1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 69 #include <sys/param.h> 70 #include <sys/errno.h> 71 #include <sys/malloc.h> 72 #include <sys/socket.h> 73 #include <sys/socketvar.h> 74 #include <sys/sockio.h> 75 #include <sys/systm.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/time.h> 79 #include <sys/kernel.h> 80 #include <sys/syslog.h> 81 82 #include <net/if.h> 83 #include <net/if_types.h> 84 #include <net/route.h> 85 #include <net/if_dl.h> 86 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet/if_ether.h> 90 #include <netinet/in_systm.h> 91 #include <netinet/ip.h> 92 #include <netinet/in_pcb.h> 93 94 #include <netinet/ip6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/mld6_var.h> 98 #include <netinet6/ip6_mroute.h> 99 #include <netinet6/in6_ifattach.h> 100 #include <netinet6/scope6_var.h> 101 #include <netinet6/in6_pcb.h> 102 103 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 104 105 /* 106 * Definitions of some costant IP6 addresses. 107 */ 108 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 109 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 110 const struct in6_addr in6addr_nodelocal_allnodes = 111 IN6ADDR_NODELOCAL_ALLNODES_INIT; 112 const struct in6_addr in6addr_linklocal_allnodes = 113 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 114 const struct in6_addr in6addr_linklocal_allrouters = 115 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 116 117 const struct in6_addr in6mask0 = IN6MASK0; 118 const struct in6_addr in6mask32 = IN6MASK32; 119 const struct in6_addr in6mask64 = IN6MASK64; 120 const struct in6_addr in6mask96 = IN6MASK96; 121 const struct in6_addr in6mask128 = IN6MASK128; 122 123 const struct sockaddr_in6 sa6_any = 124 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 125 126 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 127 struct ifnet *, struct thread *)); 128 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 129 struct sockaddr_in6 *, int)); 130 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 131 132 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 133 int (*faithprefix_p)(struct in6_addr *); 134 135 /* 136 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 137 * This routine does actual work. 138 */ 139 static void 140 in6_ifloop_request(int cmd, struct ifaddr *ifa) 141 { 142 struct sockaddr_in6 all1_sa; 143 struct rtentry *nrt = NULL; 144 int e; 145 char ip6buf[INET6_ADDRSTRLEN]; 146 147 bzero(&all1_sa, sizeof(all1_sa)); 148 all1_sa.sin6_family = AF_INET6; 149 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 150 all1_sa.sin6_addr = in6mask128; 151 152 /* 153 * We specify the address itself as the gateway, and set the 154 * RTF_LLINFO flag, so that the corresponding host route would have 155 * the flag, and thus applications that assume traditional behavior 156 * would be happy. Note that we assume the caller of the function 157 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 158 * which changes the outgoing interface to the loopback interface. 159 */ 160 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 161 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 162 if (e != 0) { 163 /* XXX need more descriptive message */ 164 165 log(LOG_ERR, "in6_ifloop_request: " 166 "%s operation failed for %s (errno=%d)\n", 167 cmd == RTM_ADD ? "ADD" : "DELETE", 168 ip6_sprintf(ip6buf, 169 &((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); 170 } 171 172 /* 173 * Report the addition/removal of the address to the routing socket. 174 * XXX: since we called rtinit for a p2p interface with a destination, 175 * we end up reporting twice in such a case. Should we rather 176 * omit the second report? 177 */ 178 if (nrt) { 179 RT_LOCK(nrt); 180 /* 181 * Make sure rt_ifa be equal to IFA, the second argument of 182 * the function. We need this because when we refer to 183 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa 184 * points to the address instead of the loopback address. 185 */ 186 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { 187 IFAFREE(nrt->rt_ifa); 188 IFAREF(ifa); 189 nrt->rt_ifa = ifa; 190 } 191 192 rt_newaddrmsg(cmd, ifa, e, nrt); 193 if (cmd == RTM_DELETE) 194 RTFREE_LOCKED(nrt); 195 else { 196 /* the cmd must be RTM_ADD here */ 197 RT_REMREF(nrt); 198 RT_UNLOCK(nrt); 199 } 200 } 201 } 202 203 /* 204 * Add ownaddr as loopback rtentry. We previously add the route only if 205 * necessary (ex. on a p2p link). However, since we now manage addresses 206 * separately from prefixes, we should always add the route. We can't 207 * rely on the cloning mechanism from the corresponding interface route 208 * any more. 209 */ 210 void 211 in6_ifaddloop(struct ifaddr *ifa) 212 { 213 struct rtentry *rt; 214 int need_loop; 215 216 /* If there is no loopback entry, allocate one. */ 217 rt = rtalloc1(ifa->ifa_addr, 0, 0); 218 need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 219 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); 220 if (rt) 221 RTFREE_LOCKED(rt); 222 if (need_loop) 223 in6_ifloop_request(RTM_ADD, ifa); 224 } 225 226 /* 227 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 228 * if it exists. 229 */ 230 void 231 in6_ifremloop(struct ifaddr *ifa) 232 { 233 struct in6_ifaddr *ia; 234 struct rtentry *rt; 235 int ia_count = 0; 236 237 /* 238 * Some of BSD variants do not remove cloned routes 239 * from an interface direct route, when removing the direct route 240 * (see comments in net/net_osdep.h). Even for variants that do remove 241 * cloned routes, they could fail to remove the cloned routes when 242 * we handle multple addresses that share a common prefix. 243 * So, we should remove the route corresponding to the deleted address. 244 */ 245 246 /* 247 * Delete the entry only if exact one ifa exists. More than one ifa 248 * can exist if we assign a same single address to multiple 249 * (probably p2p) interfaces. 250 * XXX: we should avoid such a configuration in IPv6... 251 */ 252 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 253 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 254 ia_count++; 255 if (ia_count > 1) 256 break; 257 } 258 } 259 260 if (ia_count == 1) { 261 /* 262 * Before deleting, check if a corresponding loopbacked host 263 * route surely exists. With this check, we can avoid to 264 * delete an interface direct route whose destination is same 265 * as the address being removed. This can happen when removing 266 * a subnet-router anycast address on an interface attahced 267 * to a shared medium. 268 */ 269 rt = rtalloc1(ifa->ifa_addr, 0, 0); 270 if (rt != NULL) { 271 if ((rt->rt_flags & RTF_HOST) != 0 && 272 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 273 RTFREE_LOCKED(rt); 274 in6_ifloop_request(RTM_DELETE, ifa); 275 } else 276 RT_UNLOCK(rt); 277 } 278 } 279 } 280 281 int 282 in6_mask2len(struct in6_addr *mask, u_char *lim0) 283 { 284 int x = 0, y; 285 u_char *lim = lim0, *p; 286 287 /* ignore the scope_id part */ 288 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 289 lim = (u_char *)mask + sizeof(*mask); 290 for (p = (u_char *)mask; p < lim; x++, p++) { 291 if (*p != 0xff) 292 break; 293 } 294 y = 0; 295 if (p < lim) { 296 for (y = 0; y < 8; y++) { 297 if ((*p & (0x80 >> y)) == 0) 298 break; 299 } 300 } 301 302 /* 303 * when the limit pointer is given, do a stricter check on the 304 * remaining bits. 305 */ 306 if (p < lim) { 307 if (y != 0 && (*p & (0x00ff >> y)) != 0) 308 return (-1); 309 for (p = p + 1; p < lim; p++) 310 if (*p != 0) 311 return (-1); 312 } 313 314 return x * 8 + y; 315 } 316 317 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 318 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 319 320 int 321 in6_control(struct socket *so, u_long cmd, caddr_t data, 322 struct ifnet *ifp, struct thread *td) 323 { 324 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 325 struct in6_ifaddr *ia = NULL; 326 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 327 struct sockaddr_in6 *sa6; 328 int error; 329 330 switch (cmd) { 331 case SIOCGETSGCNT_IN6: 332 case SIOCGETMIFCNT_IN6: 333 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 334 } 335 336 switch(cmd) { 337 case SIOCAADDRCTL_POLICY: 338 case SIOCDADDRCTL_POLICY: 339 if (td != NULL) { 340 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 341 if (error) 342 return (error); 343 } 344 return (in6_src_ioctl(cmd, data)); 345 } 346 347 if (ifp == NULL) 348 return (EOPNOTSUPP); 349 350 switch (cmd) { 351 case SIOCSNDFLUSH_IN6: 352 case SIOCSPFXFLUSH_IN6: 353 case SIOCSRTRFLUSH_IN6: 354 case SIOCSDEFIFACE_IN6: 355 case SIOCSIFINFO_FLAGS: 356 if (td != NULL) { 357 error = priv_check(td, PRIV_NETINET_ND6); 358 if (error) 359 return (error); 360 } 361 /* FALLTHROUGH */ 362 case OSIOCGIFINFO_IN6: 363 case SIOCGIFINFO_IN6: 364 case SIOCSIFINFO_IN6: 365 case SIOCGDRLST_IN6: 366 case SIOCGPRLST_IN6: 367 case SIOCGNBRINFO_IN6: 368 case SIOCGDEFIFACE_IN6: 369 return (nd6_ioctl(cmd, data, ifp)); 370 } 371 372 switch (cmd) { 373 case SIOCSIFPREFIX_IN6: 374 case SIOCDIFPREFIX_IN6: 375 case SIOCAIFPREFIX_IN6: 376 case SIOCCIFPREFIX_IN6: 377 case SIOCSGIFPREFIX_IN6: 378 case SIOCGIFPREFIX_IN6: 379 log(LOG_NOTICE, 380 "prefix ioctls are now invalidated. " 381 "please use ifconfig.\n"); 382 return (EOPNOTSUPP); 383 } 384 385 switch (cmd) { 386 case SIOCSSCOPE6: 387 if (td != NULL) { 388 error = priv_check(td, PRIV_NETINET_SCOPE6); 389 if (error) 390 return (error); 391 } 392 return (scope6_set(ifp, 393 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 394 case SIOCGSCOPE6: 395 return (scope6_get(ifp, 396 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 397 case SIOCGSCOPE6DEF: 398 return (scope6_get_default((struct scope6_id *) 399 ifr->ifr_ifru.ifru_scope_id)); 400 } 401 402 switch (cmd) { 403 case SIOCALIFADDR: 404 if (td != NULL) { 405 error = priv_check(td, PRIV_NET_ADDIFADDR); 406 if (error) 407 return (error); 408 } 409 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 410 411 case SIOCDLIFADDR: 412 if (td != NULL) { 413 error = priv_check(td, PRIV_NET_DELIFADDR); 414 if (error) 415 return (error); 416 } 417 /* FALLTHROUGH */ 418 case SIOCGLIFADDR: 419 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 420 } 421 422 /* 423 * Find address for this interface, if it exists. 424 * 425 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 426 * only, and used the first interface address as the target of other 427 * operations (without checking ifra_addr). This was because netinet 428 * code/API assumed at most 1 interface address per interface. 429 * Since IPv6 allows a node to assign multiple addresses 430 * on a single interface, we almost always look and check the 431 * presence of ifra_addr, and reject invalid ones here. 432 * It also decreases duplicated code among SIOC*_IN6 operations. 433 */ 434 switch (cmd) { 435 case SIOCAIFADDR_IN6: 436 case SIOCSIFPHYADDR_IN6: 437 sa6 = &ifra->ifra_addr; 438 break; 439 case SIOCSIFADDR_IN6: 440 case SIOCGIFADDR_IN6: 441 case SIOCSIFDSTADDR_IN6: 442 case SIOCSIFNETMASK_IN6: 443 case SIOCGIFDSTADDR_IN6: 444 case SIOCGIFNETMASK_IN6: 445 case SIOCDIFADDR_IN6: 446 case SIOCGIFPSRCADDR_IN6: 447 case SIOCGIFPDSTADDR_IN6: 448 case SIOCGIFAFLAG_IN6: 449 case SIOCSNDFLUSH_IN6: 450 case SIOCSPFXFLUSH_IN6: 451 case SIOCSRTRFLUSH_IN6: 452 case SIOCGIFALIFETIME_IN6: 453 case SIOCSIFALIFETIME_IN6: 454 case SIOCGIFSTAT_IN6: 455 case SIOCGIFSTAT_ICMP6: 456 sa6 = &ifr->ifr_addr; 457 break; 458 default: 459 sa6 = NULL; 460 break; 461 } 462 if (sa6 && sa6->sin6_family == AF_INET6) { 463 int error = 0; 464 465 if (sa6->sin6_scope_id != 0) 466 error = sa6_embedscope(sa6, 0); 467 else 468 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 469 if (error != 0) 470 return (error); 471 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 472 } else 473 ia = NULL; 474 475 switch (cmd) { 476 case SIOCSIFADDR_IN6: 477 case SIOCSIFDSTADDR_IN6: 478 case SIOCSIFNETMASK_IN6: 479 /* 480 * Since IPv6 allows a node to assign multiple addresses 481 * on a single interface, SIOCSIFxxx ioctls are deprecated. 482 */ 483 /* we decided to obsolete this command (20000704) */ 484 return (EINVAL); 485 486 case SIOCDIFADDR_IN6: 487 /* 488 * for IPv4, we look for existing in_ifaddr here to allow 489 * "ifconfig if0 delete" to remove the first IPv4 address on 490 * the interface. For IPv6, as the spec allows multiple 491 * interface address from the day one, we consider "remove the 492 * first one" semantics to be not preferable. 493 */ 494 if (ia == NULL) 495 return (EADDRNOTAVAIL); 496 /* FALLTHROUGH */ 497 case SIOCAIFADDR_IN6: 498 /* 499 * We always require users to specify a valid IPv6 address for 500 * the corresponding operation. 501 */ 502 if (ifra->ifra_addr.sin6_family != AF_INET6 || 503 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 504 return (EAFNOSUPPORT); 505 506 if (td != NULL) { 507 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 508 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 509 if (error) 510 return (error); 511 } 512 513 break; 514 515 case SIOCGIFADDR_IN6: 516 /* This interface is basically deprecated. use SIOCGIFCONF. */ 517 /* FALLTHROUGH */ 518 case SIOCGIFAFLAG_IN6: 519 case SIOCGIFNETMASK_IN6: 520 case SIOCGIFDSTADDR_IN6: 521 case SIOCGIFALIFETIME_IN6: 522 /* must think again about its semantics */ 523 if (ia == NULL) 524 return (EADDRNOTAVAIL); 525 break; 526 case SIOCSIFALIFETIME_IN6: 527 { 528 struct in6_addrlifetime *lt; 529 530 if (td != NULL) { 531 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 532 if (error) 533 return (error); 534 } 535 if (ia == NULL) 536 return (EADDRNOTAVAIL); 537 /* sanity for overflow - beware unsigned */ 538 lt = &ifr->ifr_ifru.ifru_lifetime; 539 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 540 lt->ia6t_vltime + time_second < time_second) { 541 return EINVAL; 542 } 543 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 544 lt->ia6t_pltime + time_second < time_second) { 545 return EINVAL; 546 } 547 break; 548 } 549 } 550 551 switch (cmd) { 552 553 case SIOCGIFADDR_IN6: 554 ifr->ifr_addr = ia->ia_addr; 555 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 556 return (error); 557 break; 558 559 case SIOCGIFDSTADDR_IN6: 560 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 561 return (EINVAL); 562 /* 563 * XXX: should we check if ifa_dstaddr is NULL and return 564 * an error? 565 */ 566 ifr->ifr_dstaddr = ia->ia_dstaddr; 567 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 568 return (error); 569 break; 570 571 case SIOCGIFNETMASK_IN6: 572 ifr->ifr_addr = ia->ia_prefixmask; 573 break; 574 575 case SIOCGIFAFLAG_IN6: 576 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 577 break; 578 579 case SIOCGIFSTAT_IN6: 580 if (ifp == NULL) 581 return EINVAL; 582 bzero(&ifr->ifr_ifru.ifru_stat, 583 sizeof(ifr->ifr_ifru.ifru_stat)); 584 ifr->ifr_ifru.ifru_stat = 585 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 586 break; 587 588 case SIOCGIFSTAT_ICMP6: 589 if (ifp == NULL) 590 return EINVAL; 591 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 592 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 593 ifr->ifr_ifru.ifru_icmp6stat = 594 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 595 break; 596 597 case SIOCGIFALIFETIME_IN6: 598 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 599 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 600 time_t maxexpire; 601 struct in6_addrlifetime *retlt = 602 &ifr->ifr_ifru.ifru_lifetime; 603 604 /* 605 * XXX: adjust expiration time assuming time_t is 606 * signed. 607 */ 608 maxexpire = (-1) & 609 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 610 if (ia->ia6_lifetime.ia6t_vltime < 611 maxexpire - ia->ia6_updatetime) { 612 retlt->ia6t_expire = ia->ia6_updatetime + 613 ia->ia6_lifetime.ia6t_vltime; 614 } else 615 retlt->ia6t_expire = maxexpire; 616 } 617 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 618 time_t maxexpire; 619 struct in6_addrlifetime *retlt = 620 &ifr->ifr_ifru.ifru_lifetime; 621 622 /* 623 * XXX: adjust expiration time assuming time_t is 624 * signed. 625 */ 626 maxexpire = (-1) & 627 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 628 if (ia->ia6_lifetime.ia6t_pltime < 629 maxexpire - ia->ia6_updatetime) { 630 retlt->ia6t_preferred = ia->ia6_updatetime + 631 ia->ia6_lifetime.ia6t_pltime; 632 } else 633 retlt->ia6t_preferred = maxexpire; 634 } 635 break; 636 637 case SIOCSIFALIFETIME_IN6: 638 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 639 /* for sanity */ 640 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 641 ia->ia6_lifetime.ia6t_expire = 642 time_second + ia->ia6_lifetime.ia6t_vltime; 643 } else 644 ia->ia6_lifetime.ia6t_expire = 0; 645 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 646 ia->ia6_lifetime.ia6t_preferred = 647 time_second + ia->ia6_lifetime.ia6t_pltime; 648 } else 649 ia->ia6_lifetime.ia6t_preferred = 0; 650 break; 651 652 case SIOCAIFADDR_IN6: 653 { 654 int i, error = 0; 655 struct nd_prefixctl pr0; 656 struct nd_prefix *pr; 657 658 /* 659 * first, make or update the interface address structure, 660 * and link it to the list. 661 */ 662 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 663 return (error); 664 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 665 == NULL) { 666 /* 667 * this can happen when the user specify the 0 valid 668 * lifetime. 669 */ 670 break; 671 } 672 673 /* 674 * then, make the prefix on-link on the interface. 675 * XXX: we'd rather create the prefix before the address, but 676 * we need at least one address to install the corresponding 677 * interface route, so we configure the address first. 678 */ 679 680 /* 681 * convert mask to prefix length (prefixmask has already 682 * been validated in in6_update_ifa(). 683 */ 684 bzero(&pr0, sizeof(pr0)); 685 pr0.ndpr_ifp = ifp; 686 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 687 NULL); 688 if (pr0.ndpr_plen == 128) { 689 break; /* we don't need to install a host route. */ 690 } 691 pr0.ndpr_prefix = ifra->ifra_addr; 692 /* apply the mask for safety. */ 693 for (i = 0; i < 4; i++) { 694 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 695 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 696 } 697 /* 698 * XXX: since we don't have an API to set prefix (not address) 699 * lifetimes, we just use the same lifetimes as addresses. 700 * The (temporarily) installed lifetimes can be overridden by 701 * later advertised RAs (when accept_rtadv is non 0), which is 702 * an intended behavior. 703 */ 704 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 705 pr0.ndpr_raf_auto = 706 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 707 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 708 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 709 710 /* add the prefix if not yet. */ 711 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 712 /* 713 * nd6_prelist_add will install the corresponding 714 * interface route. 715 */ 716 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 717 return (error); 718 if (pr == NULL) { 719 log(LOG_ERR, "nd6_prelist_add succeeded but " 720 "no prefix\n"); 721 return (EINVAL); /* XXX panic here? */ 722 } 723 } 724 725 /* relate the address to the prefix */ 726 if (ia->ia6_ndpr == NULL) { 727 ia->ia6_ndpr = pr; 728 pr->ndpr_refcnt++; 729 730 /* 731 * If this is the first autoconf address from the 732 * prefix, create a temporary address as well 733 * (when required). 734 */ 735 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 736 ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 737 int e; 738 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 739 log(LOG_NOTICE, "in6_control: failed " 740 "to create a temporary address, " 741 "errno=%d\n", e); 742 } 743 } 744 } 745 746 /* 747 * this might affect the status of autoconfigured addresses, 748 * that is, this address might make other addresses detached. 749 */ 750 pfxlist_onlink_check(); 751 if (error == 0 && ia) 752 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 753 break; 754 } 755 756 case SIOCDIFADDR_IN6: 757 { 758 struct nd_prefix *pr; 759 760 /* 761 * If the address being deleted is the only one that owns 762 * the corresponding prefix, expire the prefix as well. 763 * XXX: theoretically, we don't have to worry about such 764 * relationship, since we separate the address management 765 * and the prefix management. We do this, however, to provide 766 * as much backward compatibility as possible in terms of 767 * the ioctl operation. 768 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 769 */ 770 pr = ia->ia6_ndpr; 771 in6_purgeaddr(&ia->ia_ifa); 772 if (pr && pr->ndpr_refcnt == 0) 773 prelist_remove(pr); 774 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 775 break; 776 } 777 778 default: 779 if (ifp == NULL || ifp->if_ioctl == 0) 780 return (EOPNOTSUPP); 781 return ((*ifp->if_ioctl)(ifp, cmd, data)); 782 } 783 784 return (0); 785 } 786 787 /* 788 * Update parameters of an IPv6 interface address. 789 * If necessary, a new entry is created and linked into address chains. 790 * This function is separated from in6_control(). 791 * XXX: should this be performed under splnet()? 792 */ 793 int 794 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 795 struct in6_ifaddr *ia, int flags) 796 { 797 int error = 0, hostIsNew = 0, plen = -1; 798 struct in6_ifaddr *oia; 799 struct sockaddr_in6 dst6; 800 struct in6_addrlifetime *lt; 801 struct in6_multi_mship *imm; 802 struct in6_multi *in6m_sol; 803 struct rtentry *rt; 804 int delay; 805 char ip6buf[INET6_ADDRSTRLEN]; 806 807 /* Validate parameters */ 808 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 809 return (EINVAL); 810 811 /* 812 * The destination address for a p2p link must have a family 813 * of AF_UNSPEC or AF_INET6. 814 */ 815 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 816 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 817 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 818 return (EAFNOSUPPORT); 819 /* 820 * validate ifra_prefixmask. don't check sin6_family, netmask 821 * does not carry fields other than sin6_len. 822 */ 823 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 824 return (EINVAL); 825 /* 826 * Because the IPv6 address architecture is classless, we require 827 * users to specify a (non 0) prefix length (mask) for a new address. 828 * We also require the prefix (when specified) mask is valid, and thus 829 * reject a non-consecutive mask. 830 */ 831 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 832 return (EINVAL); 833 if (ifra->ifra_prefixmask.sin6_len != 0) { 834 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 835 (u_char *)&ifra->ifra_prefixmask + 836 ifra->ifra_prefixmask.sin6_len); 837 if (plen <= 0) 838 return (EINVAL); 839 } else { 840 /* 841 * In this case, ia must not be NULL. We just use its prefix 842 * length. 843 */ 844 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 845 } 846 /* 847 * If the destination address on a p2p interface is specified, 848 * and the address is a scoped one, validate/set the scope 849 * zone identifier. 850 */ 851 dst6 = ifra->ifra_dstaddr; 852 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 853 (dst6.sin6_family == AF_INET6)) { 854 struct in6_addr in6_tmp; 855 u_int32_t zoneid; 856 857 in6_tmp = dst6.sin6_addr; 858 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 859 return (EINVAL); /* XXX: should be impossible */ 860 861 if (dst6.sin6_scope_id != 0) { 862 if (dst6.sin6_scope_id != zoneid) 863 return (EINVAL); 864 } else /* user omit to specify the ID. */ 865 dst6.sin6_scope_id = zoneid; 866 867 /* convert into the internal form */ 868 if (sa6_embedscope(&dst6, 0)) 869 return (EINVAL); /* XXX: should be impossible */ 870 } 871 /* 872 * The destination address can be specified only for a p2p or a 873 * loopback interface. If specified, the corresponding prefix length 874 * must be 128. 875 */ 876 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 877 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 878 /* XXX: noisy message */ 879 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 880 "be specified for a p2p or a loopback IF only\n")); 881 return (EINVAL); 882 } 883 if (plen != 128) { 884 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 885 "be 128 when dstaddr is specified\n")); 886 return (EINVAL); 887 } 888 } 889 /* lifetime consistency check */ 890 lt = &ifra->ifra_lifetime; 891 if (lt->ia6t_pltime > lt->ia6t_vltime) 892 return (EINVAL); 893 if (lt->ia6t_vltime == 0) { 894 /* 895 * the following log might be noisy, but this is a typical 896 * configuration mistake or a tool's bug. 897 */ 898 nd6log((LOG_INFO, 899 "in6_update_ifa: valid lifetime is 0 for %s\n", 900 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 901 902 if (ia == NULL) 903 return (0); /* there's nothing to do */ 904 } 905 906 /* 907 * If this is a new address, allocate a new ifaddr and link it 908 * into chains. 909 */ 910 if (ia == NULL) { 911 hostIsNew = 1; 912 /* 913 * When in6_update_ifa() is called in a process of a received 914 * RA, it is called under an interrupt context. So, we should 915 * call malloc with M_NOWAIT. 916 */ 917 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 918 M_NOWAIT); 919 if (ia == NULL) 920 return (ENOBUFS); 921 bzero((caddr_t)ia, sizeof(*ia)); 922 LIST_INIT(&ia->ia6_memberships); 923 /* Initialize the address and masks, and put time stamp */ 924 IFA_LOCK_INIT(&ia->ia_ifa); 925 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 926 ia->ia_addr.sin6_family = AF_INET6; 927 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 928 ia->ia6_createtime = time_second; 929 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 930 /* 931 * XXX: some functions expect that ifa_dstaddr is not 932 * NULL for p2p interfaces. 933 */ 934 ia->ia_ifa.ifa_dstaddr = 935 (struct sockaddr *)&ia->ia_dstaddr; 936 } else { 937 ia->ia_ifa.ifa_dstaddr = NULL; 938 } 939 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 940 941 ia->ia_ifp = ifp; 942 if ((oia = in6_ifaddr) != NULL) { 943 for ( ; oia->ia_next; oia = oia->ia_next) 944 continue; 945 oia->ia_next = ia; 946 } else 947 in6_ifaddr = ia; 948 949 ia->ia_ifa.ifa_refcnt = 1; 950 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 951 } 952 953 /* update timestamp */ 954 ia->ia6_updatetime = time_second; 955 956 /* set prefix mask */ 957 if (ifra->ifra_prefixmask.sin6_len) { 958 /* 959 * We prohibit changing the prefix length of an existing 960 * address, because 961 * + such an operation should be rare in IPv6, and 962 * + the operation would confuse prefix management. 963 */ 964 if (ia->ia_prefixmask.sin6_len && 965 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 966 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 967 " existing (%s) address should not be changed\n", 968 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 969 error = EINVAL; 970 goto unlink; 971 } 972 ia->ia_prefixmask = ifra->ifra_prefixmask; 973 } 974 975 /* 976 * If a new destination address is specified, scrub the old one and 977 * install the new destination. Note that the interface must be 978 * p2p or loopback (see the check above.) 979 */ 980 if (dst6.sin6_family == AF_INET6 && 981 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 982 int e; 983 984 if ((ia->ia_flags & IFA_ROUTE) != 0 && 985 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 986 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 987 "a route to the old destination: %s\n", 988 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 989 /* proceed anyway... */ 990 } else 991 ia->ia_flags &= ~IFA_ROUTE; 992 ia->ia_dstaddr = dst6; 993 } 994 995 /* 996 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 997 * to see if the address is deprecated or invalidated, but initialize 998 * these members for applications. 999 */ 1000 ia->ia6_lifetime = ifra->ifra_lifetime; 1001 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1002 ia->ia6_lifetime.ia6t_expire = 1003 time_second + ia->ia6_lifetime.ia6t_vltime; 1004 } else 1005 ia->ia6_lifetime.ia6t_expire = 0; 1006 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1007 ia->ia6_lifetime.ia6t_preferred = 1008 time_second + ia->ia6_lifetime.ia6t_pltime; 1009 } else 1010 ia->ia6_lifetime.ia6t_preferred = 0; 1011 1012 /* reset the interface and routing table appropriately. */ 1013 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1014 goto unlink; 1015 1016 /* 1017 * configure address flags. 1018 */ 1019 ia->ia6_flags = ifra->ifra_flags; 1020 /* 1021 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1022 * userland, make it deprecated. 1023 */ 1024 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1025 ia->ia6_lifetime.ia6t_pltime = 0; 1026 ia->ia6_lifetime.ia6t_preferred = time_second; 1027 } 1028 /* 1029 * Make the address tentative before joining multicast addresses, 1030 * so that corresponding MLD responses would not have a tentative 1031 * source address. 1032 */ 1033 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1034 if (hostIsNew && in6if_do_dad(ifp)) 1035 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1036 1037 /* 1038 * We are done if we have simply modified an existing address. 1039 */ 1040 if (!hostIsNew) 1041 return (error); 1042 1043 /* 1044 * Beyond this point, we should call in6_purgeaddr upon an error, 1045 * not just go to unlink. 1046 */ 1047 1048 /* Join necessary multicast groups */ 1049 in6m_sol = NULL; 1050 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1051 struct sockaddr_in6 mltaddr, mltmask; 1052 struct in6_addr llsol; 1053 1054 /* join solicited multicast addr for new host id */ 1055 bzero(&llsol, sizeof(struct in6_addr)); 1056 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1057 llsol.s6_addr32[1] = 0; 1058 llsol.s6_addr32[2] = htonl(1); 1059 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1060 llsol.s6_addr8[12] = 0xff; 1061 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1062 /* XXX: should not happen */ 1063 log(LOG_ERR, "in6_update_ifa: " 1064 "in6_setscope failed\n"); 1065 goto cleanup; 1066 } 1067 delay = 0; 1068 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1069 /* 1070 * We need a random delay for DAD on the address 1071 * being configured. It also means delaying 1072 * transmission of the corresponding MLD report to 1073 * avoid report collision. 1074 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1075 */ 1076 delay = arc4random() % 1077 (MAX_RTR_SOLICITATION_DELAY * hz); 1078 } 1079 imm = in6_joingroup(ifp, &llsol, &error, delay); 1080 if (imm == NULL) { 1081 nd6log((LOG_WARNING, 1082 "in6_update_ifa: addmulti failed for " 1083 "%s on %s (errno=%d)\n", 1084 ip6_sprintf(ip6buf, &llsol), if_name(ifp), 1085 error)); 1086 in6_purgeaddr((struct ifaddr *)ia); 1087 return (error); 1088 } 1089 LIST_INSERT_HEAD(&ia->ia6_memberships, 1090 imm, i6mm_chain); 1091 in6m_sol = imm->i6mm_maddr; 1092 1093 bzero(&mltmask, sizeof(mltmask)); 1094 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1095 mltmask.sin6_family = AF_INET6; 1096 mltmask.sin6_addr = in6mask32; 1097 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1098 1099 /* 1100 * join link-local all-nodes address 1101 */ 1102 bzero(&mltaddr, sizeof(mltaddr)); 1103 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1104 mltaddr.sin6_family = AF_INET6; 1105 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1106 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1107 0) 1108 goto cleanup; /* XXX: should not fail */ 1109 1110 /* 1111 * XXX: do we really need this automatic routes? 1112 * We should probably reconsider this stuff. Most applications 1113 * actually do not need the routes, since they usually specify 1114 * the outgoing interface. 1115 */ 1116 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1117 if (rt) { 1118 /* XXX: only works in !SCOPEDROUTING case. */ 1119 if (memcmp(&mltaddr.sin6_addr, 1120 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1121 MLTMASK_LEN)) { 1122 RTFREE_LOCKED(rt); 1123 rt = NULL; 1124 } 1125 } 1126 if (!rt) { 1127 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1128 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1129 (struct sockaddr *)&ia->ia_addr, 1130 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1131 (struct rtentry **)0); 1132 if (error) 1133 goto cleanup; 1134 } else { 1135 RTFREE_LOCKED(rt); 1136 } 1137 1138 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1139 if (!imm) { 1140 nd6log((LOG_WARNING, 1141 "in6_update_ifa: addmulti failed for " 1142 "%s on %s (errno=%d)\n", 1143 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1144 if_name(ifp), error)); 1145 goto cleanup; 1146 } 1147 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1148 1149 /* 1150 * join node information group address 1151 */ 1152 #define hostnamelen strlen(hostname) 1153 delay = 0; 1154 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1155 /* 1156 * The spec doesn't say anything about delay for this 1157 * group, but the same logic should apply. 1158 */ 1159 delay = arc4random() % 1160 (MAX_RTR_SOLICITATION_DELAY * hz); 1161 } 1162 mtx_lock(&hostname_mtx); 1163 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1164 == 0) { 1165 mtx_unlock(&hostname_mtx); 1166 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1167 delay); /* XXX jinmei */ 1168 if (!imm) { 1169 nd6log((LOG_WARNING, "in6_update_ifa: " 1170 "addmulti failed for %s on %s " 1171 "(errno=%d)\n", 1172 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1173 if_name(ifp), error)); 1174 /* XXX not very fatal, go on... */ 1175 } else { 1176 LIST_INSERT_HEAD(&ia->ia6_memberships, 1177 imm, i6mm_chain); 1178 } 1179 } else 1180 mtx_unlock(&hostname_mtx); 1181 #undef hostnamelen 1182 1183 /* 1184 * join interface-local all-nodes address. 1185 * (ff01::1%ifN, and ff01::%ifN/32) 1186 */ 1187 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1188 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1189 != 0) 1190 goto cleanup; /* XXX: should not fail */ 1191 /* XXX: again, do we really need the route? */ 1192 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1193 if (rt) { 1194 if (memcmp(&mltaddr.sin6_addr, 1195 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1196 MLTMASK_LEN)) { 1197 RTFREE_LOCKED(rt); 1198 rt = NULL; 1199 } 1200 } 1201 if (!rt) { 1202 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1203 (struct sockaddr *)&ia->ia_addr, 1204 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1205 (struct rtentry **)0); 1206 if (error) 1207 goto cleanup; 1208 } else 1209 RTFREE_LOCKED(rt); 1210 1211 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1212 if (!imm) { 1213 nd6log((LOG_WARNING, "in6_update_ifa: " 1214 "addmulti failed for %s on %s " 1215 "(errno=%d)\n", 1216 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1217 if_name(ifp), error)); 1218 goto cleanup; 1219 } 1220 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1221 #undef MLTMASK_LEN 1222 } 1223 1224 /* 1225 * Perform DAD, if needed. 1226 * XXX It may be of use, if we can administratively 1227 * disable DAD. 1228 */ 1229 if (hostIsNew && in6if_do_dad(ifp) && 1230 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1231 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1232 { 1233 int mindelay, maxdelay; 1234 1235 delay = 0; 1236 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1237 /* 1238 * We need to impose a delay before sending an NS 1239 * for DAD. Check if we also needed a delay for the 1240 * corresponding MLD message. If we did, the delay 1241 * should be larger than the MLD delay (this could be 1242 * relaxed a bit, but this simple logic is at least 1243 * safe). 1244 */ 1245 mindelay = 0; 1246 if (in6m_sol != NULL && 1247 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1248 mindelay = in6m_sol->in6m_timer; 1249 } 1250 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1251 if (maxdelay - mindelay == 0) 1252 delay = 0; 1253 else { 1254 delay = 1255 (arc4random() % (maxdelay - mindelay)) + 1256 mindelay; 1257 } 1258 } 1259 nd6_dad_start((struct ifaddr *)ia, delay); 1260 } 1261 1262 return (error); 1263 1264 unlink: 1265 /* 1266 * XXX: if a change of an existing address failed, keep the entry 1267 * anyway. 1268 */ 1269 if (hostIsNew) 1270 in6_unlink_ifa(ia, ifp); 1271 return (error); 1272 1273 cleanup: 1274 in6_purgeaddr(&ia->ia_ifa); 1275 return error; 1276 } 1277 1278 void 1279 in6_purgeaddr(struct ifaddr *ifa) 1280 { 1281 struct ifnet *ifp = ifa->ifa_ifp; 1282 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1283 char ip6buf[INET6_ADDRSTRLEN]; 1284 struct in6_multi_mship *imm; 1285 1286 /* stop DAD processing */ 1287 nd6_dad_stop(ifa); 1288 1289 /* 1290 * delete route to the destination of the address being purged. 1291 * The interface must be p2p or loopback in this case. 1292 */ 1293 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1294 int e; 1295 1296 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1297 != 0) { 1298 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1299 "a route to the p2p destination: %s on %s, " 1300 "errno=%d\n", 1301 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), 1302 if_name(ifp), e); 1303 /* proceed anyway... */ 1304 } else 1305 ia->ia_flags &= ~IFA_ROUTE; 1306 } 1307 1308 /* Remove ownaddr's loopback rtentry, if it exists. */ 1309 in6_ifremloop(&(ia->ia_ifa)); 1310 1311 /* 1312 * leave from multicast groups we have joined for the interface 1313 */ 1314 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1315 LIST_REMOVE(imm, i6mm_chain); 1316 in6_leavegroup(imm); 1317 } 1318 1319 in6_unlink_ifa(ia, ifp); 1320 } 1321 1322 static void 1323 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1324 { 1325 struct in6_ifaddr *oia; 1326 int s = splnet(); 1327 1328 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1329 1330 oia = ia; 1331 if (oia == (ia = in6_ifaddr)) 1332 in6_ifaddr = ia->ia_next; 1333 else { 1334 while (ia->ia_next && (ia->ia_next != oia)) 1335 ia = ia->ia_next; 1336 if (ia->ia_next) 1337 ia->ia_next = oia->ia_next; 1338 else { 1339 /* search failed */ 1340 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1341 } 1342 } 1343 1344 /* 1345 * Release the reference to the base prefix. There should be a 1346 * positive reference. 1347 */ 1348 if (oia->ia6_ndpr == NULL) { 1349 nd6log((LOG_NOTICE, 1350 "in6_unlink_ifa: autoconf'ed address " 1351 "%p has no prefix\n", oia)); 1352 } else { 1353 oia->ia6_ndpr->ndpr_refcnt--; 1354 oia->ia6_ndpr = NULL; 1355 } 1356 1357 /* 1358 * Also, if the address being removed is autoconf'ed, call 1359 * pfxlist_onlink_check() since the release might affect the status of 1360 * other (detached) addresses. 1361 */ 1362 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1363 pfxlist_onlink_check(); 1364 } 1365 1366 /* 1367 * release another refcnt for the link from in6_ifaddr. 1368 * Note that we should decrement the refcnt at least once for all *BSD. 1369 */ 1370 IFAFREE(&oia->ia_ifa); 1371 1372 splx(s); 1373 } 1374 1375 void 1376 in6_purgeif(struct ifnet *ifp) 1377 { 1378 struct ifaddr *ifa, *nifa; 1379 1380 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1381 nifa = TAILQ_NEXT(ifa, ifa_list); 1382 if (ifa->ifa_addr->sa_family != AF_INET6) 1383 continue; 1384 in6_purgeaddr(ifa); 1385 } 1386 1387 in6_ifdetach(ifp); 1388 } 1389 1390 /* 1391 * SIOC[GAD]LIFADDR. 1392 * SIOCGLIFADDR: get first address. (?) 1393 * SIOCGLIFADDR with IFLR_PREFIX: 1394 * get first address that matches the specified prefix. 1395 * SIOCALIFADDR: add the specified address. 1396 * SIOCALIFADDR with IFLR_PREFIX: 1397 * add the specified prefix, filling hostid part from 1398 * the first link-local address. prefixlen must be <= 64. 1399 * SIOCDLIFADDR: delete the specified address. 1400 * SIOCDLIFADDR with IFLR_PREFIX: 1401 * delete the first address that matches the specified prefix. 1402 * return values: 1403 * EINVAL on invalid parameters 1404 * EADDRNOTAVAIL on prefix match failed/specified address not found 1405 * other values may be returned from in6_ioctl() 1406 * 1407 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1408 * this is to accomodate address naming scheme other than RFC2374, 1409 * in the future. 1410 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1411 * address encoding scheme. (see figure on page 8) 1412 */ 1413 static int 1414 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1415 struct ifnet *ifp, struct thread *td) 1416 { 1417 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1418 struct ifaddr *ifa; 1419 struct sockaddr *sa; 1420 1421 /* sanity checks */ 1422 if (!data || !ifp) { 1423 panic("invalid argument to in6_lifaddr_ioctl"); 1424 /* NOTREACHED */ 1425 } 1426 1427 switch (cmd) { 1428 case SIOCGLIFADDR: 1429 /* address must be specified on GET with IFLR_PREFIX */ 1430 if ((iflr->flags & IFLR_PREFIX) == 0) 1431 break; 1432 /* FALLTHROUGH */ 1433 case SIOCALIFADDR: 1434 case SIOCDLIFADDR: 1435 /* address must be specified on ADD and DELETE */ 1436 sa = (struct sockaddr *)&iflr->addr; 1437 if (sa->sa_family != AF_INET6) 1438 return EINVAL; 1439 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1440 return EINVAL; 1441 /* XXX need improvement */ 1442 sa = (struct sockaddr *)&iflr->dstaddr; 1443 if (sa->sa_family && sa->sa_family != AF_INET6) 1444 return EINVAL; 1445 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1446 return EINVAL; 1447 break; 1448 default: /* shouldn't happen */ 1449 #if 0 1450 panic("invalid cmd to in6_lifaddr_ioctl"); 1451 /* NOTREACHED */ 1452 #else 1453 return EOPNOTSUPP; 1454 #endif 1455 } 1456 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1457 return EINVAL; 1458 1459 switch (cmd) { 1460 case SIOCALIFADDR: 1461 { 1462 struct in6_aliasreq ifra; 1463 struct in6_addr *hostid = NULL; 1464 int prefixlen; 1465 1466 if ((iflr->flags & IFLR_PREFIX) != 0) { 1467 struct sockaddr_in6 *sin6; 1468 1469 /* 1470 * hostid is to fill in the hostid part of the 1471 * address. hostid points to the first link-local 1472 * address attached to the interface. 1473 */ 1474 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1475 if (!ifa) 1476 return EADDRNOTAVAIL; 1477 hostid = IFA_IN6(ifa); 1478 1479 /* prefixlen must be <= 64. */ 1480 if (64 < iflr->prefixlen) 1481 return EINVAL; 1482 prefixlen = iflr->prefixlen; 1483 1484 /* hostid part must be zero. */ 1485 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1486 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1487 sin6->sin6_addr.s6_addr32[3] != 0) { 1488 return EINVAL; 1489 } 1490 } else 1491 prefixlen = iflr->prefixlen; 1492 1493 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1494 bzero(&ifra, sizeof(ifra)); 1495 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1496 1497 bcopy(&iflr->addr, &ifra.ifra_addr, 1498 ((struct sockaddr *)&iflr->addr)->sa_len); 1499 if (hostid) { 1500 /* fill in hostid part */ 1501 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1502 hostid->s6_addr32[2]; 1503 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1504 hostid->s6_addr32[3]; 1505 } 1506 1507 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1508 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1509 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1510 if (hostid) { 1511 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1512 hostid->s6_addr32[2]; 1513 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1514 hostid->s6_addr32[3]; 1515 } 1516 } 1517 1518 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1519 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1520 1521 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1522 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1523 } 1524 case SIOCGLIFADDR: 1525 case SIOCDLIFADDR: 1526 { 1527 struct in6_ifaddr *ia; 1528 struct in6_addr mask, candidate, match; 1529 struct sockaddr_in6 *sin6; 1530 int cmp; 1531 1532 bzero(&mask, sizeof(mask)); 1533 if (iflr->flags & IFLR_PREFIX) { 1534 /* lookup a prefix rather than address. */ 1535 in6_prefixlen2mask(&mask, iflr->prefixlen); 1536 1537 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1538 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1539 match.s6_addr32[0] &= mask.s6_addr32[0]; 1540 match.s6_addr32[1] &= mask.s6_addr32[1]; 1541 match.s6_addr32[2] &= mask.s6_addr32[2]; 1542 match.s6_addr32[3] &= mask.s6_addr32[3]; 1543 1544 /* if you set extra bits, that's wrong */ 1545 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1546 return EINVAL; 1547 1548 cmp = 1; 1549 } else { 1550 if (cmd == SIOCGLIFADDR) { 1551 /* on getting an address, take the 1st match */ 1552 cmp = 0; /* XXX */ 1553 } else { 1554 /* on deleting an address, do exact match */ 1555 in6_prefixlen2mask(&mask, 128); 1556 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1557 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1558 1559 cmp = 1; 1560 } 1561 } 1562 1563 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1564 if (ifa->ifa_addr->sa_family != AF_INET6) 1565 continue; 1566 if (!cmp) 1567 break; 1568 1569 /* 1570 * XXX: this is adhoc, but is necessary to allow 1571 * a user to specify fe80::/64 (not /10) for a 1572 * link-local address. 1573 */ 1574 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1575 in6_clearscope(&candidate); 1576 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1577 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1578 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1579 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1580 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1581 break; 1582 } 1583 if (!ifa) 1584 return EADDRNOTAVAIL; 1585 ia = ifa2ia6(ifa); 1586 1587 if (cmd == SIOCGLIFADDR) { 1588 int error; 1589 1590 /* fill in the if_laddrreq structure */ 1591 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1592 error = sa6_recoverscope( 1593 (struct sockaddr_in6 *)&iflr->addr); 1594 if (error != 0) 1595 return (error); 1596 1597 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1598 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1599 ia->ia_dstaddr.sin6_len); 1600 error = sa6_recoverscope( 1601 (struct sockaddr_in6 *)&iflr->dstaddr); 1602 if (error != 0) 1603 return (error); 1604 } else 1605 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1606 1607 iflr->prefixlen = 1608 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1609 1610 iflr->flags = ia->ia6_flags; /* XXX */ 1611 1612 return 0; 1613 } else { 1614 struct in6_aliasreq ifra; 1615 1616 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1617 bzero(&ifra, sizeof(ifra)); 1618 bcopy(iflr->iflr_name, ifra.ifra_name, 1619 sizeof(ifra.ifra_name)); 1620 1621 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1622 ia->ia_addr.sin6_len); 1623 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1624 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1625 ia->ia_dstaddr.sin6_len); 1626 } else { 1627 bzero(&ifra.ifra_dstaddr, 1628 sizeof(ifra.ifra_dstaddr)); 1629 } 1630 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1631 ia->ia_prefixmask.sin6_len); 1632 1633 ifra.ifra_flags = ia->ia6_flags; 1634 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1635 ifp, td); 1636 } 1637 } 1638 } 1639 1640 return EOPNOTSUPP; /* just for safety */ 1641 } 1642 1643 /* 1644 * Initialize an interface's intetnet6 address 1645 * and routing table entry. 1646 */ 1647 static int 1648 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1649 struct sockaddr_in6 *sin6, int newhost) 1650 { 1651 int error = 0, plen, ifacount = 0; 1652 int s = splimp(); 1653 struct ifaddr *ifa; 1654 1655 /* 1656 * Give the interface a chance to initialize 1657 * if this is its first address, 1658 * and to validate the address if necessary. 1659 */ 1660 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1661 if (ifa->ifa_addr->sa_family != AF_INET6) 1662 continue; 1663 ifacount++; 1664 } 1665 1666 ia->ia_addr = *sin6; 1667 1668 if (ifacount <= 1 && ifp->if_ioctl) { 1669 IFF_LOCKGIANT(ifp); 1670 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1671 IFF_UNLOCKGIANT(ifp); 1672 if (error) { 1673 splx(s); 1674 return (error); 1675 } 1676 } 1677 splx(s); 1678 1679 ia->ia_ifa.ifa_metric = ifp->if_metric; 1680 1681 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1682 1683 if (newhost) { 1684 /* 1685 * set the rtrequest function to create llinfo. It also 1686 * adjust outgoing interface of the route for the local 1687 * address when called via in6_ifaddloop() below. 1688 */ 1689 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1690 } 1691 1692 /* 1693 * Special case: 1694 * If a new destination address is specified for a point-to-point 1695 * interface, install a route to the destination as an interface 1696 * direct route. In addition, if the link is expected to have neighbor 1697 * cache entries, specify RTF_LLINFO so that a cache entry for the 1698 * destination address will be created. 1699 * created 1700 * XXX: the logic below rejects assigning multiple addresses on a p2p 1701 * interface that share the same destination. 1702 */ 1703 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1704 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1705 ia->ia_dstaddr.sin6_family == AF_INET6) { 1706 int rtflags = RTF_UP | RTF_HOST; 1707 struct rtentry *rt = NULL, **rtp = NULL; 1708 1709 if (nd6_need_cache(ifp) != 0) { 1710 rtflags |= RTF_LLINFO; 1711 rtp = &rt; 1712 } 1713 1714 error = rtrequest(RTM_ADD, 1715 (struct sockaddr *)&ia->ia_dstaddr, 1716 (struct sockaddr *)&ia->ia_addr, 1717 (struct sockaddr *)&ia->ia_prefixmask, 1718 ia->ia_flags | rtflags, rtp); 1719 if (error != 0) 1720 return (error); 1721 if (rt != NULL) { 1722 struct llinfo_nd6 *ln; 1723 1724 RT_LOCK(rt); 1725 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1726 if (ln != NULL) { 1727 /* 1728 * Set the state to STALE because we don't 1729 * have to perform address resolution on this 1730 * link. 1731 */ 1732 ln->ln_state = ND6_LLINFO_STALE; 1733 } 1734 RT_REMREF(rt); 1735 RT_UNLOCK(rt); 1736 } 1737 ia->ia_flags |= IFA_ROUTE; 1738 } 1739 if (plen < 128) { 1740 /* 1741 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1742 */ 1743 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1744 } 1745 1746 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1747 if (newhost) 1748 in6_ifaddloop(&(ia->ia_ifa)); 1749 1750 return (error); 1751 } 1752 1753 struct in6_multi_mship * 1754 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, 1755 int *errorp, int delay) 1756 { 1757 struct in6_multi_mship *imm; 1758 1759 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1760 if (!imm) { 1761 *errorp = ENOBUFS; 1762 return NULL; 1763 } 1764 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1765 if (!imm->i6mm_maddr) { 1766 /* *errorp is alrady set */ 1767 free(imm, M_IP6MADDR); 1768 return NULL; 1769 } 1770 return imm; 1771 } 1772 1773 int 1774 in6_leavegroup(struct in6_multi_mship *imm) 1775 { 1776 1777 if (imm->i6mm_maddr) 1778 in6_delmulti(imm->i6mm_maddr); 1779 free(imm, M_IP6MADDR); 1780 return 0; 1781 } 1782 1783 /* 1784 * Find an IPv6 interface link-local address specific to an interface. 1785 */ 1786 struct in6_ifaddr * 1787 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1788 { 1789 struct ifaddr *ifa; 1790 1791 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1792 if (ifa->ifa_addr->sa_family != AF_INET6) 1793 continue; 1794 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1795 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1796 ignoreflags) != 0) 1797 continue; 1798 break; 1799 } 1800 } 1801 1802 return ((struct in6_ifaddr *)ifa); 1803 } 1804 1805 1806 /* 1807 * find the internet address corresponding to a given interface and address. 1808 */ 1809 struct in6_ifaddr * 1810 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1811 { 1812 struct ifaddr *ifa; 1813 1814 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1815 if (ifa->ifa_addr->sa_family != AF_INET6) 1816 continue; 1817 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1818 break; 1819 } 1820 1821 return ((struct in6_ifaddr *)ifa); 1822 } 1823 1824 /* 1825 * Convert IP6 address to printable (loggable) representation. Caller 1826 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1827 */ 1828 static char digits[] = "0123456789abcdef"; 1829 char * 1830 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1831 { 1832 int i; 1833 char *cp; 1834 const u_int16_t *a = (const u_int16_t *)addr; 1835 const u_int8_t *d; 1836 int dcolon = 0, zero = 0; 1837 1838 cp = ip6buf; 1839 1840 for (i = 0; i < 8; i++) { 1841 if (dcolon == 1) { 1842 if (*a == 0) { 1843 if (i == 7) 1844 *cp++ = ':'; 1845 a++; 1846 continue; 1847 } else 1848 dcolon = 2; 1849 } 1850 if (*a == 0) { 1851 if (dcolon == 0 && *(a + 1) == 0) { 1852 if (i == 0) 1853 *cp++ = ':'; 1854 *cp++ = ':'; 1855 dcolon = 1; 1856 } else { 1857 *cp++ = '0'; 1858 *cp++ = ':'; 1859 } 1860 a++; 1861 continue; 1862 } 1863 d = (const u_char *)a; 1864 /* Try to eliminate leading zeros in printout like in :0001. */ 1865 zero = 1; 1866 *cp = digits[*d >> 4]; 1867 if (*cp != '0') { 1868 zero = 0; 1869 cp++; 1870 } 1871 *cp = digits[*d++ & 0xf]; 1872 if (zero == 0 || (*cp != '0')) { 1873 zero = 0; 1874 cp++; 1875 } 1876 *cp = digits[*d >> 4]; 1877 if (zero == 0 || (*cp != '0')) { 1878 zero = 0; 1879 cp++; 1880 } 1881 *cp++ = digits[*d & 0xf]; 1882 *cp++ = ':'; 1883 a++; 1884 } 1885 *--cp = '\0'; 1886 return (ip6buf); 1887 } 1888 1889 int 1890 in6_localaddr(struct in6_addr *in6) 1891 { 1892 struct in6_ifaddr *ia; 1893 1894 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1895 return 1; 1896 1897 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1898 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1899 &ia->ia_prefixmask.sin6_addr)) { 1900 return 1; 1901 } 1902 } 1903 1904 return (0); 1905 } 1906 1907 int 1908 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1909 { 1910 struct in6_ifaddr *ia; 1911 1912 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1913 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1914 &sa6->sin6_addr) && 1915 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1916 return (1); /* true */ 1917 1918 /* XXX: do we still have to go thru the rest of the list? */ 1919 } 1920 1921 return (0); /* false */ 1922 } 1923 1924 /* 1925 * return length of part which dst and src are equal 1926 * hard coding... 1927 */ 1928 int 1929 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1930 { 1931 int match = 0; 1932 u_char *s = (u_char *)src, *d = (u_char *)dst; 1933 u_char *lim = s + 16, r; 1934 1935 while (s < lim) 1936 if ((r = (*d++ ^ *s++)) != 0) { 1937 while (r < 128) { 1938 match++; 1939 r <<= 1; 1940 } 1941 break; 1942 } else 1943 match += 8; 1944 return match; 1945 } 1946 1947 /* XXX: to be scope conscious */ 1948 int 1949 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1950 { 1951 int bytelen, bitlen; 1952 1953 /* sanity check */ 1954 if (0 > len || len > 128) { 1955 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1956 len); 1957 return (0); 1958 } 1959 1960 bytelen = len / 8; 1961 bitlen = len % 8; 1962 1963 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1964 return (0); 1965 if (bitlen != 0 && 1966 p1->s6_addr[bytelen] >> (8 - bitlen) != 1967 p2->s6_addr[bytelen] >> (8 - bitlen)) 1968 return (0); 1969 1970 return (1); 1971 } 1972 1973 void 1974 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1975 { 1976 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1977 int bytelen, bitlen, i; 1978 1979 /* sanity check */ 1980 if (0 > len || len > 128) { 1981 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1982 len); 1983 return; 1984 } 1985 1986 bzero(maskp, sizeof(*maskp)); 1987 bytelen = len / 8; 1988 bitlen = len % 8; 1989 for (i = 0; i < bytelen; i++) 1990 maskp->s6_addr[i] = 0xff; 1991 if (bitlen) 1992 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1993 } 1994 1995 /* 1996 * return the best address out of the same scope. if no address was 1997 * found, return the first valid address from designated IF. 1998 */ 1999 struct in6_ifaddr * 2000 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2001 { 2002 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2003 struct ifaddr *ifa; 2004 struct in6_ifaddr *besta = 0; 2005 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2006 2007 dep[0] = dep[1] = NULL; 2008 2009 /* 2010 * We first look for addresses in the same scope. 2011 * If there is one, return it. 2012 * If two or more, return one which matches the dst longest. 2013 * If none, return one of global addresses assigned other ifs. 2014 */ 2015 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2016 if (ifa->ifa_addr->sa_family != AF_INET6) 2017 continue; 2018 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2019 continue; /* XXX: is there any case to allow anycast? */ 2020 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2021 continue; /* don't use this interface */ 2022 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2023 continue; 2024 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2025 if (ip6_use_deprecated) 2026 dep[0] = (struct in6_ifaddr *)ifa; 2027 continue; 2028 } 2029 2030 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2031 /* 2032 * call in6_matchlen() as few as possible 2033 */ 2034 if (besta) { 2035 if (blen == -1) 2036 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2037 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2038 if (tlen > blen) { 2039 blen = tlen; 2040 besta = (struct in6_ifaddr *)ifa; 2041 } 2042 } else 2043 besta = (struct in6_ifaddr *)ifa; 2044 } 2045 } 2046 if (besta) 2047 return (besta); 2048 2049 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2050 if (ifa->ifa_addr->sa_family != AF_INET6) 2051 continue; 2052 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2053 continue; /* XXX: is there any case to allow anycast? */ 2054 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2055 continue; /* don't use this interface */ 2056 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2057 continue; 2058 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2059 if (ip6_use_deprecated) 2060 dep[1] = (struct in6_ifaddr *)ifa; 2061 continue; 2062 } 2063 2064 return (struct in6_ifaddr *)ifa; 2065 } 2066 2067 /* use the last-resort values, that are, deprecated addresses */ 2068 if (dep[0]) 2069 return dep[0]; 2070 if (dep[1]) 2071 return dep[1]; 2072 2073 return NULL; 2074 } 2075 2076 /* 2077 * perform DAD when interface becomes IFF_UP. 2078 */ 2079 void 2080 in6_if_up(struct ifnet *ifp) 2081 { 2082 struct ifaddr *ifa; 2083 struct in6_ifaddr *ia; 2084 2085 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2086 if (ifa->ifa_addr->sa_family != AF_INET6) 2087 continue; 2088 ia = (struct in6_ifaddr *)ifa; 2089 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2090 /* 2091 * The TENTATIVE flag was likely set by hand 2092 * beforehand, implicitly indicating the need for DAD. 2093 * We may be able to skip the random delay in this 2094 * case, but we impose delays just in case. 2095 */ 2096 nd6_dad_start(ifa, 2097 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2098 } 2099 } 2100 2101 /* 2102 * special cases, like 6to4, are handled in in6_ifattach 2103 */ 2104 in6_ifattach(ifp, NULL); 2105 } 2106 2107 int 2108 in6if_do_dad(struct ifnet *ifp) 2109 { 2110 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2111 return (0); 2112 2113 switch (ifp->if_type) { 2114 #ifdef IFT_DUMMY 2115 case IFT_DUMMY: 2116 #endif 2117 case IFT_FAITH: 2118 /* 2119 * These interfaces do not have the IFF_LOOPBACK flag, 2120 * but loop packets back. We do not have to do DAD on such 2121 * interfaces. We should even omit it, because loop-backed 2122 * NS would confuse the DAD procedure. 2123 */ 2124 return (0); 2125 default: 2126 /* 2127 * Our DAD routine requires the interface up and running. 2128 * However, some interfaces can be up before the RUNNING 2129 * status. Additionaly, users may try to assign addresses 2130 * before the interface becomes up (or running). 2131 * We simply skip DAD in such a case as a work around. 2132 * XXX: we should rather mark "tentative" on such addresses, 2133 * and do DAD after the interface becomes ready. 2134 */ 2135 if (!((ifp->if_flags & IFF_UP) && 2136 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2137 return (0); 2138 2139 return (1); 2140 } 2141 } 2142 2143 /* 2144 * Calculate max IPv6 MTU through all the interfaces and store it 2145 * to in6_maxmtu. 2146 */ 2147 void 2148 in6_setmaxmtu(void) 2149 { 2150 unsigned long maxmtu = 0; 2151 struct ifnet *ifp; 2152 2153 IFNET_RLOCK(); 2154 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 2155 /* this function can be called during ifnet initialization */ 2156 if (!ifp->if_afdata[AF_INET6]) 2157 continue; 2158 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2159 IN6_LINKMTU(ifp) > maxmtu) 2160 maxmtu = IN6_LINKMTU(ifp); 2161 } 2162 IFNET_RUNLOCK(); 2163 if (maxmtu) /* update only when maxmtu is positive */ 2164 in6_maxmtu = maxmtu; 2165 } 2166 2167 /* 2168 * Provide the length of interface identifiers to be used for the link attached 2169 * to the given interface. The length should be defined in "IPv6 over 2170 * xxx-link" document. Note that address architecture might also define 2171 * the length for a particular set of address prefixes, regardless of the 2172 * link type. As clarified in rfc2462bis, those two definitions should be 2173 * consistent, and those really are as of August 2004. 2174 */ 2175 int 2176 in6_if2idlen(struct ifnet *ifp) 2177 { 2178 switch (ifp->if_type) { 2179 case IFT_ETHER: /* RFC2464 */ 2180 #ifdef IFT_PROPVIRTUAL 2181 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2182 #endif 2183 #ifdef IFT_L2VLAN 2184 case IFT_L2VLAN: /* ditto */ 2185 #endif 2186 #ifdef IFT_IEEE80211 2187 case IFT_IEEE80211: /* ditto */ 2188 #endif 2189 #ifdef IFT_MIP 2190 case IFT_MIP: /* ditto */ 2191 #endif 2192 return (64); 2193 case IFT_FDDI: /* RFC2467 */ 2194 return (64); 2195 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2196 return (64); 2197 case IFT_PPP: /* RFC2472 */ 2198 return (64); 2199 case IFT_ARCNET: /* RFC2497 */ 2200 return (64); 2201 case IFT_FRELAY: /* RFC2590 */ 2202 return (64); 2203 case IFT_IEEE1394: /* RFC3146 */ 2204 return (64); 2205 case IFT_GIF: 2206 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2207 case IFT_LOOP: 2208 return (64); /* XXX: is this really correct? */ 2209 default: 2210 /* 2211 * Unknown link type: 2212 * It might be controversial to use the today's common constant 2213 * of 64 for these cases unconditionally. For full compliance, 2214 * we should return an error in this case. On the other hand, 2215 * if we simply miss the standard for the link type or a new 2216 * standard is defined for a new link type, the IFID length 2217 * is very likely to be the common constant. As a compromise, 2218 * we always use the constant, but make an explicit notice 2219 * indicating the "unknown" case. 2220 */ 2221 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2222 return (64); 2223 } 2224 } 2225 2226 void * 2227 in6_domifattach(struct ifnet *ifp) 2228 { 2229 struct in6_ifextra *ext; 2230 2231 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2232 bzero(ext, sizeof(*ext)); 2233 2234 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2235 M_IFADDR, M_WAITOK); 2236 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2237 2238 ext->icmp6_ifstat = 2239 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2240 M_IFADDR, M_WAITOK); 2241 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2242 2243 ext->nd_ifinfo = nd6_ifattach(ifp); 2244 ext->scope6_id = scope6_ifattach(ifp); 2245 return ext; 2246 } 2247 2248 void 2249 in6_domifdetach(struct ifnet *ifp, void *aux) 2250 { 2251 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2252 2253 scope6_ifdetach(ext->scope6_id); 2254 nd6_ifdetach(ext->nd_ifinfo); 2255 free(ext->in6_ifstat, M_IFADDR); 2256 free(ext->icmp6_ifstat, M_IFADDR); 2257 free(ext, M_IFADDR); 2258 } 2259 2260 /* 2261 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2262 * v4 mapped addr or v4 compat addr 2263 */ 2264 void 2265 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2266 { 2267 2268 bzero(sin, sizeof(*sin)); 2269 sin->sin_len = sizeof(struct sockaddr_in); 2270 sin->sin_family = AF_INET; 2271 sin->sin_port = sin6->sin6_port; 2272 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2273 } 2274 2275 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2276 void 2277 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2278 { 2279 bzero(sin6, sizeof(*sin6)); 2280 sin6->sin6_len = sizeof(struct sockaddr_in6); 2281 sin6->sin6_family = AF_INET6; 2282 sin6->sin6_port = sin->sin_port; 2283 sin6->sin6_addr.s6_addr32[0] = 0; 2284 sin6->sin6_addr.s6_addr32[1] = 0; 2285 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2286 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2287 } 2288 2289 /* Convert sockaddr_in6 into sockaddr_in. */ 2290 void 2291 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2292 { 2293 struct sockaddr_in *sin_p; 2294 struct sockaddr_in6 sin6; 2295 2296 /* 2297 * Save original sockaddr_in6 addr and convert it 2298 * to sockaddr_in. 2299 */ 2300 sin6 = *(struct sockaddr_in6 *)nam; 2301 sin_p = (struct sockaddr_in *)nam; 2302 in6_sin6_2_sin(sin_p, &sin6); 2303 } 2304 2305 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2306 void 2307 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2308 { 2309 struct sockaddr_in *sin_p; 2310 struct sockaddr_in6 *sin6_p; 2311 2312 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2313 M_WAITOK); 2314 sin_p = (struct sockaddr_in *)*nam; 2315 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2316 FREE(*nam, M_SONAME); 2317 *nam = (struct sockaddr *)sin6_p; 2318 } 2319