1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 70 #include <sys/param.h> 71 #include <sys/errno.h> 72 #include <sys/jail.h> 73 #include <sys/malloc.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/systm.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/time.h> 81 #include <sys/kernel.h> 82 #include <sys/syslog.h> 83 84 #include <net/if.h> 85 #include <net/if_var.h> 86 #include <net/if_types.h> 87 #include <net/route.h> 88 #include <net/if_dl.h> 89 #include <net/vnet.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <net/if_llatbl.h> 94 #include <netinet/if_ether.h> 95 #include <netinet/in_systm.h> 96 #include <netinet/ip.h> 97 #include <netinet/in_pcb.h> 98 #include <netinet/ip_carp.h> 99 100 #include <netinet/ip6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/nd6.h> 103 #include <netinet6/mld6_var.h> 104 #include <netinet6/ip6_mroute.h> 105 #include <netinet6/in6_ifattach.h> 106 #include <netinet6/scope6_var.h> 107 #include <netinet6/in6_pcb.h> 108 109 /* 110 * Definitions of some costant IP6 addresses. 111 */ 112 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 113 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 114 const struct in6_addr in6addr_nodelocal_allnodes = 115 IN6ADDR_NODELOCAL_ALLNODES_INIT; 116 const struct in6_addr in6addr_linklocal_allnodes = 117 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 118 const struct in6_addr in6addr_linklocal_allrouters = 119 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 120 const struct in6_addr in6addr_linklocal_allv2routers = 121 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 122 123 const struct in6_addr in6mask0 = IN6MASK0; 124 const struct in6_addr in6mask32 = IN6MASK32; 125 const struct in6_addr in6mask64 = IN6MASK64; 126 const struct in6_addr in6mask96 = IN6MASK96; 127 const struct in6_addr in6mask128 = IN6MASK128; 128 129 const struct sockaddr_in6 sa6_any = 130 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 131 132 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 133 struct ifnet *, struct thread *)); 134 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 135 struct sockaddr_in6 *, int)); 136 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 137 138 int (*faithprefix_p)(struct in6_addr *); 139 140 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 141 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 142 143 void 144 in6_ifaddloop(struct ifaddr *ifa) 145 { 146 struct sockaddr_dl gateway; 147 struct sockaddr_in6 mask, addr; 148 struct rtentry rt; 149 struct in6_ifaddr *ia; 150 struct ifnet *ifp; 151 struct llentry *ln; 152 153 ia = ifa2ia6(ifa); 154 ifp = ifa->ifa_ifp; 155 IF_AFDATA_LOCK(ifp); 156 ifa->ifa_rtrequest = nd6_rtrequest; 157 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | 158 LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); 159 IF_AFDATA_UNLOCK(ifp); 160 if (ln != NULL) { 161 ln->la_expire = 0; /* for IPv6 this means permanent */ 162 ln->ln_state = ND6_LLINFO_REACHABLE; 163 /* 164 * initialize for rtmsg generation 165 */ 166 bzero(&gateway, sizeof(gateway)); 167 gateway.sdl_len = sizeof(gateway); 168 gateway.sdl_family = AF_LINK; 169 gateway.sdl_nlen = 0; 170 gateway.sdl_alen = 6; 171 memcpy(gateway.sdl_data, &ln->ll_addr.mac_aligned, 172 sizeof(ln->ll_addr)); 173 LLE_WUNLOCK(ln); 174 } 175 176 bzero(&rt, sizeof(rt)); 177 rt.rt_gateway = (struct sockaddr *)&gateway; 178 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 179 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 180 rt_mask(&rt) = (struct sockaddr *)&mask; 181 rt_key(&rt) = (struct sockaddr *)&addr; 182 rt.rt_flags = RTF_UP | RTF_HOST | RTF_STATIC; 183 /* Announce arrival of local address to all FIBs. */ 184 rt_newaddrmsg(RTM_ADD, ifa, 0, &rt); 185 } 186 187 void 188 in6_ifremloop(struct ifaddr *ifa) 189 { 190 struct sockaddr_dl gateway; 191 struct sockaddr_in6 mask, addr; 192 struct rtentry rt0; 193 struct in6_ifaddr *ia; 194 struct ifnet *ifp; 195 196 ia = ifa2ia6(ifa); 197 ifp = ifa->ifa_ifp; 198 IF_AFDATA_LOCK(ifp); 199 lla_lookup(LLTABLE6(ifp), (LLE_DELETE | LLE_IFADDR), 200 (struct sockaddr *)&ia->ia_addr); 201 IF_AFDATA_UNLOCK(ifp); 202 203 /* 204 * initialize for rtmsg generation 205 */ 206 bzero(&gateway, sizeof(gateway)); 207 gateway.sdl_len = sizeof(gateway); 208 gateway.sdl_family = AF_LINK; 209 gateway.sdl_nlen = 0; 210 gateway.sdl_alen = ifp->if_addrlen; 211 bzero(&rt0, sizeof(rt0)); 212 rt0.rt_gateway = (struct sockaddr *)&gateway; 213 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 214 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 215 rt_mask(&rt0) = (struct sockaddr *)&mask; 216 rt_key(&rt0) = (struct sockaddr *)&addr; 217 rt0.rt_flags = RTF_HOST | RTF_STATIC; 218 /* Announce removal of local address to all FIBs. */ 219 rt_newaddrmsg(RTM_DELETE, ifa, 0, &rt0); 220 } 221 222 int 223 in6_mask2len(struct in6_addr *mask, u_char *lim0) 224 { 225 int x = 0, y; 226 u_char *lim = lim0, *p; 227 228 /* ignore the scope_id part */ 229 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 230 lim = (u_char *)mask + sizeof(*mask); 231 for (p = (u_char *)mask; p < lim; x++, p++) { 232 if (*p != 0xff) 233 break; 234 } 235 y = 0; 236 if (p < lim) { 237 for (y = 0; y < 8; y++) { 238 if ((*p & (0x80 >> y)) == 0) 239 break; 240 } 241 } 242 243 /* 244 * when the limit pointer is given, do a stricter check on the 245 * remaining bits. 246 */ 247 if (p < lim) { 248 if (y != 0 && (*p & (0x00ff >> y)) != 0) 249 return (-1); 250 for (p = p + 1; p < lim; p++) 251 if (*p != 0) 252 return (-1); 253 } 254 255 return x * 8 + y; 256 } 257 258 #ifdef COMPAT_FREEBSD32 259 struct in6_ndifreq32 { 260 char ifname[IFNAMSIZ]; 261 uint32_t ifindex; 262 }; 263 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 264 #endif 265 266 int 267 in6_control(struct socket *so, u_long cmd, caddr_t data, 268 struct ifnet *ifp, struct thread *td) 269 { 270 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 271 struct in6_ifaddr *ia = NULL; 272 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 273 struct sockaddr_in6 *sa6; 274 int carp_attached = 0; 275 int error; 276 u_long ocmd = cmd; 277 278 /* 279 * Compat to make pre-10.x ifconfig(8) operable. 280 */ 281 if (cmd == OSIOCAIFADDR_IN6) 282 cmd = SIOCAIFADDR_IN6; 283 284 switch (cmd) { 285 case SIOCGETSGCNT_IN6: 286 case SIOCGETMIFCNT_IN6: 287 /* 288 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 289 * We cannot see how that would be needed, so do not adjust the 290 * KPI blindly; more likely should clean up the IPv4 variant. 291 */ 292 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 293 } 294 295 switch(cmd) { 296 case SIOCAADDRCTL_POLICY: 297 case SIOCDADDRCTL_POLICY: 298 if (td != NULL) { 299 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 300 if (error) 301 return (error); 302 } 303 return (in6_src_ioctl(cmd, data)); 304 } 305 306 if (ifp == NULL) 307 return (EOPNOTSUPP); 308 309 switch (cmd) { 310 case SIOCSNDFLUSH_IN6: 311 case SIOCSPFXFLUSH_IN6: 312 case SIOCSRTRFLUSH_IN6: 313 case SIOCSDEFIFACE_IN6: 314 case SIOCSIFINFO_FLAGS: 315 case SIOCSIFINFO_IN6: 316 if (td != NULL) { 317 error = priv_check(td, PRIV_NETINET_ND6); 318 if (error) 319 return (error); 320 } 321 /* FALLTHROUGH */ 322 case OSIOCGIFINFO_IN6: 323 case SIOCGIFINFO_IN6: 324 case SIOCGDRLST_IN6: 325 case SIOCGPRLST_IN6: 326 case SIOCGNBRINFO_IN6: 327 case SIOCGDEFIFACE_IN6: 328 return (nd6_ioctl(cmd, data, ifp)); 329 330 #ifdef COMPAT_FREEBSD32 331 case SIOCGDEFIFACE32_IN6: 332 { 333 struct in6_ndifreq ndif; 334 struct in6_ndifreq32 *ndif32; 335 336 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 337 ifp); 338 if (error) 339 return (error); 340 ndif32 = (struct in6_ndifreq32 *)data; 341 ndif32->ifindex = ndif.ifindex; 342 return (0); 343 } 344 #endif 345 } 346 347 switch (cmd) { 348 case SIOCSIFPREFIX_IN6: 349 case SIOCDIFPREFIX_IN6: 350 case SIOCAIFPREFIX_IN6: 351 case SIOCCIFPREFIX_IN6: 352 case SIOCSGIFPREFIX_IN6: 353 case SIOCGIFPREFIX_IN6: 354 log(LOG_NOTICE, 355 "prefix ioctls are now invalidated. " 356 "please use ifconfig.\n"); 357 return (EOPNOTSUPP); 358 } 359 360 switch (cmd) { 361 case SIOCSSCOPE6: 362 if (td != NULL) { 363 error = priv_check(td, PRIV_NETINET_SCOPE6); 364 if (error) 365 return (error); 366 } 367 return (scope6_set(ifp, 368 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 369 case SIOCGSCOPE6: 370 return (scope6_get(ifp, 371 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 372 case SIOCGSCOPE6DEF: 373 return (scope6_get_default((struct scope6_id *) 374 ifr->ifr_ifru.ifru_scope_id)); 375 } 376 377 switch (cmd) { 378 case SIOCALIFADDR: 379 if (td != NULL) { 380 error = priv_check(td, PRIV_NET_ADDIFADDR); 381 if (error) 382 return (error); 383 } 384 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 385 386 case SIOCDLIFADDR: 387 if (td != NULL) { 388 error = priv_check(td, PRIV_NET_DELIFADDR); 389 if (error) 390 return (error); 391 } 392 /* FALLTHROUGH */ 393 case SIOCGLIFADDR: 394 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 395 } 396 397 /* 398 * Find address for this interface, if it exists. 399 * 400 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 401 * only, and used the first interface address as the target of other 402 * operations (without checking ifra_addr). This was because netinet 403 * code/API assumed at most 1 interface address per interface. 404 * Since IPv6 allows a node to assign multiple addresses 405 * on a single interface, we almost always look and check the 406 * presence of ifra_addr, and reject invalid ones here. 407 * It also decreases duplicated code among SIOC*_IN6 operations. 408 */ 409 switch (cmd) { 410 case SIOCAIFADDR_IN6: 411 case SIOCSIFPHYADDR_IN6: 412 sa6 = &ifra->ifra_addr; 413 break; 414 case SIOCSIFADDR_IN6: 415 case SIOCGIFADDR_IN6: 416 case SIOCSIFDSTADDR_IN6: 417 case SIOCSIFNETMASK_IN6: 418 case SIOCGIFDSTADDR_IN6: 419 case SIOCGIFNETMASK_IN6: 420 case SIOCDIFADDR_IN6: 421 case SIOCGIFPSRCADDR_IN6: 422 case SIOCGIFPDSTADDR_IN6: 423 case SIOCGIFAFLAG_IN6: 424 case SIOCSNDFLUSH_IN6: 425 case SIOCSPFXFLUSH_IN6: 426 case SIOCSRTRFLUSH_IN6: 427 case SIOCGIFALIFETIME_IN6: 428 case SIOCSIFALIFETIME_IN6: 429 case SIOCGIFSTAT_IN6: 430 case SIOCGIFSTAT_ICMP6: 431 sa6 = &ifr->ifr_addr; 432 break; 433 default: 434 sa6 = NULL; 435 break; 436 } 437 if (sa6 && sa6->sin6_family == AF_INET6) { 438 if (sa6->sin6_scope_id != 0) 439 error = sa6_embedscope(sa6, 0); 440 else 441 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 442 if (error != 0) 443 return (error); 444 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 445 &sa6->sin6_addr)) != 0) 446 return (error); 447 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 448 } else 449 ia = NULL; 450 451 switch (cmd) { 452 case SIOCSIFADDR_IN6: 453 case SIOCSIFDSTADDR_IN6: 454 case SIOCSIFNETMASK_IN6: 455 /* 456 * Since IPv6 allows a node to assign multiple addresses 457 * on a single interface, SIOCSIFxxx ioctls are deprecated. 458 */ 459 /* we decided to obsolete this command (20000704) */ 460 error = EINVAL; 461 goto out; 462 463 case SIOCDIFADDR_IN6: 464 /* 465 * for IPv4, we look for existing in_ifaddr here to allow 466 * "ifconfig if0 delete" to remove the first IPv4 address on 467 * the interface. For IPv6, as the spec allows multiple 468 * interface address from the day one, we consider "remove the 469 * first one" semantics to be not preferable. 470 */ 471 if (ia == NULL) { 472 error = EADDRNOTAVAIL; 473 goto out; 474 } 475 /* FALLTHROUGH */ 476 case SIOCAIFADDR_IN6: 477 /* 478 * We always require users to specify a valid IPv6 address for 479 * the corresponding operation. 480 */ 481 if (ifra->ifra_addr.sin6_family != AF_INET6 || 482 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 483 error = EAFNOSUPPORT; 484 goto out; 485 } 486 487 if (td != NULL) { 488 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 489 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 490 if (error) 491 goto out; 492 } 493 break; 494 495 case SIOCGIFADDR_IN6: 496 /* This interface is basically deprecated. use SIOCGIFCONF. */ 497 /* FALLTHROUGH */ 498 case SIOCGIFAFLAG_IN6: 499 case SIOCGIFNETMASK_IN6: 500 case SIOCGIFDSTADDR_IN6: 501 case SIOCGIFALIFETIME_IN6: 502 /* must think again about its semantics */ 503 if (ia == NULL) { 504 error = EADDRNOTAVAIL; 505 goto out; 506 } 507 break; 508 509 case SIOCSIFALIFETIME_IN6: 510 { 511 struct in6_addrlifetime *lt; 512 513 if (td != NULL) { 514 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 515 if (error) 516 goto out; 517 } 518 if (ia == NULL) { 519 error = EADDRNOTAVAIL; 520 goto out; 521 } 522 /* sanity for overflow - beware unsigned */ 523 lt = &ifr->ifr_ifru.ifru_lifetime; 524 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 525 lt->ia6t_vltime + time_second < time_second) { 526 error = EINVAL; 527 goto out; 528 } 529 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 530 lt->ia6t_pltime + time_second < time_second) { 531 error = EINVAL; 532 goto out; 533 } 534 break; 535 } 536 } 537 538 switch (cmd) { 539 case SIOCGIFADDR_IN6: 540 ifr->ifr_addr = ia->ia_addr; 541 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 542 goto out; 543 break; 544 545 case SIOCGIFDSTADDR_IN6: 546 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 547 error = EINVAL; 548 goto out; 549 } 550 /* 551 * XXX: should we check if ifa_dstaddr is NULL and return 552 * an error? 553 */ 554 ifr->ifr_dstaddr = ia->ia_dstaddr; 555 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 556 goto out; 557 break; 558 559 case SIOCGIFNETMASK_IN6: 560 ifr->ifr_addr = ia->ia_prefixmask; 561 break; 562 563 case SIOCGIFAFLAG_IN6: 564 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 565 break; 566 567 case SIOCGIFSTAT_IN6: 568 if (ifp == NULL) { 569 error = EINVAL; 570 goto out; 571 } 572 bzero(&ifr->ifr_ifru.ifru_stat, 573 sizeof(ifr->ifr_ifru.ifru_stat)); 574 ifr->ifr_ifru.ifru_stat = 575 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 576 break; 577 578 case SIOCGIFSTAT_ICMP6: 579 if (ifp == NULL) { 580 error = EINVAL; 581 goto out; 582 } 583 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 584 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 585 ifr->ifr_ifru.ifru_icmp6stat = 586 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 587 break; 588 589 case SIOCGIFALIFETIME_IN6: 590 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 591 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 592 time_t maxexpire; 593 struct in6_addrlifetime *retlt = 594 &ifr->ifr_ifru.ifru_lifetime; 595 596 /* 597 * XXX: adjust expiration time assuming time_t is 598 * signed. 599 */ 600 maxexpire = (-1) & 601 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 602 if (ia->ia6_lifetime.ia6t_vltime < 603 maxexpire - ia->ia6_updatetime) { 604 retlt->ia6t_expire = ia->ia6_updatetime + 605 ia->ia6_lifetime.ia6t_vltime; 606 } else 607 retlt->ia6t_expire = maxexpire; 608 } 609 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 610 time_t maxexpire; 611 struct in6_addrlifetime *retlt = 612 &ifr->ifr_ifru.ifru_lifetime; 613 614 /* 615 * XXX: adjust expiration time assuming time_t is 616 * signed. 617 */ 618 maxexpire = (-1) & 619 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 620 if (ia->ia6_lifetime.ia6t_pltime < 621 maxexpire - ia->ia6_updatetime) { 622 retlt->ia6t_preferred = ia->ia6_updatetime + 623 ia->ia6_lifetime.ia6t_pltime; 624 } else 625 retlt->ia6t_preferred = maxexpire; 626 } 627 break; 628 629 case SIOCSIFALIFETIME_IN6: 630 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 631 /* for sanity */ 632 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 633 ia->ia6_lifetime.ia6t_expire = 634 time_second + ia->ia6_lifetime.ia6t_vltime; 635 } else 636 ia->ia6_lifetime.ia6t_expire = 0; 637 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 638 ia->ia6_lifetime.ia6t_preferred = 639 time_second + ia->ia6_lifetime.ia6t_pltime; 640 } else 641 ia->ia6_lifetime.ia6t_preferred = 0; 642 break; 643 644 case SIOCAIFADDR_IN6: 645 { 646 int i; 647 struct nd_prefixctl pr0; 648 struct nd_prefix *pr; 649 650 /* 651 * first, make or update the interface address structure, 652 * and link it to the list. 653 */ 654 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 655 goto out; 656 if (ia != NULL) 657 ifa_free(&ia->ia_ifa); 658 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 659 == NULL) { 660 /* 661 * this can happen when the user specify the 0 valid 662 * lifetime. 663 */ 664 break; 665 } 666 667 if (cmd == ocmd && ifra->ifra_vhid > 0) { 668 if (carp_attach_p != NULL) 669 error = (*carp_attach_p)(&ia->ia_ifa, 670 ifra->ifra_vhid); 671 else 672 error = EPROTONOSUPPORT; 673 if (error) 674 goto out; 675 else 676 carp_attached = 1; 677 } 678 679 /* 680 * then, make the prefix on-link on the interface. 681 * XXX: we'd rather create the prefix before the address, but 682 * we need at least one address to install the corresponding 683 * interface route, so we configure the address first. 684 */ 685 686 /* 687 * convert mask to prefix length (prefixmask has already 688 * been validated in in6_update_ifa(). 689 */ 690 bzero(&pr0, sizeof(pr0)); 691 pr0.ndpr_ifp = ifp; 692 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 693 NULL); 694 if (pr0.ndpr_plen == 128) { 695 break; /* we don't need to install a host route. */ 696 } 697 pr0.ndpr_prefix = ifra->ifra_addr; 698 /* apply the mask for safety. */ 699 for (i = 0; i < 4; i++) { 700 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 701 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 702 } 703 /* 704 * XXX: since we don't have an API to set prefix (not address) 705 * lifetimes, we just use the same lifetimes as addresses. 706 * The (temporarily) installed lifetimes can be overridden by 707 * later advertised RAs (when accept_rtadv is non 0), which is 708 * an intended behavior. 709 */ 710 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 711 pr0.ndpr_raf_auto = 712 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 713 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 714 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 715 716 /* add the prefix if not yet. */ 717 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 718 /* 719 * nd6_prelist_add will install the corresponding 720 * interface route. 721 */ 722 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 723 if (carp_attached) 724 (*carp_detach_p)(&ia->ia_ifa); 725 goto out; 726 } 727 if (pr == NULL) { 728 if (carp_attached) 729 (*carp_detach_p)(&ia->ia_ifa); 730 log(LOG_ERR, "nd6_prelist_add succeeded but " 731 "no prefix\n"); 732 error = EINVAL; 733 goto out; 734 } 735 } 736 737 /* relate the address to the prefix */ 738 if (ia->ia6_ndpr == NULL) { 739 ia->ia6_ndpr = pr; 740 pr->ndpr_refcnt++; 741 742 /* 743 * If this is the first autoconf address from the 744 * prefix, create a temporary address as well 745 * (when required). 746 */ 747 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 748 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 749 int e; 750 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 751 log(LOG_NOTICE, "in6_control: failed " 752 "to create a temporary address, " 753 "errno=%d\n", e); 754 } 755 } 756 } 757 758 /* 759 * this might affect the status of autoconfigured addresses, 760 * that is, this address might make other addresses detached. 761 */ 762 pfxlist_onlink_check(); 763 if (error == 0 && ia) { 764 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 765 /* 766 * Try to clear the flag when a new 767 * IPv6 address is added onto an 768 * IFDISABLED interface and it 769 * succeeds. 770 */ 771 struct in6_ndireq nd; 772 773 memset(&nd, 0, sizeof(nd)); 774 nd.ndi.flags = ND_IFINFO(ifp)->flags; 775 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 776 if (nd6_ioctl(SIOCSIFINFO_FLAGS, 777 (caddr_t)&nd, ifp) < 0) 778 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 779 "SIOCSIFINFO_FLAGS for -ifdisabled " 780 "failed."); 781 /* 782 * Ignore failure of clearing the flag 783 * intentionally. The failure means 784 * address duplication was detected. 785 */ 786 } 787 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 788 } 789 break; 790 } 791 792 case SIOCDIFADDR_IN6: 793 { 794 struct nd_prefix *pr; 795 796 /* 797 * If the address being deleted is the only one that owns 798 * the corresponding prefix, expire the prefix as well. 799 * XXX: theoretically, we don't have to worry about such 800 * relationship, since we separate the address management 801 * and the prefix management. We do this, however, to provide 802 * as much backward compatibility as possible in terms of 803 * the ioctl operation. 804 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 805 */ 806 pr = ia->ia6_ndpr; 807 in6_purgeaddr(&ia->ia_ifa); 808 if (pr && pr->ndpr_refcnt == 0) 809 prelist_remove(pr); 810 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 811 break; 812 } 813 814 default: 815 if (ifp == NULL || ifp->if_ioctl == 0) { 816 error = EOPNOTSUPP; 817 goto out; 818 } 819 error = (*ifp->if_ioctl)(ifp, cmd, data); 820 goto out; 821 } 822 823 error = 0; 824 out: 825 if (ia != NULL) 826 ifa_free(&ia->ia_ifa); 827 return (error); 828 } 829 830 831 /* 832 * Join necessary multicast groups. Factored out from in6_update_ifa(). 833 * This entire work should only be done once, for the default FIB. 834 */ 835 static int 836 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 837 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 838 { 839 char ip6buf[INET6_ADDRSTRLEN]; 840 struct sockaddr_in6 mltaddr, mltmask; 841 struct in6_addr llsol; 842 struct in6_multi_mship *imm; 843 struct rtentry *rt; 844 int delay, error; 845 846 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 847 848 /* Join solicited multicast addr for new host id. */ 849 bzero(&llsol, sizeof(struct in6_addr)); 850 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 851 llsol.s6_addr32[1] = 0; 852 llsol.s6_addr32[2] = htonl(1); 853 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 854 llsol.s6_addr8[12] = 0xff; 855 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 856 /* XXX: should not happen */ 857 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 858 goto cleanup; 859 } 860 delay = 0; 861 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 862 /* 863 * We need a random delay for DAD on the address being 864 * configured. It also means delaying transmission of the 865 * corresponding MLD report to avoid report collision. 866 * [RFC 4861, Section 6.3.7] 867 */ 868 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 869 } 870 imm = in6_joingroup(ifp, &llsol, &error, delay); 871 if (imm == NULL) { 872 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 873 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &llsol), 874 if_name(ifp), error)); 875 goto cleanup; 876 } 877 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 878 *in6m_sol = imm->i6mm_maddr; 879 880 bzero(&mltmask, sizeof(mltmask)); 881 mltmask.sin6_len = sizeof(struct sockaddr_in6); 882 mltmask.sin6_family = AF_INET6; 883 mltmask.sin6_addr = in6mask32; 884 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 885 886 /* 887 * Join link-local all-nodes address. 888 */ 889 bzero(&mltaddr, sizeof(mltaddr)); 890 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 891 mltaddr.sin6_family = AF_INET6; 892 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 893 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 894 goto cleanup; /* XXX: should not fail */ 895 896 /* 897 * XXX: do we really need this automatic routes? We should probably 898 * reconsider this stuff. Most applications actually do not need the 899 * routes, since they usually specify the outgoing interface. 900 */ 901 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 902 if (rt != NULL) { 903 /* XXX: only works in !SCOPEDROUTING case. */ 904 if (memcmp(&mltaddr.sin6_addr, 905 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 906 MLTMASK_LEN)) { 907 RTFREE_LOCKED(rt); 908 rt = NULL; 909 } 910 } 911 if (rt == NULL) { 912 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 913 (struct sockaddr *)&ia->ia_addr, 914 (struct sockaddr *)&mltmask, RTF_UP, 915 (struct rtentry **)0, RT_DEFAULT_FIB); 916 if (error) 917 goto cleanup; 918 } else 919 RTFREE_LOCKED(rt); 920 921 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 922 if (imm == NULL) { 923 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 924 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 925 &mltaddr.sin6_addr), if_name(ifp), error)); 926 goto cleanup; 927 } 928 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 929 930 /* 931 * Join node information group address. 932 */ 933 delay = 0; 934 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 935 /* 936 * The spec does not say anything about delay for this group, 937 * but the same logic should apply. 938 */ 939 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 940 } 941 if (in6_nigroup(ifp, NULL, -1, &mltaddr.sin6_addr) == 0) { 942 /* XXX jinmei */ 943 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay); 944 if (imm == NULL) 945 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 946 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 947 &mltaddr.sin6_addr), if_name(ifp), error)); 948 /* XXX not very fatal, go on... */ 949 else 950 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 951 } 952 953 /* 954 * Join interface-local all-nodes address. 955 * (ff01::1%ifN, and ff01::%ifN/32) 956 */ 957 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 958 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 959 goto cleanup; /* XXX: should not fail */ 960 /* XXX: again, do we really need the route? */ 961 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 962 if (rt != NULL) { 963 if (memcmp(&mltaddr.sin6_addr, 964 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 965 MLTMASK_LEN)) { 966 RTFREE_LOCKED(rt); 967 rt = NULL; 968 } 969 } 970 if (rt == NULL) { 971 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 972 (struct sockaddr *)&ia->ia_addr, 973 (struct sockaddr *)&mltmask, RTF_UP, 974 (struct rtentry **)0, RT_DEFAULT_FIB); 975 if (error) 976 goto cleanup; 977 } else 978 RTFREE_LOCKED(rt); 979 980 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 981 if (imm == NULL) { 982 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 983 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 984 &mltaddr.sin6_addr), if_name(ifp), error)); 985 goto cleanup; 986 } 987 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 988 #undef MLTMASK_LEN 989 990 cleanup: 991 return (error); 992 } 993 994 /* 995 * Update parameters of an IPv6 interface address. 996 * If necessary, a new entry is created and linked into address chains. 997 * This function is separated from in6_control(). 998 * XXX: should this be performed under splnet()? 999 */ 1000 int 1001 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1002 struct in6_ifaddr *ia, int flags) 1003 { 1004 int error = 0, hostIsNew = 0, plen = -1; 1005 struct sockaddr_in6 dst6; 1006 struct in6_addrlifetime *lt; 1007 struct in6_multi *in6m_sol; 1008 int delay; 1009 char ip6buf[INET6_ADDRSTRLEN]; 1010 1011 /* Validate parameters */ 1012 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 1013 return (EINVAL); 1014 1015 /* 1016 * The destination address for a p2p link must have a family 1017 * of AF_UNSPEC or AF_INET6. 1018 */ 1019 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1020 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 1021 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 1022 return (EAFNOSUPPORT); 1023 /* 1024 * validate ifra_prefixmask. don't check sin6_family, netmask 1025 * does not carry fields other than sin6_len. 1026 */ 1027 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 1028 return (EINVAL); 1029 /* 1030 * Because the IPv6 address architecture is classless, we require 1031 * users to specify a (non 0) prefix length (mask) for a new address. 1032 * We also require the prefix (when specified) mask is valid, and thus 1033 * reject a non-consecutive mask. 1034 */ 1035 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 1036 return (EINVAL); 1037 if (ifra->ifra_prefixmask.sin6_len != 0) { 1038 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 1039 (u_char *)&ifra->ifra_prefixmask + 1040 ifra->ifra_prefixmask.sin6_len); 1041 if (plen <= 0) 1042 return (EINVAL); 1043 } else { 1044 /* 1045 * In this case, ia must not be NULL. We just use its prefix 1046 * length. 1047 */ 1048 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1049 } 1050 /* 1051 * If the destination address on a p2p interface is specified, 1052 * and the address is a scoped one, validate/set the scope 1053 * zone identifier. 1054 */ 1055 dst6 = ifra->ifra_dstaddr; 1056 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 1057 (dst6.sin6_family == AF_INET6)) { 1058 struct in6_addr in6_tmp; 1059 u_int32_t zoneid; 1060 1061 in6_tmp = dst6.sin6_addr; 1062 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 1063 return (EINVAL); /* XXX: should be impossible */ 1064 1065 if (dst6.sin6_scope_id != 0) { 1066 if (dst6.sin6_scope_id != zoneid) 1067 return (EINVAL); 1068 } else /* user omit to specify the ID. */ 1069 dst6.sin6_scope_id = zoneid; 1070 1071 /* convert into the internal form */ 1072 if (sa6_embedscope(&dst6, 0)) 1073 return (EINVAL); /* XXX: should be impossible */ 1074 } 1075 /* 1076 * The destination address can be specified only for a p2p or a 1077 * loopback interface. If specified, the corresponding prefix length 1078 * must be 128. 1079 */ 1080 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 1081 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 1082 /* XXX: noisy message */ 1083 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 1084 "be specified for a p2p or a loopback IF only\n")); 1085 return (EINVAL); 1086 } 1087 if (plen != 128) { 1088 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1089 "be 128 when dstaddr is specified\n")); 1090 return (EINVAL); 1091 } 1092 } 1093 /* lifetime consistency check */ 1094 lt = &ifra->ifra_lifetime; 1095 if (lt->ia6t_pltime > lt->ia6t_vltime) 1096 return (EINVAL); 1097 if (lt->ia6t_vltime == 0) { 1098 /* 1099 * the following log might be noisy, but this is a typical 1100 * configuration mistake or a tool's bug. 1101 */ 1102 nd6log((LOG_INFO, 1103 "in6_update_ifa: valid lifetime is 0 for %s\n", 1104 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1105 1106 if (ia == NULL) 1107 return (0); /* there's nothing to do */ 1108 } 1109 1110 /* 1111 * If this is a new address, allocate a new ifaddr and link it 1112 * into chains. 1113 */ 1114 if (ia == NULL) { 1115 hostIsNew = 1; 1116 /* 1117 * When in6_update_ifa() is called in a process of a received 1118 * RA, it is called under an interrupt context. So, we should 1119 * call malloc with M_NOWAIT. 1120 */ 1121 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 1122 M_NOWAIT); 1123 if (ia == NULL) 1124 return (ENOBUFS); 1125 bzero((caddr_t)ia, sizeof(*ia)); 1126 ifa_init(&ia->ia_ifa); 1127 LIST_INIT(&ia->ia6_memberships); 1128 /* Initialize the address and masks, and put time stamp */ 1129 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1130 ia->ia_addr.sin6_family = AF_INET6; 1131 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1132 ia->ia6_createtime = time_second; 1133 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1134 /* 1135 * XXX: some functions expect that ifa_dstaddr is not 1136 * NULL for p2p interfaces. 1137 */ 1138 ia->ia_ifa.ifa_dstaddr = 1139 (struct sockaddr *)&ia->ia_dstaddr; 1140 } else { 1141 ia->ia_ifa.ifa_dstaddr = NULL; 1142 } 1143 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1144 ia->ia_ifp = ifp; 1145 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1146 IF_ADDR_WLOCK(ifp); 1147 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1148 IF_ADDR_WUNLOCK(ifp); 1149 1150 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1151 IN6_IFADDR_WLOCK(); 1152 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1153 IN6_IFADDR_WUNLOCK(); 1154 } 1155 1156 /* update timestamp */ 1157 ia->ia6_updatetime = time_second; 1158 1159 /* set prefix mask */ 1160 if (ifra->ifra_prefixmask.sin6_len) { 1161 /* 1162 * We prohibit changing the prefix length of an existing 1163 * address, because 1164 * + such an operation should be rare in IPv6, and 1165 * + the operation would confuse prefix management. 1166 */ 1167 if (ia->ia_prefixmask.sin6_len && 1168 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1169 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 1170 " existing (%s) address should not be changed\n", 1171 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1172 error = EINVAL; 1173 goto unlink; 1174 } 1175 ia->ia_prefixmask = ifra->ifra_prefixmask; 1176 } 1177 1178 /* 1179 * If a new destination address is specified, scrub the old one and 1180 * install the new destination. Note that the interface must be 1181 * p2p or loopback (see the check above.) 1182 */ 1183 if (dst6.sin6_family == AF_INET6 && 1184 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1185 int e; 1186 1187 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1188 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 1189 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 1190 "a route to the old destination: %s\n", 1191 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1192 /* proceed anyway... */ 1193 } else 1194 ia->ia_flags &= ~IFA_ROUTE; 1195 ia->ia_dstaddr = dst6; 1196 } 1197 1198 /* 1199 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1200 * to see if the address is deprecated or invalidated, but initialize 1201 * these members for applications. 1202 */ 1203 ia->ia6_lifetime = ifra->ifra_lifetime; 1204 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1205 ia->ia6_lifetime.ia6t_expire = 1206 time_second + ia->ia6_lifetime.ia6t_vltime; 1207 } else 1208 ia->ia6_lifetime.ia6t_expire = 0; 1209 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1210 ia->ia6_lifetime.ia6t_preferred = 1211 time_second + ia->ia6_lifetime.ia6t_pltime; 1212 } else 1213 ia->ia6_lifetime.ia6t_preferred = 0; 1214 1215 /* reset the interface and routing table appropriately. */ 1216 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1217 goto unlink; 1218 1219 /* 1220 * configure address flags. 1221 */ 1222 ia->ia6_flags = ifra->ifra_flags; 1223 /* 1224 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1225 * userland, make it deprecated. 1226 */ 1227 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1228 ia->ia6_lifetime.ia6t_pltime = 0; 1229 ia->ia6_lifetime.ia6t_preferred = time_second; 1230 } 1231 /* 1232 * Make the address tentative before joining multicast addresses, 1233 * so that corresponding MLD responses would not have a tentative 1234 * source address. 1235 */ 1236 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1237 if (hostIsNew && in6if_do_dad(ifp)) 1238 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1239 1240 /* DAD should be performed after ND6_IFF_IFDISABLED is cleared. */ 1241 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1242 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1243 1244 /* 1245 * We are done if we have simply modified an existing address. 1246 */ 1247 if (!hostIsNew) 1248 return (error); 1249 1250 /* 1251 * Beyond this point, we should call in6_purgeaddr upon an error, 1252 * not just go to unlink. 1253 */ 1254 1255 /* Join necessary multicast groups. */ 1256 in6m_sol = NULL; 1257 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1258 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1259 if (error) 1260 goto cleanup; 1261 } 1262 1263 /* 1264 * Perform DAD, if needed. 1265 * XXX It may be of use, if we can administratively disable DAD. 1266 */ 1267 if (in6if_do_dad(ifp) && ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1268 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1269 { 1270 int mindelay, maxdelay; 1271 1272 delay = 0; 1273 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1274 /* 1275 * We need to impose a delay before sending an NS 1276 * for DAD. Check if we also needed a delay for the 1277 * corresponding MLD message. If we did, the delay 1278 * should be larger than the MLD delay (this could be 1279 * relaxed a bit, but this simple logic is at least 1280 * safe). 1281 * XXX: Break data hiding guidelines and look at 1282 * state for the solicited multicast group. 1283 */ 1284 mindelay = 0; 1285 if (in6m_sol != NULL && 1286 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1287 mindelay = in6m_sol->in6m_timer; 1288 } 1289 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1290 if (maxdelay - mindelay == 0) 1291 delay = 0; 1292 else { 1293 delay = 1294 (arc4random() % (maxdelay - mindelay)) + 1295 mindelay; 1296 } 1297 } 1298 nd6_dad_start((struct ifaddr *)ia, delay); 1299 } 1300 1301 KASSERT(hostIsNew, ("in6_update_ifa: !hostIsNew")); 1302 ifa_free(&ia->ia_ifa); 1303 return (error); 1304 1305 unlink: 1306 /* 1307 * XXX: if a change of an existing address failed, keep the entry 1308 * anyway. 1309 */ 1310 if (hostIsNew) { 1311 in6_unlink_ifa(ia, ifp); 1312 ifa_free(&ia->ia_ifa); 1313 } 1314 return (error); 1315 1316 cleanup: 1317 KASSERT(hostIsNew, ("in6_update_ifa: cleanup: !hostIsNew")); 1318 ifa_free(&ia->ia_ifa); 1319 in6_purgeaddr(&ia->ia_ifa); 1320 return error; 1321 } 1322 1323 /* 1324 * Leave multicast groups. Factored out from in6_purgeaddr(). 1325 * This entire work should only be done once, for the default FIB. 1326 */ 1327 static int 1328 in6_purgeaddr_mc(struct ifnet *ifp, struct in6_ifaddr *ia, struct ifaddr *ifa0) 1329 { 1330 struct sockaddr_in6 mltaddr, mltmask; 1331 struct in6_multi_mship *imm; 1332 struct rtentry *rt; 1333 struct sockaddr_in6 sin6; 1334 int error; 1335 1336 /* 1337 * Leave from multicast groups we have joined for the interface. 1338 */ 1339 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1340 LIST_REMOVE(imm, i6mm_chain); 1341 in6_leavegroup(imm); 1342 } 1343 1344 /* 1345 * Remove the link-local all-nodes address. 1346 */ 1347 bzero(&mltmask, sizeof(mltmask)); 1348 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1349 mltmask.sin6_family = AF_INET6; 1350 mltmask.sin6_addr = in6mask32; 1351 1352 bzero(&mltaddr, sizeof(mltaddr)); 1353 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1354 mltaddr.sin6_family = AF_INET6; 1355 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1356 1357 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1358 return (error); 1359 1360 /* 1361 * As for the mltaddr above, proactively prepare the sin6 to avoid 1362 * rtentry un- and re-locking. 1363 */ 1364 if (ifa0 != NULL) { 1365 bzero(&sin6, sizeof(sin6)); 1366 sin6.sin6_len = sizeof(sin6); 1367 sin6.sin6_family = AF_INET6; 1368 memcpy(&sin6.sin6_addr, &satosin6(ifa0->ifa_addr)->sin6_addr, 1369 sizeof(sin6.sin6_addr)); 1370 error = in6_setscope(&sin6.sin6_addr, ifa0->ifa_ifp, NULL); 1371 if (error != 0) 1372 return (error); 1373 } 1374 1375 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 1376 if (rt != NULL && rt->rt_gateway != NULL && 1377 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1378 &ia->ia_addr.sin6_addr, 1379 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1380 /* 1381 * If no more IPv6 address exists on this interface then 1382 * remove the multicast address route. 1383 */ 1384 if (ifa0 == NULL) { 1385 memcpy(&mltaddr.sin6_addr, 1386 &satosin6(rt_key(rt))->sin6_addr, 1387 sizeof(mltaddr.sin6_addr)); 1388 RTFREE_LOCKED(rt); 1389 error = in6_rtrequest(RTM_DELETE, 1390 (struct sockaddr *)&mltaddr, 1391 (struct sockaddr *)&ia->ia_addr, 1392 (struct sockaddr *)&mltmask, RTF_UP, 1393 (struct rtentry **)0, RT_DEFAULT_FIB); 1394 if (error) 1395 log(LOG_INFO, "%s: link-local all-nodes " 1396 "multicast address deletion error\n", 1397 __func__); 1398 } else { 1399 /* 1400 * Replace the gateway of the route. 1401 */ 1402 memcpy(rt->rt_gateway, &sin6, sizeof(sin6)); 1403 RTFREE_LOCKED(rt); 1404 } 1405 } else { 1406 if (rt != NULL) 1407 RTFREE_LOCKED(rt); 1408 } 1409 1410 /* 1411 * Remove the node-local all-nodes address. 1412 */ 1413 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1414 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1415 return (error); 1416 1417 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 1418 if (rt != NULL && rt->rt_gateway != NULL && 1419 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1420 &ia->ia_addr.sin6_addr, 1421 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1422 /* 1423 * If no more IPv6 address exists on this interface then 1424 * remove the multicast address route. 1425 */ 1426 if (ifa0 == NULL) { 1427 memcpy(&mltaddr.sin6_addr, 1428 &satosin6(rt_key(rt))->sin6_addr, 1429 sizeof(mltaddr.sin6_addr)); 1430 1431 RTFREE_LOCKED(rt); 1432 error = in6_rtrequest(RTM_DELETE, 1433 (struct sockaddr *)&mltaddr, 1434 (struct sockaddr *)&ia->ia_addr, 1435 (struct sockaddr *)&mltmask, RTF_UP, 1436 (struct rtentry **)0, RT_DEFAULT_FIB); 1437 if (error) 1438 log(LOG_INFO, "%s: node-local all-nodes" 1439 "multicast address deletion error\n", 1440 __func__); 1441 } else { 1442 /* 1443 * Replace the gateway of the route. 1444 */ 1445 memcpy(rt->rt_gateway, &sin6, sizeof(sin6)); 1446 RTFREE_LOCKED(rt); 1447 } 1448 } else { 1449 if (rt != NULL) 1450 RTFREE_LOCKED(rt); 1451 } 1452 1453 return (0); 1454 } 1455 1456 void 1457 in6_purgeaddr(struct ifaddr *ifa) 1458 { 1459 struct ifnet *ifp = ifa->ifa_ifp; 1460 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1461 int plen, error; 1462 struct ifaddr *ifa0; 1463 1464 if (ifa->ifa_carp) 1465 (*carp_detach_p)(ifa); 1466 1467 /* 1468 * find another IPv6 address as the gateway for the 1469 * link-local and node-local all-nodes multicast 1470 * address routes 1471 */ 1472 IF_ADDR_RLOCK(ifp); 1473 TAILQ_FOREACH(ifa0, &ifp->if_addrhead, ifa_link) { 1474 if ((ifa0->ifa_addr->sa_family != AF_INET6) || 1475 memcmp(&satosin6(ifa0->ifa_addr)->sin6_addr, 1476 &ia->ia_addr.sin6_addr, sizeof(struct in6_addr)) == 0) 1477 continue; 1478 else 1479 break; 1480 } 1481 if (ifa0 != NULL) 1482 ifa_ref(ifa0); 1483 IF_ADDR_RUNLOCK(ifp); 1484 1485 /* 1486 * Remove the loopback route to the interface address. 1487 * The check for the current setting of "nd6_useloopback" 1488 * is not needed. 1489 */ 1490 if (ia->ia_flags & IFA_RTSELF) { 1491 error = ifa_del_loopback_route((struct ifaddr *)ia, 1492 (struct sockaddr *)&ia->ia_addr); 1493 if (error == 0) 1494 ia->ia_flags &= ~IFA_RTSELF; 1495 } 1496 1497 /* stop DAD processing */ 1498 nd6_dad_stop(ifa); 1499 1500 /* Remove local address entry from lltable. */ 1501 in6_ifremloop(ifa); 1502 1503 /* Leave multicast groups. */ 1504 error = in6_purgeaddr_mc(ifp, ia, ifa0); 1505 1506 if (ifa0 != NULL) 1507 ifa_free(ifa0); 1508 1509 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1510 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1511 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1512 (ia->ia_dstaddr.sin6_family == AF_INET6) ? RTF_HOST : 0); 1513 if (error != 0) 1514 log(LOG_INFO, "%s: err=%d, destination address delete " 1515 "failed\n", __func__, error); 1516 ia->ia_flags &= ~IFA_ROUTE; 1517 } 1518 1519 in6_unlink_ifa(ia, ifp); 1520 } 1521 1522 static void 1523 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1524 { 1525 int s = splnet(); 1526 1527 IF_ADDR_WLOCK(ifp); 1528 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1529 IF_ADDR_WUNLOCK(ifp); 1530 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1531 1532 /* 1533 * Defer the release of what might be the last reference to the 1534 * in6_ifaddr so that it can't be freed before the remainder of the 1535 * cleanup. 1536 */ 1537 IN6_IFADDR_WLOCK(); 1538 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link); 1539 IN6_IFADDR_WUNLOCK(); 1540 1541 /* 1542 * Release the reference to the base prefix. There should be a 1543 * positive reference. 1544 */ 1545 if (ia->ia6_ndpr == NULL) { 1546 nd6log((LOG_NOTICE, 1547 "in6_unlink_ifa: autoconf'ed address " 1548 "%p has no prefix\n", ia)); 1549 } else { 1550 ia->ia6_ndpr->ndpr_refcnt--; 1551 ia->ia6_ndpr = NULL; 1552 } 1553 1554 /* 1555 * Also, if the address being removed is autoconf'ed, call 1556 * pfxlist_onlink_check() since the release might affect the status of 1557 * other (detached) addresses. 1558 */ 1559 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1560 pfxlist_onlink_check(); 1561 } 1562 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1563 splx(s); 1564 } 1565 1566 void 1567 in6_purgeif(struct ifnet *ifp) 1568 { 1569 struct ifaddr *ifa, *nifa; 1570 1571 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { 1572 if (ifa->ifa_addr->sa_family != AF_INET6) 1573 continue; 1574 in6_purgeaddr(ifa); 1575 } 1576 1577 in6_ifdetach(ifp); 1578 } 1579 1580 /* 1581 * SIOC[GAD]LIFADDR. 1582 * SIOCGLIFADDR: get first address. (?) 1583 * SIOCGLIFADDR with IFLR_PREFIX: 1584 * get first address that matches the specified prefix. 1585 * SIOCALIFADDR: add the specified address. 1586 * SIOCALIFADDR with IFLR_PREFIX: 1587 * add the specified prefix, filling hostid part from 1588 * the first link-local address. prefixlen must be <= 64. 1589 * SIOCDLIFADDR: delete the specified address. 1590 * SIOCDLIFADDR with IFLR_PREFIX: 1591 * delete the first address that matches the specified prefix. 1592 * return values: 1593 * EINVAL on invalid parameters 1594 * EADDRNOTAVAIL on prefix match failed/specified address not found 1595 * other values may be returned from in6_ioctl() 1596 * 1597 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1598 * this is to accomodate address naming scheme other than RFC2374, 1599 * in the future. 1600 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1601 * address encoding scheme. (see figure on page 8) 1602 */ 1603 static int 1604 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1605 struct ifnet *ifp, struct thread *td) 1606 { 1607 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1608 struct ifaddr *ifa; 1609 struct sockaddr *sa; 1610 1611 /* sanity checks */ 1612 if (!data || !ifp) { 1613 panic("invalid argument to in6_lifaddr_ioctl"); 1614 /* NOTREACHED */ 1615 } 1616 1617 switch (cmd) { 1618 case SIOCGLIFADDR: 1619 /* address must be specified on GET with IFLR_PREFIX */ 1620 if ((iflr->flags & IFLR_PREFIX) == 0) 1621 break; 1622 /* FALLTHROUGH */ 1623 case SIOCALIFADDR: 1624 case SIOCDLIFADDR: 1625 /* address must be specified on ADD and DELETE */ 1626 sa = (struct sockaddr *)&iflr->addr; 1627 if (sa->sa_family != AF_INET6) 1628 return EINVAL; 1629 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1630 return EINVAL; 1631 /* XXX need improvement */ 1632 sa = (struct sockaddr *)&iflr->dstaddr; 1633 if (sa->sa_family && sa->sa_family != AF_INET6) 1634 return EINVAL; 1635 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1636 return EINVAL; 1637 break; 1638 default: /* shouldn't happen */ 1639 #if 0 1640 panic("invalid cmd to in6_lifaddr_ioctl"); 1641 /* NOTREACHED */ 1642 #else 1643 return EOPNOTSUPP; 1644 #endif 1645 } 1646 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1647 return EINVAL; 1648 1649 switch (cmd) { 1650 case SIOCALIFADDR: 1651 { 1652 struct in6_aliasreq ifra; 1653 struct in6_addr *hostid = NULL; 1654 int prefixlen; 1655 1656 ifa = NULL; 1657 if ((iflr->flags & IFLR_PREFIX) != 0) { 1658 struct sockaddr_in6 *sin6; 1659 1660 /* 1661 * hostid is to fill in the hostid part of the 1662 * address. hostid points to the first link-local 1663 * address attached to the interface. 1664 */ 1665 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1666 if (!ifa) 1667 return EADDRNOTAVAIL; 1668 hostid = IFA_IN6(ifa); 1669 1670 /* prefixlen must be <= 64. */ 1671 if (64 < iflr->prefixlen) { 1672 if (ifa != NULL) 1673 ifa_free(ifa); 1674 return EINVAL; 1675 } 1676 prefixlen = iflr->prefixlen; 1677 1678 /* hostid part must be zero. */ 1679 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1680 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1681 sin6->sin6_addr.s6_addr32[3] != 0) { 1682 if (ifa != NULL) 1683 ifa_free(ifa); 1684 return EINVAL; 1685 } 1686 } else 1687 prefixlen = iflr->prefixlen; 1688 1689 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1690 bzero(&ifra, sizeof(ifra)); 1691 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1692 1693 bcopy(&iflr->addr, &ifra.ifra_addr, 1694 ((struct sockaddr *)&iflr->addr)->sa_len); 1695 if (hostid) { 1696 /* fill in hostid part */ 1697 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1698 hostid->s6_addr32[2]; 1699 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1700 hostid->s6_addr32[3]; 1701 } 1702 1703 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1704 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1705 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1706 if (hostid) { 1707 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1708 hostid->s6_addr32[2]; 1709 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1710 hostid->s6_addr32[3]; 1711 } 1712 } 1713 if (ifa != NULL) 1714 ifa_free(ifa); 1715 1716 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1717 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1718 1719 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1720 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1721 } 1722 case SIOCGLIFADDR: 1723 case SIOCDLIFADDR: 1724 { 1725 struct in6_ifaddr *ia; 1726 struct in6_addr mask, candidate, match; 1727 struct sockaddr_in6 *sin6; 1728 int cmp; 1729 1730 bzero(&mask, sizeof(mask)); 1731 if (iflr->flags & IFLR_PREFIX) { 1732 /* lookup a prefix rather than address. */ 1733 in6_prefixlen2mask(&mask, iflr->prefixlen); 1734 1735 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1736 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1737 match.s6_addr32[0] &= mask.s6_addr32[0]; 1738 match.s6_addr32[1] &= mask.s6_addr32[1]; 1739 match.s6_addr32[2] &= mask.s6_addr32[2]; 1740 match.s6_addr32[3] &= mask.s6_addr32[3]; 1741 1742 /* if you set extra bits, that's wrong */ 1743 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1744 return EINVAL; 1745 1746 cmp = 1; 1747 } else { 1748 if (cmd == SIOCGLIFADDR) { 1749 /* on getting an address, take the 1st match */ 1750 cmp = 0; /* XXX */ 1751 } else { 1752 /* on deleting an address, do exact match */ 1753 in6_prefixlen2mask(&mask, 128); 1754 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1755 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1756 1757 cmp = 1; 1758 } 1759 } 1760 1761 IF_ADDR_RLOCK(ifp); 1762 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1763 if (ifa->ifa_addr->sa_family != AF_INET6) 1764 continue; 1765 if (!cmp) 1766 break; 1767 1768 /* 1769 * XXX: this is adhoc, but is necessary to allow 1770 * a user to specify fe80::/64 (not /10) for a 1771 * link-local address. 1772 */ 1773 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1774 in6_clearscope(&candidate); 1775 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1776 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1777 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1778 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1779 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1780 break; 1781 } 1782 if (ifa != NULL) 1783 ifa_ref(ifa); 1784 IF_ADDR_RUNLOCK(ifp); 1785 if (!ifa) 1786 return EADDRNOTAVAIL; 1787 ia = ifa2ia6(ifa); 1788 1789 if (cmd == SIOCGLIFADDR) { 1790 int error; 1791 1792 /* fill in the if_laddrreq structure */ 1793 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1794 error = sa6_recoverscope( 1795 (struct sockaddr_in6 *)&iflr->addr); 1796 if (error != 0) { 1797 ifa_free(ifa); 1798 return (error); 1799 } 1800 1801 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1802 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1803 ia->ia_dstaddr.sin6_len); 1804 error = sa6_recoverscope( 1805 (struct sockaddr_in6 *)&iflr->dstaddr); 1806 if (error != 0) { 1807 ifa_free(ifa); 1808 return (error); 1809 } 1810 } else 1811 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1812 1813 iflr->prefixlen = 1814 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1815 1816 iflr->flags = ia->ia6_flags; /* XXX */ 1817 ifa_free(ifa); 1818 1819 return 0; 1820 } else { 1821 struct in6_aliasreq ifra; 1822 1823 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1824 bzero(&ifra, sizeof(ifra)); 1825 bcopy(iflr->iflr_name, ifra.ifra_name, 1826 sizeof(ifra.ifra_name)); 1827 1828 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1829 ia->ia_addr.sin6_len); 1830 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1831 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1832 ia->ia_dstaddr.sin6_len); 1833 } else { 1834 bzero(&ifra.ifra_dstaddr, 1835 sizeof(ifra.ifra_dstaddr)); 1836 } 1837 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1838 ia->ia_prefixmask.sin6_len); 1839 1840 ifra.ifra_flags = ia->ia6_flags; 1841 ifa_free(ifa); 1842 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1843 ifp, td); 1844 } 1845 } 1846 } 1847 1848 return EOPNOTSUPP; /* just for safety */ 1849 } 1850 1851 /* 1852 * Initialize an interface's IPv6 address and routing table entry. 1853 */ 1854 static int 1855 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1856 struct sockaddr_in6 *sin6, int newhost) 1857 { 1858 int error = 0, plen, ifacount = 0; 1859 int s = splimp(); 1860 struct ifaddr *ifa; 1861 1862 /* 1863 * Give the interface a chance to initialize 1864 * if this is its first address, 1865 * and to validate the address if necessary. 1866 */ 1867 IF_ADDR_RLOCK(ifp); 1868 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1869 if (ifa->ifa_addr->sa_family != AF_INET6) 1870 continue; 1871 ifacount++; 1872 } 1873 IF_ADDR_RUNLOCK(ifp); 1874 1875 ia->ia_addr = *sin6; 1876 1877 if (ifacount <= 1 && ifp->if_ioctl) { 1878 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1879 if (error) { 1880 splx(s); 1881 return (error); 1882 } 1883 } 1884 splx(s); 1885 1886 ia->ia_ifa.ifa_metric = ifp->if_metric; 1887 1888 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1889 1890 /* 1891 * Special case: 1892 * If a new destination address is specified for a point-to-point 1893 * interface, install a route to the destination as an interface 1894 * direct route. 1895 * XXX: the logic below rejects assigning multiple addresses on a p2p 1896 * interface that share the same destination. 1897 */ 1898 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1899 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1900 ia->ia_dstaddr.sin6_family == AF_INET6) { 1901 int rtflags = RTF_UP | RTF_HOST; 1902 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1903 if (error) 1904 return (error); 1905 ia->ia_flags |= IFA_ROUTE; 1906 /* 1907 * Handle the case for ::1 . 1908 */ 1909 if (ifp->if_flags & IFF_LOOPBACK) 1910 ia->ia_flags |= IFA_RTSELF; 1911 } 1912 1913 /* 1914 * add a loopback route to self 1915 */ 1916 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1917 error = ifa_add_loopback_route((struct ifaddr *)ia, 1918 (struct sockaddr *)&ia->ia_addr); 1919 if (error == 0) 1920 ia->ia_flags |= IFA_RTSELF; 1921 } 1922 1923 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1924 if (newhost) 1925 in6_ifaddloop(&(ia->ia_ifa)); 1926 1927 return (error); 1928 } 1929 1930 /* 1931 * Find an IPv6 interface link-local address specific to an interface. 1932 * ifaddr is returned referenced. 1933 */ 1934 struct in6_ifaddr * 1935 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1936 { 1937 struct ifaddr *ifa; 1938 1939 IF_ADDR_RLOCK(ifp); 1940 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1941 if (ifa->ifa_addr->sa_family != AF_INET6) 1942 continue; 1943 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1944 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1945 ignoreflags) != 0) 1946 continue; 1947 ifa_ref(ifa); 1948 break; 1949 } 1950 } 1951 IF_ADDR_RUNLOCK(ifp); 1952 1953 return ((struct in6_ifaddr *)ifa); 1954 } 1955 1956 1957 /* 1958 * find the internet address corresponding to a given interface and address. 1959 * ifaddr is returned referenced. 1960 */ 1961 struct in6_ifaddr * 1962 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1963 { 1964 struct ifaddr *ifa; 1965 1966 IF_ADDR_RLOCK(ifp); 1967 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1968 if (ifa->ifa_addr->sa_family != AF_INET6) 1969 continue; 1970 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1971 ifa_ref(ifa); 1972 break; 1973 } 1974 } 1975 IF_ADDR_RUNLOCK(ifp); 1976 1977 return ((struct in6_ifaddr *)ifa); 1978 } 1979 1980 /* 1981 * Convert IP6 address to printable (loggable) representation. Caller 1982 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1983 */ 1984 static char digits[] = "0123456789abcdef"; 1985 char * 1986 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1987 { 1988 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1989 char *cp; 1990 const u_int16_t *a = (const u_int16_t *)addr; 1991 const u_int8_t *d; 1992 int dcolon = 0, zero = 0; 1993 1994 cp = ip6buf; 1995 1996 for (i = 0; i < 8; i++) { 1997 if (*(a + i) == 0) { 1998 cnt++; 1999 if (cnt == 1) 2000 idx = i; 2001 } 2002 else if (maxcnt < cnt) { 2003 maxcnt = cnt; 2004 index = idx; 2005 cnt = 0; 2006 } 2007 } 2008 if (maxcnt < cnt) { 2009 maxcnt = cnt; 2010 index = idx; 2011 } 2012 2013 for (i = 0; i < 8; i++) { 2014 if (dcolon == 1) { 2015 if (*a == 0) { 2016 if (i == 7) 2017 *cp++ = ':'; 2018 a++; 2019 continue; 2020 } else 2021 dcolon = 2; 2022 } 2023 if (*a == 0) { 2024 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 2025 if (i == 0) 2026 *cp++ = ':'; 2027 *cp++ = ':'; 2028 dcolon = 1; 2029 } else { 2030 *cp++ = '0'; 2031 *cp++ = ':'; 2032 } 2033 a++; 2034 continue; 2035 } 2036 d = (const u_char *)a; 2037 /* Try to eliminate leading zeros in printout like in :0001. */ 2038 zero = 1; 2039 *cp = digits[*d >> 4]; 2040 if (*cp != '0') { 2041 zero = 0; 2042 cp++; 2043 } 2044 *cp = digits[*d++ & 0xf]; 2045 if (zero == 0 || (*cp != '0')) { 2046 zero = 0; 2047 cp++; 2048 } 2049 *cp = digits[*d >> 4]; 2050 if (zero == 0 || (*cp != '0')) { 2051 zero = 0; 2052 cp++; 2053 } 2054 *cp++ = digits[*d & 0xf]; 2055 *cp++ = ':'; 2056 a++; 2057 } 2058 *--cp = '\0'; 2059 return (ip6buf); 2060 } 2061 2062 int 2063 in6_localaddr(struct in6_addr *in6) 2064 { 2065 struct in6_ifaddr *ia; 2066 2067 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 2068 return 1; 2069 2070 IN6_IFADDR_RLOCK(); 2071 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 2072 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 2073 &ia->ia_prefixmask.sin6_addr)) { 2074 IN6_IFADDR_RUNLOCK(); 2075 return 1; 2076 } 2077 } 2078 IN6_IFADDR_RUNLOCK(); 2079 2080 return (0); 2081 } 2082 2083 /* 2084 * Return 1 if an internet address is for the local host and configured 2085 * on one of its interfaces. 2086 */ 2087 int 2088 in6_localip(struct in6_addr *in6) 2089 { 2090 struct in6_ifaddr *ia; 2091 2092 IN6_IFADDR_RLOCK(); 2093 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 2094 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 2095 IN6_IFADDR_RUNLOCK(); 2096 return (1); 2097 } 2098 } 2099 IN6_IFADDR_RUNLOCK(); 2100 return (0); 2101 } 2102 2103 2104 int 2105 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 2106 { 2107 struct in6_ifaddr *ia; 2108 2109 IN6_IFADDR_RLOCK(); 2110 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 2111 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 2112 &sa6->sin6_addr) && 2113 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) { 2114 IN6_IFADDR_RUNLOCK(); 2115 return (1); /* true */ 2116 } 2117 2118 /* XXX: do we still have to go thru the rest of the list? */ 2119 } 2120 IN6_IFADDR_RUNLOCK(); 2121 2122 return (0); /* false */ 2123 } 2124 2125 /* 2126 * return length of part which dst and src are equal 2127 * hard coding... 2128 */ 2129 int 2130 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 2131 { 2132 int match = 0; 2133 u_char *s = (u_char *)src, *d = (u_char *)dst; 2134 u_char *lim = s + 16, r; 2135 2136 while (s < lim) 2137 if ((r = (*d++ ^ *s++)) != 0) { 2138 while (r < 128) { 2139 match++; 2140 r <<= 1; 2141 } 2142 break; 2143 } else 2144 match += 8; 2145 return match; 2146 } 2147 2148 /* XXX: to be scope conscious */ 2149 int 2150 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 2151 { 2152 int bytelen, bitlen; 2153 2154 /* sanity check */ 2155 if (0 > len || len > 128) { 2156 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 2157 len); 2158 return (0); 2159 } 2160 2161 bytelen = len / 8; 2162 bitlen = len % 8; 2163 2164 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 2165 return (0); 2166 if (bitlen != 0 && 2167 p1->s6_addr[bytelen] >> (8 - bitlen) != 2168 p2->s6_addr[bytelen] >> (8 - bitlen)) 2169 return (0); 2170 2171 return (1); 2172 } 2173 2174 void 2175 in6_prefixlen2mask(struct in6_addr *maskp, int len) 2176 { 2177 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 2178 int bytelen, bitlen, i; 2179 2180 /* sanity check */ 2181 if (0 > len || len > 128) { 2182 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 2183 len); 2184 return; 2185 } 2186 2187 bzero(maskp, sizeof(*maskp)); 2188 bytelen = len / 8; 2189 bitlen = len % 8; 2190 for (i = 0; i < bytelen; i++) 2191 maskp->s6_addr[i] = 0xff; 2192 if (bitlen) 2193 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2194 } 2195 2196 /* 2197 * return the best address out of the same scope. if no address was 2198 * found, return the first valid address from designated IF. 2199 */ 2200 struct in6_ifaddr * 2201 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2202 { 2203 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2204 struct ifaddr *ifa; 2205 struct in6_ifaddr *besta = 0; 2206 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2207 2208 dep[0] = dep[1] = NULL; 2209 2210 /* 2211 * We first look for addresses in the same scope. 2212 * If there is one, return it. 2213 * If two or more, return one which matches the dst longest. 2214 * If none, return one of global addresses assigned other ifs. 2215 */ 2216 IF_ADDR_RLOCK(ifp); 2217 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2218 if (ifa->ifa_addr->sa_family != AF_INET6) 2219 continue; 2220 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2221 continue; /* XXX: is there any case to allow anycast? */ 2222 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2223 continue; /* don't use this interface */ 2224 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2225 continue; 2226 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2227 if (V_ip6_use_deprecated) 2228 dep[0] = (struct in6_ifaddr *)ifa; 2229 continue; 2230 } 2231 2232 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2233 /* 2234 * call in6_matchlen() as few as possible 2235 */ 2236 if (besta) { 2237 if (blen == -1) 2238 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2239 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2240 if (tlen > blen) { 2241 blen = tlen; 2242 besta = (struct in6_ifaddr *)ifa; 2243 } 2244 } else 2245 besta = (struct in6_ifaddr *)ifa; 2246 } 2247 } 2248 if (besta) { 2249 ifa_ref(&besta->ia_ifa); 2250 IF_ADDR_RUNLOCK(ifp); 2251 return (besta); 2252 } 2253 2254 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2255 if (ifa->ifa_addr->sa_family != AF_INET6) 2256 continue; 2257 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2258 continue; /* XXX: is there any case to allow anycast? */ 2259 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2260 continue; /* don't use this interface */ 2261 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2262 continue; 2263 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2264 if (V_ip6_use_deprecated) 2265 dep[1] = (struct in6_ifaddr *)ifa; 2266 continue; 2267 } 2268 2269 if (ifa != NULL) 2270 ifa_ref(ifa); 2271 IF_ADDR_RUNLOCK(ifp); 2272 return (struct in6_ifaddr *)ifa; 2273 } 2274 2275 /* use the last-resort values, that are, deprecated addresses */ 2276 if (dep[0]) { 2277 ifa_ref((struct ifaddr *)dep[0]); 2278 IF_ADDR_RUNLOCK(ifp); 2279 return dep[0]; 2280 } 2281 if (dep[1]) { 2282 ifa_ref((struct ifaddr *)dep[1]); 2283 IF_ADDR_RUNLOCK(ifp); 2284 return dep[1]; 2285 } 2286 2287 IF_ADDR_RUNLOCK(ifp); 2288 return NULL; 2289 } 2290 2291 /* 2292 * perform DAD when interface becomes IFF_UP. 2293 */ 2294 void 2295 in6_if_up(struct ifnet *ifp) 2296 { 2297 struct ifaddr *ifa; 2298 struct in6_ifaddr *ia; 2299 2300 IF_ADDR_RLOCK(ifp); 2301 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2302 if (ifa->ifa_addr->sa_family != AF_INET6) 2303 continue; 2304 ia = (struct in6_ifaddr *)ifa; 2305 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2306 /* 2307 * The TENTATIVE flag was likely set by hand 2308 * beforehand, implicitly indicating the need for DAD. 2309 * We may be able to skip the random delay in this 2310 * case, but we impose delays just in case. 2311 */ 2312 nd6_dad_start(ifa, 2313 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2314 } 2315 } 2316 IF_ADDR_RUNLOCK(ifp); 2317 2318 /* 2319 * special cases, like 6to4, are handled in in6_ifattach 2320 */ 2321 in6_ifattach(ifp, NULL); 2322 } 2323 2324 int 2325 in6if_do_dad(struct ifnet *ifp) 2326 { 2327 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2328 return (0); 2329 2330 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 2331 return (0); 2332 2333 switch (ifp->if_type) { 2334 #ifdef IFT_DUMMY 2335 case IFT_DUMMY: 2336 #endif 2337 case IFT_FAITH: 2338 /* 2339 * These interfaces do not have the IFF_LOOPBACK flag, 2340 * but loop packets back. We do not have to do DAD on such 2341 * interfaces. We should even omit it, because loop-backed 2342 * NS would confuse the DAD procedure. 2343 */ 2344 return (0); 2345 default: 2346 /* 2347 * Our DAD routine requires the interface up and running. 2348 * However, some interfaces can be up before the RUNNING 2349 * status. Additionaly, users may try to assign addresses 2350 * before the interface becomes up (or running). 2351 * We simply skip DAD in such a case as a work around. 2352 * XXX: we should rather mark "tentative" on such addresses, 2353 * and do DAD after the interface becomes ready. 2354 */ 2355 if (!((ifp->if_flags & IFF_UP) && 2356 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2357 return (0); 2358 2359 return (1); 2360 } 2361 } 2362 2363 /* 2364 * Calculate max IPv6 MTU through all the interfaces and store it 2365 * to in6_maxmtu. 2366 */ 2367 void 2368 in6_setmaxmtu(void) 2369 { 2370 unsigned long maxmtu = 0; 2371 struct ifnet *ifp; 2372 2373 IFNET_RLOCK_NOSLEEP(); 2374 TAILQ_FOREACH(ifp, &V_ifnet, if_list) { 2375 /* this function can be called during ifnet initialization */ 2376 if (!ifp->if_afdata[AF_INET6]) 2377 continue; 2378 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2379 IN6_LINKMTU(ifp) > maxmtu) 2380 maxmtu = IN6_LINKMTU(ifp); 2381 } 2382 IFNET_RUNLOCK_NOSLEEP(); 2383 if (maxmtu) /* update only when maxmtu is positive */ 2384 V_in6_maxmtu = maxmtu; 2385 } 2386 2387 /* 2388 * Provide the length of interface identifiers to be used for the link attached 2389 * to the given interface. The length should be defined in "IPv6 over 2390 * xxx-link" document. Note that address architecture might also define 2391 * the length for a particular set of address prefixes, regardless of the 2392 * link type. As clarified in rfc2462bis, those two definitions should be 2393 * consistent, and those really are as of August 2004. 2394 */ 2395 int 2396 in6_if2idlen(struct ifnet *ifp) 2397 { 2398 switch (ifp->if_type) { 2399 case IFT_ETHER: /* RFC2464 */ 2400 #ifdef IFT_PROPVIRTUAL 2401 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2402 #endif 2403 #ifdef IFT_L2VLAN 2404 case IFT_L2VLAN: /* ditto */ 2405 #endif 2406 #ifdef IFT_IEEE80211 2407 case IFT_IEEE80211: /* ditto */ 2408 #endif 2409 #ifdef IFT_MIP 2410 case IFT_MIP: /* ditto */ 2411 #endif 2412 case IFT_INFINIBAND: 2413 return (64); 2414 case IFT_FDDI: /* RFC2467 */ 2415 return (64); 2416 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2417 return (64); 2418 case IFT_PPP: /* RFC2472 */ 2419 return (64); 2420 case IFT_ARCNET: /* RFC2497 */ 2421 return (64); 2422 case IFT_FRELAY: /* RFC2590 */ 2423 return (64); 2424 case IFT_IEEE1394: /* RFC3146 */ 2425 return (64); 2426 case IFT_GIF: 2427 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2428 case IFT_LOOP: 2429 return (64); /* XXX: is this really correct? */ 2430 default: 2431 /* 2432 * Unknown link type: 2433 * It might be controversial to use the today's common constant 2434 * of 64 for these cases unconditionally. For full compliance, 2435 * we should return an error in this case. On the other hand, 2436 * if we simply miss the standard for the link type or a new 2437 * standard is defined for a new link type, the IFID length 2438 * is very likely to be the common constant. As a compromise, 2439 * we always use the constant, but make an explicit notice 2440 * indicating the "unknown" case. 2441 */ 2442 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2443 return (64); 2444 } 2445 } 2446 2447 #include <sys/sysctl.h> 2448 2449 struct in6_llentry { 2450 struct llentry base; 2451 struct sockaddr_in6 l3_addr6; 2452 }; 2453 2454 /* 2455 * Deletes an address from the address table. 2456 * This function is called by the timer functions 2457 * such as arptimer() and nd6_llinfo_timer(), and 2458 * the caller does the locking. 2459 */ 2460 static void 2461 in6_lltable_free(struct lltable *llt, struct llentry *lle) 2462 { 2463 LLE_WUNLOCK(lle); 2464 LLE_LOCK_DESTROY(lle); 2465 free(lle, M_LLTABLE); 2466 } 2467 2468 static struct llentry * 2469 in6_lltable_new(const struct sockaddr *l3addr, u_int flags) 2470 { 2471 struct in6_llentry *lle; 2472 2473 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2474 if (lle == NULL) /* NB: caller generates msg */ 2475 return NULL; 2476 2477 lle->l3_addr6 = *(const struct sockaddr_in6 *)l3addr; 2478 lle->base.lle_refcnt = 1; 2479 lle->base.lle_free = in6_lltable_free; 2480 LLE_LOCK_INIT(&lle->base); 2481 callout_init_rw(&lle->base.ln_timer_ch, &lle->base.lle_lock, 2482 CALLOUT_RETURNUNLOCKED); 2483 2484 return (&lle->base); 2485 } 2486 2487 static void 2488 in6_lltable_prefix_free(struct lltable *llt, const struct sockaddr *prefix, 2489 const struct sockaddr *mask, u_int flags) 2490 { 2491 const struct sockaddr_in6 *pfx = (const struct sockaddr_in6 *)prefix; 2492 const struct sockaddr_in6 *msk = (const struct sockaddr_in6 *)mask; 2493 struct llentry *lle, *next; 2494 int i; 2495 2496 /* 2497 * (flags & LLE_STATIC) means deleting all entries 2498 * including static ND6 entries. 2499 */ 2500 IF_AFDATA_WLOCK(llt->llt_ifp); 2501 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2502 LIST_FOREACH_SAFE(lle, &llt->lle_head[i], lle_next, next) { 2503 if (IN6_ARE_MASKED_ADDR_EQUAL( 2504 &satosin6(L3_ADDR(lle))->sin6_addr, 2505 &pfx->sin6_addr, &msk->sin6_addr) && 2506 ((flags & LLE_STATIC) || 2507 !(lle->la_flags & LLE_STATIC))) { 2508 LLE_WLOCK(lle); 2509 if (callout_stop(&lle->la_timer)) 2510 LLE_REMREF(lle); 2511 llentry_free(lle); 2512 } 2513 } 2514 } 2515 IF_AFDATA_WUNLOCK(llt->llt_ifp); 2516 } 2517 2518 static int 2519 in6_lltable_rtcheck(struct ifnet *ifp, 2520 u_int flags, 2521 const struct sockaddr *l3addr) 2522 { 2523 struct rtentry *rt; 2524 char ip6buf[INET6_ADDRSTRLEN]; 2525 2526 KASSERT(l3addr->sa_family == AF_INET6, 2527 ("sin_family %d", l3addr->sa_family)); 2528 2529 /* Our local addresses are always only installed on the default FIB. */ 2530 /* XXX rtalloc1 should take a const param */ 2531 rt = in6_rtalloc1(__DECONST(struct sockaddr *, l3addr), 0, 0, 2532 RT_DEFAULT_FIB); 2533 if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) || rt->rt_ifp != ifp) { 2534 struct ifaddr *ifa; 2535 /* 2536 * Create an ND6 cache for an IPv6 neighbor 2537 * that is not covered by our own prefix. 2538 */ 2539 /* XXX ifaof_ifpforaddr should take a const param */ 2540 ifa = ifaof_ifpforaddr(__DECONST(struct sockaddr *, l3addr), ifp); 2541 if (ifa != NULL) { 2542 ifa_free(ifa); 2543 if (rt != NULL) 2544 RTFREE_LOCKED(rt); 2545 return 0; 2546 } 2547 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2548 ip6_sprintf(ip6buf, &((const struct sockaddr_in6 *)l3addr)->sin6_addr)); 2549 if (rt != NULL) 2550 RTFREE_LOCKED(rt); 2551 return EINVAL; 2552 } 2553 RTFREE_LOCKED(rt); 2554 return 0; 2555 } 2556 2557 static struct llentry * 2558 in6_lltable_lookup(struct lltable *llt, u_int flags, 2559 const struct sockaddr *l3addr) 2560 { 2561 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2562 struct ifnet *ifp = llt->llt_ifp; 2563 struct llentry *lle; 2564 struct llentries *lleh; 2565 u_int hashkey; 2566 2567 IF_AFDATA_LOCK_ASSERT(ifp); 2568 KASSERT(l3addr->sa_family == AF_INET6, 2569 ("sin_family %d", l3addr->sa_family)); 2570 2571 hashkey = sin6->sin6_addr.s6_addr32[3]; 2572 lleh = &llt->lle_head[LLATBL_HASH(hashkey, LLTBL_HASHMASK)]; 2573 LIST_FOREACH(lle, lleh, lle_next) { 2574 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)L3_ADDR(lle); 2575 if (lle->la_flags & LLE_DELETED) 2576 continue; 2577 if (bcmp(&sa6->sin6_addr, &sin6->sin6_addr, 2578 sizeof(struct in6_addr)) == 0) 2579 break; 2580 } 2581 2582 if (lle == NULL) { 2583 if (!(flags & LLE_CREATE)) 2584 return (NULL); 2585 /* 2586 * A route that covers the given address must have 2587 * been installed 1st because we are doing a resolution, 2588 * verify this. 2589 */ 2590 if (!(flags & LLE_IFADDR) && 2591 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2592 return NULL; 2593 2594 lle = in6_lltable_new(l3addr, flags); 2595 if (lle == NULL) { 2596 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2597 return NULL; 2598 } 2599 lle->la_flags = flags & ~LLE_CREATE; 2600 if ((flags & (LLE_CREATE | LLE_IFADDR)) == (LLE_CREATE | LLE_IFADDR)) { 2601 bcopy(IF_LLADDR(ifp), &lle->ll_addr, ifp->if_addrlen); 2602 lle->la_flags |= (LLE_VALID | LLE_STATIC); 2603 } 2604 2605 lle->lle_tbl = llt; 2606 lle->lle_head = lleh; 2607 lle->la_flags |= LLE_LINKED; 2608 LIST_INSERT_HEAD(lleh, lle, lle_next); 2609 } else if (flags & LLE_DELETE) { 2610 if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) { 2611 LLE_WLOCK(lle); 2612 lle->la_flags |= LLE_DELETED; 2613 LLE_WUNLOCK(lle); 2614 #ifdef DIAGNOSTIC 2615 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2616 #endif 2617 } 2618 lle = (void *)-1; 2619 } 2620 if (LLE_IS_VALID(lle)) { 2621 if (flags & LLE_EXCLUSIVE) 2622 LLE_WLOCK(lle); 2623 else 2624 LLE_RLOCK(lle); 2625 } 2626 return (lle); 2627 } 2628 2629 static int 2630 in6_lltable_dump(struct lltable *llt, struct sysctl_req *wr) 2631 { 2632 struct ifnet *ifp = llt->llt_ifp; 2633 struct llentry *lle; 2634 /* XXX stack use */ 2635 struct { 2636 struct rt_msghdr rtm; 2637 struct sockaddr_in6 sin6; 2638 /* 2639 * ndp.c assumes that sdl is word aligned 2640 */ 2641 #ifdef __LP64__ 2642 uint32_t pad; 2643 #endif 2644 struct sockaddr_dl sdl; 2645 } ndpc; 2646 int i, error; 2647 2648 if (ifp->if_flags & IFF_LOOPBACK) 2649 return 0; 2650 2651 LLTABLE_LOCK_ASSERT(); 2652 2653 error = 0; 2654 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2655 LIST_FOREACH(lle, &llt->lle_head[i], lle_next) { 2656 struct sockaddr_dl *sdl; 2657 2658 /* skip deleted or invalid entries */ 2659 if ((lle->la_flags & (LLE_DELETED|LLE_VALID)) != LLE_VALID) 2660 continue; 2661 /* Skip if jailed and not a valid IP of the prison. */ 2662 if (prison_if(wr->td->td_ucred, L3_ADDR(lle)) != 0) 2663 continue; 2664 /* 2665 * produce a msg made of: 2666 * struct rt_msghdr; 2667 * struct sockaddr_in6 (IPv6) 2668 * struct sockaddr_dl; 2669 */ 2670 bzero(&ndpc, sizeof(ndpc)); 2671 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2672 ndpc.rtm.rtm_version = RTM_VERSION; 2673 ndpc.rtm.rtm_type = RTM_GET; 2674 ndpc.rtm.rtm_flags = RTF_UP; 2675 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2676 ndpc.sin6.sin6_family = AF_INET6; 2677 ndpc.sin6.sin6_len = sizeof(ndpc.sin6); 2678 bcopy(L3_ADDR(lle), &ndpc.sin6, L3_ADDR_LEN(lle)); 2679 2680 /* publish */ 2681 if (lle->la_flags & LLE_PUB) 2682 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2683 2684 sdl = &ndpc.sdl; 2685 sdl->sdl_family = AF_LINK; 2686 sdl->sdl_len = sizeof(*sdl); 2687 sdl->sdl_alen = ifp->if_addrlen; 2688 sdl->sdl_index = ifp->if_index; 2689 sdl->sdl_type = ifp->if_type; 2690 bcopy(&lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2691 ndpc.rtm.rtm_rmx.rmx_expire = 2692 lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; 2693 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2694 if (lle->la_flags & LLE_STATIC) 2695 ndpc.rtm.rtm_flags |= RTF_STATIC; 2696 ndpc.rtm.rtm_index = ifp->if_index; 2697 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2698 if (error) 2699 break; 2700 } 2701 } 2702 return error; 2703 } 2704 2705 void * 2706 in6_domifattach(struct ifnet *ifp) 2707 { 2708 struct in6_ifextra *ext; 2709 2710 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2711 bzero(ext, sizeof(*ext)); 2712 2713 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2714 M_IFADDR, M_WAITOK); 2715 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2716 2717 ext->icmp6_ifstat = 2718 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2719 M_IFADDR, M_WAITOK); 2720 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2721 2722 ext->nd_ifinfo = nd6_ifattach(ifp); 2723 ext->scope6_id = scope6_ifattach(ifp); 2724 ext->lltable = lltable_init(ifp, AF_INET6); 2725 if (ext->lltable != NULL) { 2726 ext->lltable->llt_prefix_free = in6_lltable_prefix_free; 2727 ext->lltable->llt_lookup = in6_lltable_lookup; 2728 ext->lltable->llt_dump = in6_lltable_dump; 2729 } 2730 2731 ext->mld_ifinfo = mld_domifattach(ifp); 2732 2733 return ext; 2734 } 2735 2736 void 2737 in6_domifdetach(struct ifnet *ifp, void *aux) 2738 { 2739 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2740 2741 mld_domifdetach(ifp); 2742 scope6_ifdetach(ext->scope6_id); 2743 nd6_ifdetach(ext->nd_ifinfo); 2744 lltable_free(ext->lltable); 2745 free(ext->in6_ifstat, M_IFADDR); 2746 free(ext->icmp6_ifstat, M_IFADDR); 2747 free(ext, M_IFADDR); 2748 } 2749 2750 /* 2751 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2752 * v4 mapped addr or v4 compat addr 2753 */ 2754 void 2755 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2756 { 2757 2758 bzero(sin, sizeof(*sin)); 2759 sin->sin_len = sizeof(struct sockaddr_in); 2760 sin->sin_family = AF_INET; 2761 sin->sin_port = sin6->sin6_port; 2762 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2763 } 2764 2765 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2766 void 2767 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2768 { 2769 bzero(sin6, sizeof(*sin6)); 2770 sin6->sin6_len = sizeof(struct sockaddr_in6); 2771 sin6->sin6_family = AF_INET6; 2772 sin6->sin6_port = sin->sin_port; 2773 sin6->sin6_addr.s6_addr32[0] = 0; 2774 sin6->sin6_addr.s6_addr32[1] = 0; 2775 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2776 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2777 } 2778 2779 /* Convert sockaddr_in6 into sockaddr_in. */ 2780 void 2781 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2782 { 2783 struct sockaddr_in *sin_p; 2784 struct sockaddr_in6 sin6; 2785 2786 /* 2787 * Save original sockaddr_in6 addr and convert it 2788 * to sockaddr_in. 2789 */ 2790 sin6 = *(struct sockaddr_in6 *)nam; 2791 sin_p = (struct sockaddr_in *)nam; 2792 in6_sin6_2_sin(sin_p, &sin6); 2793 } 2794 2795 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2796 void 2797 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2798 { 2799 struct sockaddr_in *sin_p; 2800 struct sockaddr_in6 *sin6_p; 2801 2802 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2803 sin_p = (struct sockaddr_in *)*nam; 2804 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2805 free(*nam, M_SONAME); 2806 *nam = (struct sockaddr *)sin6_p; 2807 } 2808