xref: /freebsd/sys/netinet6/in6.c (revision acd3428b7d3e94cef0e1881c868cb4b131d4ff41)
1 /*	$FreeBSD$	*/
2 /*	$KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*-
34  * Copyright (c) 1982, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 4. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)in.c	8.2 (Berkeley) 11/15/93
62  */
63 
64 #include "opt_inet.h"
65 #include "opt_inet6.h"
66 
67 #include <sys/param.h>
68 #include <sys/errno.h>
69 #include <sys/malloc.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/sockio.h>
73 #include <sys/systm.h>
74 #include <sys/priv.h>
75 #include <sys/proc.h>
76 #include <sys/time.h>
77 #include <sys/kernel.h>
78 #include <sys/syslog.h>
79 
80 #include <net/if.h>
81 #include <net/if_types.h>
82 #include <net/route.h>
83 #include <net/if_dl.h>
84 
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/ip.h>
90 #include <netinet/in_pcb.h>
91 
92 #include <netinet/ip6.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/nd6.h>
95 #include <netinet6/mld6_var.h>
96 #include <netinet6/ip6_mroute.h>
97 #include <netinet6/in6_ifattach.h>
98 #include <netinet6/scope6_var.h>
99 #include <netinet6/in6_pcb.h>
100 
101 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address");
102 
103 /*
104  * Definitions of some costant IP6 addresses.
105  */
106 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
107 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
108 const struct in6_addr in6addr_nodelocal_allnodes =
109 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
110 const struct in6_addr in6addr_linklocal_allnodes =
111 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
112 const struct in6_addr in6addr_linklocal_allrouters =
113 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
114 
115 const struct in6_addr in6mask0 = IN6MASK0;
116 const struct in6_addr in6mask32 = IN6MASK32;
117 const struct in6_addr in6mask64 = IN6MASK64;
118 const struct in6_addr in6mask96 = IN6MASK96;
119 const struct in6_addr in6mask128 = IN6MASK128;
120 
121 const struct sockaddr_in6 sa6_any =
122 	{ sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 };
123 
124 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
125 	struct ifnet *, struct thread *));
126 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
127 	struct sockaddr_in6 *, int));
128 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
129 
130 struct in6_multihead in6_multihead;	/* XXX BSS initialization */
131 int	(*faithprefix_p)(struct in6_addr *);
132 
133 /*
134  * Subroutine for in6_ifaddloop() and in6_ifremloop().
135  * This routine does actual work.
136  */
137 static void
138 in6_ifloop_request(int cmd, struct ifaddr *ifa)
139 {
140 	struct sockaddr_in6 all1_sa;
141 	struct rtentry *nrt = NULL;
142 	int e;
143 
144 	bzero(&all1_sa, sizeof(all1_sa));
145 	all1_sa.sin6_family = AF_INET6;
146 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
147 	all1_sa.sin6_addr = in6mask128;
148 
149 	/*
150 	 * We specify the address itself as the gateway, and set the
151 	 * RTF_LLINFO flag, so that the corresponding host route would have
152 	 * the flag, and thus applications that assume traditional behavior
153 	 * would be happy.  Note that we assume the caller of the function
154 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
155 	 * which changes the outgoing interface to the loopback interface.
156 	 */
157 	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
158 	    (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
159 	if (e != 0) {
160 		/* XXX need more descriptive message */
161 		log(LOG_ERR, "in6_ifloop_request: "
162 		    "%s operation failed for %s (errno=%d)\n",
163 		    cmd == RTM_ADD ? "ADD" : "DELETE",
164 		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
165 		    e);
166 	}
167 
168 	/*
169 	 * Report the addition/removal of the address to the routing socket.
170 	 * XXX: since we called rtinit for a p2p interface with a destination,
171 	 *      we end up reporting twice in such a case.  Should we rather
172 	 *      omit the second report?
173 	 */
174 	if (nrt) {
175 		RT_LOCK(nrt);
176 		/*
177 		 * Make sure rt_ifa be equal to IFA, the second argument of
178 		 * the function.  We need this because when we refer to
179 		 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa
180 		 * points to the address instead of the loopback address.
181 		 */
182 		if (cmd == RTM_ADD && ifa != nrt->rt_ifa) {
183 			IFAFREE(nrt->rt_ifa);
184 			IFAREF(ifa);
185 			nrt->rt_ifa = ifa;
186 		}
187 
188 		rt_newaddrmsg(cmd, ifa, e, nrt);
189 		if (cmd == RTM_DELETE) {
190 			rtfree(nrt);
191 		} else {
192 			/* the cmd must be RTM_ADD here */
193 			RT_REMREF(nrt);
194 			RT_UNLOCK(nrt);
195 		}
196 	}
197 }
198 
199 /*
200  * Add ownaddr as loopback rtentry.  We previously add the route only if
201  * necessary (ex. on a p2p link).  However, since we now manage addresses
202  * separately from prefixes, we should always add the route.  We can't
203  * rely on the cloning mechanism from the corresponding interface route
204  * any more.
205  */
206 void
207 in6_ifaddloop(struct ifaddr *ifa)
208 {
209 	struct rtentry *rt;
210 	int need_loop;
211 
212 	/* If there is no loopback entry, allocate one. */
213 	rt = rtalloc1(ifa->ifa_addr, 0, 0);
214 	need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
215 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0);
216 	if (rt)
217 		rtfree(rt);
218 	if (need_loop)
219 		in6_ifloop_request(RTM_ADD, ifa);
220 }
221 
222 /*
223  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
224  * if it exists.
225  */
226 void
227 in6_ifremloop(struct ifaddr *ifa)
228 {
229 	struct in6_ifaddr *ia;
230 	struct rtentry *rt;
231 	int ia_count = 0;
232 
233 	/*
234 	 * Some of BSD variants do not remove cloned routes
235 	 * from an interface direct route, when removing the direct route
236 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
237 	 * cloned routes, they could fail to remove the cloned routes when
238 	 * we handle multple addresses that share a common prefix.
239 	 * So, we should remove the route corresponding to the deleted address.
240 	 */
241 
242 	/*
243 	 * Delete the entry only if exact one ifa exists.  More than one ifa
244 	 * can exist if we assign a same single address to multiple
245 	 * (probably p2p) interfaces.
246 	 * XXX: we should avoid such a configuration in IPv6...
247 	 */
248 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
249 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
250 			ia_count++;
251 			if (ia_count > 1)
252 				break;
253 		}
254 	}
255 
256 	if (ia_count == 1) {
257 		/*
258 		 * Before deleting, check if a corresponding loopbacked host
259 		 * route surely exists.  With this check, we can avoid to
260 		 * delete an interface direct route whose destination is same
261 		 * as the address being removed.  This can happen when removing
262 		 * a subnet-router anycast address on an interface attahced
263 		 * to a shared medium.
264 		 */
265 		rt = rtalloc1(ifa->ifa_addr, 0, 0);
266 		if (rt != NULL) {
267 			if ((rt->rt_flags & RTF_HOST) != 0 &&
268 			    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
269 				rtfree(rt);
270 				in6_ifloop_request(RTM_DELETE, ifa);
271 			} else
272 				RT_UNLOCK(rt);
273 		}
274 	}
275 }
276 
277 int
278 in6_mask2len(mask, lim0)
279 	struct in6_addr *mask;
280 	u_char *lim0;
281 {
282 	int x = 0, y;
283 	u_char *lim = lim0, *p;
284 
285 	/* ignore the scope_id part */
286 	if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
287 		lim = (u_char *)mask + sizeof(*mask);
288 	for (p = (u_char *)mask; p < lim; x++, p++) {
289 		if (*p != 0xff)
290 			break;
291 	}
292 	y = 0;
293 	if (p < lim) {
294 		for (y = 0; y < 8; y++) {
295 			if ((*p & (0x80 >> y)) == 0)
296 				break;
297 		}
298 	}
299 
300 	/*
301 	 * when the limit pointer is given, do a stricter check on the
302 	 * remaining bits.
303 	 */
304 	if (p < lim) {
305 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
306 			return (-1);
307 		for (p = p + 1; p < lim; p++)
308 			if (*p != 0)
309 				return (-1);
310 	}
311 
312 	return x * 8 + y;
313 }
314 
315 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
316 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
317 
318 int
319 in6_control(so, cmd, data, ifp, td)
320 	struct	socket *so;
321 	u_long cmd;
322 	caddr_t	data;
323 	struct ifnet *ifp;
324 	struct thread *td;
325 {
326 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
327 	struct	in6_ifaddr *ia = NULL;
328 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
329 	struct sockaddr_in6 *sa6;
330 	int error;
331 
332 	switch (cmd) {
333 	case SIOCGETSGCNT_IN6:
334 	case SIOCGETMIFCNT_IN6:
335 		return (mrt6_ioctl(cmd, data));
336 	}
337 
338 	switch(cmd) {
339 	case SIOCAADDRCTL_POLICY:
340 	case SIOCDADDRCTL_POLICY:
341 		if (td != NULL) {
342 			error = priv_check(td, PRIV_NETINET_ADDRCTRL6);
343 			if (error)
344 				return (error);
345 		}
346 		return (in6_src_ioctl(cmd, data));
347 	}
348 
349 	if (ifp == NULL)
350 		return (EOPNOTSUPP);
351 
352 	switch (cmd) {
353 	case SIOCSNDFLUSH_IN6:
354 	case SIOCSPFXFLUSH_IN6:
355 	case SIOCSRTRFLUSH_IN6:
356 	case SIOCSDEFIFACE_IN6:
357 	case SIOCSIFINFO_FLAGS:
358 		if (td != NULL) {
359 			error = priv_check(td, PRIV_NETINET_ND6);
360 			if (error)
361 				return (error);
362 		}
363 		/* FALLTHROUGH */
364 	case OSIOCGIFINFO_IN6:
365 	case SIOCGIFINFO_IN6:
366 	case SIOCSIFINFO_IN6:
367 	case SIOCGDRLST_IN6:
368 	case SIOCGPRLST_IN6:
369 	case SIOCGNBRINFO_IN6:
370 	case SIOCGDEFIFACE_IN6:
371 		return (nd6_ioctl(cmd, data, ifp));
372 	}
373 
374 	switch (cmd) {
375 	case SIOCSIFPREFIX_IN6:
376 	case SIOCDIFPREFIX_IN6:
377 	case SIOCAIFPREFIX_IN6:
378 	case SIOCCIFPREFIX_IN6:
379 	case SIOCSGIFPREFIX_IN6:
380 	case SIOCGIFPREFIX_IN6:
381 		log(LOG_NOTICE,
382 		    "prefix ioctls are now invalidated. "
383 		    "please use ifconfig.\n");
384 		return (EOPNOTSUPP);
385 	}
386 
387 	switch (cmd) {
388 	case SIOCSSCOPE6:
389 		if (td != NULL) {
390 			error = priv_check(td, PRIV_NETINET_SCOPE6);
391 			if (error)
392 				return (error);
393 		}
394 		return (scope6_set(ifp,
395 		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
396 	case SIOCGSCOPE6:
397 		return (scope6_get(ifp,
398 		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
399 	case SIOCGSCOPE6DEF:
400 		return (scope6_get_default((struct scope6_id *)
401 		    ifr->ifr_ifru.ifru_scope_id));
402 	}
403 
404 	switch (cmd) {
405 	case SIOCALIFADDR:
406 	case SIOCDLIFADDR:
407 		/*
408 		 * XXXRW: Is this checked at another layer?  What priv to use
409 		 * here?
410 		 */
411 		if (td != NULL) {
412 			error = suser(td);
413 			if (error)
414 				return (error);
415 		}
416 		/* FALLTHROUGH */
417 	case SIOCGLIFADDR:
418 		return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
419 	}
420 
421 	/*
422 	 * Find address for this interface, if it exists.
423 	 *
424 	 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
425 	 * only, and used the first interface address as the target of other
426 	 * operations (without checking ifra_addr).  This was because netinet
427 	 * code/API assumed at most 1 interface address per interface.
428 	 * Since IPv6 allows a node to assign multiple addresses
429 	 * on a single interface, we almost always look and check the
430 	 * presence of ifra_addr, and reject invalid ones here.
431 	 * It also decreases duplicated code among SIOC*_IN6 operations.
432 	 */
433 	switch (cmd) {
434 	case SIOCAIFADDR_IN6:
435 	case SIOCSIFPHYADDR_IN6:
436 		sa6 = &ifra->ifra_addr;
437 		break;
438 	case SIOCSIFADDR_IN6:
439 	case SIOCGIFADDR_IN6:
440 	case SIOCSIFDSTADDR_IN6:
441 	case SIOCSIFNETMASK_IN6:
442 	case SIOCGIFDSTADDR_IN6:
443 	case SIOCGIFNETMASK_IN6:
444 	case SIOCDIFADDR_IN6:
445 	case SIOCGIFPSRCADDR_IN6:
446 	case SIOCGIFPDSTADDR_IN6:
447 	case SIOCGIFAFLAG_IN6:
448 	case SIOCSNDFLUSH_IN6:
449 	case SIOCSPFXFLUSH_IN6:
450 	case SIOCSRTRFLUSH_IN6:
451 	case SIOCGIFALIFETIME_IN6:
452 	case SIOCSIFALIFETIME_IN6:
453 	case SIOCGIFSTAT_IN6:
454 	case SIOCGIFSTAT_ICMP6:
455 		sa6 = &ifr->ifr_addr;
456 		break;
457 	default:
458 		sa6 = NULL;
459 		break;
460 	}
461 	if (sa6 && sa6->sin6_family == AF_INET6) {
462 		int error = 0;
463 
464 		if (sa6->sin6_scope_id != 0)
465 			error = sa6_embedscope(sa6, 0);
466 		else
467 			error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
468 		if (error != 0)
469 			return (error);
470 		ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
471 	} else
472 		ia = NULL;
473 
474 	switch (cmd) {
475 	case SIOCSIFADDR_IN6:
476 	case SIOCSIFDSTADDR_IN6:
477 	case SIOCSIFNETMASK_IN6:
478 		/*
479 		 * Since IPv6 allows a node to assign multiple addresses
480 		 * on a single interface, SIOCSIFxxx ioctls are deprecated.
481 		 */
482 		/* we decided to obsolete this command (20000704) */
483 		return (EINVAL);
484 
485 	case SIOCDIFADDR_IN6:
486 		/*
487 		 * for IPv4, we look for existing in_ifaddr here to allow
488 		 * "ifconfig if0 delete" to remove the first IPv4 address on
489 		 * the interface.  For IPv6, as the spec allows multiple
490 		 * interface address from the day one, we consider "remove the
491 		 * first one" semantics to be not preferable.
492 		 */
493 		if (ia == NULL)
494 			return (EADDRNOTAVAIL);
495 		/* FALLTHROUGH */
496 	case SIOCAIFADDR_IN6:
497 		/*
498 		 * We always require users to specify a valid IPv6 address for
499 		 * the corresponding operation.
500 		 */
501 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
502 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
503 			return (EAFNOSUPPORT);
504 
505 		/*
506 		 * XXXRW: Is this checked at another layer?  What priv to use
507 		 * here?
508 		 */
509 		if (td != NULL) {
510 			error = suser(td);
511 			if (error)
512 				return (error);
513 		}
514 
515 		break;
516 
517 	case SIOCGIFADDR_IN6:
518 		/* This interface is basically deprecated. use SIOCGIFCONF. */
519 		/* FALLTHROUGH */
520 	case SIOCGIFAFLAG_IN6:
521 	case SIOCGIFNETMASK_IN6:
522 	case SIOCGIFDSTADDR_IN6:
523 	case SIOCGIFALIFETIME_IN6:
524 		/* must think again about its semantics */
525 		if (ia == NULL)
526 			return (EADDRNOTAVAIL);
527 		break;
528 	case SIOCSIFALIFETIME_IN6:
529 	    {
530 		struct in6_addrlifetime *lt;
531 
532 		if (td != NULL) {
533 			error = priv_check(td, PRIV_NETINET_ALIFETIME6);
534 			if (error)
535 				return (error);
536 		}
537 		if (ia == NULL)
538 			return (EADDRNOTAVAIL);
539 		/* sanity for overflow - beware unsigned */
540 		lt = &ifr->ifr_ifru.ifru_lifetime;
541 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME &&
542 		    lt->ia6t_vltime + time_second < time_second) {
543 			return EINVAL;
544 		}
545 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME &&
546 		    lt->ia6t_pltime + time_second < time_second) {
547 			return EINVAL;
548 		}
549 		break;
550 	    }
551 	}
552 
553 	switch (cmd) {
554 
555 	case SIOCGIFADDR_IN6:
556 		ifr->ifr_addr = ia->ia_addr;
557 		if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
558 			return (error);
559 		break;
560 
561 	case SIOCGIFDSTADDR_IN6:
562 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
563 			return (EINVAL);
564 		/*
565 		 * XXX: should we check if ifa_dstaddr is NULL and return
566 		 * an error?
567 		 */
568 		ifr->ifr_dstaddr = ia->ia_dstaddr;
569 		if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
570 			return (error);
571 		break;
572 
573 	case SIOCGIFNETMASK_IN6:
574 		ifr->ifr_addr = ia->ia_prefixmask;
575 		break;
576 
577 	case SIOCGIFAFLAG_IN6:
578 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
579 		break;
580 
581 	case SIOCGIFSTAT_IN6:
582 		if (ifp == NULL)
583 			return EINVAL;
584 		bzero(&ifr->ifr_ifru.ifru_stat,
585 		    sizeof(ifr->ifr_ifru.ifru_stat));
586 		ifr->ifr_ifru.ifru_stat =
587 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
588 		break;
589 
590 	case SIOCGIFSTAT_ICMP6:
591 		if (ifp == NULL)
592 			return EINVAL;
593 		bzero(&ifr->ifr_ifru.ifru_icmp6stat,
594 		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
595 		ifr->ifr_ifru.ifru_icmp6stat =
596 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
597 		break;
598 
599 	case SIOCGIFALIFETIME_IN6:
600 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
601 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
602 			time_t maxexpire;
603 			struct in6_addrlifetime *retlt =
604 			    &ifr->ifr_ifru.ifru_lifetime;
605 
606 			/*
607 			 * XXX: adjust expiration time assuming time_t is
608 			 * signed.
609 			 */
610 			maxexpire = (-1) &
611 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
612 			if (ia->ia6_lifetime.ia6t_vltime <
613 			    maxexpire - ia->ia6_updatetime) {
614 				retlt->ia6t_expire = ia->ia6_updatetime +
615 				    ia->ia6_lifetime.ia6t_vltime;
616 			} else
617 				retlt->ia6t_expire = maxexpire;
618 		}
619 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
620 			time_t maxexpire;
621 			struct in6_addrlifetime *retlt =
622 			    &ifr->ifr_ifru.ifru_lifetime;
623 
624 			/*
625 			 * XXX: adjust expiration time assuming time_t is
626 			 * signed.
627 			 */
628 			maxexpire = (-1) &
629 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
630 			if (ia->ia6_lifetime.ia6t_pltime <
631 			    maxexpire - ia->ia6_updatetime) {
632 				retlt->ia6t_preferred = ia->ia6_updatetime +
633 				    ia->ia6_lifetime.ia6t_pltime;
634 			} else
635 				retlt->ia6t_preferred = maxexpire;
636 		}
637 		break;
638 
639 	case SIOCSIFALIFETIME_IN6:
640 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
641 		/* for sanity */
642 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
643 			ia->ia6_lifetime.ia6t_expire =
644 				time_second + ia->ia6_lifetime.ia6t_vltime;
645 		} else
646 			ia->ia6_lifetime.ia6t_expire = 0;
647 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
648 			ia->ia6_lifetime.ia6t_preferred =
649 				time_second + ia->ia6_lifetime.ia6t_pltime;
650 		} else
651 			ia->ia6_lifetime.ia6t_preferred = 0;
652 		break;
653 
654 	case SIOCAIFADDR_IN6:
655 	{
656 		int i, error = 0;
657 		struct nd_prefixctl pr0;
658 		struct nd_prefix *pr;
659 
660 		/*
661 		 * first, make or update the interface address structure,
662 		 * and link it to the list.
663 		 */
664 		if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
665 			return (error);
666 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
667 		    == NULL) {
668 		    	/*
669 			 * this can happen when the user specify the 0 valid
670 			 * lifetime.
671 			 */
672 			break;
673 		}
674 
675 		/*
676 		 * then, make the prefix on-link on the interface.
677 		 * XXX: we'd rather create the prefix before the address, but
678 		 * we need at least one address to install the corresponding
679 		 * interface route, so we configure the address first.
680 		 */
681 
682 		/*
683 		 * convert mask to prefix length (prefixmask has already
684 		 * been validated in in6_update_ifa().
685 		 */
686 		bzero(&pr0, sizeof(pr0));
687 		pr0.ndpr_ifp = ifp;
688 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
689 		    NULL);
690 		if (pr0.ndpr_plen == 128) {
691 			break;	/* we don't need to install a host route. */
692 		}
693 		pr0.ndpr_prefix = ifra->ifra_addr;
694 		/* apply the mask for safety. */
695 		for (i = 0; i < 4; i++) {
696 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
697 			    ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
698 		}
699 		/*
700 		 * XXX: since we don't have an API to set prefix (not address)
701 		 * lifetimes, we just use the same lifetimes as addresses.
702 		 * The (temporarily) installed lifetimes can be overridden by
703 		 * later advertised RAs (when accept_rtadv is non 0), which is
704 		 * an intended behavior.
705 		 */
706 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
707 		pr0.ndpr_raf_auto =
708 		    ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
709 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
710 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
711 
712 		/* add the prefix if not yet. */
713 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
714 			/*
715 			 * nd6_prelist_add will install the corresponding
716 			 * interface route.
717 			 */
718 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
719 				return (error);
720 			if (pr == NULL) {
721 				log(LOG_ERR, "nd6_prelist_add succeeded but "
722 				    "no prefix\n");
723 				return (EINVAL); /* XXX panic here? */
724 			}
725 		}
726 
727 		/* relate the address to the prefix */
728 		if (ia->ia6_ndpr == NULL) {
729 			ia->ia6_ndpr = pr;
730 			pr->ndpr_refcnt++;
731 
732 			/*
733 			 * If this is the first autoconf address from the
734 			 * prefix, create a temporary address as well
735 			 * (when required).
736 			 */
737 			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
738 			    ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
739 				int e;
740 				if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
741 					log(LOG_NOTICE, "in6_control: failed "
742 					    "to create a temporary address, "
743 					    "errno=%d\n", e);
744 				}
745 			}
746 		}
747 
748 		/*
749 		 * this might affect the status of autoconfigured addresses,
750 		 * that is, this address might make other addresses detached.
751 		 */
752 		pfxlist_onlink_check();
753 		if (error == 0 && ia)
754 			EVENTHANDLER_INVOKE(ifaddr_event, ifp);
755 		break;
756 	}
757 
758 	case SIOCDIFADDR_IN6:
759 	{
760 		struct nd_prefix *pr;
761 
762 		/*
763 		 * If the address being deleted is the only one that owns
764 		 * the corresponding prefix, expire the prefix as well.
765 		 * XXX: theoretically, we don't have to worry about such
766 		 * relationship, since we separate the address management
767 		 * and the prefix management.  We do this, however, to provide
768 		 * as much backward compatibility as possible in terms of
769 		 * the ioctl operation.
770 		 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
771 		 */
772 		pr = ia->ia6_ndpr;
773 		in6_purgeaddr(&ia->ia_ifa);
774 		if (pr && pr->ndpr_refcnt == 0)
775 			prelist_remove(pr);
776 		EVENTHANDLER_INVOKE(ifaddr_event, ifp);
777 		break;
778 	}
779 
780 	default:
781 		if (ifp == NULL || ifp->if_ioctl == 0)
782 			return (EOPNOTSUPP);
783 		return ((*ifp->if_ioctl)(ifp, cmd, data));
784 	}
785 
786 	return (0);
787 }
788 
789 /*
790  * Update parameters of an IPv6 interface address.
791  * If necessary, a new entry is created and linked into address chains.
792  * This function is separated from in6_control().
793  * XXX: should this be performed under splnet()?
794  */
795 int
796 in6_update_ifa(ifp, ifra, ia, flags)
797 	struct ifnet *ifp;
798 	struct in6_aliasreq *ifra;
799 	struct in6_ifaddr *ia;
800 	int flags;
801 {
802 	int error = 0, hostIsNew = 0, plen = -1;
803 	struct in6_ifaddr *oia;
804 	struct sockaddr_in6 dst6;
805 	struct in6_addrlifetime *lt;
806 	struct in6_multi_mship *imm;
807 	struct in6_multi *in6m_sol;
808 	struct rtentry *rt;
809 	int delay;
810 
811 	/* Validate parameters */
812 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
813 		return (EINVAL);
814 
815 	/*
816 	 * The destination address for a p2p link must have a family
817 	 * of AF_UNSPEC or AF_INET6.
818 	 */
819 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
820 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
821 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
822 		return (EAFNOSUPPORT);
823 	/*
824 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
825 	 * does not carry fields other than sin6_len.
826 	 */
827 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
828 		return (EINVAL);
829 	/*
830 	 * Because the IPv6 address architecture is classless, we require
831 	 * users to specify a (non 0) prefix length (mask) for a new address.
832 	 * We also require the prefix (when specified) mask is valid, and thus
833 	 * reject a non-consecutive mask.
834 	 */
835 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
836 		return (EINVAL);
837 	if (ifra->ifra_prefixmask.sin6_len != 0) {
838 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
839 		    (u_char *)&ifra->ifra_prefixmask +
840 		    ifra->ifra_prefixmask.sin6_len);
841 		if (plen <= 0)
842 			return (EINVAL);
843 	} else {
844 		/*
845 		 * In this case, ia must not be NULL.  We just use its prefix
846 		 * length.
847 		 */
848 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
849 	}
850 	/*
851 	 * If the destination address on a p2p interface is specified,
852 	 * and the address is a scoped one, validate/set the scope
853 	 * zone identifier.
854 	 */
855 	dst6 = ifra->ifra_dstaddr;
856 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
857 	    (dst6.sin6_family == AF_INET6)) {
858 		struct in6_addr in6_tmp;
859 		u_int32_t zoneid;
860 
861 		in6_tmp = dst6.sin6_addr;
862 		if (in6_setscope(&in6_tmp, ifp, &zoneid))
863 			return (EINVAL); /* XXX: should be impossible */
864 
865 		if (dst6.sin6_scope_id != 0) {
866 			if (dst6.sin6_scope_id != zoneid)
867 				return (EINVAL);
868 		} else		/* user omit to specify the ID. */
869 			dst6.sin6_scope_id = zoneid;
870 
871 		/* convert into the internal form */
872 		if (sa6_embedscope(&dst6, 0))
873 			return (EINVAL); /* XXX: should be impossible */
874 	}
875 	/*
876 	 * The destination address can be specified only for a p2p or a
877 	 * loopback interface.  If specified, the corresponding prefix length
878 	 * must be 128.
879 	 */
880 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
881 		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
882 			/* XXX: noisy message */
883 			nd6log((LOG_INFO, "in6_update_ifa: a destination can "
884 			    "be specified for a p2p or a loopback IF only\n"));
885 			return (EINVAL);
886 		}
887 		if (plen != 128) {
888 			nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
889 			    "be 128 when dstaddr is specified\n"));
890 			return (EINVAL);
891 		}
892 	}
893 	/* lifetime consistency check */
894 	lt = &ifra->ifra_lifetime;
895 	if (lt->ia6t_pltime > lt->ia6t_vltime)
896 		return (EINVAL);
897 	if (lt->ia6t_vltime == 0) {
898 		/*
899 		 * the following log might be noisy, but this is a typical
900 		 * configuration mistake or a tool's bug.
901 		 */
902 		nd6log((LOG_INFO,
903 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
904 		    ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
905 
906 		if (ia == NULL)
907 			return (0); /* there's nothing to do */
908 	}
909 
910 	/*
911 	 * If this is a new address, allocate a new ifaddr and link it
912 	 * into chains.
913 	 */
914 	if (ia == NULL) {
915 		hostIsNew = 1;
916 		/*
917 		 * When in6_update_ifa() is called in a process of a received
918 		 * RA, it is called under an interrupt context.  So, we should
919 		 * call malloc with M_NOWAIT.
920 		 */
921 		ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
922 		    M_NOWAIT);
923 		if (ia == NULL)
924 			return (ENOBUFS);
925 		bzero((caddr_t)ia, sizeof(*ia));
926 		/* Initialize the address and masks, and put time stamp */
927 		IFA_LOCK_INIT(&ia->ia_ifa);
928 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
929 		ia->ia_addr.sin6_family = AF_INET6;
930 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
931 		ia->ia6_createtime = time_second;
932 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
933 			/*
934 			 * XXX: some functions expect that ifa_dstaddr is not
935 			 * NULL for p2p interfaces.
936 			 */
937 			ia->ia_ifa.ifa_dstaddr =
938 			    (struct sockaddr *)&ia->ia_dstaddr;
939 		} else {
940 			ia->ia_ifa.ifa_dstaddr = NULL;
941 		}
942 		ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
943 
944 		ia->ia_ifp = ifp;
945 		if ((oia = in6_ifaddr) != NULL) {
946 			for ( ; oia->ia_next; oia = oia->ia_next)
947 				continue;
948 			oia->ia_next = ia;
949 		} else
950 			in6_ifaddr = ia;
951 
952 		ia->ia_ifa.ifa_refcnt = 1;
953 		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
954 	}
955 
956 	/* update timestamp */
957 	ia->ia6_updatetime = time_second;
958 
959 	/* set prefix mask */
960 	if (ifra->ifra_prefixmask.sin6_len) {
961 		/*
962 		 * We prohibit changing the prefix length of an existing
963 		 * address, because
964 		 * + such an operation should be rare in IPv6, and
965 		 * + the operation would confuse prefix management.
966 		 */
967 		if (ia->ia_prefixmask.sin6_len &&
968 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
969 			nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
970 			    " existing (%s) address should not be changed\n",
971 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
972 			error = EINVAL;
973 			goto unlink;
974 		}
975 		ia->ia_prefixmask = ifra->ifra_prefixmask;
976 	}
977 
978 	/*
979 	 * If a new destination address is specified, scrub the old one and
980 	 * install the new destination.  Note that the interface must be
981 	 * p2p or loopback (see the check above.)
982 	 */
983 	if (dst6.sin6_family == AF_INET6 &&
984 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
985 		int e;
986 
987 		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
988 		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
989 			nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
990 			    "a route to the old destination: %s\n",
991 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
992 			/* proceed anyway... */
993 		} else
994 			ia->ia_flags &= ~IFA_ROUTE;
995 		ia->ia_dstaddr = dst6;
996 	}
997 
998 	/*
999 	 * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
1000 	 * to see if the address is deprecated or invalidated, but initialize
1001 	 * these members for applications.
1002 	 */
1003 	ia->ia6_lifetime = ifra->ifra_lifetime;
1004 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1005 		ia->ia6_lifetime.ia6t_expire =
1006 		    time_second + ia->ia6_lifetime.ia6t_vltime;
1007 	} else
1008 		ia->ia6_lifetime.ia6t_expire = 0;
1009 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1010 		ia->ia6_lifetime.ia6t_preferred =
1011 		    time_second + ia->ia6_lifetime.ia6t_pltime;
1012 	} else
1013 		ia->ia6_lifetime.ia6t_preferred = 0;
1014 
1015 	/* reset the interface and routing table appropriately. */
1016 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1017 		goto unlink;
1018 
1019 	/*
1020 	 * configure address flags.
1021 	 */
1022 	ia->ia6_flags = ifra->ifra_flags;
1023 	/*
1024 	 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1025 	 * userland, make it deprecated.
1026 	 */
1027 	if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1028 		ia->ia6_lifetime.ia6t_pltime = 0;
1029 		ia->ia6_lifetime.ia6t_preferred = time_second;
1030 	}
1031 	/*
1032 	 * Make the address tentative before joining multicast addresses,
1033 	 * so that corresponding MLD responses would not have a tentative
1034 	 * source address.
1035 	 */
1036 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/* safety */
1037 	if (hostIsNew && in6if_do_dad(ifp))
1038 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1039 
1040 	/*
1041 	 * We are done if we have simply modified an existing address.
1042 	 */
1043 	if (!hostIsNew)
1044 		return (error);
1045 
1046 	/*
1047 	 * Beyond this point, we should call in6_purgeaddr upon an error,
1048 	 * not just go to unlink.
1049 	 */
1050 
1051 	/* Join necessary multicast groups */
1052 	in6m_sol = NULL;
1053 	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1054 		struct sockaddr_in6 mltaddr, mltmask;
1055 		struct in6_addr llsol;
1056 
1057 		/* join solicited multicast addr for new host id */
1058 		bzero(&llsol, sizeof(struct in6_addr));
1059 		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1060 		llsol.s6_addr32[1] = 0;
1061 		llsol.s6_addr32[2] = htonl(1);
1062 		llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
1063 		llsol.s6_addr8[12] = 0xff;
1064 		if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1065 			/* XXX: should not happen */
1066 			log(LOG_ERR, "in6_update_ifa: "
1067 			    "in6_setscope failed\n");
1068 			goto cleanup;
1069 		}
1070 		delay = 0;
1071 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1072 			/*
1073 			 * We need a random delay for DAD on the address
1074 			 * being configured.  It also means delaying
1075 			 * transmission of the corresponding MLD report to
1076 			 * avoid report collision.
1077 			 * [draft-ietf-ipv6-rfc2462bis-02.txt]
1078 			 */
1079 			delay = arc4random() %
1080 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1081 		}
1082 		imm = in6_joingroup(ifp, &llsol, &error, delay);
1083 		if (error != 0) {
1084 			nd6log((LOG_WARNING,
1085 			    "in6_update_ifa: addmulti failed for "
1086 			    "%s on %s (errno=%d)\n",
1087 			    ip6_sprintf(&llsol), if_name(ifp),
1088 			    error));
1089 			in6_purgeaddr((struct ifaddr *)ia);
1090 			return (error);
1091 		}
1092 		in6m_sol = imm->i6mm_maddr;
1093 
1094 		bzero(&mltmask, sizeof(mltmask));
1095 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1096 		mltmask.sin6_family = AF_INET6;
1097 		mltmask.sin6_addr = in6mask32;
1098 #define	MLTMASK_LEN  4	/* mltmask's masklen (=32bit=4octet) */
1099 
1100 		/*
1101 		 * join link-local all-nodes address
1102 		 */
1103 		bzero(&mltaddr, sizeof(mltaddr));
1104 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1105 		mltaddr.sin6_family = AF_INET6;
1106 		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1107 		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) !=
1108 		    0)
1109 			goto cleanup; /* XXX: should not fail */
1110 
1111 		/*
1112 		 * XXX: do we really need this automatic routes?
1113 		 * We should probably reconsider this stuff.  Most applications
1114 		 * actually do not need the routes, since they usually specify
1115 		 * the outgoing interface.
1116 		 */
1117 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1118 		if (rt) {
1119 			if (memcmp(&mltaddr.sin6_addr,
1120 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1121 			    MLTMASK_LEN)) {
1122 				RTFREE_LOCKED(rt);
1123 				rt = NULL;
1124 			}
1125 		}
1126 		if (!rt) {
1127 			/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1128 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1129 			    (struct sockaddr *)&ia->ia_addr,
1130 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1131 			    (struct rtentry **)0);
1132 			if (error)
1133 				goto cleanup;
1134 		} else
1135 			RTFREE_LOCKED(rt);
1136 
1137 		/*
1138 		 * XXX: do we really need this automatic routes?
1139 		 * We should probably reconsider this stuff.  Most applications
1140 		 * actually do not need the routes, since they usually specify
1141 		 * the outgoing interface.
1142 		 */
1143 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1144 		if (rt) {
1145 			/* XXX: only works in !SCOPEDROUTING case. */
1146 			if (memcmp(&mltaddr.sin6_addr,
1147 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1148 			    MLTMASK_LEN)) {
1149 				RTFREE_LOCKED(rt);
1150 				rt = NULL;
1151 			}
1152 		}
1153 		if (!rt) {
1154 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1155 			    (struct sockaddr *)&ia->ia_addr,
1156 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1157 			    (struct rtentry **)0);
1158 			if (error)
1159 				goto cleanup;
1160 		} else {
1161 			RTFREE_LOCKED(rt);
1162 		}
1163 
1164 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1165 		if (!imm) {
1166 			nd6log((LOG_WARNING,
1167 			    "in6_update_ifa: addmulti failed for "
1168 			    "%s on %s (errno=%d)\n",
1169 			    ip6_sprintf(&mltaddr.sin6_addr),
1170 			    if_name(ifp), error));
1171 			goto cleanup;
1172 		}
1173 
1174 		/*
1175 		 * join node information group address
1176 		 */
1177 #define hostnamelen	strlen(hostname)
1178 		delay = 0;
1179 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1180 			/*
1181 			 * The spec doesn't say anything about delay for this
1182 			 * group, but the same logic should apply.
1183 			 */
1184 			delay = arc4random() %
1185 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1186 		}
1187 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1188 		    == 0) {
1189 			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1190 			    delay); /* XXX jinmei */
1191 			if (!imm) {
1192 				nd6log((LOG_WARNING, "in6_update_ifa: "
1193 				    "addmulti failed for %s on %s "
1194 				    "(errno=%d)\n",
1195 				    ip6_sprintf(&mltaddr.sin6_addr),
1196 				    if_name(ifp), error));
1197 				/* XXX not very fatal, go on... */
1198 			}
1199 		}
1200 #undef hostnamelen
1201 
1202 		/*
1203 		 * join interface-local all-nodes address.
1204 		 * (ff01::1%ifN, and ff01::%ifN/32)
1205 		 */
1206 		mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1207 		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL))
1208 		    != 0)
1209 			goto cleanup; /* XXX: should not fail */
1210 		/* XXX: again, do we really need the route? */
1211 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1212 		if (rt) {
1213 			if (memcmp(&mltaddr.sin6_addr,
1214 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1215 			    MLTMASK_LEN)) {
1216 				RTFREE_LOCKED(rt);
1217 				rt = NULL;
1218 			}
1219 		}
1220 		if (!rt) {
1221 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1222 			    (struct sockaddr *)&ia->ia_addr,
1223 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1224 			    (struct rtentry **)0);
1225 			if (error)
1226 				goto cleanup;
1227 		} else
1228 			RTFREE_LOCKED(rt);
1229 
1230 		/* XXX: again, do we really need the route? */
1231 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1232 		if (rt) {
1233 			if (memcmp(&mltaddr.sin6_addr,
1234 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1235 			    MLTMASK_LEN)) {
1236 				RTFREE_LOCKED(rt);
1237 				rt = NULL;
1238 			}
1239 		}
1240 		if (!rt) {
1241 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1242 			    (struct sockaddr *)&ia->ia_addr,
1243 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1244 			    (struct rtentry **)0);
1245 			if (error)
1246 				goto cleanup;
1247 		} else {
1248 			RTFREE_LOCKED(rt);
1249 		}
1250 
1251 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1252 		if (!imm) {
1253 			nd6log((LOG_WARNING, "in6_update_ifa: "
1254 			    "addmulti failed for %s on %s "
1255 			    "(errno=%d)\n",
1256 			    ip6_sprintf(&mltaddr.sin6_addr),
1257 			    if_name(ifp), error));
1258 			goto cleanup;
1259 		}
1260 #undef	MLTMASK_LEN
1261 	}
1262 
1263 	/*
1264 	 * Perform DAD, if needed.
1265 	 * XXX It may be of use, if we can administratively
1266 	 * disable DAD.
1267 	 */
1268 	if (hostIsNew && in6if_do_dad(ifp) &&
1269 	    ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1270 	    (ia->ia6_flags & IN6_IFF_TENTATIVE))
1271 	{
1272 		int mindelay, maxdelay;
1273 
1274 		delay = 0;
1275 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1276 			/*
1277 			 * We need to impose a delay before sending an NS
1278 			 * for DAD.  Check if we also needed a delay for the
1279 			 * corresponding MLD message.  If we did, the delay
1280 			 * should be larger than the MLD delay (this could be
1281 			 * relaxed a bit, but this simple logic is at least
1282 			 * safe).
1283 			 */
1284 			mindelay = 0;
1285 			if (in6m_sol != NULL &&
1286 			    in6m_sol->in6m_state == MLD_REPORTPENDING) {
1287 				mindelay = in6m_sol->in6m_timer;
1288 			}
1289 			maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1290 			if (maxdelay - mindelay == 0)
1291 				delay = 0;
1292 			else {
1293 				delay =
1294 				    (arc4random() % (maxdelay - mindelay)) +
1295 				    mindelay;
1296 			}
1297 		}
1298 		nd6_dad_start((struct ifaddr *)ia, delay);
1299 	}
1300 
1301 	return (error);
1302 
1303   unlink:
1304 	/*
1305 	 * XXX: if a change of an existing address failed, keep the entry
1306 	 * anyway.
1307 	 */
1308 	if (hostIsNew)
1309 		in6_unlink_ifa(ia, ifp);
1310 	return (error);
1311 
1312   cleanup:
1313 	in6_purgeaddr(&ia->ia_ifa);
1314 	return error;
1315 }
1316 
1317 void
1318 in6_purgeaddr(ifa)
1319 	struct ifaddr *ifa;
1320 {
1321 	struct ifnet *ifp = ifa->ifa_ifp;
1322 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1323 
1324 	/* stop DAD processing */
1325 	nd6_dad_stop(ifa);
1326 
1327 	/*
1328 	 * delete route to the destination of the address being purged.
1329 	 * The interface must be p2p or loopback in this case.
1330 	 */
1331 	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1332 		int e;
1333 
1334 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1335 		    != 0) {
1336 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1337 			    "a route to the p2p destination: %s on %s, "
1338 			    "errno=%d\n",
1339 			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1340 			    e);
1341 			/* proceed anyway... */
1342 		} else
1343 			ia->ia_flags &= ~IFA_ROUTE;
1344 	}
1345 
1346 	/* Remove ownaddr's loopback rtentry, if it exists. */
1347 	in6_ifremloop(&(ia->ia_ifa));
1348 
1349 	if (ifp->if_flags & IFF_MULTICAST) {
1350 		/*
1351 		 * delete solicited multicast addr for deleting host id
1352 		 */
1353 		struct in6_multi *in6m;
1354 		struct in6_addr llsol;
1355 		bzero(&llsol, sizeof(struct in6_addr));
1356 		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1357 		llsol.s6_addr32[1] = 0;
1358 		llsol.s6_addr32[2] = htonl(1);
1359 		llsol.s6_addr32[3] =
1360 			ia->ia_addr.sin6_addr.s6_addr32[3];
1361 		llsol.s6_addr8[12] = 0xff;
1362 		(void)in6_setscope(&llsol, ifp, NULL); /* XXX proceed anyway */
1363 
1364 		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1365 		if (in6m)
1366 			in6_delmulti(in6m);
1367 	}
1368 
1369 	in6_unlink_ifa(ia, ifp);
1370 }
1371 
1372 static void
1373 in6_unlink_ifa(ia, ifp)
1374 	struct in6_ifaddr *ia;
1375 	struct ifnet *ifp;
1376 {
1377 	struct in6_ifaddr *oia;
1378 	int	s = splnet();
1379 
1380 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1381 
1382 	oia = ia;
1383 	if (oia == (ia = in6_ifaddr))
1384 		in6_ifaddr = ia->ia_next;
1385 	else {
1386 		while (ia->ia_next && (ia->ia_next != oia))
1387 			ia = ia->ia_next;
1388 		if (ia->ia_next)
1389 			ia->ia_next = oia->ia_next;
1390 		else {
1391 			/* search failed */
1392 			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * Release the reference to the base prefix.  There should be a
1398 	 * positive reference.
1399 	 */
1400 	if (oia->ia6_ndpr == NULL) {
1401 		nd6log((LOG_NOTICE,
1402 		    "in6_unlink_ifa: autoconf'ed address "
1403 		    "%p has no prefix\n", oia));
1404 	} else {
1405 		oia->ia6_ndpr->ndpr_refcnt--;
1406 		oia->ia6_ndpr = NULL;
1407 	}
1408 
1409 	/*
1410 	 * Also, if the address being removed is autoconf'ed, call
1411 	 * pfxlist_onlink_check() since the release might affect the status of
1412 	 * other (detached) addresses.
1413 	 */
1414 	if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) {
1415 		pfxlist_onlink_check();
1416 	}
1417 
1418 	/*
1419 	 * release another refcnt for the link from in6_ifaddr.
1420 	 * Note that we should decrement the refcnt at least once for all *BSD.
1421 	 */
1422 	IFAFREE(&oia->ia_ifa);
1423 
1424 	splx(s);
1425 }
1426 
1427 void
1428 in6_purgeif(ifp)
1429 	struct ifnet *ifp;
1430 {
1431 	struct ifaddr *ifa, *nifa;
1432 
1433 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
1434 		nifa = TAILQ_NEXT(ifa, ifa_list);
1435 		if (ifa->ifa_addr->sa_family != AF_INET6)
1436 			continue;
1437 		in6_purgeaddr(ifa);
1438 	}
1439 
1440 	in6_ifdetach(ifp);
1441 }
1442 
1443 /*
1444  * SIOC[GAD]LIFADDR.
1445  *	SIOCGLIFADDR: get first address. (?)
1446  *	SIOCGLIFADDR with IFLR_PREFIX:
1447  *		get first address that matches the specified prefix.
1448  *	SIOCALIFADDR: add the specified address.
1449  *	SIOCALIFADDR with IFLR_PREFIX:
1450  *		add the specified prefix, filling hostid part from
1451  *		the first link-local address.  prefixlen must be <= 64.
1452  *	SIOCDLIFADDR: delete the specified address.
1453  *	SIOCDLIFADDR with IFLR_PREFIX:
1454  *		delete the first address that matches the specified prefix.
1455  * return values:
1456  *	EINVAL on invalid parameters
1457  *	EADDRNOTAVAIL on prefix match failed/specified address not found
1458  *	other values may be returned from in6_ioctl()
1459  *
1460  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1461  * this is to accomodate address naming scheme other than RFC2374,
1462  * in the future.
1463  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1464  * address encoding scheme. (see figure on page 8)
1465  */
1466 static int
1467 in6_lifaddr_ioctl(so, cmd, data, ifp, td)
1468 	struct socket *so;
1469 	u_long cmd;
1470 	caddr_t	data;
1471 	struct ifnet *ifp;
1472 	struct thread *td;
1473 {
1474 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1475 	struct ifaddr *ifa;
1476 	struct sockaddr *sa;
1477 
1478 	/* sanity checks */
1479 	if (!data || !ifp) {
1480 		panic("invalid argument to in6_lifaddr_ioctl");
1481 		/* NOTREACHED */
1482 	}
1483 
1484 	switch (cmd) {
1485 	case SIOCGLIFADDR:
1486 		/* address must be specified on GET with IFLR_PREFIX */
1487 		if ((iflr->flags & IFLR_PREFIX) == 0)
1488 			break;
1489 		/* FALLTHROUGH */
1490 	case SIOCALIFADDR:
1491 	case SIOCDLIFADDR:
1492 		/* address must be specified on ADD and DELETE */
1493 		sa = (struct sockaddr *)&iflr->addr;
1494 		if (sa->sa_family != AF_INET6)
1495 			return EINVAL;
1496 		if (sa->sa_len != sizeof(struct sockaddr_in6))
1497 			return EINVAL;
1498 		/* XXX need improvement */
1499 		sa = (struct sockaddr *)&iflr->dstaddr;
1500 		if (sa->sa_family && sa->sa_family != AF_INET6)
1501 			return EINVAL;
1502 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1503 			return EINVAL;
1504 		break;
1505 	default: /* shouldn't happen */
1506 #if 0
1507 		panic("invalid cmd to in6_lifaddr_ioctl");
1508 		/* NOTREACHED */
1509 #else
1510 		return EOPNOTSUPP;
1511 #endif
1512 	}
1513 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1514 		return EINVAL;
1515 
1516 	switch (cmd) {
1517 	case SIOCALIFADDR:
1518 	    {
1519 		struct in6_aliasreq ifra;
1520 		struct in6_addr *hostid = NULL;
1521 		int prefixlen;
1522 
1523 		if ((iflr->flags & IFLR_PREFIX) != 0) {
1524 			struct sockaddr_in6 *sin6;
1525 
1526 			/*
1527 			 * hostid is to fill in the hostid part of the
1528 			 * address.  hostid points to the first link-local
1529 			 * address attached to the interface.
1530 			 */
1531 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1532 			if (!ifa)
1533 				return EADDRNOTAVAIL;
1534 			hostid = IFA_IN6(ifa);
1535 
1536 		 	/* prefixlen must be <= 64. */
1537 			if (64 < iflr->prefixlen)
1538 				return EINVAL;
1539 			prefixlen = iflr->prefixlen;
1540 
1541 			/* hostid part must be zero. */
1542 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1543 			if (sin6->sin6_addr.s6_addr32[2] != 0 ||
1544 			    sin6->sin6_addr.s6_addr32[3] != 0) {
1545 				return EINVAL;
1546 			}
1547 		} else
1548 			prefixlen = iflr->prefixlen;
1549 
1550 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1551 		bzero(&ifra, sizeof(ifra));
1552 		bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1553 
1554 		bcopy(&iflr->addr, &ifra.ifra_addr,
1555 		    ((struct sockaddr *)&iflr->addr)->sa_len);
1556 		if (hostid) {
1557 			/* fill in hostid part */
1558 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1559 			    hostid->s6_addr32[2];
1560 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1561 			    hostid->s6_addr32[3];
1562 		}
1563 
1564 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1565 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1566 			    ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1567 			if (hostid) {
1568 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1569 				    hostid->s6_addr32[2];
1570 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1571 				    hostid->s6_addr32[3];
1572 			}
1573 		}
1574 
1575 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1576 		in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1577 
1578 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1579 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1580 	    }
1581 	case SIOCGLIFADDR:
1582 	case SIOCDLIFADDR:
1583 	    {
1584 		struct in6_ifaddr *ia;
1585 		struct in6_addr mask, candidate, match;
1586 		struct sockaddr_in6 *sin6;
1587 		int cmp;
1588 
1589 		bzero(&mask, sizeof(mask));
1590 		if (iflr->flags & IFLR_PREFIX) {
1591 			/* lookup a prefix rather than address. */
1592 			in6_prefixlen2mask(&mask, iflr->prefixlen);
1593 
1594 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1595 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1596 			match.s6_addr32[0] &= mask.s6_addr32[0];
1597 			match.s6_addr32[1] &= mask.s6_addr32[1];
1598 			match.s6_addr32[2] &= mask.s6_addr32[2];
1599 			match.s6_addr32[3] &= mask.s6_addr32[3];
1600 
1601 			/* if you set extra bits, that's wrong */
1602 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1603 				return EINVAL;
1604 
1605 			cmp = 1;
1606 		} else {
1607 			if (cmd == SIOCGLIFADDR) {
1608 				/* on getting an address, take the 1st match */
1609 				cmp = 0;	/* XXX */
1610 			} else {
1611 				/* on deleting an address, do exact match */
1612 				in6_prefixlen2mask(&mask, 128);
1613 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1614 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1615 
1616 				cmp = 1;
1617 			}
1618 		}
1619 
1620 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1621 			if (ifa->ifa_addr->sa_family != AF_INET6)
1622 				continue;
1623 			if (!cmp)
1624 				break;
1625 
1626 			/*
1627 			 * XXX: this is adhoc, but is necessary to allow
1628 			 * a user to specify fe80::/64 (not /10) for a
1629 			 * link-local address.
1630 			 */
1631 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1632 			in6_clearscope(&candidate);
1633 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1634 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1635 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1636 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1637 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1638 				break;
1639 		}
1640 		if (!ifa)
1641 			return EADDRNOTAVAIL;
1642 		ia = ifa2ia6(ifa);
1643 
1644 		if (cmd == SIOCGLIFADDR) {
1645 			int error;
1646 
1647 			/* fill in the if_laddrreq structure */
1648 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1649 			error = sa6_recoverscope(
1650 			    (struct sockaddr_in6 *)&iflr->addr);
1651 			if (error != 0)
1652 				return (error);
1653 
1654 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1655 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1656 				    ia->ia_dstaddr.sin6_len);
1657 				error = sa6_recoverscope(
1658 				    (struct sockaddr_in6 *)&iflr->dstaddr);
1659 				if (error != 0)
1660 					return (error);
1661 			} else
1662 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1663 
1664 			iflr->prefixlen =
1665 			    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1666 
1667 			iflr->flags = ia->ia6_flags;	/* XXX */
1668 
1669 			return 0;
1670 		} else {
1671 			struct in6_aliasreq ifra;
1672 
1673 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1674 			bzero(&ifra, sizeof(ifra));
1675 			bcopy(iflr->iflr_name, ifra.ifra_name,
1676 			    sizeof(ifra.ifra_name));
1677 
1678 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1679 			    ia->ia_addr.sin6_len);
1680 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1681 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1682 				    ia->ia_dstaddr.sin6_len);
1683 			} else {
1684 				bzero(&ifra.ifra_dstaddr,
1685 				    sizeof(ifra.ifra_dstaddr));
1686 			}
1687 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1688 			    ia->ia_prefixmask.sin6_len);
1689 
1690 			ifra.ifra_flags = ia->ia6_flags;
1691 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1692 			    ifp, td);
1693 		}
1694 	    }
1695 	}
1696 
1697 	return EOPNOTSUPP;	/* just for safety */
1698 }
1699 
1700 /*
1701  * Initialize an interface's intetnet6 address
1702  * and routing table entry.
1703  */
1704 static int
1705 in6_ifinit(ifp, ia, sin6, newhost)
1706 	struct ifnet *ifp;
1707 	struct in6_ifaddr *ia;
1708 	struct sockaddr_in6 *sin6;
1709 	int newhost;
1710 {
1711 	int	error = 0, plen, ifacount = 0;
1712 	int	s = splimp();
1713 	struct ifaddr *ifa;
1714 
1715 	/*
1716 	 * Give the interface a chance to initialize
1717 	 * if this is its first address,
1718 	 * and to validate the address if necessary.
1719 	 */
1720 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1721 		if (ifa->ifa_addr->sa_family != AF_INET6)
1722 			continue;
1723 		ifacount++;
1724 	}
1725 
1726 	ia->ia_addr = *sin6;
1727 
1728 	if (ifacount <= 1 && ifp->if_ioctl) {
1729 		IFF_LOCKGIANT(ifp);
1730 		error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
1731 		IFF_UNLOCKGIANT(ifp);
1732 		if (error) {
1733 			splx(s);
1734 			return (error);
1735 		}
1736 	}
1737 	splx(s);
1738 
1739 	ia->ia_ifa.ifa_metric = ifp->if_metric;
1740 
1741 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1742 
1743 	if (newhost) {
1744 		/*
1745 		 * set the rtrequest function to create llinfo.  It also
1746 		 * adjust outgoing interface of the route for the local
1747 		 * address when called via in6_ifaddloop() below.
1748 		 */
1749 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1750 	}
1751 
1752 	/*
1753 	 * Special case:
1754 	 * If a new destination address is specified for a point-to-point
1755 	 * interface, install a route to the destination as an interface
1756 	 * direct route.  In addition, if the link is expected to have neighbor
1757 	 * cache entries, specify RTF_LLINFO so that a cache entry for the
1758 	 * destination address will be created.
1759 	 * created
1760 	 * XXX: the logic below rejects assigning multiple addresses on a p2p
1761 	 * interface that share the same destination.
1762 	 */
1763 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1764 	if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 &&
1765 	    ia->ia_dstaddr.sin6_family == AF_INET6) {
1766 		int rtflags = RTF_UP | RTF_HOST;
1767 		struct rtentry *rt = NULL, **rtp = NULL;
1768 
1769 		if (nd6_need_cache(ifp) != 0) {
1770 			rtflags |= RTF_LLINFO;
1771 			rtp = &rt;
1772 		}
1773 
1774 		error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr,
1775 		    (struct sockaddr *)&ia->ia_addr,
1776 		    (struct sockaddr *)&ia->ia_prefixmask,
1777 		    ia->ia_flags | rtflags, rtp);
1778 		if (error != 0)
1779 			return (error);
1780 		if (rt != NULL) {
1781 			struct llinfo_nd6 *ln;
1782 
1783 			RT_LOCK(rt);
1784 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1785 			if (ln != NULL) {
1786 				/*
1787 				 * Set the state to STALE because we don't
1788 				 * have to perform address resolution on this
1789 				 * link.
1790 				 */
1791 				ln->ln_state = ND6_LLINFO_STALE;
1792 			}
1793 			RT_REMREF(rt);
1794 			RT_UNLOCK(rt);
1795 		}
1796 		ia->ia_flags |= IFA_ROUTE;
1797 	}
1798 	if (plen < 128) {
1799 		/*
1800 		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1801 		 */
1802 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1803 	}
1804 
1805 	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1806 	if (newhost)
1807 		in6_ifaddloop(&(ia->ia_ifa));
1808 
1809 	return (error);
1810 }
1811 
1812 struct in6_multi_mship *
1813 in6_joingroup(ifp, addr, errorp, delay)
1814 	struct ifnet *ifp;
1815 	struct in6_addr *addr;
1816 	int *errorp;
1817 	int delay;
1818 {
1819 	struct in6_multi_mship *imm;
1820 
1821 	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1822 	if (!imm) {
1823 		*errorp = ENOBUFS;
1824 		return NULL;
1825 	}
1826 	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay);
1827 	if (!imm->i6mm_maddr) {
1828 		/* *errorp is alrady set */
1829 		free(imm, M_IP6MADDR);
1830 		return NULL;
1831 	}
1832 	return imm;
1833 }
1834 
1835 int
1836 in6_leavegroup(imm)
1837 	struct in6_multi_mship *imm;
1838 {
1839 
1840 	if (imm->i6mm_maddr)
1841 		in6_delmulti(imm->i6mm_maddr);
1842 	free(imm,  M_IP6MADDR);
1843 	return 0;
1844 }
1845 
1846 /*
1847  * Find an IPv6 interface link-local address specific to an interface.
1848  */
1849 struct in6_ifaddr *
1850 in6ifa_ifpforlinklocal(ifp, ignoreflags)
1851 	struct ifnet *ifp;
1852 	int ignoreflags;
1853 {
1854 	struct ifaddr *ifa;
1855 
1856 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1857 		if (ifa->ifa_addr->sa_family != AF_INET6)
1858 			continue;
1859 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1860 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1861 			     ignoreflags) != 0)
1862 				continue;
1863 			break;
1864 		}
1865 	}
1866 
1867 	return ((struct in6_ifaddr *)ifa);
1868 }
1869 
1870 
1871 /*
1872  * find the internet address corresponding to a given interface and address.
1873  */
1874 struct in6_ifaddr *
1875 in6ifa_ifpwithaddr(ifp, addr)
1876 	struct ifnet *ifp;
1877 	struct in6_addr *addr;
1878 {
1879 	struct ifaddr *ifa;
1880 
1881 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1882 		if (ifa->ifa_addr->sa_family != AF_INET6)
1883 			continue;
1884 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1885 			break;
1886 	}
1887 
1888 	return ((struct in6_ifaddr *)ifa);
1889 }
1890 
1891 /*
1892  * Convert IP6 address to printable (loggable) representation.
1893  */
1894 static char digits[] = "0123456789abcdef";
1895 static int ip6round = 0;
1896 char *
1897 ip6_sprintf(addr)
1898 	const struct in6_addr *addr;
1899 {
1900 	static char ip6buf[8][48];
1901 	int i;
1902 	char *cp;
1903 	const u_int16_t *a = (const u_int16_t *)addr;
1904 	const u_int8_t *d;
1905 	int dcolon = 0;
1906 
1907 	ip6round = (ip6round + 1) & 7;
1908 	cp = ip6buf[ip6round];
1909 
1910 	for (i = 0; i < 8; i++) {
1911 		if (dcolon == 1) {
1912 			if (*a == 0) {
1913 				if (i == 7)
1914 					*cp++ = ':';
1915 				a++;
1916 				continue;
1917 			} else
1918 				dcolon = 2;
1919 		}
1920 		if (*a == 0) {
1921 			if (dcolon == 0 && *(a + 1) == 0) {
1922 				if (i == 0)
1923 					*cp++ = ':';
1924 				*cp++ = ':';
1925 				dcolon = 1;
1926 			} else {
1927 				*cp++ = '0';
1928 				*cp++ = ':';
1929 			}
1930 			a++;
1931 			continue;
1932 		}
1933 		d = (const u_char *)a;
1934 		*cp++ = digits[*d >> 4];
1935 		*cp++ = digits[*d++ & 0xf];
1936 		*cp++ = digits[*d >> 4];
1937 		*cp++ = digits[*d & 0xf];
1938 		*cp++ = ':';
1939 		a++;
1940 	}
1941 	*--cp = 0;
1942 	return (ip6buf[ip6round]);
1943 }
1944 
1945 int
1946 in6_localaddr(in6)
1947 	struct in6_addr *in6;
1948 {
1949 	struct in6_ifaddr *ia;
1950 
1951 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1952 		return 1;
1953 
1954 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1955 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1956 		    &ia->ia_prefixmask.sin6_addr)) {
1957 			return 1;
1958 		}
1959 	}
1960 
1961 	return (0);
1962 }
1963 
1964 int
1965 in6_is_addr_deprecated(sa6)
1966 	struct sockaddr_in6 *sa6;
1967 {
1968 	struct in6_ifaddr *ia;
1969 
1970 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1971 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1972 				       &sa6->sin6_addr) &&
1973 		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1974 			return (1); /* true */
1975 
1976 		/* XXX: do we still have to go thru the rest of the list? */
1977 	}
1978 
1979 	return (0);		/* false */
1980 }
1981 
1982 /*
1983  * return length of part which dst and src are equal
1984  * hard coding...
1985  */
1986 int
1987 in6_matchlen(src, dst)
1988 struct in6_addr *src, *dst;
1989 {
1990 	int match = 0;
1991 	u_char *s = (u_char *)src, *d = (u_char *)dst;
1992 	u_char *lim = s + 16, r;
1993 
1994 	while (s < lim)
1995 		if ((r = (*d++ ^ *s++)) != 0) {
1996 			while (r < 128) {
1997 				match++;
1998 				r <<= 1;
1999 			}
2000 			break;
2001 		} else
2002 			match += 8;
2003 	return match;
2004 }
2005 
2006 /* XXX: to be scope conscious */
2007 int
2008 in6_are_prefix_equal(p1, p2, len)
2009 	struct in6_addr *p1, *p2;
2010 	int len;
2011 {
2012 	int bytelen, bitlen;
2013 
2014 	/* sanity check */
2015 	if (0 > len || len > 128) {
2016 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2017 		    len);
2018 		return (0);
2019 	}
2020 
2021 	bytelen = len / 8;
2022 	bitlen = len % 8;
2023 
2024 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2025 		return (0);
2026 	if (bitlen != 0 &&
2027 	    p1->s6_addr[bytelen] >> (8 - bitlen) !=
2028 	    p2->s6_addr[bytelen] >> (8 - bitlen))
2029 		return (0);
2030 
2031 	return (1);
2032 }
2033 
2034 void
2035 in6_prefixlen2mask(maskp, len)
2036 	struct in6_addr *maskp;
2037 	int len;
2038 {
2039 	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2040 	int bytelen, bitlen, i;
2041 
2042 	/* sanity check */
2043 	if (0 > len || len > 128) {
2044 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2045 		    len);
2046 		return;
2047 	}
2048 
2049 	bzero(maskp, sizeof(*maskp));
2050 	bytelen = len / 8;
2051 	bitlen = len % 8;
2052 	for (i = 0; i < bytelen; i++)
2053 		maskp->s6_addr[i] = 0xff;
2054 	if (bitlen)
2055 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2056 }
2057 
2058 /*
2059  * return the best address out of the same scope. if no address was
2060  * found, return the first valid address from designated IF.
2061  */
2062 struct in6_ifaddr *
2063 in6_ifawithifp(ifp, dst)
2064 	struct ifnet *ifp;
2065 	struct in6_addr *dst;
2066 {
2067 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2068 	struct ifaddr *ifa;
2069 	struct in6_ifaddr *besta = 0;
2070 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
2071 
2072 	dep[0] = dep[1] = NULL;
2073 
2074 	/*
2075 	 * We first look for addresses in the same scope.
2076 	 * If there is one, return it.
2077 	 * If two or more, return one which matches the dst longest.
2078 	 * If none, return one of global addresses assigned other ifs.
2079 	 */
2080 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2081 		if (ifa->ifa_addr->sa_family != AF_INET6)
2082 			continue;
2083 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2084 			continue; /* XXX: is there any case to allow anycast? */
2085 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2086 			continue; /* don't use this interface */
2087 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2088 			continue;
2089 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2090 			if (ip6_use_deprecated)
2091 				dep[0] = (struct in6_ifaddr *)ifa;
2092 			continue;
2093 		}
2094 
2095 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2096 			/*
2097 			 * call in6_matchlen() as few as possible
2098 			 */
2099 			if (besta) {
2100 				if (blen == -1)
2101 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2102 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2103 				if (tlen > blen) {
2104 					blen = tlen;
2105 					besta = (struct in6_ifaddr *)ifa;
2106 				}
2107 			} else
2108 				besta = (struct in6_ifaddr *)ifa;
2109 		}
2110 	}
2111 	if (besta)
2112 		return (besta);
2113 
2114 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2115 		if (ifa->ifa_addr->sa_family != AF_INET6)
2116 			continue;
2117 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2118 			continue; /* XXX: is there any case to allow anycast? */
2119 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2120 			continue; /* don't use this interface */
2121 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2122 			continue;
2123 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2124 			if (ip6_use_deprecated)
2125 				dep[1] = (struct in6_ifaddr *)ifa;
2126 			continue;
2127 		}
2128 
2129 		return (struct in6_ifaddr *)ifa;
2130 	}
2131 
2132 	/* use the last-resort values, that are, deprecated addresses */
2133 	if (dep[0])
2134 		return dep[0];
2135 	if (dep[1])
2136 		return dep[1];
2137 
2138 	return NULL;
2139 }
2140 
2141 /*
2142  * perform DAD when interface becomes IFF_UP.
2143  */
2144 void
2145 in6_if_up(ifp)
2146 	struct ifnet *ifp;
2147 {
2148 	struct ifaddr *ifa;
2149 	struct in6_ifaddr *ia;
2150 
2151 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2152 		if (ifa->ifa_addr->sa_family != AF_INET6)
2153 			continue;
2154 		ia = (struct in6_ifaddr *)ifa;
2155 		if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2156 			/*
2157 			 * The TENTATIVE flag was likely set by hand
2158 			 * beforehand, implicitly indicating the need for DAD.
2159 			 * We may be able to skip the random delay in this
2160 			 * case, but we impose delays just in case.
2161 			 */
2162 			nd6_dad_start(ifa,
2163 			    arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
2164 		}
2165 	}
2166 
2167 	/*
2168 	 * special cases, like 6to4, are handled in in6_ifattach
2169 	 */
2170 	in6_ifattach(ifp, NULL);
2171 }
2172 
2173 int
2174 in6if_do_dad(ifp)
2175 	struct ifnet *ifp;
2176 {
2177 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2178 		return (0);
2179 
2180 	switch (ifp->if_type) {
2181 #ifdef IFT_DUMMY
2182 	case IFT_DUMMY:
2183 #endif
2184 	case IFT_FAITH:
2185 		/*
2186 		 * These interfaces do not have the IFF_LOOPBACK flag,
2187 		 * but loop packets back.  We do not have to do DAD on such
2188 		 * interfaces.  We should even omit it, because loop-backed
2189 		 * NS would confuse the DAD procedure.
2190 		 */
2191 		return (0);
2192 	default:
2193 		/*
2194 		 * Our DAD routine requires the interface up and running.
2195 		 * However, some interfaces can be up before the RUNNING
2196 		 * status.  Additionaly, users may try to assign addresses
2197 		 * before the interface becomes up (or running).
2198 		 * We simply skip DAD in such a case as a work around.
2199 		 * XXX: we should rather mark "tentative" on such addresses,
2200 		 * and do DAD after the interface becomes ready.
2201 		 */
2202 		if (!((ifp->if_flags & IFF_UP) &&
2203 		    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
2204 			return (0);
2205 
2206 		return (1);
2207 	}
2208 }
2209 
2210 /*
2211  * Calculate max IPv6 MTU through all the interfaces and store it
2212  * to in6_maxmtu.
2213  */
2214 void
2215 in6_setmaxmtu()
2216 {
2217 	unsigned long maxmtu = 0;
2218 	struct ifnet *ifp;
2219 
2220 	IFNET_RLOCK();
2221 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
2222 		/* this function can be called during ifnet initialization */
2223 		if (!ifp->if_afdata[AF_INET6])
2224 			continue;
2225 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2226 		    IN6_LINKMTU(ifp) > maxmtu)
2227 			maxmtu = IN6_LINKMTU(ifp);
2228 	}
2229 	IFNET_RUNLOCK();
2230 	if (maxmtu)	     /* update only when maxmtu is positive */
2231 		in6_maxmtu = maxmtu;
2232 }
2233 
2234 /*
2235  * Provide the length of interface identifiers to be used for the link attached
2236  * to the given interface.  The length should be defined in "IPv6 over
2237  * xxx-link" document.  Note that address architecture might also define
2238  * the length for a particular set of address prefixes, regardless of the
2239  * link type.  As clarified in rfc2462bis, those two definitions should be
2240  * consistent, and those really are as of August 2004.
2241  */
2242 int
2243 in6_if2idlen(ifp)
2244 	struct ifnet *ifp;
2245 {
2246 	switch (ifp->if_type) {
2247 	case IFT_ETHER:		/* RFC2464 */
2248 #ifdef IFT_PROPVIRTUAL
2249 	case IFT_PROPVIRTUAL:	/* XXX: no RFC. treat it as ether */
2250 #endif
2251 #ifdef IFT_L2VLAN
2252 	case IFT_L2VLAN:	/* ditto */
2253 #endif
2254 #ifdef IFT_IEEE80211
2255 	case IFT_IEEE80211:	/* ditto */
2256 #endif
2257 #ifdef IFT_MIP
2258 	case IFT_MIP:	/* ditto */
2259 #endif
2260 		return (64);
2261 	case IFT_FDDI:		/* RFC2467 */
2262 		return (64);
2263 	case IFT_ISO88025:	/* RFC2470 (IPv6 over Token Ring) */
2264 		return (64);
2265 	case IFT_PPP:		/* RFC2472 */
2266 		return (64);
2267 	case IFT_ARCNET:	/* RFC2497 */
2268 		return (64);
2269 	case IFT_FRELAY:	/* RFC2590 */
2270 		return (64);
2271 	case IFT_IEEE1394:	/* RFC3146 */
2272 		return (64);
2273 	case IFT_GIF:
2274 		return (64);	/* draft-ietf-v6ops-mech-v2-07 */
2275 	case IFT_LOOP:
2276 		return (64);	/* XXX: is this really correct? */
2277 	default:
2278 		/*
2279 		 * Unknown link type:
2280 		 * It might be controversial to use the today's common constant
2281 		 * of 64 for these cases unconditionally.  For full compliance,
2282 		 * we should return an error in this case.  On the other hand,
2283 		 * if we simply miss the standard for the link type or a new
2284 		 * standard is defined for a new link type, the IFID length
2285 		 * is very likely to be the common constant.  As a compromise,
2286 		 * we always use the constant, but make an explicit notice
2287 		 * indicating the "unknown" case.
2288 		 */
2289 		printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2290 		return (64);
2291 	}
2292 }
2293 
2294 void *
2295 in6_domifattach(ifp)
2296 	struct ifnet *ifp;
2297 {
2298 	struct in6_ifextra *ext;
2299 
2300 	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2301 	bzero(ext, sizeof(*ext));
2302 
2303 	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2304 	    M_IFADDR, M_WAITOK);
2305 	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2306 
2307 	ext->icmp6_ifstat =
2308 	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2309 	    M_IFADDR, M_WAITOK);
2310 	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2311 
2312 	ext->nd_ifinfo = nd6_ifattach(ifp);
2313 	ext->scope6_id = scope6_ifattach(ifp);
2314 	return ext;
2315 }
2316 
2317 void
2318 in6_domifdetach(ifp, aux)
2319 	struct ifnet *ifp;
2320 	void *aux;
2321 {
2322 	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2323 
2324 	scope6_ifdetach(ext->scope6_id);
2325 	nd6_ifdetach(ext->nd_ifinfo);
2326 	free(ext->in6_ifstat, M_IFADDR);
2327 	free(ext->icmp6_ifstat, M_IFADDR);
2328 	free(ext, M_IFADDR);
2329 }
2330 
2331 /*
2332  * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
2333  * v4 mapped addr or v4 compat addr
2334  */
2335 void
2336 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2337 {
2338 	bzero(sin, sizeof(*sin));
2339 	sin->sin_len = sizeof(struct sockaddr_in);
2340 	sin->sin_family = AF_INET;
2341 	sin->sin_port = sin6->sin6_port;
2342 	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2343 }
2344 
2345 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2346 void
2347 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2348 {
2349 	bzero(sin6, sizeof(*sin6));
2350 	sin6->sin6_len = sizeof(struct sockaddr_in6);
2351 	sin6->sin6_family = AF_INET6;
2352 	sin6->sin6_port = sin->sin_port;
2353 	sin6->sin6_addr.s6_addr32[0] = 0;
2354 	sin6->sin6_addr.s6_addr32[1] = 0;
2355 	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2356 	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2357 }
2358 
2359 /* Convert sockaddr_in6 into sockaddr_in. */
2360 void
2361 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2362 {
2363 	struct sockaddr_in *sin_p;
2364 	struct sockaddr_in6 sin6;
2365 
2366 	/*
2367 	 * Save original sockaddr_in6 addr and convert it
2368 	 * to sockaddr_in.
2369 	 */
2370 	sin6 = *(struct sockaddr_in6 *)nam;
2371 	sin_p = (struct sockaddr_in *)nam;
2372 	in6_sin6_2_sin(sin_p, &sin6);
2373 }
2374 
2375 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2376 void
2377 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2378 {
2379 	struct sockaddr_in *sin_p;
2380 	struct sockaddr_in6 *sin6_p;
2381 
2382 	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2383 	       M_WAITOK);
2384 	sin_p = (struct sockaddr_in *)*nam;
2385 	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2386 	FREE(*nam, M_SONAME);
2387 	*nam = (struct sockaddr *)sin6_p;
2388 }
2389