if (ifa->ifa_addr->sa_family != AF_INET6) 1700 continue; 1701 ifacount++; 1702 } 1703 1704 ia->ia_addr = *sin6; 1705 1706 if (ifacount <= 1 && ifp->if_ioctl) { 1707 IFF_LOCKGIANT(ifp); 1708 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1709 IFF_UNLOCKGIANT(ifp); 1710 if (error) { 1711 splx(s); 1712 return (error); 1713 } 1714 } 1715 splx(s); 1716 1717 ia->ia_ifa.ifa_metric = ifp->if_metric; 1718 1719 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1720 1721 if (newhost && nd6_need_cache(ifp) != 0) { 1722 /* set the rtrequest function to create llinfo */ 1723 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1724 } 1725 1726 /* 1727 * Special case: 1728 * If a new destination address is specified for a point-to-point 1729 * interface, install a route to the destination as an interface 1730 * direct route. In addition, if the link is expected to have neighbor 1731 * cache entries, specify RTF_LLINFO so that a cache entry for the 1732 * destination address will be created. 1733 * created 1734 * XXX: the logic below rejects assigning multiple addresses on a p2p 1735 * interface that share the same destination. 1736 */ 1737 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1738 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1739 ia->ia_dstaddr.sin6_family == AF_INET6) { 1740 int rtflags = RTF_UP | RTF_HOST; 1741 struct rtentry *rt = NULL, **rtp = NULL; 1742 1743 if (nd6_need_cache(ifp) != 0) { 1744 rtflags |= RTF_LLINFO; 1745 rtp = &rt; 1746 } 1747 1748 error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr, 1749 (struct sockaddr *)&ia->ia_addr, 1750 (struct sockaddr *)&ia->ia_prefixmask, 1751 ia->ia_flags | rtflags, rtp); 1752 if (error != 0) 1753 return (error); 1754 if (rt != NULL) { 1755 struct llinfo_nd6 *ln; 1756 1757 RT_LOCK(rt); 1758 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1759 if (ln != NULL) { 1760 /* 1761 * Set the state to STALE because we don't 1762 * have to perform address resolution on this 1763 * link. 1764 */ 1765 ln->ln_state = ND6_LLINFO_STALE; 1766 } 1767 RT_REMREF(rt); 1768 RT_UNLOCK(rt); 1769 } 1770 ia->ia_flags |= IFA_ROUTE; 1771 } 1772 if (plen < 128) { 1773 /* 1774 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1775 */ 1776 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1777 } 1778 1779 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1780 if (newhost) 1781 in6_ifaddloop(&(ia->ia_ifa)); 1782 1783 return (error); 1784 } 1785 1786 struct in6_multi_mship * 1787 in6_joingroup(ifp, addr, errorp, delay) 1788 struct ifnet *ifp; 1789 struct in6_addr *addr; 1790 int *errorp; 1791 int delay; 1792 { 1793 struct in6_multi_mship *imm; 1794 1795 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1796 if (!imm) { 1797 *errorp = ENOBUFS; 1798 return NULL; 1799 } 1800 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1801 if (!imm->i6mm_maddr) { 1802 /* *errorp is alrady set */ 1803 free(imm, M_IP6MADDR); 1804 return NULL; 1805 } 1806 return imm; 1807 } 1808 1809 int 1810 in6_leavegroup(imm) 1811 struct in6_multi_mship *imm; 1812 { 1813 1814 if (imm->i6mm_maddr) 1815 in6_delmulti(imm->i6mm_maddr); 1816 free(imm, M_IP6MADDR); 1817 return 0; 1818 } 1819 1820 /* 1821 * Find an IPv6 interface link-local address specific to an interface. 1822 */ 1823 struct in6_ifaddr * 1824 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1825 struct ifnet *ifp; 1826 int ignoreflags; 1827 { 1828 struct ifaddr *ifa; 1829 1830 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1831 if (ifa->ifa_addr->sa_family != AF_INET6) 1832 continue; 1833 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1834 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1835 ignoreflags) != 0) 1836 continue; 1837 break; 1838 } 1839 } 1840 1841 return ((struct in6_ifaddr *)ifa); 1842 } 1843 1844 1845 /* 1846 * find the internet address corresponding to a given interface and address. 1847 */ 1848 struct in6_ifaddr * 1849 in6ifa_ifpwithaddr(ifp, addr) 1850 struct ifnet *ifp; 1851 struct in6_addr *addr; 1852 { 1853 struct ifaddr *ifa; 1854 1855 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1856 if (ifa->ifa_addr->sa_family != AF_INET6) 1857 continue; 1858 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1859 break; 1860 } 1861 1862 return ((struct in6_ifaddr *)ifa); 1863 } 1864 1865 /* 1866 * Convert IP6 address to printable (loggable) representation. 1867 */ 1868 static char digits[] = "0123456789abcdef"; 1869 static int ip6round = 0; 1870 char * 1871 ip6_sprintf(addr) 1872 const struct in6_addr *addr; 1873 { 1874 static char ip6buf[8][48]; 1875 int i; 1876 char *cp; 1877 const u_int16_t *a = (const u_int16_t *)addr; 1878 const u_int8_t *d; 1879 int dcolon = 0; 1880 1881 ip6round = (ip6round + 1) & 7; 1882 cp = ip6buf[ip6round]; 1883 1884 for (i = 0; i < 8; i++) { 1885 if (dcolon == 1) { 1886 if (*a == 0) { 1887 if (i == 7) 1888 *cp++ = ':'; 1889 a++; 1890 continue; 1891 } else 1892 dcolon = 2; 1893 } 1894 if (*a == 0) { 1895 if (dcolon == 0 && *(a + 1) == 0) { 1896 if (i == 0) 1897 *cp++ = ':'; 1898 *cp++ = ':'; 1899 dcolon = 1; 1900 } else { 1901 *cp++ = '0'; 1902 *cp++ = ':'; 1903 } 1904 a++; 1905 continue; 1906 } 1907 d = (const u_char *)a; 1908 *cp++ = digits[*d >> 4]; 1909 *cp++ = digits[*d++ & 0xf]; 1910 *cp++ = digits[*d >> 4]; 1911 *cp++ = digits[*d & 0xf]; 1912 *cp++ = ':'; 1913 a++; 1914 } 1915 *--cp = 0; 1916 return (ip6buf[ip6round]); 1917 } 1918 1919 int 1920 in6_localaddr(in6) 1921 struct in6_addr *in6; 1922 { 1923 struct in6_ifaddr *ia; 1924 1925 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1926 return 1; 1927 1928 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1929 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1930 &ia->ia_prefixmask.sin6_addr)) { 1931 return 1; 1932 } 1933 } 1934 1935 return (0); 1936 } 1937 1938 int 1939 in6_is_addr_deprecated(sa6) 1940 struct sockaddr_in6 *sa6; 1941 { 1942 struct in6_ifaddr *ia; 1943 1944 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1945 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1946 &sa6->sin6_addr) && 1947 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1948 return (1); /* true */ 1949 1950 /* XXX: do we still have to go thru the rest of the list? */ 1951 } 1952 1953 return (0); /* false */ 1954 } 1955 1956 /* 1957 * return length of part which dst and src are equal 1958 * hard coding... 1959 */ 1960 int 1961 in6_matchlen(src, dst) 1962 struct in6_addr *src, *dst; 1963 { 1964 int match = 0; 1965 u_char *s = (u_char *)src, *d = (u_char *)dst; 1966 u_char *lim = s + 16, r; 1967 1968 while (s < lim) 1969 if ((r = (*d++ ^ *s++)) != 0) { 1970 while (r < 128) { 1971 match++; 1972 r <<= 1; 1973 } 1974 break; 1975 } else 1976 match += 8; 1977 return match; 1978 } 1979 1980 /* XXX: to be scope conscious */ 1981 int 1982 in6_are_prefix_equal(p1, p2, len) 1983 struct in6_addr *p1, *p2; 1984 int len; 1985 { 1986 int bytelen, bitlen; 1987 1988 /* sanity check */ 1989 if (0 > len || len > 128) { 1990 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1991 len); 1992 return (0); 1993 } 1994 1995 bytelen = len / 8; 1996 bitlen = len % 8; 1997 1998 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1999 return (0); 2000 if (bitlen != 0 && 2001 p1->s6_addr[bytelen] >> (8 - bitlen) != 2002 p2->s6_addr[bytelen] >> (8 - bitlen)) 2003 return (0); 2004 2005 return (1); 2006 } 2007 2008 void 2009 in6_prefixlen2mask(maskp, len) 2010 struct in6_addr *maskp; 2011 int len; 2012 { 2013 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 2014 int bytelen, bitlen, i; 2015 2016 /* sanity check */ 2017 if (0 > len || len > 128) { 2018 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 2019 len); 2020 return; 2021 } 2022 2023 bzero(maskp, sizeof(*maskp)); 2024 bytelen = len / 8; 2025 bitlen = len % 8; 2026 for (i = 0; i < bytelen; i++) 2027 maskp->s6_addr[i] = 0xff; 2028 if (bitlen) 2029 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2030 } 2031 2032 /* 2033 * return the best address out of the same scope. if no address was 2034 * found, return the first valid address from designated IF. 2035 */ 2036 struct in6_ifaddr * 2037 in6_ifawithifp(ifp, dst) 2038 struct ifnet *ifp; 2039 struct in6_addr *dst; 2040 { 2041 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2042 struct ifaddr *ifa; 2043 struct in6_ifaddr *besta = 0; 2044 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2045 2046 dep[0] = dep[1] = NULL; 2047 2048 /* 2049 * We first look for addresses in the same scope. 2050 * If there is one, return it. 2051 * If two or more, return one which matches the dst longest. 2052 * If none, return one of global addresses assigned other ifs. 2053 */ 2054 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2055 if (ifa->ifa_addr->sa_family != AF_INET6) 2056 continue; 2057 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2058 continue; /* XXX: is there any case to allow anycast? */ 2059 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2060 continue; /* don't use this interface */ 2061 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2062 continue; 2063 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2064 if (ip6_use_deprecated) 2065 dep[0] = (struct in6_ifaddr *)ifa; 2066 continue; 2067 } 2068 2069 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2070 /* 2071 * call in6_matchlen() as few as possible 2072 */ 2073 if (besta) { 2074 if (blen == -1) 2075 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2076 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2077 if (tlen > blen) { 2078 blen = tlen; 2079 besta = (struct in6_ifaddr *)ifa; 2080 } 2081 } else 2082 besta = (struct in6_ifaddr *)ifa; 2083 } 2084 } 2085 if (besta) 2086 return (besta); 2087 2088 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2089 if (ifa->ifa_addr->sa_family != AF_INET6) 2090 continue; 2091 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2092 continue; /* XXX: is there any case to allow anycast? */ 2093 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2094 continue; /* don't use this interface */ 2095 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2096 continue; 2097 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2098 if (ip6_use_deprecated) 2099 dep[1] = (struct in6_ifaddr *)ifa; 2100 continue; 2101 } 2102 2103 return (struct in6_ifaddr *)ifa; 2104 } 2105 2106 /* use the last-resort values, that are, deprecated addresses */ 2107 if (dep[0]) 2108 return dep[0]; 2109 if (dep[1]) 2110 return dep[1]; 2111 2112 return NULL; 2113 } 2114 2115 /* 2116 * perform DAD when interface becomes IFF_UP. 2117 */ 2118 void 2119 in6_if_up(ifp) 2120 struct ifnet *ifp; 2121 { 2122 struct ifaddr *ifa; 2123 struct in6_ifaddr *ia; 2124 2125 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2126 if (ifa->ifa_addr->sa_family != AF_INET6) 2127 continue; 2128 ia = (struct in6_ifaddr *)ifa; 2129 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2130 /* 2131 * The TENTATIVE flag was likely set by hand 2132 * beforehand, implicitly indicating the need for DAD. 2133 * We may be able to skip the random delay in this 2134 * case, but we impose delays just in case. 2135 */ 2136 nd6_dad_start(ifa, 2137 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2138 } 2139 } 2140 2141 /* 2142 * special cases, like 6to4, are handled in in6_ifattach 2143 */ 2144 in6_ifattach(ifp, NULL); 2145 } 2146 2147 int 2148 in6if_do_dad(ifp) 2149 struct ifnet *ifp; 2150 { 2151 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2152 return (0); 2153 2154 switch (ifp->if_type) { 2155 #ifdef IFT_DUMMY 2156 case IFT_DUMMY: 2157 #endif 2158 case IFT_FAITH: 2159 /* 2160 * These interfaces do not have the IFF_LOOPBACK flag, 2161 * but loop packets back. We do not have to do DAD on such 2162 * interfaces. We should even omit it, because loop-backed 2163 * NS would confuse the DAD procedure. 2164 */ 2165 return (0); 2166 default: 2167 /* 2168 * Our DAD routine requires the interface up and running. 2169 * However, some interfaces can be up before the RUNNING 2170 * status. Additionaly, users may try to assign addresses 2171 * before the interface becomes up (or running). 2172 * We simply skip DAD in such a case as a work around. 2173 * XXX: we should rather mark "tentative" on such addresses, 2174 * and do DAD after the interface becomes ready. 2175 */ 2176 if (!((ifp->if_flags & IFF_UP) && 2177 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2178 return (0); 2179 2180 return (1); 2181 } 2182 } 2183 2184 /* 2185 * Calculate max IPv6 MTU through all the interfaces and store it 2186 * to in6_maxmtu. 2187 */ 2188 void 2189 in6_setmaxmtu() 2190 { 2191 unsigned long maxmtu = 0; 2192 struct ifnet *ifp; 2193 2194 IFNET_RLOCK(); 2195 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 2196 /* this function can be called during ifnet initialization */ 2197 if (!ifp->if_afdata[AF_INET6]) 2198 continue; 2199 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2200 IN6_LINKMTU(ifp) > maxmtu) 2201 maxmtu = IN6_LINKMTU(ifp); 2202 } 2203 IFNET_RUNLOCK(); 2204 if (maxmtu) /* update only when maxmtu is positive */ 2205 in6_maxmtu = maxmtu; 2206 } 2207 2208 /* 2209 * Provide the length of interface identifiers to be used for the link attached 2210 * to the given interface. The length should be defined in "IPv6 over 2211 * xxx-link" document. Note that address architecture might also define 2212 * the length for a particular set of address prefixes, regardless of the 2213 * link type. As clarified in rfc2462bis, those two definitions should be 2214 * consistent, and those really are as of August 2004. 2215 */ 2216 int 2217 in6_if2idlen(ifp) 2218 struct ifnet *ifp; 2219 { 2220 switch (ifp->if_type) { 2221 case IFT_ETHER: /* RFC2464 */ 2222 #ifdef IFT_PROPVIRTUAL 2223 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2224 #endif 2225 #ifdef IFT_L2VLAN 2226 case IFT_L2VLAN: /* ditto */ 2227 #endif 2228 #ifdef IFT_IEEE80211 2229 case IFT_IEEE80211: /* ditto */ 2230 #endif 2231 #ifdef IFT_MIP 2232 case IFT_MIP: /* ditto */ 2233 #endif 2234 return (64); 2235 case IFT_FDDI: /* RFC2467 */ 2236 return (64); 2237 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2238 return (64); 2239 case IFT_PPP: /* RFC2472 */ 2240 return (64); 2241 case IFT_ARCNET: /* RFC2497 */ 2242 return (64); 2243 case IFT_FRELAY: /* RFC2590 */ 2244 return (64); 2245 case IFT_IEEE1394: /* RFC3146 */ 2246 return (64); 2247 case IFT_GIF: 2248 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2249 case IFT_LOOP: 2250 return (64); /* XXX: is this really correct? */ 2251 default: 2252 /* 2253 * Unknown link type: 2254 * It might be controversial to use the today's common constant 2255 * of 64 for these cases unconditionally. For full compliance, 2256 * we should return an error in this case. On the other hand, 2257 * if we simply miss the standard for the link type or a new 2258 * standard is defined for a new link type, the IFID length 2259 * is very likely to be the common constant. As a compromise, 2260 * we always use the constant, but make an explicit notice 2261 * indicating the "unknown" case. 2262 */ 2263 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2264 return (64); 2265 } 2266 } 2267 2268 void * 2269 in6_domifattach(ifp) 2270 struct ifnet *ifp; 2271 { 2272 struct in6_ifextra *ext; 2273 2274 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2275 bzero(ext, sizeof(*ext)); 2276 2277 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2278 M_IFADDR, M_WAITOK); 2279 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2280 2281 ext->icmp6_ifstat = 2282 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2283 M_IFADDR, M_WAITOK); 2284 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2285 2286 ext->nd_ifinfo = nd6_ifattach(ifp); 2287 ext->scope6_id = scope6_ifattach(ifp); 2288 return ext; 2289 } 2290 2291 void 2292 in6_domifdetach(ifp, aux) 2293 struct ifnet *ifp; 2294 void *aux; 2295 { 2296 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2297 2298 scope6_ifdetach(ext->scope6_id); 2299 nd6_ifdetach(ext->nd_ifinfo); 2300 free(ext->in6_ifstat, M_IFADDR); 2301 free(ext->icmp6_ifstat, M_IFADDR); 2302 free(ext, M_IFADDR); 2303 } 2304 2305 /* 2306 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2307 * v4 mapped addr or v4 compat addr 2308 */ 2309 void 2310 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2311 { 2312 bzero(sin, sizeof(*sin)); 2313 sin->sin_len = sizeof(struct sockaddr_in); 2314 sin->sin_family = AF_INET; 2315 sin->sin_port = sin6->sin6_port; 2316 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2317 } 2318 2319 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2320 void 2321 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2322 { 2323 bzero(sin6, sizeof(*sin6)); 2324 sin6->sin6_len = sizeof(struct sockaddr_in6); 2325 sin6->sin6_family = AF_INET6; 2326 sin6->sin6_port = sin->sin_port; 2327 sin6->sin6_addr.s6_addr32[0] = 0; 2328 sin6->sin6_addr.s6_addr32[1] = 0; 2329 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2330 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2331 } 2332 2333 /* Convert sockaddr_in6 into sockaddr_in. */ 2334 void 2335 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2336 { 2337 struct sockaddr_in *sin_p; 2338 struct sockaddr_in6 sin6; 2339 2340 /* 2341 * Save original sockaddr_in6 addr and convert it 2342 * to sockaddr_in. 2343 */ 2344 sin6 = *(struct sockaddr_in6 *)nam; 2345 sin_p = (struct sockaddr_in *)nam; 2346 in6_sin6_2_sin(sin_p, &sin6); 2347 } 2348 2349 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2350 void 2351 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2352 { 2353 struct sockaddr_in *sin_p; 2354 struct sockaddr_in6 *sin6_p; 2355 2356 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2357 M_WAITOK); 2358 sin_p = (struct sockaddr_in *)*nam; 2359 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2360 FREE(*nam, M_SONAME); 2361 *nam = (struct sockaddr *)sin6_p; 2362 } 2363