1 /* $FreeBSD$ */ 2 /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /*- 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 4. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)in.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 #include "opt_inet.h" 65 #include "opt_inet6.h" 66 67 #include <sys/param.h> 68 #include <sys/errno.h> 69 #include <sys/malloc.h> 70 #include <sys/socket.h> 71 #include <sys/socketvar.h> 72 #include <sys/sockio.h> 73 #include <sys/systm.h> 74 #include <sys/priv.h> 75 #include <sys/proc.h> 76 #include <sys/time.h> 77 #include <sys/kernel.h> 78 #include <sys/syslog.h> 79 80 #include <net/if.h> 81 #include <net/if_types.h> 82 #include <net/route.h> 83 #include <net/if_dl.h> 84 85 #include <netinet/in.h> 86 #include <netinet/in_var.h> 87 #include <netinet/if_ether.h> 88 #include <netinet/in_systm.h> 89 #include <netinet/ip.h> 90 #include <netinet/in_pcb.h> 91 92 #include <netinet/ip6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/mld6_var.h> 96 #include <netinet6/ip6_mroute.h> 97 #include <netinet6/in6_ifattach.h> 98 #include <netinet6/scope6_var.h> 99 #include <netinet6/in6_pcb.h> 100 101 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 102 103 /* 104 * Definitions of some costant IP6 addresses. 105 */ 106 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 107 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 108 const struct in6_addr in6addr_nodelocal_allnodes = 109 IN6ADDR_NODELOCAL_ALLNODES_INIT; 110 const struct in6_addr in6addr_linklocal_allnodes = 111 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 112 const struct in6_addr in6addr_linklocal_allrouters = 113 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 114 115 const struct in6_addr in6mask0 = IN6MASK0; 116 const struct in6_addr in6mask32 = IN6MASK32; 117 const struct in6_addr in6mask64 = IN6MASK64; 118 const struct in6_addr in6mask96 = IN6MASK96; 119 const struct in6_addr in6mask128 = IN6MASK128; 120 121 const struct sockaddr_in6 sa6_any = 122 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 123 124 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 125 struct ifnet *, struct thread *)); 126 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 127 struct sockaddr_in6 *, int)); 128 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 129 130 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 131 int (*faithprefix_p)(struct in6_addr *); 132 133 /* 134 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 135 * This routine does actual work. 136 */ 137 static void 138 in6_ifloop_request(int cmd, struct ifaddr *ifa) 139 { 140 struct sockaddr_in6 all1_sa; 141 struct rtentry *nrt = NULL; 142 int e; 143 144 bzero(&all1_sa, sizeof(all1_sa)); 145 all1_sa.sin6_family = AF_INET6; 146 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 147 all1_sa.sin6_addr = in6mask128; 148 149 /* 150 * We specify the address itself as the gateway, and set the 151 * RTF_LLINFO flag, so that the corresponding host route would have 152 * the flag, and thus applications that assume traditional behavior 153 * would be happy. Note that we assume the caller of the function 154 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 155 * which changes the outgoing interface to the loopback interface. 156 */ 157 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 158 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 159 if (e != 0) { 160 /* XXX need more descriptive message */ 161 log(LOG_ERR, "in6_ifloop_request: " 162 "%s operation failed for %s (errno=%d)\n", 163 cmd == RTM_ADD ? "ADD" : "DELETE", 164 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 165 e); 166 } 167 168 /* 169 * Report the addition/removal of the address to the routing socket. 170 * XXX: since we called rtinit for a p2p interface with a destination, 171 * we end up reporting twice in such a case. Should we rather 172 * omit the second report? 173 */ 174 if (nrt) { 175 RT_LOCK(nrt); 176 /* 177 * Make sure rt_ifa be equal to IFA, the second argument of 178 * the function. We need this because when we refer to 179 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa 180 * points to the address instead of the loopback address. 181 */ 182 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { 183 IFAFREE(nrt->rt_ifa); 184 IFAREF(ifa); 185 nrt->rt_ifa = ifa; 186 } 187 188 rt_newaddrmsg(cmd, ifa, e, nrt); 189 if (cmd == RTM_DELETE) { 190 rtfree(nrt); 191 } else { 192 /* the cmd must be RTM_ADD here */ 193 RT_REMREF(nrt); 194 RT_UNLOCK(nrt); 195 } 196 } 197 } 198 199 /* 200 * Add ownaddr as loopback rtentry. We previously add the route only if 201 * necessary (ex. on a p2p link). However, since we now manage addresses 202 * separately from prefixes, we should always add the route. We can't 203 * rely on the cloning mechanism from the corresponding interface route 204 * any more. 205 */ 206 void 207 in6_ifaddloop(struct ifaddr *ifa) 208 { 209 struct rtentry *rt; 210 int need_loop; 211 212 /* If there is no loopback entry, allocate one. */ 213 rt = rtalloc1(ifa->ifa_addr, 0, 0); 214 need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 215 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); 216 if (rt) 217 rtfree(rt); 218 if (need_loop) 219 in6_ifloop_request(RTM_ADD, ifa); 220 } 221 222 /* 223 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 224 * if it exists. 225 */ 226 void 227 in6_ifremloop(struct ifaddr *ifa) 228 { 229 struct in6_ifaddr *ia; 230 struct rtentry *rt; 231 int ia_count = 0; 232 233 /* 234 * Some of BSD variants do not remove cloned routes 235 * from an interface direct route, when removing the direct route 236 * (see comments in net/net_osdep.h). Even for variants that do remove 237 * cloned routes, they could fail to remove the cloned routes when 238 * we handle multple addresses that share a common prefix. 239 * So, we should remove the route corresponding to the deleted address. 240 */ 241 242 /* 243 * Delete the entry only if exact one ifa exists. More than one ifa 244 * can exist if we assign a same single address to multiple 245 * (probably p2p) interfaces. 246 * XXX: we should avoid such a configuration in IPv6... 247 */ 248 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 249 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 250 ia_count++; 251 if (ia_count > 1) 252 break; 253 } 254 } 255 256 if (ia_count == 1) { 257 /* 258 * Before deleting, check if a corresponding loopbacked host 259 * route surely exists. With this check, we can avoid to 260 * delete an interface direct route whose destination is same 261 * as the address being removed. This can happen when removing 262 * a subnet-router anycast address on an interface attahced 263 * to a shared medium. 264 */ 265 rt = rtalloc1(ifa->ifa_addr, 0, 0); 266 if (rt != NULL) { 267 if ((rt->rt_flags & RTF_HOST) != 0 && 268 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 269 rtfree(rt); 270 in6_ifloop_request(RTM_DELETE, ifa); 271 } else 272 RT_UNLOCK(rt); 273 } 274 } 275 } 276 277 int 278 in6_mask2len(mask, lim0) 279 struct in6_addr *mask; 280 u_char *lim0; 281 { 282 int x = 0, y; 283 u_char *lim = lim0, *p; 284 285 /* ignore the scope_id part */ 286 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 287 lim = (u_char *)mask + sizeof(*mask); 288 for (p = (u_char *)mask; p < lim; x++, p++) { 289 if (*p != 0xff) 290 break; 291 } 292 y = 0; 293 if (p < lim) { 294 for (y = 0; y < 8; y++) { 295 if ((*p & (0x80 >> y)) == 0) 296 break; 297 } 298 } 299 300 /* 301 * when the limit pointer is given, do a stricter check on the 302 * remaining bits. 303 */ 304 if (p < lim) { 305 if (y != 0 && (*p & (0x00ff >> y)) != 0) 306 return (-1); 307 for (p = p + 1; p < lim; p++) 308 if (*p != 0) 309 return (-1); 310 } 311 312 return x * 8 + y; 313 } 314 315 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 316 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 317 318 int 319 in6_control(so, cmd, data, ifp, td) 320 struct socket *so; 321 u_long cmd; 322 caddr_t data; 323 struct ifnet *ifp; 324 struct thread *td; 325 { 326 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 327 struct in6_ifaddr *ia = NULL; 328 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 329 struct sockaddr_in6 *sa6; 330 int error; 331 332 switch (cmd) { 333 case SIOCGETSGCNT_IN6: 334 case SIOCGETMIFCNT_IN6: 335 return (mrt6_ioctl(cmd, data)); 336 } 337 338 switch(cmd) { 339 case SIOCAADDRCTL_POLICY: 340 case SIOCDADDRCTL_POLICY: 341 if (td != NULL) { 342 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 343 if (error) 344 return (error); 345 } 346 return (in6_src_ioctl(cmd, data)); 347 } 348 349 if (ifp == NULL) 350 return (EOPNOTSUPP); 351 352 switch (cmd) { 353 case SIOCSNDFLUSH_IN6: 354 case SIOCSPFXFLUSH_IN6: 355 case SIOCSRTRFLUSH_IN6: 356 case SIOCSDEFIFACE_IN6: 357 case SIOCSIFINFO_FLAGS: 358 if (td != NULL) { 359 error = priv_check(td, PRIV_NETINET_ND6); 360 if (error) 361 return (error); 362 } 363 /* FALLTHROUGH */ 364 case OSIOCGIFINFO_IN6: 365 case SIOCGIFINFO_IN6: 366 case SIOCSIFINFO_IN6: 367 case SIOCGDRLST_IN6: 368 case SIOCGPRLST_IN6: 369 case SIOCGNBRINFO_IN6: 370 case SIOCGDEFIFACE_IN6: 371 return (nd6_ioctl(cmd, data, ifp)); 372 } 373 374 switch (cmd) { 375 case SIOCSIFPREFIX_IN6: 376 case SIOCDIFPREFIX_IN6: 377 case SIOCAIFPREFIX_IN6: 378 case SIOCCIFPREFIX_IN6: 379 case SIOCSGIFPREFIX_IN6: 380 case SIOCGIFPREFIX_IN6: 381 log(LOG_NOTICE, 382 "prefix ioctls are now invalidated. " 383 "please use ifconfig.\n"); 384 return (EOPNOTSUPP); 385 } 386 387 switch (cmd) { 388 case SIOCSSCOPE6: 389 if (td != NULL) { 390 error = priv_check(td, PRIV_NETINET_SCOPE6); 391 if (error) 392 return (error); 393 } 394 return (scope6_set(ifp, 395 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 396 case SIOCGSCOPE6: 397 return (scope6_get(ifp, 398 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 399 case SIOCGSCOPE6DEF: 400 return (scope6_get_default((struct scope6_id *) 401 ifr->ifr_ifru.ifru_scope_id)); 402 } 403 404 switch (cmd) { 405 case SIOCALIFADDR: 406 case SIOCDLIFADDR: 407 /* 408 * XXXRW: Is this checked at another layer? What priv to use 409 * here? 410 */ 411 if (td != NULL) { 412 error = suser(td); 413 if (error) 414 return (error); 415 } 416 /* FALLTHROUGH */ 417 case SIOCGLIFADDR: 418 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 419 } 420 421 /* 422 * Find address for this interface, if it exists. 423 * 424 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 425 * only, and used the first interface address as the target of other 426 * operations (without checking ifra_addr). This was because netinet 427 * code/API assumed at most 1 interface address per interface. 428 * Since IPv6 allows a node to assign multiple addresses 429 * on a single interface, we almost always look and check the 430 * presence of ifra_addr, and reject invalid ones here. 431 * It also decreases duplicated code among SIOC*_IN6 operations. 432 */ 433 switch (cmd) { 434 case SIOCAIFADDR_IN6: 435 case SIOCSIFPHYADDR_IN6: 436 sa6 = &ifra->ifra_addr; 437 break; 438 case SIOCSIFADDR_IN6: 439 case SIOCGIFADDR_IN6: 440 case SIOCSIFDSTADDR_IN6: 441 case SIOCSIFNETMASK_IN6: 442 case SIOCGIFDSTADDR_IN6: 443 case SIOCGIFNETMASK_IN6: 444 case SIOCDIFADDR_IN6: 445 case SIOCGIFPSRCADDR_IN6: 446 case SIOCGIFPDSTADDR_IN6: 447 case SIOCGIFAFLAG_IN6: 448 case SIOCSNDFLUSH_IN6: 449 case SIOCSPFXFLUSH_IN6: 450 case SIOCSRTRFLUSH_IN6: 451 case SIOCGIFALIFETIME_IN6: 452 case SIOCSIFALIFETIME_IN6: 453 case SIOCGIFSTAT_IN6: 454 case SIOCGIFSTAT_ICMP6: 455 sa6 = &ifr->ifr_addr; 456 break; 457 default: 458 sa6 = NULL; 459 break; 460 } 461 if (sa6 && sa6->sin6_family == AF_INET6) { 462 int error = 0; 463 464 if (sa6->sin6_scope_id != 0) 465 error = sa6_embedscope(sa6, 0); 466 else 467 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 468 if (error != 0) 469 return (error); 470 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 471 } else 472 ia = NULL; 473 474 switch (cmd) { 475 case SIOCSIFADDR_IN6: 476 case SIOCSIFDSTADDR_IN6: 477 case SIOCSIFNETMASK_IN6: 478 /* 479 * Since IPv6 allows a node to assign multiple addresses 480 * on a single interface, SIOCSIFxxx ioctls are deprecated. 481 */ 482 /* we decided to obsolete this command (20000704) */ 483 return (EINVAL); 484 485 case SIOCDIFADDR_IN6: 486 /* 487 * for IPv4, we look for existing in_ifaddr here to allow 488 * "ifconfig if0 delete" to remove the first IPv4 address on 489 * the interface. For IPv6, as the spec allows multiple 490 * interface address from the day one, we consider "remove the 491 * first one" semantics to be not preferable. 492 */ 493 if (ia == NULL) 494 return (EADDRNOTAVAIL); 495 /* FALLTHROUGH */ 496 case SIOCAIFADDR_IN6: 497 /* 498 * We always require users to specify a valid IPv6 address for 499 * the corresponding operation. 500 */ 501 if (ifra->ifra_addr.sin6_family != AF_INET6 || 502 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 503 return (EAFNOSUPPORT); 504 505 /* 506 * XXXRW: Is this checked at another layer? What priv to use 507 * here? 508 */ 509 if (td != NULL) { 510 error = suser(td); 511 if (error) 512 return (error); 513 } 514 515 break; 516 517 case SIOCGIFADDR_IN6: 518 /* This interface is basically deprecated. use SIOCGIFCONF. */ 519 /* FALLTHROUGH */ 520 case SIOCGIFAFLAG_IN6: 521 case SIOCGIFNETMASK_IN6: 522 case SIOCGIFDSTADDR_IN6: 523 case SIOCGIFALIFETIME_IN6: 524 /* must think again about its semantics */ 525 if (ia == NULL) 526 return (EADDRNOTAVAIL); 527 break; 528 case SIOCSIFALIFETIME_IN6: 529 { 530 struct in6_addrlifetime *lt; 531 532 if (td != NULL) { 533 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 534 if (error) 535 return (error); 536 } 537 if (ia == NULL) 538 return (EADDRNOTAVAIL); 539 /* sanity for overflow - beware unsigned */ 540 lt = &ifr->ifr_ifru.ifru_lifetime; 541 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 542 lt->ia6t_vltime + time_second < time_second) { 543 return EINVAL; 544 } 545 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 546 lt->ia6t_pltime + time_second < time_second) { 547 return EINVAL; 548 } 549 break; 550 } 551 } 552 553 switch (cmd) { 554 555 case SIOCGIFADDR_IN6: 556 ifr->ifr_addr = ia->ia_addr; 557 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 558 return (error); 559 break; 560 561 case SIOCGIFDSTADDR_IN6: 562 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 563 return (EINVAL); 564 /* 565 * XXX: should we check if ifa_dstaddr is NULL and return 566 * an error? 567 */ 568 ifr->ifr_dstaddr = ia->ia_dstaddr; 569 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 570 return (error); 571 break; 572 573 case SIOCGIFNETMASK_IN6: 574 ifr->ifr_addr = ia->ia_prefixmask; 575 break; 576 577 case SIOCGIFAFLAG_IN6: 578 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 579 break; 580 581 case SIOCGIFSTAT_IN6: 582 if (ifp == NULL) 583 return EINVAL; 584 bzero(&ifr->ifr_ifru.ifru_stat, 585 sizeof(ifr->ifr_ifru.ifru_stat)); 586 ifr->ifr_ifru.ifru_stat = 587 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 588 break; 589 590 case SIOCGIFSTAT_ICMP6: 591 if (ifp == NULL) 592 return EINVAL; 593 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 594 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 595 ifr->ifr_ifru.ifru_icmp6stat = 596 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 597 break; 598 599 case SIOCGIFALIFETIME_IN6: 600 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 601 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 602 time_t maxexpire; 603 struct in6_addrlifetime *retlt = 604 &ifr->ifr_ifru.ifru_lifetime; 605 606 /* 607 * XXX: adjust expiration time assuming time_t is 608 * signed. 609 */ 610 maxexpire = (-1) & 611 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 612 if (ia->ia6_lifetime.ia6t_vltime < 613 maxexpire - ia->ia6_updatetime) { 614 retlt->ia6t_expire = ia->ia6_updatetime + 615 ia->ia6_lifetime.ia6t_vltime; 616 } else 617 retlt->ia6t_expire = maxexpire; 618 } 619 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 620 time_t maxexpire; 621 struct in6_addrlifetime *retlt = 622 &ifr->ifr_ifru.ifru_lifetime; 623 624 /* 625 * XXX: adjust expiration time assuming time_t is 626 * signed. 627 */ 628 maxexpire = (-1) & 629 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 630 if (ia->ia6_lifetime.ia6t_pltime < 631 maxexpire - ia->ia6_updatetime) { 632 retlt->ia6t_preferred = ia->ia6_updatetime + 633 ia->ia6_lifetime.ia6t_pltime; 634 } else 635 retlt->ia6t_preferred = maxexpire; 636 } 637 break; 638 639 case SIOCSIFALIFETIME_IN6: 640 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 641 /* for sanity */ 642 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 643 ia->ia6_lifetime.ia6t_expire = 644 time_second + ia->ia6_lifetime.ia6t_vltime; 645 } else 646 ia->ia6_lifetime.ia6t_expire = 0; 647 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 648 ia->ia6_lifetime.ia6t_preferred = 649 time_second + ia->ia6_lifetime.ia6t_pltime; 650 } else 651 ia->ia6_lifetime.ia6t_preferred = 0; 652 break; 653 654 case SIOCAIFADDR_IN6: 655 { 656 int i, error = 0; 657 struct nd_prefixctl pr0; 658 struct nd_prefix *pr; 659 660 /* 661 * first, make or update the interface address structure, 662 * and link it to the list. 663 */ 664 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 665 return (error); 666 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 667 == NULL) { 668 /* 669 * this can happen when the user specify the 0 valid 670 * lifetime. 671 */ 672 break; 673 } 674 675 /* 676 * then, make the prefix on-link on the interface. 677 * XXX: we'd rather create the prefix before the address, but 678 * we need at least one address to install the corresponding 679 * interface route, so we configure the address first. 680 */ 681 682 /* 683 * convert mask to prefix length (prefixmask has already 684 * been validated in in6_update_ifa(). 685 */ 686 bzero(&pr0, sizeof(pr0)); 687 pr0.ndpr_ifp = ifp; 688 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 689 NULL); 690 if (pr0.ndpr_plen == 128) { 691 break; /* we don't need to install a host route. */ 692 } 693 pr0.ndpr_prefix = ifra->ifra_addr; 694 /* apply the mask for safety. */ 695 for (i = 0; i < 4; i++) { 696 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 697 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 698 } 699 /* 700 * XXX: since we don't have an API to set prefix (not address) 701 * lifetimes, we just use the same lifetimes as addresses. 702 * The (temporarily) installed lifetimes can be overridden by 703 * later advertised RAs (when accept_rtadv is non 0), which is 704 * an intended behavior. 705 */ 706 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 707 pr0.ndpr_raf_auto = 708 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 709 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 710 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 711 712 /* add the prefix if not yet. */ 713 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 714 /* 715 * nd6_prelist_add will install the corresponding 716 * interface route. 717 */ 718 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 719 return (error); 720 if (pr == NULL) { 721 log(LOG_ERR, "nd6_prelist_add succeeded but " 722 "no prefix\n"); 723 return (EINVAL); /* XXX panic here? */ 724 } 725 } 726 727 /* relate the address to the prefix */ 728 if (ia->ia6_ndpr == NULL) { 729 ia->ia6_ndpr = pr; 730 pr->ndpr_refcnt++; 731 732 /* 733 * If this is the first autoconf address from the 734 * prefix, create a temporary address as well 735 * (when required). 736 */ 737 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 738 ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 739 int e; 740 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 741 log(LOG_NOTICE, "in6_control: failed " 742 "to create a temporary address, " 743 "errno=%d\n", e); 744 } 745 } 746 } 747 748 /* 749 * this might affect the status of autoconfigured addresses, 750 * that is, this address might make other addresses detached. 751 */ 752 pfxlist_onlink_check(); 753 if (error == 0 && ia) 754 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 755 break; 756 } 757 758 case SIOCDIFADDR_IN6: 759 { 760 struct nd_prefix *pr; 761 762 /* 763 * If the address being deleted is the only one that owns 764 * the corresponding prefix, expire the prefix as well. 765 * XXX: theoretically, we don't have to worry about such 766 * relationship, since we separate the address management 767 * and the prefix management. We do this, however, to provide 768 * as much backward compatibility as possible in terms of 769 * the ioctl operation. 770 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 771 */ 772 pr = ia->ia6_ndpr; 773 in6_purgeaddr(&ia->ia_ifa); 774 if (pr && pr->ndpr_refcnt == 0) 775 prelist_remove(pr); 776 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 777 break; 778 } 779 780 default: 781 if (ifp == NULL || ifp->if_ioctl == 0) 782 return (EOPNOTSUPP); 783 return ((*ifp->if_ioctl)(ifp, cmd, data)); 784 } 785 786 return (0); 787 } 788 789 /* 790 * Update parameters of an IPv6 interface address. 791 * If necessary, a new entry is created and linked into address chains. 792 * This function is separated from in6_control(). 793 * XXX: should this be performed under splnet()? 794 */ 795 int 796 in6_update_ifa(ifp, ifra, ia, flags) 797 struct ifnet *ifp; 798 struct in6_aliasreq *ifra; 799 struct in6_ifaddr *ia; 800 int flags; 801 { 802 int error = 0, hostIsNew = 0, plen = -1; 803 struct in6_ifaddr *oia; 804 struct sockaddr_in6 dst6; 805 struct in6_addrlifetime *lt; 806 struct in6_multi_mship *imm; 807 struct in6_multi *in6m_sol; 808 struct rtentry *rt; 809 int delay; 810 811 /* Validate parameters */ 812 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 813 return (EINVAL); 814 815 /* 816 * The destination address for a p2p link must have a family 817 * of AF_UNSPEC or AF_INET6. 818 */ 819 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 820 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 821 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 822 return (EAFNOSUPPORT); 823 /* 824 * validate ifra_prefixmask. don't check sin6_family, netmask 825 * does not carry fields other than sin6_len. 826 */ 827 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 828 return (EINVAL); 829 /* 830 * Because the IPv6 address architecture is classless, we require 831 * users to specify a (non 0) prefix length (mask) for a new address. 832 * We also require the prefix (when specified) mask is valid, and thus 833 * reject a non-consecutive mask. 834 */ 835 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 836 return (EINVAL); 837 if (ifra->ifra_prefixmask.sin6_len != 0) { 838 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 839 (u_char *)&ifra->ifra_prefixmask + 840 ifra->ifra_prefixmask.sin6_len); 841 if (plen <= 0) 842 return (EINVAL); 843 } else { 844 /* 845 * In this case, ia must not be NULL. We just use its prefix 846 * length. 847 */ 848 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 849 } 850 /* 851 * If the destination address on a p2p interface is specified, 852 * and the address is a scoped one, validate/set the scope 853 * zone identifier. 854 */ 855 dst6 = ifra->ifra_dstaddr; 856 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 857 (dst6.sin6_family == AF_INET6)) { 858 struct in6_addr in6_tmp; 859 u_int32_t zoneid; 860 861 in6_tmp = dst6.sin6_addr; 862 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 863 return (EINVAL); /* XXX: should be impossible */ 864 865 if (dst6.sin6_scope_id != 0) { 866 if (dst6.sin6_scope_id != zoneid) 867 return (EINVAL); 868 } else /* user omit to specify the ID. */ 869 dst6.sin6_scope_id = zoneid; 870 871 /* convert into the internal form */ 872 if (sa6_embedscope(&dst6, 0)) 873 return (EINVAL); /* XXX: should be impossible */ 874 } 875 /* 876 * The destination address can be specified only for a p2p or a 877 * loopback interface. If specified, the corresponding prefix length 878 * must be 128. 879 */ 880 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 881 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 882 /* XXX: noisy message */ 883 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 884 "be specified for a p2p or a loopback IF only\n")); 885 return (EINVAL); 886 } 887 if (plen != 128) { 888 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 889 "be 128 when dstaddr is specified\n")); 890 return (EINVAL); 891 } 892 } 893 /* lifetime consistency check */ 894 lt = &ifra->ifra_lifetime; 895 if (lt->ia6t_pltime > lt->ia6t_vltime) 896 return (EINVAL); 897 if (lt->ia6t_vltime == 0) { 898 /* 899 * the following log might be noisy, but this is a typical 900 * configuration mistake or a tool's bug. 901 */ 902 nd6log((LOG_INFO, 903 "in6_update_ifa: valid lifetime is 0 for %s\n", 904 ip6_sprintf(&ifra->ifra_addr.sin6_addr))); 905 906 if (ia == NULL) 907 return (0); /* there's nothing to do */ 908 } 909 910 /* 911 * If this is a new address, allocate a new ifaddr and link it 912 * into chains. 913 */ 914 if (ia == NULL) { 915 hostIsNew = 1; 916 /* 917 * When in6_update_ifa() is called in a process of a received 918 * RA, it is called under an interrupt context. So, we should 919 * call malloc with M_NOWAIT. 920 */ 921 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 922 M_NOWAIT); 923 if (ia == NULL) 924 return (ENOBUFS); 925 bzero((caddr_t)ia, sizeof(*ia)); 926 /* Initialize the address and masks, and put time stamp */ 927 IFA_LOCK_INIT(&ia->ia_ifa); 928 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 929 ia->ia_addr.sin6_family = AF_INET6; 930 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 931 ia->ia6_createtime = time_second; 932 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 933 /* 934 * XXX: some functions expect that ifa_dstaddr is not 935 * NULL for p2p interfaces. 936 */ 937 ia->ia_ifa.ifa_dstaddr = 938 (struct sockaddr *)&ia->ia_dstaddr; 939 } else { 940 ia->ia_ifa.ifa_dstaddr = NULL; 941 } 942 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 943 944 ia->ia_ifp = ifp; 945 if ((oia = in6_ifaddr) != NULL) { 946 for ( ; oia->ia_next; oia = oia->ia_next) 947 continue; 948 oia->ia_next = ia; 949 } else 950 in6_ifaddr = ia; 951 952 ia->ia_ifa.ifa_refcnt = 1; 953 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 954 } 955 956 /* update timestamp */ 957 ia->ia6_updatetime = time_second; 958 959 /* set prefix mask */ 960 if (ifra->ifra_prefixmask.sin6_len) { 961 /* 962 * We prohibit changing the prefix length of an existing 963 * address, because 964 * + such an operation should be rare in IPv6, and 965 * + the operation would confuse prefix management. 966 */ 967 if (ia->ia_prefixmask.sin6_len && 968 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 969 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 970 " existing (%s) address should not be changed\n", 971 ip6_sprintf(&ia->ia_addr.sin6_addr))); 972 error = EINVAL; 973 goto unlink; 974 } 975 ia->ia_prefixmask = ifra->ifra_prefixmask; 976 } 977 978 /* 979 * If a new destination address is specified, scrub the old one and 980 * install the new destination. Note that the interface must be 981 * p2p or loopback (see the check above.) 982 */ 983 if (dst6.sin6_family == AF_INET6 && 984 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 985 int e; 986 987 if ((ia->ia_flags & IFA_ROUTE) != 0 && 988 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 989 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 990 "a route to the old destination: %s\n", 991 ip6_sprintf(&ia->ia_addr.sin6_addr))); 992 /* proceed anyway... */ 993 } else 994 ia->ia_flags &= ~IFA_ROUTE; 995 ia->ia_dstaddr = dst6; 996 } 997 998 /* 999 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1000 * to see if the address is deprecated or invalidated, but initialize 1001 * these members for applications. 1002 */ 1003 ia->ia6_lifetime = ifra->ifra_lifetime; 1004 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1005 ia->ia6_lifetime.ia6t_expire = 1006 time_second + ia->ia6_lifetime.ia6t_vltime; 1007 } else 1008 ia->ia6_lifetime.ia6t_expire = 0; 1009 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1010 ia->ia6_lifetime.ia6t_preferred = 1011 time_second + ia->ia6_lifetime.ia6t_pltime; 1012 } else 1013 ia->ia6_lifetime.ia6t_preferred = 0; 1014 1015 /* reset the interface and routing table appropriately. */ 1016 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1017 goto unlink; 1018 1019 /* 1020 * configure address flags. 1021 */ 1022 ia->ia6_flags = ifra->ifra_flags; 1023 /* 1024 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1025 * userland, make it deprecated. 1026 */ 1027 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1028 ia->ia6_lifetime.ia6t_pltime = 0; 1029 ia->ia6_lifetime.ia6t_preferred = time_second; 1030 } 1031 /* 1032 * Make the address tentative before joining multicast addresses, 1033 * so that corresponding MLD responses would not have a tentative 1034 * source address. 1035 */ 1036 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1037 if (hostIsNew && in6if_do_dad(ifp)) 1038 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1039 1040 /* 1041 * We are done if we have simply modified an existing address. 1042 */ 1043 if (!hostIsNew) 1044 return (error); 1045 1046 /* 1047 * Beyond this point, we should call in6_purgeaddr upon an error, 1048 * not just go to unlink. 1049 */ 1050 1051 /* Join necessary multicast groups */ 1052 in6m_sol = NULL; 1053 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1054 struct sockaddr_in6 mltaddr, mltmask; 1055 struct in6_addr llsol; 1056 1057 /* join solicited multicast addr for new host id */ 1058 bzero(&llsol, sizeof(struct in6_addr)); 1059 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1060 llsol.s6_addr32[1] = 0; 1061 llsol.s6_addr32[2] = htonl(1); 1062 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1063 llsol.s6_addr8[12] = 0xff; 1064 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1065 /* XXX: should not happen */ 1066 log(LOG_ERR, "in6_update_ifa: " 1067 "in6_setscope failed\n"); 1068 goto cleanup; 1069 } 1070 delay = 0; 1071 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1072 /* 1073 * We need a random delay for DAD on the address 1074 * being configured. It also means delaying 1075 * transmission of the corresponding MLD report to 1076 * avoid report collision. 1077 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1078 */ 1079 delay = arc4random() % 1080 (MAX_RTR_SOLICITATION_DELAY * hz); 1081 } 1082 imm = in6_joingroup(ifp, &llsol, &error, delay); 1083 if (error != 0) { 1084 nd6log((LOG_WARNING, 1085 "in6_update_ifa: addmulti failed for " 1086 "%s on %s (errno=%d)\n", 1087 ip6_sprintf(&llsol), if_name(ifp), 1088 error)); 1089 in6_purgeaddr((struct ifaddr *)ia); 1090 return (error); 1091 } 1092 in6m_sol = imm->i6mm_maddr; 1093 1094 bzero(&mltmask, sizeof(mltmask)); 1095 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1096 mltmask.sin6_family = AF_INET6; 1097 mltmask.sin6_addr = in6mask32; 1098 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1099 1100 /* 1101 * join link-local all-nodes address 1102 */ 1103 bzero(&mltaddr, sizeof(mltaddr)); 1104 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1105 mltaddr.sin6_family = AF_INET6; 1106 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1107 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1108 0) 1109 goto cleanup; /* XXX: should not fail */ 1110 1111 /* 1112 * XXX: do we really need this automatic routes? 1113 * We should probably reconsider this stuff. Most applications 1114 * actually do not need the routes, since they usually specify 1115 * the outgoing interface. 1116 */ 1117 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1118 if (rt) { 1119 if (memcmp(&mltaddr.sin6_addr, 1120 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1121 MLTMASK_LEN)) { 1122 RTFREE_LOCKED(rt); 1123 rt = NULL; 1124 } 1125 } 1126 if (!rt) { 1127 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1128 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1129 (struct sockaddr *)&ia->ia_addr, 1130 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1131 (struct rtentry **)0); 1132 if (error) 1133 goto cleanup; 1134 } else 1135 RTFREE_LOCKED(rt); 1136 1137 /* 1138 * XXX: do we really need this automatic routes? 1139 * We should probably reconsider this stuff. Most applications 1140 * actually do not need the routes, since they usually specify 1141 * the outgoing interface. 1142 */ 1143 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1144 if (rt) { 1145 /* XXX: only works in !SCOPEDROUTING case. */ 1146 if (memcmp(&mltaddr.sin6_addr, 1147 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1148 MLTMASK_LEN)) { 1149 RTFREE_LOCKED(rt); 1150 rt = NULL; 1151 } 1152 } 1153 if (!rt) { 1154 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1155 (struct sockaddr *)&ia->ia_addr, 1156 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1157 (struct rtentry **)0); 1158 if (error) 1159 goto cleanup; 1160 } else { 1161 RTFREE_LOCKED(rt); 1162 } 1163 1164 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1165 if (!imm) { 1166 nd6log((LOG_WARNING, 1167 "in6_update_ifa: addmulti failed for " 1168 "%s on %s (errno=%d)\n", 1169 ip6_sprintf(&mltaddr.sin6_addr), 1170 if_name(ifp), error)); 1171 goto cleanup; 1172 } 1173 1174 /* 1175 * join node information group address 1176 */ 1177 #define hostnamelen strlen(hostname) 1178 delay = 0; 1179 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1180 /* 1181 * The spec doesn't say anything about delay for this 1182 * group, but the same logic should apply. 1183 */ 1184 delay = arc4random() % 1185 (MAX_RTR_SOLICITATION_DELAY * hz); 1186 } 1187 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1188 == 0) { 1189 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1190 delay); /* XXX jinmei */ 1191 if (!imm) { 1192 nd6log((LOG_WARNING, "in6_update_ifa: " 1193 "addmulti failed for %s on %s " 1194 "(errno=%d)\n", 1195 ip6_sprintf(&mltaddr.sin6_addr), 1196 if_name(ifp), error)); 1197 /* XXX not very fatal, go on... */ 1198 } 1199 } 1200 #undef hostnamelen 1201 1202 /* 1203 * join interface-local all-nodes address. 1204 * (ff01::1%ifN, and ff01::%ifN/32) 1205 */ 1206 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1207 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1208 != 0) 1209 goto cleanup; /* XXX: should not fail */ 1210 /* XXX: again, do we really need the route? */ 1211 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1212 if (rt) { 1213 if (memcmp(&mltaddr.sin6_addr, 1214 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1215 MLTMASK_LEN)) { 1216 RTFREE_LOCKED(rt); 1217 rt = NULL; 1218 } 1219 } 1220 if (!rt) { 1221 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1222 (struct sockaddr *)&ia->ia_addr, 1223 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1224 (struct rtentry **)0); 1225 if (error) 1226 goto cleanup; 1227 } else 1228 RTFREE_LOCKED(rt); 1229 1230 /* XXX: again, do we really need the route? */ 1231 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1232 if (rt) { 1233 if (memcmp(&mltaddr.sin6_addr, 1234 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1235 MLTMASK_LEN)) { 1236 RTFREE_LOCKED(rt); 1237 rt = NULL; 1238 } 1239 } 1240 if (!rt) { 1241 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1242 (struct sockaddr *)&ia->ia_addr, 1243 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1244 (struct rtentry **)0); 1245 if (error) 1246 goto cleanup; 1247 } else { 1248 RTFREE_LOCKED(rt); 1249 } 1250 1251 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1252 if (!imm) { 1253 nd6log((LOG_WARNING, "in6_update_ifa: " 1254 "addmulti failed for %s on %s " 1255 "(errno=%d)\n", 1256 ip6_sprintf(&mltaddr.sin6_addr), 1257 if_name(ifp), error)); 1258 goto cleanup; 1259 } 1260 #undef MLTMASK_LEN 1261 } 1262 1263 /* 1264 * Perform DAD, if needed. 1265 * XXX It may be of use, if we can administratively 1266 * disable DAD. 1267 */ 1268 if (hostIsNew && in6if_do_dad(ifp) && 1269 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1270 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1271 { 1272 int mindelay, maxdelay; 1273 1274 delay = 0; 1275 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1276 /* 1277 * We need to impose a delay before sending an NS 1278 * for DAD. Check if we also needed a delay for the 1279 * corresponding MLD message. If we did, the delay 1280 * should be larger than the MLD delay (this could be 1281 * relaxed a bit, but this simple logic is at least 1282 * safe). 1283 */ 1284 mindelay = 0; 1285 if (in6m_sol != NULL && 1286 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1287 mindelay = in6m_sol->in6m_timer; 1288 } 1289 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1290 if (maxdelay - mindelay == 0) 1291 delay = 0; 1292 else { 1293 delay = 1294 (arc4random() % (maxdelay - mindelay)) + 1295 mindelay; 1296 } 1297 } 1298 nd6_dad_start((struct ifaddr *)ia, delay); 1299 } 1300 1301 return (error); 1302 1303 unlink: 1304 /* 1305 * XXX: if a change of an existing address failed, keep the entry 1306 * anyway. 1307 */ 1308 if (hostIsNew) 1309 in6_unlink_ifa(ia, ifp); 1310 return (error); 1311 1312 cleanup: 1313 in6_purgeaddr(&ia->ia_ifa); 1314 return error; 1315 } 1316 1317 void 1318 in6_purgeaddr(ifa) 1319 struct ifaddr *ifa; 1320 { 1321 struct ifnet *ifp = ifa->ifa_ifp; 1322 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1323 1324 /* stop DAD processing */ 1325 nd6_dad_stop(ifa); 1326 1327 /* 1328 * delete route to the destination of the address being purged. 1329 * The interface must be p2p or loopback in this case. 1330 */ 1331 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1332 int e; 1333 1334 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1335 != 0) { 1336 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1337 "a route to the p2p destination: %s on %s, " 1338 "errno=%d\n", 1339 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1340 e); 1341 /* proceed anyway... */ 1342 } else 1343 ia->ia_flags &= ~IFA_ROUTE; 1344 } 1345 1346 /* Remove ownaddr's loopback rtentry, if it exists. */ 1347 in6_ifremloop(&(ia->ia_ifa)); 1348 1349 if (ifp->if_flags & IFF_MULTICAST) { 1350 /* 1351 * delete solicited multicast addr for deleting host id 1352 */ 1353 struct in6_multi *in6m; 1354 struct in6_addr llsol; 1355 bzero(&llsol, sizeof(struct in6_addr)); 1356 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1357 llsol.s6_addr32[1] = 0; 1358 llsol.s6_addr32[2] = htonl(1); 1359 llsol.s6_addr32[3] = 1360 ia->ia_addr.sin6_addr.s6_addr32[3]; 1361 llsol.s6_addr8[12] = 0xff; 1362 (void)in6_setscope(&llsol, ifp, NULL); /* XXX proceed anyway */ 1363 1364 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1365 if (in6m) 1366 in6_delmulti(in6m); 1367 } 1368 1369 in6_unlink_ifa(ia, ifp); 1370 } 1371 1372 static void 1373 in6_unlink_ifa(ia, ifp) 1374 struct in6_ifaddr *ia; 1375 struct ifnet *ifp; 1376 { 1377 struct in6_ifaddr *oia; 1378 int s = splnet(); 1379 1380 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1381 1382 oia = ia; 1383 if (oia == (ia = in6_ifaddr)) 1384 in6_ifaddr = ia->ia_next; 1385 else { 1386 while (ia->ia_next && (ia->ia_next != oia)) 1387 ia = ia->ia_next; 1388 if (ia->ia_next) 1389 ia->ia_next = oia->ia_next; 1390 else { 1391 /* search failed */ 1392 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1393 } 1394 } 1395 1396 /* 1397 * Release the reference to the base prefix. There should be a 1398 * positive reference. 1399 */ 1400 if (oia->ia6_ndpr == NULL) { 1401 nd6log((LOG_NOTICE, 1402 "in6_unlink_ifa: autoconf'ed address " 1403 "%p has no prefix\n", oia)); 1404 } else { 1405 oia->ia6_ndpr->ndpr_refcnt--; 1406 oia->ia6_ndpr = NULL; 1407 } 1408 1409 /* 1410 * Also, if the address being removed is autoconf'ed, call 1411 * pfxlist_onlink_check() since the release might affect the status of 1412 * other (detached) addresses. 1413 */ 1414 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1415 pfxlist_onlink_check(); 1416 } 1417 1418 /* 1419 * release another refcnt for the link from in6_ifaddr. 1420 * Note that we should decrement the refcnt at least once for all *BSD. 1421 */ 1422 IFAFREE(&oia->ia_ifa); 1423 1424 splx(s); 1425 } 1426 1427 void 1428 in6_purgeif(ifp) 1429 struct ifnet *ifp; 1430 { 1431 struct ifaddr *ifa, *nifa; 1432 1433 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1434 nifa = TAILQ_NEXT(ifa, ifa_list); 1435 if (ifa->ifa_addr->sa_family != AF_INET6) 1436 continue; 1437 in6_purgeaddr(ifa); 1438 } 1439 1440 in6_ifdetach(ifp); 1441 } 1442 1443 /* 1444 * SIOC[GAD]LIFADDR. 1445 * SIOCGLIFADDR: get first address. (?) 1446 * SIOCGLIFADDR with IFLR_PREFIX: 1447 * get first address that matches the specified prefix. 1448 * SIOCALIFADDR: add the specified address. 1449 * SIOCALIFADDR with IFLR_PREFIX: 1450 * add the specified prefix, filling hostid part from 1451 * the first link-local address. prefixlen must be <= 64. 1452 * SIOCDLIFADDR: delete the specified address. 1453 * SIOCDLIFADDR with IFLR_PREFIX: 1454 * delete the first address that matches the specified prefix. 1455 * return values: 1456 * EINVAL on invalid parameters 1457 * EADDRNOTAVAIL on prefix match failed/specified address not found 1458 * other values may be returned from in6_ioctl() 1459 * 1460 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1461 * this is to accomodate address naming scheme other than RFC2374, 1462 * in the future. 1463 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1464 * address encoding scheme. (see figure on page 8) 1465 */ 1466 static int 1467 in6_lifaddr_ioctl(so, cmd, data, ifp, td) 1468 struct socket *so; 1469 u_long cmd; 1470 caddr_t data; 1471 struct ifnet *ifp; 1472 struct thread *td; 1473 { 1474 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1475 struct ifaddr *ifa; 1476 struct sockaddr *sa; 1477 1478 /* sanity checks */ 1479 if (!data || !ifp) { 1480 panic("invalid argument to in6_lifaddr_ioctl"); 1481 /* NOTREACHED */ 1482 } 1483 1484 switch (cmd) { 1485 case SIOCGLIFADDR: 1486 /* address must be specified on GET with IFLR_PREFIX */ 1487 if ((iflr->flags & IFLR_PREFIX) == 0) 1488 break; 1489 /* FALLTHROUGH */ 1490 case SIOCALIFADDR: 1491 case SIOCDLIFADDR: 1492 /* address must be specified on ADD and DELETE */ 1493 sa = (struct sockaddr *)&iflr->addr; 1494 if (sa->sa_family != AF_INET6) 1495 return EINVAL; 1496 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1497 return EINVAL; 1498 /* XXX need improvement */ 1499 sa = (struct sockaddr *)&iflr->dstaddr; 1500 if (sa->sa_family && sa->sa_family != AF_INET6) 1501 return EINVAL; 1502 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1503 return EINVAL; 1504 break; 1505 default: /* shouldn't happen */ 1506 #if 0 1507 panic("invalid cmd to in6_lifaddr_ioctl"); 1508 /* NOTREACHED */ 1509 #else 1510 return EOPNOTSUPP; 1511 #endif 1512 } 1513 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1514 return EINVAL; 1515 1516 switch (cmd) { 1517 case SIOCALIFADDR: 1518 { 1519 struct in6_aliasreq ifra; 1520 struct in6_addr *hostid = NULL; 1521 int prefixlen; 1522 1523 if ((iflr->flags & IFLR_PREFIX) != 0) { 1524 struct sockaddr_in6 *sin6; 1525 1526 /* 1527 * hostid is to fill in the hostid part of the 1528 * address. hostid points to the first link-local 1529 * address attached to the interface. 1530 */ 1531 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1532 if (!ifa) 1533 return EADDRNOTAVAIL; 1534 hostid = IFA_IN6(ifa); 1535 1536 /* prefixlen must be <= 64. */ 1537 if (64 < iflr->prefixlen) 1538 return EINVAL; 1539 prefixlen = iflr->prefixlen; 1540 1541 /* hostid part must be zero. */ 1542 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1543 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1544 sin6->sin6_addr.s6_addr32[3] != 0) { 1545 return EINVAL; 1546 } 1547 } else 1548 prefixlen = iflr->prefixlen; 1549 1550 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1551 bzero(&ifra, sizeof(ifra)); 1552 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1553 1554 bcopy(&iflr->addr, &ifra.ifra_addr, 1555 ((struct sockaddr *)&iflr->addr)->sa_len); 1556 if (hostid) { 1557 /* fill in hostid part */ 1558 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1559 hostid->s6_addr32[2]; 1560 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1561 hostid->s6_addr32[3]; 1562 } 1563 1564 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1565 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1566 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1567 if (hostid) { 1568 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1569 hostid->s6_addr32[2]; 1570 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1571 hostid->s6_addr32[3]; 1572 } 1573 } 1574 1575 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1576 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1577 1578 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1579 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1580 } 1581 case SIOCGLIFADDR: 1582 case SIOCDLIFADDR: 1583 { 1584 struct in6_ifaddr *ia; 1585 struct in6_addr mask, candidate, match; 1586 struct sockaddr_in6 *sin6; 1587 int cmp; 1588 1589 bzero(&mask, sizeof(mask)); 1590 if (iflr->flags & IFLR_PREFIX) { 1591 /* lookup a prefix rather than address. */ 1592 in6_prefixlen2mask(&mask, iflr->prefixlen); 1593 1594 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1595 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1596 match.s6_addr32[0] &= mask.s6_addr32[0]; 1597 match.s6_addr32[1] &= mask.s6_addr32[1]; 1598 match.s6_addr32[2] &= mask.s6_addr32[2]; 1599 match.s6_addr32[3] &= mask.s6_addr32[3]; 1600 1601 /* if you set extra bits, that's wrong */ 1602 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1603 return EINVAL; 1604 1605 cmp = 1; 1606 } else { 1607 if (cmd == SIOCGLIFADDR) { 1608 /* on getting an address, take the 1st match */ 1609 cmp = 0; /* XXX */ 1610 } else { 1611 /* on deleting an address, do exact match */ 1612 in6_prefixlen2mask(&mask, 128); 1613 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1614 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1615 1616 cmp = 1; 1617 } 1618 } 1619 1620 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1621 if (ifa->ifa_addr->sa_family != AF_INET6) 1622 continue; 1623 if (!cmp) 1624 break; 1625 1626 /* 1627 * XXX: this is adhoc, but is necessary to allow 1628 * a user to specify fe80::/64 (not /10) for a 1629 * link-local address. 1630 */ 1631 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1632 in6_clearscope(&candidate); 1633 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1634 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1635 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1636 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1637 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1638 break; 1639 } 1640 if (!ifa) 1641 return EADDRNOTAVAIL; 1642 ia = ifa2ia6(ifa); 1643 1644 if (cmd == SIOCGLIFADDR) { 1645 int error; 1646 1647 /* fill in the if_laddrreq structure */ 1648 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1649 error = sa6_recoverscope( 1650 (struct sockaddr_in6 *)&iflr->addr); 1651 if (error != 0) 1652 return (error); 1653 1654 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1655 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1656 ia->ia_dstaddr.sin6_len); 1657 error = sa6_recoverscope( 1658 (struct sockaddr_in6 *)&iflr->dstaddr); 1659 if (error != 0) 1660 return (error); 1661 } else 1662 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1663 1664 iflr->prefixlen = 1665 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1666 1667 iflr->flags = ia->ia6_flags; /* XXX */ 1668 1669 return 0; 1670 } else { 1671 struct in6_aliasreq ifra; 1672 1673 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1674 bzero(&ifra, sizeof(ifra)); 1675 bcopy(iflr->iflr_name, ifra.ifra_name, 1676 sizeof(ifra.ifra_name)); 1677 1678 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1679 ia->ia_addr.sin6_len); 1680 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1681 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1682 ia->ia_dstaddr.sin6_len); 1683 } else { 1684 bzero(&ifra.ifra_dstaddr, 1685 sizeof(ifra.ifra_dstaddr)); 1686 } 1687 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1688 ia->ia_prefixmask.sin6_len); 1689 1690 ifra.ifra_flags = ia->ia6_flags; 1691 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1692 ifp, td); 1693 } 1694 } 1695 } 1696 1697 return EOPNOTSUPP; /* just for safety */ 1698 } 1699 1700 /* 1701 * Initialize an interface's intetnet6 address 1702 * and routing table entry. 1703 */ 1704 static int 1705 in6_ifinit(ifp, ia, sin6, newhost) 1706 struct ifnet *ifp; 1707 struct in6_ifaddr *ia; 1708 struct sockaddr_in6 *sin6; 1709 int newhost; 1710 { 1711 int error = 0, plen, ifacount = 0; 1712 int s = splimp(); 1713 struct ifaddr *ifa; 1714 1715 /* 1716 * Give the interface a chance to initialize 1717 * if this is its first address, 1718 * and to validate the address if necessary. 1719 */ 1720 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1721 if (ifa->ifa_addr->sa_family != AF_INET6) 1722 continue; 1723 ifacount++; 1724 } 1725 1726 ia->ia_addr = *sin6; 1727 1728 if (ifacount <= 1 && ifp->if_ioctl) { 1729 IFF_LOCKGIANT(ifp); 1730 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1731 IFF_UNLOCKGIANT(ifp); 1732 if (error) { 1733 splx(s); 1734 return (error); 1735 } 1736 } 1737 splx(s); 1738 1739 ia->ia_ifa.ifa_metric = ifp->if_metric; 1740 1741 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1742 1743 if (newhost) { 1744 /* 1745 * set the rtrequest function to create llinfo. It also 1746 * adjust outgoing interface of the route for the local 1747 * address when called via in6_ifaddloop() below. 1748 */ 1749 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1750 } 1751 1752 /* 1753 * Special case: 1754 * If a new destination address is specified for a point-to-point 1755 * interface, install a route to the destination as an interface 1756 * direct route. In addition, if the link is expected to have neighbor 1757 * cache entries, specify RTF_LLINFO so that a cache entry for the 1758 * destination address will be created. 1759 * created 1760 * XXX: the logic below rejects assigning multiple addresses on a p2p 1761 * interface that share the same destination. 1762 */ 1763 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1764 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1765 ia->ia_dstaddr.sin6_family == AF_INET6) { 1766 int rtflags = RTF_UP | RTF_HOST; 1767 struct rtentry *rt = NULL, **rtp = NULL; 1768 1769 if (nd6_need_cache(ifp) != 0) { 1770 rtflags |= RTF_LLINFO; 1771 rtp = &rt; 1772 } 1773 1774 error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr, 1775 (struct sockaddr *)&ia->ia_addr, 1776 (struct sockaddr *)&ia->ia_prefixmask, 1777 ia->ia_flags | rtflags, rtp); 1778 if (error != 0) 1779 return (error); 1780 if (rt != NULL) { 1781 struct llinfo_nd6 *ln; 1782 1783 RT_LOCK(rt); 1784 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1785 if (ln != NULL) { 1786 /* 1787 * Set the state to STALE because we don't 1788 * have to perform address resolution on this 1789 * link. 1790 */ 1791 ln->ln_state = ND6_LLINFO_STALE; 1792 } 1793 RT_REMREF(rt); 1794 RT_UNLOCK(rt); 1795 } 1796 ia->ia_flags |= IFA_ROUTE; 1797 } 1798 if (plen < 128) { 1799 /* 1800 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1801 */ 1802 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1803 } 1804 1805 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1806 if (newhost) 1807 in6_ifaddloop(&(ia->ia_ifa)); 1808 1809 return (error); 1810 } 1811 1812 struct in6_multi_mship * 1813 in6_joingroup(ifp, addr, errorp, delay) 1814 struct ifnet *ifp; 1815 struct in6_addr *addr; 1816 int *errorp; 1817 int delay; 1818 { 1819 struct in6_multi_mship *imm; 1820 1821 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1822 if (!imm) { 1823 *errorp = ENOBUFS; 1824 return NULL; 1825 } 1826 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1827 if (!imm->i6mm_maddr) { 1828 /* *errorp is alrady set */ 1829 free(imm, M_IP6MADDR); 1830 return NULL; 1831 } 1832 return imm; 1833 } 1834 1835 int 1836 in6_leavegroup(imm) 1837 struct in6_multi_mship *imm; 1838 { 1839 1840 if (imm->i6mm_maddr) 1841 in6_delmulti(imm->i6mm_maddr); 1842 free(imm, M_IP6MADDR); 1843 return 0; 1844 } 1845 1846 /* 1847 * Find an IPv6 interface link-local address specific to an interface. 1848 */ 1849 struct in6_ifaddr * 1850 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1851 struct ifnet *ifp; 1852 int ignoreflags; 1853 { 1854 struct ifaddr *ifa; 1855 1856 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1857 if (ifa->ifa_addr->sa_family != AF_INET6) 1858 continue; 1859 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1860 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1861 ignoreflags) != 0) 1862 continue; 1863 break; 1864 } 1865 } 1866 1867 return ((struct in6_ifaddr *)ifa); 1868 } 1869 1870 1871 /* 1872 * find the internet address corresponding to a given interface and address. 1873 */ 1874 struct in6_ifaddr * 1875 in6ifa_ifpwithaddr(ifp, addr) 1876 struct ifnet *ifp; 1877 struct in6_addr *addr; 1878 { 1879 struct ifaddr *ifa; 1880 1881 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1882 if (ifa->ifa_addr->sa_family != AF_INET6) 1883 continue; 1884 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1885 break; 1886 } 1887 1888 return ((struct in6_ifaddr *)ifa); 1889 } 1890 1891 /* 1892 * Convert IP6 address to printable (loggable) representation. 1893 */ 1894 static char digits[] = "0123456789abcdef"; 1895 static int ip6round = 0; 1896 char * 1897 ip6_sprintf(addr) 1898 const struct in6_addr *addr; 1899 { 1900 static char ip6buf[8][48]; 1901 int i; 1902 char *cp; 1903 const u_int16_t *a = (const u_int16_t *)addr; 1904 const u_int8_t *d; 1905 int dcolon = 0; 1906 1907 ip6round = (ip6round + 1) & 7; 1908 cp = ip6buf[ip6round]; 1909 1910 for (i = 0; i < 8; i++) { 1911 if (dcolon == 1) { 1912 if (*a == 0) { 1913 if (i == 7) 1914 *cp++ = ':'; 1915 a++; 1916 continue; 1917 } else 1918 dcolon = 2; 1919 } 1920 if (*a == 0) { 1921 if (dcolon == 0 && *(a + 1) == 0) { 1922 if (i == 0) 1923 *cp++ = ':'; 1924 *cp++ = ':'; 1925 dcolon = 1; 1926 } else { 1927 *cp++ = '0'; 1928 *cp++ = ':'; 1929 } 1930 a++; 1931 continue; 1932 } 1933 d = (const u_char *)a; 1934 *cp++ = digits[*d >> 4]; 1935 *cp++ = digits[*d++ & 0xf]; 1936 *cp++ = digits[*d >> 4]; 1937 *cp++ = digits[*d & 0xf]; 1938 *cp++ = ':'; 1939 a++; 1940 } 1941 *--cp = 0; 1942 return (ip6buf[ip6round]); 1943 } 1944 1945 int 1946 in6_localaddr(in6) 1947 struct in6_addr *in6; 1948 { 1949 struct in6_ifaddr *ia; 1950 1951 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1952 return 1; 1953 1954 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1955 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1956 &ia->ia_prefixmask.sin6_addr)) { 1957 return 1; 1958 } 1959 } 1960 1961 return (0); 1962 } 1963 1964 int 1965 in6_is_addr_deprecated(sa6) 1966 struct sockaddr_in6 *sa6; 1967 { 1968 struct in6_ifaddr *ia; 1969 1970 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1971 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1972 &sa6->sin6_addr) && 1973 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1974 return (1); /* true */ 1975 1976 /* XXX: do we still have to go thru the rest of the list? */ 1977 } 1978 1979 return (0); /* false */ 1980 } 1981 1982 /* 1983 * return length of part which dst and src are equal 1984 * hard coding... 1985 */ 1986 int 1987 in6_matchlen(src, dst) 1988 struct in6_addr *src, *dst; 1989 { 1990 int match = 0; 1991 u_char *s = (u_char *)src, *d = (u_char *)dst; 1992 u_char *lim = s + 16, r; 1993 1994 while (s < lim) 1995 if ((r = (*d++ ^ *s++)) != 0) { 1996 while (r < 128) { 1997 match++; 1998 r <<= 1; 1999 } 2000 break; 2001 } else 2002 match += 8; 2003 return match; 2004 } 2005 2006 /* XXX: to be scope conscious */ 2007 int 2008 in6_are_prefix_equal(p1, p2, len) 2009 struct in6_addr *p1, *p2; 2010 int len; 2011 { 2012 int bytelen, bitlen; 2013 2014 /* sanity check */ 2015 if (0 > len || len > 128) { 2016 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 2017 len); 2018 return (0); 2019 } 2020 2021 bytelen = len / 8; 2022 bitlen = len % 8; 2023 2024 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 2025 return (0); 2026 if (bitlen != 0 && 2027 p1->s6_addr[bytelen] >> (8 - bitlen) != 2028 p2->s6_addr[bytelen] >> (8 - bitlen)) 2029 return (0); 2030 2031 return (1); 2032 } 2033 2034 void 2035 in6_prefixlen2mask(maskp, len) 2036 struct in6_addr *maskp; 2037 int len; 2038 { 2039 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 2040 int bytelen, bitlen, i; 2041 2042 /* sanity check */ 2043 if (0 > len || len > 128) { 2044 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 2045 len); 2046 return; 2047 } 2048 2049 bzero(maskp, sizeof(*maskp)); 2050 bytelen = len / 8; 2051 bitlen = len % 8; 2052 for (i = 0; i < bytelen; i++) 2053 maskp->s6_addr[i] = 0xff; 2054 if (bitlen) 2055 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2056 } 2057 2058 /* 2059 * return the best address out of the same scope. if no address was 2060 * found, return the first valid address from designated IF. 2061 */ 2062 struct in6_ifaddr * 2063 in6_ifawithifp(ifp, dst) 2064 struct ifnet *ifp; 2065 struct in6_addr *dst; 2066 { 2067 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2068 struct ifaddr *ifa; 2069 struct in6_ifaddr *besta = 0; 2070 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2071 2072 dep[0] = dep[1] = NULL; 2073 2074 /* 2075 * We first look for addresses in the same scope. 2076 * If there is one, return it. 2077 * If two or more, return one which matches the dst longest. 2078 * If none, return one of global addresses assigned other ifs. 2079 */ 2080 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2081 if (ifa->ifa_addr->sa_family != AF_INET6) 2082 continue; 2083 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2084 continue; /* XXX: is there any case to allow anycast? */ 2085 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2086 continue; /* don't use this interface */ 2087 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2088 continue; 2089 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2090 if (ip6_use_deprecated) 2091 dep[0] = (struct in6_ifaddr *)ifa; 2092 continue; 2093 } 2094 2095 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2096 /* 2097 * call in6_matchlen() as few as possible 2098 */ 2099 if (besta) { 2100 if (blen == -1) 2101 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2102 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2103 if (tlen > blen) { 2104 blen = tlen; 2105 besta = (struct in6_ifaddr *)ifa; 2106 } 2107 } else 2108 besta = (struct in6_ifaddr *)ifa; 2109 } 2110 } 2111 if (besta) 2112 return (besta); 2113 2114 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2115 if (ifa->ifa_addr->sa_family != AF_INET6) 2116 continue; 2117 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2118 continue; /* XXX: is there any case to allow anycast? */ 2119 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2120 continue; /* don't use this interface */ 2121 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2122 continue; 2123 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2124 if (ip6_use_deprecated) 2125 dep[1] = (struct in6_ifaddr *)ifa; 2126 continue; 2127 } 2128 2129 return (struct in6_ifaddr *)ifa; 2130 } 2131 2132 /* use the last-resort values, that are, deprecated addresses */ 2133 if (dep[0]) 2134 return dep[0]; 2135 if (dep[1]) 2136 return dep[1]; 2137 2138 return NULL; 2139 } 2140 2141 /* 2142 * perform DAD when interface becomes IFF_UP. 2143 */ 2144 void 2145 in6_if_up(ifp) 2146 struct ifnet *ifp; 2147 { 2148 struct ifaddr *ifa; 2149 struct in6_ifaddr *ia; 2150 2151 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2152 if (ifa->ifa_addr->sa_family != AF_INET6) 2153 continue; 2154 ia = (struct in6_ifaddr *)ifa; 2155 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2156 /* 2157 * The TENTATIVE flag was likely set by hand 2158 * beforehand, implicitly indicating the need for DAD. 2159 * We may be able to skip the random delay in this 2160 * case, but we impose delays just in case. 2161 */ 2162 nd6_dad_start(ifa, 2163 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2164 } 2165 } 2166 2167 /* 2168 * special cases, like 6to4, are handled in in6_ifattach 2169 */ 2170 in6_ifattach(ifp, NULL); 2171 } 2172 2173 int 2174 in6if_do_dad(ifp) 2175 struct ifnet *ifp; 2176 { 2177 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2178 return (0); 2179 2180 switch (ifp->if_type) { 2181 #ifdef IFT_DUMMY 2182 case IFT_DUMMY: 2183 #endif 2184 case IFT_FAITH: 2185 /* 2186 * These interfaces do not have the IFF_LOOPBACK flag, 2187 * but loop packets back. We do not have to do DAD on such 2188 * interfaces. We should even omit it, because loop-backed 2189 * NS would confuse the DAD procedure. 2190 */ 2191 return (0); 2192 default: 2193 /* 2194 * Our DAD routine requires the interface up and running. 2195 * However, some interfaces can be up before the RUNNING 2196 * status. Additionaly, users may try to assign addresses 2197 * before the interface becomes up (or running). 2198 * We simply skip DAD in such a case as a work around. 2199 * XXX: we should rather mark "tentative" on such addresses, 2200 * and do DAD after the interface becomes ready. 2201 */ 2202 if (!((ifp->if_flags & IFF_UP) && 2203 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2204 return (0); 2205 2206 return (1); 2207 } 2208 } 2209 2210 /* 2211 * Calculate max IPv6 MTU through all the interfaces and store it 2212 * to in6_maxmtu. 2213 */ 2214 void 2215 in6_setmaxmtu() 2216 { 2217 unsigned long maxmtu = 0; 2218 struct ifnet *ifp; 2219 2220 IFNET_RLOCK(); 2221 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 2222 /* this function can be called during ifnet initialization */ 2223 if (!ifp->if_afdata[AF_INET6]) 2224 continue; 2225 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2226 IN6_LINKMTU(ifp) > maxmtu) 2227 maxmtu = IN6_LINKMTU(ifp); 2228 } 2229 IFNET_RUNLOCK(); 2230 if (maxmtu) /* update only when maxmtu is positive */ 2231 in6_maxmtu = maxmtu; 2232 } 2233 2234 /* 2235 * Provide the length of interface identifiers to be used for the link attached 2236 * to the given interface. The length should be defined in "IPv6 over 2237 * xxx-link" document. Note that address architecture might also define 2238 * the length for a particular set of address prefixes, regardless of the 2239 * link type. As clarified in rfc2462bis, those two definitions should be 2240 * consistent, and those really are as of August 2004. 2241 */ 2242 int 2243 in6_if2idlen(ifp) 2244 struct ifnet *ifp; 2245 { 2246 switch (ifp->if_type) { 2247 case IFT_ETHER: /* RFC2464 */ 2248 #ifdef IFT_PROPVIRTUAL 2249 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2250 #endif 2251 #ifdef IFT_L2VLAN 2252 case IFT_L2VLAN: /* ditto */ 2253 #endif 2254 #ifdef IFT_IEEE80211 2255 case IFT_IEEE80211: /* ditto */ 2256 #endif 2257 #ifdef IFT_MIP 2258 case IFT_MIP: /* ditto */ 2259 #endif 2260 return (64); 2261 case IFT_FDDI: /* RFC2467 */ 2262 return (64); 2263 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2264 return (64); 2265 case IFT_PPP: /* RFC2472 */ 2266 return (64); 2267 case IFT_ARCNET: /* RFC2497 */ 2268 return (64); 2269 case IFT_FRELAY: /* RFC2590 */ 2270 return (64); 2271 case IFT_IEEE1394: /* RFC3146 */ 2272 return (64); 2273 case IFT_GIF: 2274 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2275 case IFT_LOOP: 2276 return (64); /* XXX: is this really correct? */ 2277 default: 2278 /* 2279 * Unknown link type: 2280 * It might be controversial to use the today's common constant 2281 * of 64 for these cases unconditionally. For full compliance, 2282 * we should return an error in this case. On the other hand, 2283 * if we simply miss the standard for the link type or a new 2284 * standard is defined for a new link type, the IFID length 2285 * is very likely to be the common constant. As a compromise, 2286 * we always use the constant, but make an explicit notice 2287 * indicating the "unknown" case. 2288 */ 2289 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2290 return (64); 2291 } 2292 } 2293 2294 void * 2295 in6_domifattach(ifp) 2296 struct ifnet *ifp; 2297 { 2298 struct in6_ifextra *ext; 2299 2300 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2301 bzero(ext, sizeof(*ext)); 2302 2303 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2304 M_IFADDR, M_WAITOK); 2305 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2306 2307 ext->icmp6_ifstat = 2308 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2309 M_IFADDR, M_WAITOK); 2310 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2311 2312 ext->nd_ifinfo = nd6_ifattach(ifp); 2313 ext->scope6_id = scope6_ifattach(ifp); 2314 return ext; 2315 } 2316 2317 void 2318 in6_domifdetach(ifp, aux) 2319 struct ifnet *ifp; 2320 void *aux; 2321 { 2322 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2323 2324 scope6_ifdetach(ext->scope6_id); 2325 nd6_ifdetach(ext->nd_ifinfo); 2326 free(ext->in6_ifstat, M_IFADDR); 2327 free(ext->icmp6_ifstat, M_IFADDR); 2328 free(ext, M_IFADDR); 2329 } 2330 2331 /* 2332 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2333 * v4 mapped addr or v4 compat addr 2334 */ 2335 void 2336 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2337 { 2338 bzero(sin, sizeof(*sin)); 2339 sin->sin_len = sizeof(struct sockaddr_in); 2340 sin->sin_family = AF_INET; 2341 sin->sin_port = sin6->sin6_port; 2342 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2343 } 2344 2345 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2346 void 2347 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2348 { 2349 bzero(sin6, sizeof(*sin6)); 2350 sin6->sin6_len = sizeof(struct sockaddr_in6); 2351 sin6->sin6_family = AF_INET6; 2352 sin6->sin6_port = sin->sin_port; 2353 sin6->sin6_addr.s6_addr32[0] = 0; 2354 sin6->sin6_addr.s6_addr32[1] = 0; 2355 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2356 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2357 } 2358 2359 /* Convert sockaddr_in6 into sockaddr_in. */ 2360 void 2361 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2362 { 2363 struct sockaddr_in *sin_p; 2364 struct sockaddr_in6 sin6; 2365 2366 /* 2367 * Save original sockaddr_in6 addr and convert it 2368 * to sockaddr_in. 2369 */ 2370 sin6 = *(struct sockaddr_in6 *)nam; 2371 sin_p = (struct sockaddr_in *)nam; 2372 in6_sin6_2_sin(sin_p, &sin6); 2373 } 2374 2375 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2376 void 2377 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2378 { 2379 struct sockaddr_in *sin_p; 2380 struct sockaddr_in6 *sin6_p; 2381 2382 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2383 M_WAITOK); 2384 sin_p = (struct sockaddr_in *)*nam; 2385 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2386 FREE(*nam, M_SONAME); 2387 *nam = (struct sockaddr *)sin6_p; 2388 } 2389