1 /* $FreeBSD$ */ 2 /* $KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)in.c 8.2 (Berkeley) 11/15/93 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/errno.h> 73 #include <sys/malloc.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #ifndef SCOPEDROUTING 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/in_pcb.h> 95 #endif 96 97 #include <netinet6/nd6.h> 98 #include <netinet/ip6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #ifndef SCOPEDROUTING 105 #include <netinet6/in6_pcb.h> 106 #endif 107 108 #include <net/net_osdep.h> 109 110 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); 111 112 /* 113 * Definitions of some costant IP6 addresses. 114 */ 115 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 116 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 117 const struct in6_addr in6addr_nodelocal_allnodes = 118 IN6ADDR_NODELOCAL_ALLNODES_INIT; 119 const struct in6_addr in6addr_linklocal_allnodes = 120 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 121 const struct in6_addr in6addr_linklocal_allrouters = 122 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 123 124 const struct in6_addr in6mask0 = IN6MASK0; 125 const struct in6_addr in6mask32 = IN6MASK32; 126 const struct in6_addr in6mask64 = IN6MASK64; 127 const struct in6_addr in6mask96 = IN6MASK96; 128 const struct in6_addr in6mask128 = IN6MASK128; 129 130 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 131 0, 0, IN6ADDR_ANY_INIT, 0}; 132 133 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 134 struct ifnet *, struct thread *)); 135 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 136 struct sockaddr_in6 *, int)); 137 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 138 139 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 140 141 int (*faithprefix_p)(struct in6_addr *); 142 143 /* 144 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 145 * This routine does actual work. 146 */ 147 static void 148 in6_ifloop_request(int cmd, struct ifaddr *ifa) 149 { 150 struct sockaddr_in6 all1_sa; 151 struct rtentry *nrt = NULL; 152 int e; 153 154 bzero(&all1_sa, sizeof(all1_sa)); 155 all1_sa.sin6_family = AF_INET6; 156 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 157 all1_sa.sin6_addr = in6mask128; 158 159 /* 160 * We specify the address itself as the gateway, and set the 161 * RTF_LLINFO flag, so that the corresponding host route would have 162 * the flag, and thus applications that assume traditional behavior 163 * would be happy. Note that we assume the caller of the function 164 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 165 * which changes the outgoing interface to the loopback interface. 166 */ 167 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 168 (struct sockaddr *)&all1_sa, 169 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 170 if (e != 0) { 171 log(LOG_ERR, "in6_ifloop_request: " 172 "%s operation failed for %s (errno=%d)\n", 173 cmd == RTM_ADD ? "ADD" : "DELETE", 174 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 175 e); 176 } 177 178 /* 179 * Make sure rt_ifa be equal to IFA, the second argument of the 180 * function. 181 * We need this because when we refer to rt_ifa->ia6_flags in 182 * ip6_input, we assume that the rt_ifa points to the address instead 183 * of the loopback address. 184 */ 185 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 186 IFAFREE(nrt->rt_ifa); 187 IFAREF(ifa); 188 nrt->rt_ifa = ifa; 189 } 190 191 /* 192 * Report the addition/removal of the address to the routing socket. 193 * XXX: since we called rtinit for a p2p interface with a destination, 194 * we end up reporting twice in such a case. Should we rather 195 * omit the second report? 196 */ 197 if (nrt) { 198 rt_newaddrmsg(cmd, ifa, e, nrt); 199 if (cmd == RTM_DELETE) { 200 if (nrt->rt_refcnt <= 0) { 201 /* XXX: we should free the entry ourselves. */ 202 nrt->rt_refcnt++; 203 rtfree(nrt); 204 } 205 } else { 206 /* the cmd must be RTM_ADD here */ 207 nrt->rt_refcnt--; 208 } 209 } 210 } 211 212 /* 213 * Add ownaddr as loopback rtentry. We previously add the route only if 214 * necessary (ex. on a p2p link). However, since we now manage addresses 215 * separately from prefixes, we should always add the route. We can't 216 * rely on the cloning mechanism from the corresponding interface route 217 * any more. 218 */ 219 static void 220 in6_ifaddloop(struct ifaddr *ifa) 221 { 222 struct rtentry *rt; 223 224 /* If there is no loopback entry, allocate one. */ 225 rt = rtalloc1(ifa->ifa_addr, 0, 0); 226 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 227 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 228 in6_ifloop_request(RTM_ADD, ifa); 229 if (rt) 230 rt->rt_refcnt--; 231 } 232 233 /* 234 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 235 * if it exists. 236 */ 237 static void 238 in6_ifremloop(struct ifaddr *ifa) 239 { 240 struct in6_ifaddr *ia; 241 struct rtentry *rt; 242 int ia_count = 0; 243 244 /* 245 * Some of BSD variants do not remove cloned routes 246 * from an interface direct route, when removing the direct route 247 * (see comments in net/net_osdep.h). Even for variants that do remove 248 * cloned routes, they could fail to remove the cloned routes when 249 * we handle multple addresses that share a common prefix. 250 * So, we should remove the route corresponding to the deleted address 251 * regardless of the result of in6_is_ifloop_auto(). 252 */ 253 254 /* 255 * Delete the entry only if exact one ifa exists. More than one ifa 256 * can exist if we assign a same single address to multiple 257 * (probably p2p) interfaces. 258 * XXX: we should avoid such a configuration in IPv6... 259 */ 260 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 261 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 262 ia_count++; 263 if (ia_count > 1) 264 break; 265 } 266 } 267 268 if (ia_count == 1) { 269 /* 270 * Before deleting, check if a corresponding loopbacked host 271 * route surely exists. With this check, we can avoid to 272 * delete an interface direct route whose destination is same 273 * as the address being removed. This can happen when remofing 274 * a subnet-router anycast address on an interface attahced 275 * to a shared medium. 276 */ 277 rt = rtalloc1(ifa->ifa_addr, 0, 0); 278 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 && 279 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 280 rt->rt_refcnt--; 281 in6_ifloop_request(RTM_DELETE, ifa); 282 } 283 } 284 } 285 286 int 287 in6_ifindex2scopeid(idx) 288 int idx; 289 { 290 struct ifnet *ifp; 291 struct ifaddr *ifa; 292 struct sockaddr_in6 *sin6; 293 294 if (idx < 0 || if_index < idx) 295 return -1; 296 ifp = ifnet_byindex(idx); 297 298 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 299 { 300 if (ifa->ifa_addr->sa_family != AF_INET6) 301 continue; 302 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 303 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 304 return sin6->sin6_scope_id & 0xffff; 305 } 306 307 return -1; 308 } 309 310 int 311 in6_mask2len(mask, lim0) 312 struct in6_addr *mask; 313 u_char *lim0; 314 { 315 int x = 0, y; 316 u_char *lim = lim0, *p; 317 318 if (lim0 == NULL || 319 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 320 lim = (u_char *)mask + sizeof(*mask); 321 for (p = (u_char *)mask; p < lim; x++, p++) { 322 if (*p != 0xff) 323 break; 324 } 325 y = 0; 326 if (p < lim) { 327 for (y = 0; y < 8; y++) { 328 if ((*p & (0x80 >> y)) == 0) 329 break; 330 } 331 } 332 333 /* 334 * when the limit pointer is given, do a stricter check on the 335 * remaining bits. 336 */ 337 if (p < lim) { 338 if (y != 0 && (*p & (0x00ff >> y)) != 0) 339 return(-1); 340 for (p = p + 1; p < lim; p++) 341 if (*p != 0) 342 return(-1); 343 } 344 345 return x * 8 + y; 346 } 347 348 void 349 in6_len2mask(mask, len) 350 struct in6_addr *mask; 351 int len; 352 { 353 int i; 354 355 bzero(mask, sizeof(*mask)); 356 for (i = 0; i < len / 8; i++) 357 mask->s6_addr8[i] = 0xff; 358 if (len % 8) 359 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 360 } 361 362 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 363 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 364 365 int 366 in6_control(so, cmd, data, ifp, td) 367 struct socket *so; 368 u_long cmd; 369 caddr_t data; 370 struct ifnet *ifp; 371 struct thread *td; 372 { 373 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 374 struct in6_ifaddr *ia = NULL; 375 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 376 int privileged; 377 378 privileged = 0; 379 if (td == NULL || !suser_td(td)) 380 privileged++; 381 382 switch (cmd) { 383 case SIOCGETSGCNT_IN6: 384 case SIOCGETMIFCNT_IN6: 385 return (mrt6_ioctl(cmd, data)); 386 } 387 388 if (ifp == NULL) 389 return(EOPNOTSUPP); 390 391 switch (cmd) { 392 case SIOCSNDFLUSH_IN6: 393 case SIOCSPFXFLUSH_IN6: 394 case SIOCSRTRFLUSH_IN6: 395 case SIOCSDEFIFACE_IN6: 396 case SIOCSIFINFO_FLAGS: 397 if (!privileged) 398 return(EPERM); 399 /*fall through*/ 400 case OSIOCGIFINFO_IN6: 401 case SIOCGIFINFO_IN6: 402 case SIOCGDRLST_IN6: 403 case SIOCGPRLST_IN6: 404 case SIOCGNBRINFO_IN6: 405 case SIOCGDEFIFACE_IN6: 406 return(nd6_ioctl(cmd, data, ifp)); 407 } 408 409 switch (cmd) { 410 case SIOCSIFPREFIX_IN6: 411 case SIOCDIFPREFIX_IN6: 412 case SIOCAIFPREFIX_IN6: 413 case SIOCCIFPREFIX_IN6: 414 case SIOCSGIFPREFIX_IN6: 415 case SIOCGIFPREFIX_IN6: 416 log(LOG_NOTICE, 417 "prefix ioctls are now invalidated. " 418 "please use ifconfig.\n"); 419 return(EOPNOTSUPP); 420 } 421 422 switch(cmd) { 423 case SIOCSSCOPE6: 424 if (!privileged) 425 return(EPERM); 426 return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id)); 427 break; 428 case SIOCGSCOPE6: 429 return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id)); 430 break; 431 case SIOCGSCOPE6DEF: 432 return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id)); 433 break; 434 } 435 436 switch (cmd) { 437 case SIOCALIFADDR: 438 case SIOCDLIFADDR: 439 if (!privileged) 440 return(EPERM); 441 /*fall through*/ 442 case SIOCGLIFADDR: 443 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 444 } 445 446 /* 447 * Find address for this interface, if it exists. 448 */ 449 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 450 struct sockaddr_in6 *sa6 = 451 (struct sockaddr_in6 *)&ifra->ifra_addr; 452 453 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 454 if (sa6->sin6_addr.s6_addr16[1] == 0) { 455 /* link ID is not embedded by the user */ 456 sa6->sin6_addr.s6_addr16[1] = 457 htons(ifp->if_index); 458 } else if (sa6->sin6_addr.s6_addr16[1] != 459 htons(ifp->if_index)) { 460 return(EINVAL); /* link ID contradicts */ 461 } 462 if (sa6->sin6_scope_id) { 463 if (sa6->sin6_scope_id != 464 (u_int32_t)ifp->if_index) 465 return(EINVAL); 466 sa6->sin6_scope_id = 0; /* XXX: good way? */ 467 } 468 } 469 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 470 } 471 472 switch (cmd) { 473 case SIOCSIFADDR_IN6: 474 case SIOCSIFDSTADDR_IN6: 475 case SIOCSIFNETMASK_IN6: 476 /* 477 * Since IPv6 allows a node to assign multiple addresses 478 * on a single interface, SIOCSIFxxx ioctls are not suitable 479 * and should be unused. 480 */ 481 /* we decided to obsolete this command (20000704) */ 482 return(EINVAL); 483 484 case SIOCDIFADDR_IN6: 485 /* 486 * for IPv4, we look for existing in_ifaddr here to allow 487 * "ifconfig if0 delete" to remove first IPv4 address on the 488 * interface. For IPv6, as the spec allow multiple interface 489 * address from the day one, we consider "remove the first one" 490 * semantics to be not preferable. 491 */ 492 if (ia == NULL) 493 return(EADDRNOTAVAIL); 494 /* FALLTHROUGH */ 495 case SIOCAIFADDR_IN6: 496 /* 497 * We always require users to specify a valid IPv6 address for 498 * the corresponding operation. 499 */ 500 if (ifra->ifra_addr.sin6_family != AF_INET6 || 501 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 502 return(EAFNOSUPPORT); 503 if (!privileged) 504 return(EPERM); 505 506 break; 507 508 case SIOCGIFADDR_IN6: 509 /* This interface is basically deprecated. use SIOCGIFCONF. */ 510 /* fall through */ 511 case SIOCGIFAFLAG_IN6: 512 case SIOCGIFNETMASK_IN6: 513 case SIOCGIFDSTADDR_IN6: 514 case SIOCGIFALIFETIME_IN6: 515 /* must think again about its semantics */ 516 if (ia == NULL) 517 return(EADDRNOTAVAIL); 518 break; 519 case SIOCSIFALIFETIME_IN6: 520 { 521 struct in6_addrlifetime *lt; 522 523 if (!privileged) 524 return(EPERM); 525 if (ia == NULL) 526 return(EADDRNOTAVAIL); 527 /* sanity for overflow - beware unsigned */ 528 lt = &ifr->ifr_ifru.ifru_lifetime; 529 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 530 && lt->ia6t_vltime + time_second < time_second) { 531 return EINVAL; 532 } 533 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 534 && lt->ia6t_pltime + time_second < time_second) { 535 return EINVAL; 536 } 537 break; 538 } 539 } 540 541 switch (cmd) { 542 543 case SIOCGIFADDR_IN6: 544 ifr->ifr_addr = ia->ia_addr; 545 break; 546 547 case SIOCGIFDSTADDR_IN6: 548 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 549 return(EINVAL); 550 /* 551 * XXX: should we check if ifa_dstaddr is NULL and return 552 * an error? 553 */ 554 ifr->ifr_dstaddr = ia->ia_dstaddr; 555 break; 556 557 case SIOCGIFNETMASK_IN6: 558 ifr->ifr_addr = ia->ia_prefixmask; 559 break; 560 561 case SIOCGIFAFLAG_IN6: 562 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 563 break; 564 565 case SIOCGIFSTAT_IN6: 566 if (ifp == NULL) 567 return EINVAL; 568 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax 569 || in6_ifstat[ifp->if_index] == NULL) { 570 /* return EAFNOSUPPORT? */ 571 bzero(&ifr->ifr_ifru.ifru_stat, 572 sizeof(ifr->ifr_ifru.ifru_stat)); 573 } else 574 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index]; 575 break; 576 577 case SIOCGIFSTAT_ICMP6: 578 if (ifp == NULL) 579 return EINVAL; 580 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax || 581 icmp6_ifstat[ifp->if_index] == NULL) { 582 /* return EAFNOSUPPORT? */ 583 bzero(&ifr->ifr_ifru.ifru_stat, 584 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 585 } else 586 ifr->ifr_ifru.ifru_icmp6stat = 587 *icmp6_ifstat[ifp->if_index]; 588 break; 589 590 case SIOCGIFALIFETIME_IN6: 591 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 592 break; 593 594 case SIOCSIFALIFETIME_IN6: 595 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 596 /* for sanity */ 597 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 598 ia->ia6_lifetime.ia6t_expire = 599 time_second + ia->ia6_lifetime.ia6t_vltime; 600 } else 601 ia->ia6_lifetime.ia6t_expire = 0; 602 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 603 ia->ia6_lifetime.ia6t_preferred = 604 time_second + ia->ia6_lifetime.ia6t_pltime; 605 } else 606 ia->ia6_lifetime.ia6t_preferred = 0; 607 break; 608 609 case SIOCAIFADDR_IN6: 610 { 611 int i, error = 0; 612 struct nd_prefix pr0, *pr; 613 614 /* 615 * first, make or update the interface address structure, 616 * and link it to the list. 617 */ 618 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 619 return(error); 620 621 /* 622 * then, make the prefix on-link on the interface. 623 * XXX: we'd rather create the prefix before the address, but 624 * we need at least one address to install the corresponding 625 * interface route, so we configure the address first. 626 */ 627 628 /* 629 * convert mask to prefix length (prefixmask has already 630 * been validated in in6_update_ifa(). 631 */ 632 bzero(&pr0, sizeof(pr0)); 633 pr0.ndpr_ifp = ifp; 634 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 635 NULL); 636 if (pr0.ndpr_plen == 128) 637 break; /* we don't need to install a host route. */ 638 pr0.ndpr_prefix = ifra->ifra_addr; 639 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 640 /* apply the mask for safety. */ 641 for (i = 0; i < 4; i++) { 642 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 643 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 644 } 645 /* 646 * XXX: since we don't have enough APIs, we just set inifinity 647 * to lifetimes. They can be overridden by later advertised 648 * RAs (when accept_rtadv is non 0), but we'd rather intend 649 * such a behavior. 650 */ 651 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 652 pr0.ndpr_raf_auto = 653 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 654 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 655 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 656 657 /* add the prefix if there's one. */ 658 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 659 /* 660 * nd6_prelist_add will install the corresponding 661 * interface route. 662 */ 663 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 664 return(error); 665 if (pr == NULL) { 666 log(LOG_ERR, "nd6_prelist_add succedded but " 667 "no prefix\n"); 668 return(EINVAL); /* XXX panic here? */ 669 } 670 } 671 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 672 == NULL) { 673 /* XXX: this should not happen! */ 674 log(LOG_ERR, "in6_control: addition succeeded, but" 675 " no ifaddr\n"); 676 } else { 677 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 678 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 679 ia->ia6_ndpr = pr; 680 pr->ndpr_refcnt++; 681 682 /* 683 * If this is the first autoconf address from 684 * the prefix, create a temporary address 685 * as well (when specified). 686 */ 687 if (ip6_use_tempaddr && 688 pr->ndpr_refcnt == 1) { 689 int e; 690 if ((e = in6_tmpifadd(ia, 1)) != 0) { 691 log(LOG_NOTICE, "in6_control: " 692 "failed to create a " 693 "temporary address, " 694 "errno=%d\n", 695 e); 696 } 697 } 698 } 699 700 /* 701 * this might affect the status of autoconfigured 702 * addresses, that is, this address might make 703 * other addresses detached. 704 */ 705 pfxlist_onlink_check(); 706 } 707 break; 708 } 709 710 case SIOCDIFADDR_IN6: 711 { 712 int i = 0; 713 struct nd_prefix pr0, *pr; 714 715 /* 716 * If the address being deleted is the only one that owns 717 * the corresponding prefix, expire the prefix as well. 718 * XXX: theoretically, we don't have to warry about such 719 * relationship, since we separate the address management 720 * and the prefix management. We do this, however, to provide 721 * as much backward compatibility as possible in terms of 722 * the ioctl operation. 723 */ 724 bzero(&pr0, sizeof(pr0)); 725 pr0.ndpr_ifp = ifp; 726 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 727 NULL); 728 if (pr0.ndpr_plen == 128) 729 goto purgeaddr; 730 pr0.ndpr_prefix = ia->ia_addr; 731 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 732 for (i = 0; i < 4; i++) { 733 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 734 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 735 } 736 /* 737 * The logic of the following condition is a bit complicated. 738 * We expire the prefix when 739 * 1. the address obeys autoconfiguration and it is the 740 * only owner of the associated prefix, or 741 * 2. the address does not obey autoconf and there is no 742 * other owner of the prefix. 743 */ 744 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 745 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 746 pr->ndpr_refcnt == 1) || 747 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && 748 pr->ndpr_refcnt == 0))) { 749 pr->ndpr_expire = 1; /* XXX: just for expiration */ 750 } 751 752 purgeaddr: 753 in6_purgeaddr(&ia->ia_ifa); 754 break; 755 } 756 757 default: 758 if (ifp == NULL || ifp->if_ioctl == 0) 759 return(EOPNOTSUPP); 760 return((*ifp->if_ioctl)(ifp, cmd, data)); 761 } 762 763 return(0); 764 } 765 766 /* 767 * Update parameters of an IPv6 interface address. 768 * If necessary, a new entry is created and linked into address chains. 769 * This function is separated from in6_control(). 770 * XXX: should this be performed under splnet()? 771 */ 772 int 773 in6_update_ifa(ifp, ifra, ia) 774 struct ifnet *ifp; 775 struct in6_aliasreq *ifra; 776 struct in6_ifaddr *ia; 777 { 778 int error = 0, hostIsNew = 0, plen = -1; 779 struct in6_ifaddr *oia; 780 struct sockaddr_in6 dst6; 781 struct in6_addrlifetime *lt; 782 783 /* Validate parameters */ 784 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 785 return(EINVAL); 786 787 /* 788 * The destination address for a p2p link must have a family 789 * of AF_UNSPEC or AF_INET6. 790 */ 791 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 792 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 793 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 794 return(EAFNOSUPPORT); 795 /* 796 * validate ifra_prefixmask. don't check sin6_family, netmask 797 * does not carry fields other than sin6_len. 798 */ 799 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 800 return(EINVAL); 801 /* 802 * Because the IPv6 address architecture is classless, we require 803 * users to specify a (non 0) prefix length (mask) for a new address. 804 * We also require the prefix (when specified) mask is valid, and thus 805 * reject a non-consecutive mask. 806 */ 807 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 808 return(EINVAL); 809 if (ifra->ifra_prefixmask.sin6_len != 0) { 810 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 811 (u_char *)&ifra->ifra_prefixmask + 812 ifra->ifra_prefixmask.sin6_len); 813 if (plen <= 0) 814 return(EINVAL); 815 } 816 else { 817 /* 818 * In this case, ia must not be NULL. We just use its prefix 819 * length. 820 */ 821 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 822 } 823 /* 824 * If the destination address on a p2p interface is specified, 825 * and the address is a scoped one, validate/set the scope 826 * zone identifier. 827 */ 828 dst6 = ifra->ifra_dstaddr; 829 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 830 (dst6.sin6_family == AF_INET6)) { 831 int scopeid; 832 833 #ifndef SCOPEDROUTING 834 if ((error = in6_recoverscope(&dst6, 835 &ifra->ifra_dstaddr.sin6_addr, 836 ifp)) != 0) 837 return(error); 838 #endif 839 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 840 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 841 dst6.sin6_scope_id = scopeid; 842 else if (dst6.sin6_scope_id != scopeid) 843 return(EINVAL); /* scope ID mismatch. */ 844 #ifndef SCOPEDROUTING 845 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 846 != 0) 847 return(error); 848 dst6.sin6_scope_id = 0; /* XXX */ 849 #endif 850 } 851 /* 852 * The destination address can be specified only for a p2p or a 853 * loopback interface. If specified, the corresponding prefix length 854 * must be 128. 855 */ 856 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 857 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 858 /* XXX: noisy message */ 859 log(LOG_INFO, "in6_update_ifa: a destination can be " 860 "specified for a p2p or a loopback IF only\n"); 861 return(EINVAL); 862 } 863 if (plen != 128) { 864 /* 865 * The following message seems noisy, but we dare to 866 * add it for diagnosis. 867 */ 868 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 869 "when dstaddr is specified\n"); 870 return(EINVAL); 871 } 872 } 873 /* lifetime consistency check */ 874 lt = &ifra->ifra_lifetime; 875 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 876 && lt->ia6t_vltime + time_second < time_second) { 877 return EINVAL; 878 } 879 if (lt->ia6t_vltime == 0) { 880 /* 881 * the following log might be noisy, but this is a typical 882 * configuration mistake or a tool's bug. 883 */ 884 log(LOG_INFO, 885 "in6_update_ifa: valid lifetime is 0 for %s\n", 886 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 887 } 888 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 889 && lt->ia6t_pltime + time_second < time_second) { 890 return EINVAL; 891 } 892 893 /* 894 * If this is a new address, allocate a new ifaddr and link it 895 * into chains. 896 */ 897 if (ia == NULL) { 898 hostIsNew = 1; 899 /* 900 * When in6_update_ifa() is called in a process of a received 901 * RA, it is called under splnet(). So, we should call malloc 902 * with M_NOWAIT. 903 */ 904 ia = (struct in6_ifaddr *) 905 malloc(sizeof(*ia), M_IFADDR, M_NOWAIT); 906 if (ia == NULL) 907 return (ENOBUFS); 908 bzero((caddr_t)ia, sizeof(*ia)); 909 /* Initialize the address and masks */ 910 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 911 ia->ia_addr.sin6_family = AF_INET6; 912 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 913 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 914 /* 915 * XXX: some functions expect that ifa_dstaddr is not 916 * NULL for p2p interfaces. 917 */ 918 ia->ia_ifa.ifa_dstaddr 919 = (struct sockaddr *)&ia->ia_dstaddr; 920 } else { 921 ia->ia_ifa.ifa_dstaddr = NULL; 922 } 923 ia->ia_ifa.ifa_netmask 924 = (struct sockaddr *)&ia->ia_prefixmask; 925 926 ia->ia_ifp = ifp; 927 if ((oia = in6_ifaddr) != NULL) { 928 for ( ; oia->ia_next; oia = oia->ia_next) 929 continue; 930 oia->ia_next = ia; 931 } else 932 in6_ifaddr = ia; 933 934 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 935 ifa_list); 936 } 937 938 /* set prefix mask */ 939 if (ifra->ifra_prefixmask.sin6_len) { 940 /* 941 * We prohibit changing the prefix length of an existing 942 * address, because 943 * + such an operation should be rare in IPv6, and 944 * + the operation would confuse prefix management. 945 */ 946 if (ia->ia_prefixmask.sin6_len && 947 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 948 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 949 " existing (%s) address should not be changed\n", 950 ip6_sprintf(&ia->ia_addr.sin6_addr)); 951 error = EINVAL; 952 goto unlink; 953 } 954 ia->ia_prefixmask = ifra->ifra_prefixmask; 955 } 956 957 /* 958 * If a new destination address is specified, scrub the old one and 959 * install the new destination. Note that the interface must be 960 * p2p or loopback (see the check above.) 961 */ 962 if (dst6.sin6_family == AF_INET6 && 963 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 964 &ia->ia_dstaddr.sin6_addr)) { 965 int e; 966 967 if ((ia->ia_flags & IFA_ROUTE) != 0 && 968 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 969 != 0) { 970 log(LOG_ERR, "in6_update_ifa: failed to remove " 971 "a route to the old destination: %s\n", 972 ip6_sprintf(&ia->ia_addr.sin6_addr)); 973 /* proceed anyway... */ 974 } 975 else 976 ia->ia_flags &= ~IFA_ROUTE; 977 ia->ia_dstaddr = dst6; 978 } 979 980 /* reset the interface and routing table appropriately. */ 981 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 982 goto unlink; 983 984 /* 985 * Beyond this point, we should call in6_purgeaddr upon an error, 986 * not just go to unlink. 987 */ 988 989 #if 0 /* disable this mechanism for now */ 990 /* update prefix list */ 991 if (hostIsNew && 992 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 993 int iilen; 994 995 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 996 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 997 in6_purgeaddr((struct ifaddr *)ia); 998 return(error); 999 } 1000 } 1001 #endif 1002 1003 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1004 struct sockaddr_in6 mltaddr, mltmask; 1005 struct in6_multi *in6m; 1006 1007 if (hostIsNew) { 1008 /* 1009 * join solicited multicast addr for new host id 1010 */ 1011 struct in6_addr llsol; 1012 bzero(&llsol, sizeof(struct in6_addr)); 1013 llsol.s6_addr16[0] = htons(0xff02); 1014 llsol.s6_addr16[1] = htons(ifp->if_index); 1015 llsol.s6_addr32[1] = 0; 1016 llsol.s6_addr32[2] = htonl(1); 1017 llsol.s6_addr32[3] = 1018 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1019 llsol.s6_addr8[12] = 0xff; 1020 (void)in6_addmulti(&llsol, ifp, &error); 1021 if (error != 0) { 1022 log(LOG_WARNING, 1023 "in6_update_ifa: addmulti failed for " 1024 "%s on %s (errno=%d)\n", 1025 ip6_sprintf(&llsol), if_name(ifp), 1026 error); 1027 in6_purgeaddr((struct ifaddr *)ia); 1028 return(error); 1029 } 1030 } 1031 1032 bzero(&mltmask, sizeof(mltmask)); 1033 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1034 mltmask.sin6_family = AF_INET6; 1035 mltmask.sin6_addr = in6mask32; 1036 1037 /* 1038 * join link-local all-nodes address 1039 */ 1040 bzero(&mltaddr, sizeof(mltaddr)); 1041 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1042 mltaddr.sin6_family = AF_INET6; 1043 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1044 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1045 1046 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1047 if (in6m == NULL) { 1048 rtrequest(RTM_ADD, 1049 (struct sockaddr *)&mltaddr, 1050 (struct sockaddr *)&ia->ia_addr, 1051 (struct sockaddr *)&mltmask, 1052 RTF_UP|RTF_CLONING, /* xxx */ 1053 (struct rtentry **)0); 1054 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1055 if (error != 0) { 1056 log(LOG_WARNING, 1057 "in6_update_ifa: addmulti failed for " 1058 "%s on %s (errno=%d)\n", 1059 ip6_sprintf(&mltaddr.sin6_addr), 1060 if_name(ifp), error); 1061 } 1062 } 1063 1064 /* 1065 * join node information group address 1066 */ 1067 #define hostnamelen strlen(hostname) 1068 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1069 == 0) { 1070 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1071 if (in6m == NULL && ia != NULL) { 1072 (void)in6_addmulti(&mltaddr.sin6_addr, 1073 ifp, &error); 1074 if (error != 0) { 1075 log(LOG_WARNING, "in6_update_ifa: " 1076 "addmulti failed for " 1077 "%s on %s (errno=%d)\n", 1078 ip6_sprintf(&mltaddr.sin6_addr), 1079 if_name(ifp), error); 1080 } 1081 } 1082 } 1083 #undef hostnamelen 1084 1085 /* 1086 * join node-local all-nodes address, on loopback. 1087 * XXX: since "node-local" is obsoleted by interface-local, 1088 * we have to join the group on every interface with 1089 * some interface-boundary restriction. 1090 */ 1091 if (ifp->if_flags & IFF_LOOPBACK) { 1092 struct in6_ifaddr *ia_loop; 1093 1094 struct in6_addr loop6 = in6addr_loopback; 1095 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1096 1097 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1098 1099 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1100 if (in6m == NULL && ia_loop != NULL) { 1101 rtrequest(RTM_ADD, 1102 (struct sockaddr *)&mltaddr, 1103 (struct sockaddr *)&ia_loop->ia_addr, 1104 (struct sockaddr *)&mltmask, 1105 RTF_UP, 1106 (struct rtentry **)0); 1107 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, 1108 &error); 1109 if (error != 0) { 1110 log(LOG_WARNING, "in6_update_ifa: " 1111 "addmulti failed for %s on %s " 1112 "(errno=%d)\n", 1113 ip6_sprintf(&mltaddr.sin6_addr), 1114 if_name(ifp), error); 1115 } 1116 } 1117 } 1118 } 1119 1120 ia->ia6_flags = ifra->ifra_flags; 1121 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1122 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1123 1124 ia->ia6_lifetime = ifra->ifra_lifetime; 1125 /* for sanity */ 1126 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1127 ia->ia6_lifetime.ia6t_expire = 1128 time_second + ia->ia6_lifetime.ia6t_vltime; 1129 } else 1130 ia->ia6_lifetime.ia6t_expire = 0; 1131 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1132 ia->ia6_lifetime.ia6t_preferred = 1133 time_second + ia->ia6_lifetime.ia6t_pltime; 1134 } else 1135 ia->ia6_lifetime.ia6t_preferred = 0; 1136 1137 /* 1138 * make sure to initialize ND6 information. this is to workaround 1139 * issues with interfaces with IPv6 addresses, which have never brought 1140 * up. We are assuming that it is safe to nd6_ifattach multiple times. 1141 */ 1142 nd6_ifattach(ifp); 1143 1144 /* 1145 * Perform DAD, if needed. 1146 * XXX It may be of use, if we can administratively 1147 * disable DAD. 1148 */ 1149 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { 1150 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1151 nd6_dad_start((struct ifaddr *)ia, NULL); 1152 } 1153 1154 return(error); 1155 1156 unlink: 1157 /* 1158 * XXX: if a change of an existing address failed, keep the entry 1159 * anyway. 1160 */ 1161 if (hostIsNew) 1162 in6_unlink_ifa(ia, ifp); 1163 return(error); 1164 } 1165 1166 void 1167 in6_purgeaddr(ifa) 1168 struct ifaddr *ifa; 1169 { 1170 struct ifnet *ifp = ifa->ifa_ifp; 1171 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1172 1173 /* stop DAD processing */ 1174 nd6_dad_stop(ifa); 1175 1176 /* 1177 * delete route to the destination of the address being purged. 1178 * The interface must be p2p or loopback in this case. 1179 */ 1180 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1181 int e; 1182 1183 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1184 != 0) { 1185 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1186 "a route to the p2p destination: %s on %s, " 1187 "errno=%d\n", 1188 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1189 e); 1190 /* proceed anyway... */ 1191 } 1192 else 1193 ia->ia_flags &= ~IFA_ROUTE; 1194 } 1195 1196 /* Remove ownaddr's loopback rtentry, if it exists. */ 1197 in6_ifremloop(&(ia->ia_ifa)); 1198 1199 if (ifp->if_flags & IFF_MULTICAST) { 1200 /* 1201 * delete solicited multicast addr for deleting host id 1202 */ 1203 struct in6_multi *in6m; 1204 struct in6_addr llsol; 1205 bzero(&llsol, sizeof(struct in6_addr)); 1206 llsol.s6_addr16[0] = htons(0xff02); 1207 llsol.s6_addr16[1] = htons(ifp->if_index); 1208 llsol.s6_addr32[1] = 0; 1209 llsol.s6_addr32[2] = htonl(1); 1210 llsol.s6_addr32[3] = 1211 ia->ia_addr.sin6_addr.s6_addr32[3]; 1212 llsol.s6_addr8[12] = 0xff; 1213 1214 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1215 if (in6m) 1216 in6_delmulti(in6m); 1217 } 1218 1219 in6_unlink_ifa(ia, ifp); 1220 } 1221 1222 static void 1223 in6_unlink_ifa(ia, ifp) 1224 struct in6_ifaddr *ia; 1225 struct ifnet *ifp; 1226 { 1227 int plen, iilen; 1228 struct in6_ifaddr *oia; 1229 int s = splnet(); 1230 1231 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1232 1233 oia = ia; 1234 if (oia == (ia = in6_ifaddr)) 1235 in6_ifaddr = ia->ia_next; 1236 else { 1237 while (ia->ia_next && (ia->ia_next != oia)) 1238 ia = ia->ia_next; 1239 if (ia->ia_next) 1240 ia->ia_next = oia->ia_next; 1241 else { 1242 /* search failed */ 1243 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1244 } 1245 } 1246 1247 if (oia->ia6_ifpr) { /* check for safety */ 1248 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1249 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1250 in6_prefix_remove_ifid(iilen, oia); 1251 } 1252 1253 /* 1254 * When an autoconfigured address is being removed, release the 1255 * reference to the base prefix. Also, since the release might 1256 * affect the status of other (detached) addresses, call 1257 * pfxlist_onlink_check(). 1258 */ 1259 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1260 if (oia->ia6_ndpr == NULL) { 1261 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1262 "%p has no prefix\n", oia); 1263 } else { 1264 oia->ia6_ndpr->ndpr_refcnt--; 1265 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1266 oia->ia6_ndpr = NULL; 1267 } 1268 1269 pfxlist_onlink_check(); 1270 } 1271 1272 /* 1273 * release another refcnt for the link from in6_ifaddr. 1274 * Note that we should decrement the refcnt at least once for all *BSD. 1275 */ 1276 IFAFREE(&oia->ia_ifa); 1277 1278 splx(s); 1279 } 1280 1281 void 1282 in6_purgeif(ifp) 1283 struct ifnet *ifp; 1284 { 1285 struct ifaddr *ifa, *nifa; 1286 1287 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1288 { 1289 nifa = TAILQ_NEXT(ifa, ifa_list); 1290 if (ifa->ifa_addr->sa_family != AF_INET6) 1291 continue; 1292 in6_purgeaddr(ifa); 1293 } 1294 1295 in6_ifdetach(ifp); 1296 } 1297 1298 /* 1299 * SIOC[GAD]LIFADDR. 1300 * SIOCGLIFADDR: get first address. (?) 1301 * SIOCGLIFADDR with IFLR_PREFIX: 1302 * get first address that matches the specified prefix. 1303 * SIOCALIFADDR: add the specified address. 1304 * SIOCALIFADDR with IFLR_PREFIX: 1305 * add the specified prefix, filling hostid part from 1306 * the first link-local address. prefixlen must be <= 64. 1307 * SIOCDLIFADDR: delete the specified address. 1308 * SIOCDLIFADDR with IFLR_PREFIX: 1309 * delete the first address that matches the specified prefix. 1310 * return values: 1311 * EINVAL on invalid parameters 1312 * EADDRNOTAVAIL on prefix match failed/specified address not found 1313 * other values may be returned from in6_ioctl() 1314 * 1315 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1316 * this is to accomodate address naming scheme other than RFC2374, 1317 * in the future. 1318 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1319 * address encoding scheme. (see figure on page 8) 1320 */ 1321 static int 1322 in6_lifaddr_ioctl(so, cmd, data, ifp, td) 1323 struct socket *so; 1324 u_long cmd; 1325 caddr_t data; 1326 struct ifnet *ifp; 1327 struct thread *td; 1328 { 1329 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1330 struct ifaddr *ifa; 1331 struct sockaddr *sa; 1332 1333 /* sanity checks */ 1334 if (!data || !ifp) { 1335 panic("invalid argument to in6_lifaddr_ioctl"); 1336 /*NOTRECHED*/ 1337 } 1338 1339 switch (cmd) { 1340 case SIOCGLIFADDR: 1341 /* address must be specified on GET with IFLR_PREFIX */ 1342 if ((iflr->flags & IFLR_PREFIX) == 0) 1343 break; 1344 /*FALLTHROUGH*/ 1345 case SIOCALIFADDR: 1346 case SIOCDLIFADDR: 1347 /* address must be specified on ADD and DELETE */ 1348 sa = (struct sockaddr *)&iflr->addr; 1349 if (sa->sa_family != AF_INET6) 1350 return EINVAL; 1351 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1352 return EINVAL; 1353 /* XXX need improvement */ 1354 sa = (struct sockaddr *)&iflr->dstaddr; 1355 if (sa->sa_family && sa->sa_family != AF_INET6) 1356 return EINVAL; 1357 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1358 return EINVAL; 1359 break; 1360 default: /*shouldn't happen*/ 1361 #if 0 1362 panic("invalid cmd to in6_lifaddr_ioctl"); 1363 /*NOTREACHED*/ 1364 #else 1365 return EOPNOTSUPP; 1366 #endif 1367 } 1368 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1369 return EINVAL; 1370 1371 switch (cmd) { 1372 case SIOCALIFADDR: 1373 { 1374 struct in6_aliasreq ifra; 1375 struct in6_addr *hostid = NULL; 1376 int prefixlen; 1377 1378 if ((iflr->flags & IFLR_PREFIX) != 0) { 1379 struct sockaddr_in6 *sin6; 1380 1381 /* 1382 * hostid is to fill in the hostid part of the 1383 * address. hostid points to the first link-local 1384 * address attached to the interface. 1385 */ 1386 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1387 if (!ifa) 1388 return EADDRNOTAVAIL; 1389 hostid = IFA_IN6(ifa); 1390 1391 /* prefixlen must be <= 64. */ 1392 if (64 < iflr->prefixlen) 1393 return EINVAL; 1394 prefixlen = iflr->prefixlen; 1395 1396 /* hostid part must be zero. */ 1397 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1398 if (sin6->sin6_addr.s6_addr32[2] != 0 1399 || sin6->sin6_addr.s6_addr32[3] != 0) { 1400 return EINVAL; 1401 } 1402 } else 1403 prefixlen = iflr->prefixlen; 1404 1405 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1406 bzero(&ifra, sizeof(ifra)); 1407 bcopy(iflr->iflr_name, ifra.ifra_name, 1408 sizeof(ifra.ifra_name)); 1409 1410 bcopy(&iflr->addr, &ifra.ifra_addr, 1411 ((struct sockaddr *)&iflr->addr)->sa_len); 1412 if (hostid) { 1413 /* fill in hostid part */ 1414 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1415 hostid->s6_addr32[2]; 1416 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1417 hostid->s6_addr32[3]; 1418 } 1419 1420 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1421 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1422 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1423 if (hostid) { 1424 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1425 hostid->s6_addr32[2]; 1426 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1427 hostid->s6_addr32[3]; 1428 } 1429 } 1430 1431 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1432 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1433 1434 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1435 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1436 } 1437 case SIOCGLIFADDR: 1438 case SIOCDLIFADDR: 1439 { 1440 struct in6_ifaddr *ia; 1441 struct in6_addr mask, candidate, match; 1442 struct sockaddr_in6 *sin6; 1443 int cmp; 1444 1445 bzero(&mask, sizeof(mask)); 1446 if (iflr->flags & IFLR_PREFIX) { 1447 /* lookup a prefix rather than address. */ 1448 in6_len2mask(&mask, iflr->prefixlen); 1449 1450 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1451 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1452 match.s6_addr32[0] &= mask.s6_addr32[0]; 1453 match.s6_addr32[1] &= mask.s6_addr32[1]; 1454 match.s6_addr32[2] &= mask.s6_addr32[2]; 1455 match.s6_addr32[3] &= mask.s6_addr32[3]; 1456 1457 /* if you set extra bits, that's wrong */ 1458 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1459 return EINVAL; 1460 1461 cmp = 1; 1462 } else { 1463 if (cmd == SIOCGLIFADDR) { 1464 /* on getting an address, take the 1st match */ 1465 cmp = 0; /*XXX*/ 1466 } else { 1467 /* on deleting an address, do exact match */ 1468 in6_len2mask(&mask, 128); 1469 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1470 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1471 1472 cmp = 1; 1473 } 1474 } 1475 1476 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1477 { 1478 if (ifa->ifa_addr->sa_family != AF_INET6) 1479 continue; 1480 if (!cmp) 1481 break; 1482 1483 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1484 #ifndef SCOPEDROUTING 1485 /* 1486 * XXX: this is adhoc, but is necessary to allow 1487 * a user to specify fe80::/64 (not /10) for a 1488 * link-local address. 1489 */ 1490 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1491 candidate.s6_addr16[1] = 0; 1492 #endif 1493 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1494 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1495 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1496 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1497 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1498 break; 1499 } 1500 if (!ifa) 1501 return EADDRNOTAVAIL; 1502 ia = ifa2ia6(ifa); 1503 1504 if (cmd == SIOCGLIFADDR) { 1505 #ifndef SCOPEDROUTING 1506 struct sockaddr_in6 *s6; 1507 #endif 1508 1509 /* fill in the if_laddrreq structure */ 1510 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1511 #ifndef SCOPEDROUTING /* XXX see above */ 1512 s6 = (struct sockaddr_in6 *)&iflr->addr; 1513 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1514 s6->sin6_addr.s6_addr16[1] = 0; 1515 s6->sin6_scope_id = 1516 in6_addr2scopeid(ifp, &s6->sin6_addr); 1517 } 1518 #endif 1519 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1520 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1521 ia->ia_dstaddr.sin6_len); 1522 #ifndef SCOPEDROUTING /* XXX see above */ 1523 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1524 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1525 s6->sin6_addr.s6_addr16[1] = 0; 1526 s6->sin6_scope_id = 1527 in6_addr2scopeid(ifp, 1528 &s6->sin6_addr); 1529 } 1530 #endif 1531 } else 1532 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1533 1534 iflr->prefixlen = 1535 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1536 NULL); 1537 1538 iflr->flags = ia->ia6_flags; /*XXX*/ 1539 1540 return 0; 1541 } else { 1542 struct in6_aliasreq ifra; 1543 1544 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1545 bzero(&ifra, sizeof(ifra)); 1546 bcopy(iflr->iflr_name, ifra.ifra_name, 1547 sizeof(ifra.ifra_name)); 1548 1549 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1550 ia->ia_addr.sin6_len); 1551 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1552 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1553 ia->ia_dstaddr.sin6_len); 1554 } else { 1555 bzero(&ifra.ifra_dstaddr, 1556 sizeof(ifra.ifra_dstaddr)); 1557 } 1558 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1559 ia->ia_prefixmask.sin6_len); 1560 1561 ifra.ifra_flags = ia->ia6_flags; 1562 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1563 ifp, td); 1564 } 1565 } 1566 } 1567 1568 return EOPNOTSUPP; /*just for safety*/ 1569 } 1570 1571 /* 1572 * Initialize an interface's intetnet6 address 1573 * and routing table entry. 1574 */ 1575 static int 1576 in6_ifinit(ifp, ia, sin6, newhost) 1577 struct ifnet *ifp; 1578 struct in6_ifaddr *ia; 1579 struct sockaddr_in6 *sin6; 1580 int newhost; 1581 { 1582 int error = 0, plen, ifacount = 0; 1583 int s = splimp(); 1584 struct ifaddr *ifa; 1585 1586 /* 1587 * Give the interface a chance to initialize 1588 * if this is its first address, 1589 * and to validate the address if necessary. 1590 */ 1591 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1592 { 1593 if (ifa->ifa_addr == NULL) 1594 continue; /* just for safety */ 1595 if (ifa->ifa_addr->sa_family != AF_INET6) 1596 continue; 1597 ifacount++; 1598 } 1599 1600 ia->ia_addr = *sin6; 1601 1602 if (ifacount <= 1 && ifp->if_ioctl && 1603 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { 1604 splx(s); 1605 return(error); 1606 } 1607 splx(s); 1608 1609 ia->ia_ifa.ifa_metric = ifp->if_metric; 1610 1611 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1612 1613 /* 1614 * Special case: 1615 * If the destination address is specified for a point-to-point 1616 * interface, install a route to the destination as an interface 1617 * direct route. 1618 */ 1619 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1620 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1621 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1622 RTF_UP | RTF_HOST)) != 0) 1623 return(error); 1624 ia->ia_flags |= IFA_ROUTE; 1625 } 1626 if (plen < 128) { 1627 /* 1628 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1629 */ 1630 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1631 } 1632 1633 /* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */ 1634 if (newhost) { 1635 /* set the rtrequest function to create llinfo */ 1636 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1637 in6_ifaddloop(&(ia->ia_ifa)); 1638 } 1639 1640 return(error); 1641 } 1642 1643 /* 1644 * Add an address to the list of IP6 multicast addresses for a 1645 * given interface. 1646 */ 1647 struct in6_multi * 1648 in6_addmulti(maddr6, ifp, errorp) 1649 struct in6_addr *maddr6; 1650 struct ifnet *ifp; 1651 int *errorp; 1652 { 1653 struct in6_multi *in6m; 1654 struct sockaddr_in6 sin6; 1655 struct ifmultiaddr *ifma; 1656 int s = splnet(); 1657 1658 *errorp = 0; 1659 1660 /* 1661 * Call generic routine to add membership or increment 1662 * refcount. It wants addresses in the form of a sockaddr, 1663 * so we build one here (being careful to zero the unused bytes). 1664 */ 1665 bzero(&sin6, sizeof sin6); 1666 sin6.sin6_family = AF_INET6; 1667 sin6.sin6_len = sizeof sin6; 1668 sin6.sin6_addr = *maddr6; 1669 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1670 if (*errorp) { 1671 splx(s); 1672 return 0; 1673 } 1674 1675 /* 1676 * If ifma->ifma_protospec is null, then if_addmulti() created 1677 * a new record. Otherwise, we are done. 1678 */ 1679 if (ifma->ifma_protospec != 0) 1680 return ifma->ifma_protospec; 1681 1682 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1683 at interrupt time? If so, need to fix if_addmulti. XXX */ 1684 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1685 if (in6m == NULL) { 1686 splx(s); 1687 return (NULL); 1688 } 1689 1690 bzero(in6m, sizeof *in6m); 1691 in6m->in6m_addr = *maddr6; 1692 in6m->in6m_ifp = ifp; 1693 in6m->in6m_ifma = ifma; 1694 ifma->ifma_protospec = in6m; 1695 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1696 1697 /* 1698 * Let MLD6 know that we have joined a new IP6 multicast 1699 * group. 1700 */ 1701 mld6_start_listening(in6m); 1702 splx(s); 1703 return(in6m); 1704 } 1705 1706 /* 1707 * Delete a multicast address record. 1708 */ 1709 void 1710 in6_delmulti(in6m) 1711 struct in6_multi *in6m; 1712 { 1713 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1714 int s = splnet(); 1715 1716 if (ifma->ifma_refcount == 1) { 1717 /* 1718 * No remaining claims to this record; let MLD6 know 1719 * that we are leaving the multicast group. 1720 */ 1721 mld6_stop_listening(in6m); 1722 ifma->ifma_protospec = 0; 1723 LIST_REMOVE(in6m, in6m_entry); 1724 free(in6m, M_IPMADDR); 1725 } 1726 /* XXX - should be separate API for when we have an ifma? */ 1727 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1728 splx(s); 1729 } 1730 1731 /* 1732 * Find an IPv6 interface link-local address specific to an interface. 1733 */ 1734 struct in6_ifaddr * 1735 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1736 struct ifnet *ifp; 1737 int ignoreflags; 1738 { 1739 struct ifaddr *ifa; 1740 1741 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1742 { 1743 if (ifa->ifa_addr == NULL) 1744 continue; /* just for safety */ 1745 if (ifa->ifa_addr->sa_family != AF_INET6) 1746 continue; 1747 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1748 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1749 ignoreflags) != 0) 1750 continue; 1751 break; 1752 } 1753 } 1754 1755 return((struct in6_ifaddr *)ifa); 1756 } 1757 1758 1759 /* 1760 * find the internet address corresponding to a given interface and address. 1761 */ 1762 struct in6_ifaddr * 1763 in6ifa_ifpwithaddr(ifp, addr) 1764 struct ifnet *ifp; 1765 struct in6_addr *addr; 1766 { 1767 struct ifaddr *ifa; 1768 1769 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1770 { 1771 if (ifa->ifa_addr == NULL) 1772 continue; /* just for safety */ 1773 if (ifa->ifa_addr->sa_family != AF_INET6) 1774 continue; 1775 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1776 break; 1777 } 1778 1779 return((struct in6_ifaddr *)ifa); 1780 } 1781 1782 /* 1783 * Convert IP6 address to printable (loggable) representation. 1784 */ 1785 static char digits[] = "0123456789abcdef"; 1786 static int ip6round = 0; 1787 char * 1788 ip6_sprintf(addr) 1789 const struct in6_addr *addr; 1790 { 1791 static char ip6buf[8][48]; 1792 int i; 1793 char *cp; 1794 const u_short *a = (const u_short *)addr; 1795 const u_char *d; 1796 int dcolon = 0; 1797 1798 ip6round = (ip6round + 1) & 7; 1799 cp = ip6buf[ip6round]; 1800 1801 for (i = 0; i < 8; i++) { 1802 if (dcolon == 1) { 1803 if (*a == 0) { 1804 if (i == 7) 1805 *cp++ = ':'; 1806 a++; 1807 continue; 1808 } else 1809 dcolon = 2; 1810 } 1811 if (*a == 0) { 1812 if (dcolon == 0 && *(a + 1) == 0) { 1813 if (i == 0) 1814 *cp++ = ':'; 1815 *cp++ = ':'; 1816 dcolon = 1; 1817 } else { 1818 *cp++ = '0'; 1819 *cp++ = ':'; 1820 } 1821 a++; 1822 continue; 1823 } 1824 d = (const u_char *)a; 1825 *cp++ = digits[*d >> 4]; 1826 *cp++ = digits[*d++ & 0xf]; 1827 *cp++ = digits[*d >> 4]; 1828 *cp++ = digits[*d & 0xf]; 1829 *cp++ = ':'; 1830 a++; 1831 } 1832 *--cp = 0; 1833 return(ip6buf[ip6round]); 1834 } 1835 1836 int 1837 in6_localaddr(in6) 1838 struct in6_addr *in6; 1839 { 1840 struct in6_ifaddr *ia; 1841 1842 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1843 return 1; 1844 1845 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1846 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1847 &ia->ia_prefixmask.sin6_addr)) 1848 return 1; 1849 1850 return (0); 1851 } 1852 1853 int 1854 in6_is_addr_deprecated(sa6) 1855 struct sockaddr_in6 *sa6; 1856 { 1857 struct in6_ifaddr *ia; 1858 1859 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1860 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1861 &sa6->sin6_addr) && 1862 #ifdef SCOPEDROUTING 1863 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 1864 #endif 1865 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1866 return(1); /* true */ 1867 1868 /* XXX: do we still have to go thru the rest of the list? */ 1869 } 1870 1871 return(0); /* false */ 1872 } 1873 1874 /* 1875 * return length of part which dst and src are equal 1876 * hard coding... 1877 */ 1878 int 1879 in6_matchlen(src, dst) 1880 struct in6_addr *src, *dst; 1881 { 1882 int match = 0; 1883 u_char *s = (u_char *)src, *d = (u_char *)dst; 1884 u_char *lim = s + 16, r; 1885 1886 while (s < lim) 1887 if ((r = (*d++ ^ *s++)) != 0) { 1888 while (r < 128) { 1889 match++; 1890 r <<= 1; 1891 } 1892 break; 1893 } else 1894 match += 8; 1895 return match; 1896 } 1897 1898 /* XXX: to be scope conscious */ 1899 int 1900 in6_are_prefix_equal(p1, p2, len) 1901 struct in6_addr *p1, *p2; 1902 int len; 1903 { 1904 int bytelen, bitlen; 1905 1906 /* sanity check */ 1907 if (0 > len || len > 128) { 1908 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1909 len); 1910 return(0); 1911 } 1912 1913 bytelen = len / 8; 1914 bitlen = len % 8; 1915 1916 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1917 return(0); 1918 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1919 p2->s6_addr[bytelen] >> (8 - bitlen)) 1920 return(0); 1921 1922 return(1); 1923 } 1924 1925 void 1926 in6_prefixlen2mask(maskp, len) 1927 struct in6_addr *maskp; 1928 int len; 1929 { 1930 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1931 int bytelen, bitlen, i; 1932 1933 /* sanity check */ 1934 if (0 > len || len > 128) { 1935 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1936 len); 1937 return; 1938 } 1939 1940 bzero(maskp, sizeof(*maskp)); 1941 bytelen = len / 8; 1942 bitlen = len % 8; 1943 for (i = 0; i < bytelen; i++) 1944 maskp->s6_addr[i] = 0xff; 1945 if (bitlen) 1946 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1947 } 1948 1949 /* 1950 * return the best address out of the same scope 1951 */ 1952 struct in6_ifaddr * 1953 in6_ifawithscope(oifp, dst) 1954 struct ifnet *oifp; 1955 struct in6_addr *dst; 1956 { 1957 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1958 int blen = -1; 1959 struct ifaddr *ifa; 1960 struct ifnet *ifp; 1961 struct in6_ifaddr *ifa_best = NULL; 1962 1963 if (oifp == NULL) { 1964 #if 0 1965 printf("in6_ifawithscope: output interface is not specified\n"); 1966 #endif 1967 return(NULL); 1968 } 1969 1970 /* 1971 * We search for all addresses on all interfaces from the beginning. 1972 * Comparing an interface with the outgoing interface will be done 1973 * only at the final stage of tiebreaking. 1974 */ 1975 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1976 { 1977 /* 1978 * We can never take an address that breaks the scope zone 1979 * of the destination. 1980 */ 1981 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1982 continue; 1983 1984 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1985 { 1986 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1987 1988 if (ifa->ifa_addr->sa_family != AF_INET6) 1989 continue; 1990 1991 src_scope = in6_addrscope(IFA_IN6(ifa)); 1992 1993 /* 1994 * Don't use an address before completing DAD 1995 * nor a duplicated address. 1996 */ 1997 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1998 IN6_IFF_NOTREADY) 1999 continue; 2000 2001 /* XXX: is there any case to allow anycasts? */ 2002 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2003 IN6_IFF_ANYCAST) 2004 continue; 2005 2006 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2007 IN6_IFF_DETACHED) 2008 continue; 2009 2010 /* 2011 * If this is the first address we find, 2012 * keep it anyway. 2013 */ 2014 if (ifa_best == NULL) 2015 goto replace; 2016 2017 /* 2018 * ifa_best is never NULL beyond this line except 2019 * within the block labeled "replace". 2020 */ 2021 2022 /* 2023 * If ifa_best has a smaller scope than dst and 2024 * the current address has a larger one than 2025 * (or equal to) dst, always replace ifa_best. 2026 * Also, if the current address has a smaller scope 2027 * than dst, ignore it unless ifa_best also has a 2028 * smaller scope. 2029 * Consequently, after the two if-clause below, 2030 * the followings must be satisfied: 2031 * (scope(src) < scope(dst) && 2032 * scope(best) < scope(dst)) 2033 * OR 2034 * (scope(best) >= scope(dst) && 2035 * scope(src) >= scope(dst)) 2036 */ 2037 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2038 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2039 goto replace; /* (A) */ 2040 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2041 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2042 continue; /* (B) */ 2043 2044 /* 2045 * A deprecated address SHOULD NOT be used in new 2046 * communications if an alternate (non-deprecated) 2047 * address is available and has sufficient scope. 2048 * RFC 2462, Section 5.5.4. 2049 */ 2050 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2051 IN6_IFF_DEPRECATED) { 2052 /* 2053 * Ignore any deprecated addresses if 2054 * specified by configuration. 2055 */ 2056 if (!ip6_use_deprecated) 2057 continue; 2058 2059 /* 2060 * If we have already found a non-deprecated 2061 * candidate, just ignore deprecated addresses. 2062 */ 2063 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2064 == 0) 2065 continue; 2066 } 2067 2068 /* 2069 * A non-deprecated address is always preferred 2070 * to a deprecated one regardless of scopes and 2071 * address matching (Note invariants ensured by the 2072 * conditions (A) and (B) above.) 2073 */ 2074 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2075 (((struct in6_ifaddr *)ifa)->ia6_flags & 2076 IN6_IFF_DEPRECATED) == 0) 2077 goto replace; 2078 2079 /* 2080 * When we use temporary addresses described in 2081 * RFC 3041, we prefer temporary addresses to 2082 * public autoconf addresses. Again, note the 2083 * invariants from (A) and (B). Also note that we 2084 * don't have any preference between static addresses 2085 * and autoconf addresses (despite of whether or not 2086 * the latter is temporary or public.) 2087 */ 2088 if (ip6_use_tempaddr) { 2089 struct in6_ifaddr *ifat; 2090 2091 ifat = (struct in6_ifaddr *)ifa; 2092 if ((ifa_best->ia6_flags & 2093 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2094 == IN6_IFF_AUTOCONF && 2095 (ifat->ia6_flags & 2096 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2097 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2098 goto replace; 2099 } 2100 if ((ifa_best->ia6_flags & 2101 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2102 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2103 (ifat->ia6_flags & 2104 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2105 == IN6_IFF_AUTOCONF) { 2106 continue; 2107 } 2108 } 2109 2110 /* 2111 * At this point, we have two cases: 2112 * 1. we are looking at a non-deprecated address, 2113 * and ifa_best is also non-deprecated. 2114 * 2. we are looking at a deprecated address, 2115 * and ifa_best is also deprecated. 2116 * Also, we do not have to consider a case where 2117 * the scope of if_best is larger(smaller) than dst and 2118 * the scope of the current address is smaller(larger) 2119 * than dst. Such a case has already been covered. 2120 * Tiebreaking is done according to the following 2121 * items: 2122 * - the scope comparison between the address and 2123 * dst (dscopecmp) 2124 * - the scope comparison between the address and 2125 * ifa_best (bscopecmp) 2126 * - if the address match dst longer than ifa_best 2127 * (matchcmp) 2128 * - if the address is on the outgoing I/F (outI/F) 2129 * 2130 * Roughly speaking, the selection policy is 2131 * - the most important item is scope. The same scope 2132 * is best. Then search for a larger scope. 2133 * Smaller scopes are the last resort. 2134 * - A deprecated address is chosen only when we have 2135 * no address that has an enough scope, but is 2136 * prefered to any addresses of smaller scopes 2137 * (this must be already done above.) 2138 * - addresses on the outgoing I/F are preferred to 2139 * ones on other interfaces if none of above 2140 * tiebreaks. In the table below, the column "bI" 2141 * means if the best_ifa is on the outgoing 2142 * interface, and the column "sI" means if the ifa 2143 * is on the outgoing interface. 2144 * - If there is no other reasons to choose one, 2145 * longest address match against dst is considered. 2146 * 2147 * The precise decision table is as follows: 2148 * dscopecmp bscopecmp match bI oI | replace? 2149 * N/A equal N/A Y N | No (1) 2150 * N/A equal N/A N Y | Yes (2) 2151 * N/A equal larger N/A | Yes (3) 2152 * N/A equal !larger N/A | No (4) 2153 * larger larger N/A N/A | No (5) 2154 * larger smaller N/A N/A | Yes (6) 2155 * smaller larger N/A N/A | Yes (7) 2156 * smaller smaller N/A N/A | No (8) 2157 * equal smaller N/A N/A | Yes (9) 2158 * equal larger (already done at A above) 2159 */ 2160 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2161 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2162 2163 if (bscopecmp == 0) { 2164 struct ifnet *bifp = ifa_best->ia_ifp; 2165 2166 if (bifp == oifp && ifp != oifp) /* (1) */ 2167 continue; 2168 if (bifp != oifp && ifp == oifp) /* (2) */ 2169 goto replace; 2170 2171 /* 2172 * Both bifp and ifp are on the outgoing 2173 * interface, or both two are on a different 2174 * interface from the outgoing I/F. 2175 * now we need address matching against dst 2176 * for tiebreaking. 2177 */ 2178 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2179 matchcmp = tlen - blen; 2180 if (matchcmp > 0) /* (3) */ 2181 goto replace; 2182 continue; /* (4) */ 2183 } 2184 if (dscopecmp > 0) { 2185 if (bscopecmp > 0) /* (5) */ 2186 continue; 2187 goto replace; /* (6) */ 2188 } 2189 if (dscopecmp < 0) { 2190 if (bscopecmp > 0) /* (7) */ 2191 goto replace; 2192 continue; /* (8) */ 2193 } 2194 2195 /* now dscopecmp must be 0 */ 2196 if (bscopecmp < 0) 2197 goto replace; /* (9) */ 2198 2199 replace: 2200 ifa_best = (struct in6_ifaddr *)ifa; 2201 blen = tlen >= 0 ? tlen : 2202 in6_matchlen(IFA_IN6(ifa), dst); 2203 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2204 } 2205 } 2206 2207 /* count statistics for future improvements */ 2208 if (ifa_best == NULL) 2209 ip6stat.ip6s_sources_none++; 2210 else { 2211 if (oifp == ifa_best->ia_ifp) 2212 ip6stat.ip6s_sources_sameif[best_scope]++; 2213 else 2214 ip6stat.ip6s_sources_otherif[best_scope]++; 2215 2216 if (best_scope == dst_scope) 2217 ip6stat.ip6s_sources_samescope[best_scope]++; 2218 else 2219 ip6stat.ip6s_sources_otherscope[best_scope]++; 2220 2221 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2222 ip6stat.ip6s_sources_deprecated[best_scope]++; 2223 } 2224 2225 return(ifa_best); 2226 } 2227 2228 /* 2229 * return the best address out of the same scope. if no address was 2230 * found, return the first valid address from designated IF. 2231 */ 2232 struct in6_ifaddr * 2233 in6_ifawithifp(ifp, dst) 2234 struct ifnet *ifp; 2235 struct in6_addr *dst; 2236 { 2237 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2238 struct ifaddr *ifa; 2239 struct in6_ifaddr *besta = 0; 2240 struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/ 2241 2242 dep[0] = dep[1] = NULL; 2243 2244 /* 2245 * We first look for addresses in the same scope. 2246 * If there is one, return it. 2247 * If two or more, return one which matches the dst longest. 2248 * If none, return one of global addresses assigned other ifs. 2249 */ 2250 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2251 { 2252 if (ifa->ifa_addr->sa_family != AF_INET6) 2253 continue; 2254 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2255 continue; /* XXX: is there any case to allow anycast? */ 2256 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2257 continue; /* don't use this interface */ 2258 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2259 continue; 2260 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2261 if (ip6_use_deprecated) 2262 dep[0] = (struct in6_ifaddr *)ifa; 2263 continue; 2264 } 2265 2266 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2267 /* 2268 * call in6_matchlen() as few as possible 2269 */ 2270 if (besta) { 2271 if (blen == -1) 2272 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2273 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2274 if (tlen > blen) { 2275 blen = tlen; 2276 besta = (struct in6_ifaddr *)ifa; 2277 } 2278 } else 2279 besta = (struct in6_ifaddr *)ifa; 2280 } 2281 } 2282 if (besta) 2283 return(besta); 2284 2285 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2286 { 2287 if (ifa->ifa_addr->sa_family != AF_INET6) 2288 continue; 2289 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2290 continue; /* XXX: is there any case to allow anycast? */ 2291 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2292 continue; /* don't use this interface */ 2293 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2294 continue; 2295 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2296 if (ip6_use_deprecated) 2297 dep[1] = (struct in6_ifaddr *)ifa; 2298 continue; 2299 } 2300 2301 return (struct in6_ifaddr *)ifa; 2302 } 2303 2304 /* use the last-resort values, that are, deprecated addresses */ 2305 if (dep[0]) 2306 return dep[0]; 2307 if (dep[1]) 2308 return dep[1]; 2309 2310 return NULL; 2311 } 2312 2313 /* 2314 * perform DAD when interface becomes IFF_UP. 2315 */ 2316 void 2317 in6_if_up(ifp) 2318 struct ifnet *ifp; 2319 { 2320 struct ifaddr *ifa; 2321 struct in6_ifaddr *ia; 2322 int dad_delay; /* delay ticks before DAD output */ 2323 2324 /* 2325 * special cases, like 6to4, are handled in in6_ifattach 2326 */ 2327 in6_ifattach(ifp, NULL); 2328 2329 dad_delay = 0; 2330 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2331 { 2332 if (ifa->ifa_addr->sa_family != AF_INET6) 2333 continue; 2334 ia = (struct in6_ifaddr *)ifa; 2335 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2336 nd6_dad_start(ifa, &dad_delay); 2337 } 2338 } 2339 2340 int 2341 in6if_do_dad(ifp) 2342 struct ifnet *ifp; 2343 { 2344 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2345 return(0); 2346 2347 switch (ifp->if_type) { 2348 #ifdef IFT_DUMMY 2349 case IFT_DUMMY: 2350 #endif 2351 case IFT_FAITH: 2352 /* 2353 * These interfaces do not have the IFF_LOOPBACK flag, 2354 * but loop packets back. We do not have to do DAD on such 2355 * interfaces. We should even omit it, because loop-backed 2356 * NS would confuse the DAD procedure. 2357 */ 2358 return(0); 2359 default: 2360 /* 2361 * Our DAD routine requires the interface up and running. 2362 * However, some interfaces can be up before the RUNNING 2363 * status. Additionaly, users may try to assign addresses 2364 * before the interface becomes up (or running). 2365 * We simply skip DAD in such a case as a work around. 2366 * XXX: we should rather mark "tentative" on such addresses, 2367 * and do DAD after the interface becomes ready. 2368 */ 2369 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2370 (IFF_UP|IFF_RUNNING)) 2371 return(0); 2372 2373 return(1); 2374 } 2375 } 2376 2377 /* 2378 * Calculate max IPv6 MTU through all the interfaces and store it 2379 * to in6_maxmtu. 2380 */ 2381 void 2382 in6_setmaxmtu() 2383 { 2384 unsigned long maxmtu = 0; 2385 struct ifnet *ifp; 2386 2387 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2388 { 2389 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2390 nd_ifinfo[ifp->if_index].linkmtu > maxmtu) 2391 maxmtu = nd_ifinfo[ifp->if_index].linkmtu; 2392 } 2393 if (maxmtu) /* update only when maxmtu is positive */ 2394 in6_maxmtu = maxmtu; 2395 } 2396 2397 /* 2398 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2399 * v4 mapped addr or v4 compat addr 2400 */ 2401 void 2402 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2403 { 2404 bzero(sin, sizeof(*sin)); 2405 sin->sin_len = sizeof(struct sockaddr_in); 2406 sin->sin_family = AF_INET; 2407 sin->sin_port = sin6->sin6_port; 2408 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2409 } 2410 2411 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2412 void 2413 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2414 { 2415 bzero(sin6, sizeof(*sin6)); 2416 sin6->sin6_len = sizeof(struct sockaddr_in6); 2417 sin6->sin6_family = AF_INET6; 2418 sin6->sin6_port = sin->sin_port; 2419 sin6->sin6_addr.s6_addr32[0] = 0; 2420 sin6->sin6_addr.s6_addr32[1] = 0; 2421 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2422 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2423 } 2424 2425 /* Convert sockaddr_in6 into sockaddr_in. */ 2426 void 2427 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2428 { 2429 struct sockaddr_in *sin_p; 2430 struct sockaddr_in6 sin6; 2431 2432 /* 2433 * Save original sockaddr_in6 addr and convert it 2434 * to sockaddr_in. 2435 */ 2436 sin6 = *(struct sockaddr_in6 *)nam; 2437 sin_p = (struct sockaddr_in *)nam; 2438 in6_sin6_2_sin(sin_p, &sin6); 2439 } 2440 2441 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2442 void 2443 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2444 { 2445 struct sockaddr_in *sin_p; 2446 struct sockaddr_in6 *sin6_p; 2447 2448 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2449 M_WAITOK); 2450 sin_p = (struct sockaddr_in *)*nam; 2451 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2452 FREE(*nam, M_SONAME); 2453 *nam = (struct sockaddr *)sin6_p; 2454 } 2455