1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 69 #include <sys/param.h> 70 #include <sys/errno.h> 71 #include <sys/malloc.h> 72 #include <sys/socket.h> 73 #include <sys/socketvar.h> 74 #include <sys/sockio.h> 75 #include <sys/systm.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/time.h> 79 #include <sys/kernel.h> 80 #include <sys/syslog.h> 81 #include <sys/vimage.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #include <netinet/in_systm.h> 92 #include <netinet/ip.h> 93 #include <netinet/in_pcb.h> 94 95 #include <netinet/ip6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/nd6.h> 98 #include <netinet6/mld6_var.h> 99 #include <netinet6/ip6_mroute.h> 100 #include <netinet6/in6_ifattach.h> 101 #include <netinet6/scope6_var.h> 102 #include <netinet6/in6_pcb.h> 103 104 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 105 106 /* 107 * Definitions of some costant IP6 addresses. 108 */ 109 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 110 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 111 const struct in6_addr in6addr_nodelocal_allnodes = 112 IN6ADDR_NODELOCAL_ALLNODES_INIT; 113 const struct in6_addr in6addr_linklocal_allnodes = 114 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 115 const struct in6_addr in6addr_linklocal_allrouters = 116 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 117 118 const struct in6_addr in6mask0 = IN6MASK0; 119 const struct in6_addr in6mask32 = IN6MASK32; 120 const struct in6_addr in6mask64 = IN6MASK64; 121 const struct in6_addr in6mask96 = IN6MASK96; 122 const struct in6_addr in6mask128 = IN6MASK128; 123 124 const struct sockaddr_in6 sa6_any = 125 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 126 127 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 128 struct ifnet *, struct thread *)); 129 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 130 struct sockaddr_in6 *, int)); 131 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 132 133 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 134 int (*faithprefix_p)(struct in6_addr *); 135 136 /* 137 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 138 * This routine does actual work. 139 */ 140 static void 141 in6_ifloop_request(int cmd, struct ifaddr *ifa) 142 { 143 struct sockaddr_in6 all1_sa; 144 struct rtentry *nrt = NULL; 145 int e; 146 char ip6buf[INET6_ADDRSTRLEN]; 147 148 bzero(&all1_sa, sizeof(all1_sa)); 149 all1_sa.sin6_family = AF_INET6; 150 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 151 all1_sa.sin6_addr = in6mask128; 152 153 /* 154 * We specify the address itself as the gateway, and set the 155 * RTF_LLINFO flag, so that the corresponding host route would have 156 * the flag, and thus applications that assume traditional behavior 157 * would be happy. Note that we assume the caller of the function 158 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 159 * which changes the outgoing interface to the loopback interface. 160 */ 161 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 162 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 163 if (e != 0) { 164 /* XXX need more descriptive message */ 165 166 log(LOG_ERR, "in6_ifloop_request: " 167 "%s operation failed for %s (errno=%d)\n", 168 cmd == RTM_ADD ? "ADD" : "DELETE", 169 ip6_sprintf(ip6buf, 170 &((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); 171 } 172 173 /* 174 * Report the addition/removal of the address to the routing socket. 175 * XXX: since we called rtinit for a p2p interface with a destination, 176 * we end up reporting twice in such a case. Should we rather 177 * omit the second report? 178 */ 179 if (nrt) { 180 RT_LOCK(nrt); 181 /* 182 * Make sure rt_ifa be equal to IFA, the second argument of 183 * the function. We need this because when we refer to 184 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa 185 * points to the address instead of the loopback address. 186 */ 187 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { 188 IFAFREE(nrt->rt_ifa); 189 IFAREF(ifa); 190 nrt->rt_ifa = ifa; 191 } 192 193 rt_newaddrmsg(cmd, ifa, e, nrt); 194 if (cmd == RTM_DELETE) 195 RTFREE_LOCKED(nrt); 196 else { 197 /* the cmd must be RTM_ADD here */ 198 RT_REMREF(nrt); 199 RT_UNLOCK(nrt); 200 } 201 } 202 } 203 204 /* 205 * Add ownaddr as loopback rtentry. We previously add the route only if 206 * necessary (ex. on a p2p link). However, since we now manage addresses 207 * separately from prefixes, we should always add the route. We can't 208 * rely on the cloning mechanism from the corresponding interface route 209 * any more. 210 */ 211 void 212 in6_ifaddloop(struct ifaddr *ifa) 213 { 214 struct rtentry *rt; 215 int need_loop; 216 217 /* If there is no loopback entry, allocate one. */ 218 rt = rtalloc1(ifa->ifa_addr, 0, 0); 219 need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 220 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); 221 if (rt) 222 RTFREE_LOCKED(rt); 223 if (need_loop) 224 in6_ifloop_request(RTM_ADD, ifa); 225 } 226 227 /* 228 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 229 * if it exists. 230 */ 231 void 232 in6_ifremloop(struct ifaddr *ifa) 233 { 234 INIT_VNET_INET6(curvnet); 235 struct in6_ifaddr *ia; 236 struct rtentry *rt; 237 int ia_count = 0; 238 239 /* 240 * Some of BSD variants do not remove cloned routes 241 * from an interface direct route, when removing the direct route 242 * (see comments in net/net_osdep.h). Even for variants that do remove 243 * cloned routes, they could fail to remove the cloned routes when 244 * we handle multple addresses that share a common prefix. 245 * So, we should remove the route corresponding to the deleted address. 246 */ 247 248 /* 249 * Delete the entry only if exact one ifa exists. More than one ifa 250 * can exist if we assign a same single address to multiple 251 * (probably p2p) interfaces. 252 * XXX: we should avoid such a configuration in IPv6... 253 */ 254 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 255 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 256 ia_count++; 257 if (ia_count > 1) 258 break; 259 } 260 } 261 262 if (ia_count == 1) { 263 /* 264 * Before deleting, check if a corresponding loopbacked host 265 * route surely exists. With this check, we can avoid to 266 * delete an interface direct route whose destination is same 267 * as the address being removed. This can happen when removing 268 * a subnet-router anycast address on an interface attahced 269 * to a shared medium. 270 */ 271 rt = rtalloc1(ifa->ifa_addr, 0, 0); 272 if (rt != NULL) { 273 if ((rt->rt_flags & RTF_HOST) != 0 && 274 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 275 RTFREE_LOCKED(rt); 276 in6_ifloop_request(RTM_DELETE, ifa); 277 } else 278 RT_UNLOCK(rt); 279 } 280 } 281 } 282 283 int 284 in6_mask2len(struct in6_addr *mask, u_char *lim0) 285 { 286 int x = 0, y; 287 u_char *lim = lim0, *p; 288 289 /* ignore the scope_id part */ 290 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 291 lim = (u_char *)mask + sizeof(*mask); 292 for (p = (u_char *)mask; p < lim; x++, p++) { 293 if (*p != 0xff) 294 break; 295 } 296 y = 0; 297 if (p < lim) { 298 for (y = 0; y < 8; y++) { 299 if ((*p & (0x80 >> y)) == 0) 300 break; 301 } 302 } 303 304 /* 305 * when the limit pointer is given, do a stricter check on the 306 * remaining bits. 307 */ 308 if (p < lim) { 309 if (y != 0 && (*p & (0x00ff >> y)) != 0) 310 return (-1); 311 for (p = p + 1; p < lim; p++) 312 if (*p != 0) 313 return (-1); 314 } 315 316 return x * 8 + y; 317 } 318 319 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 320 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 321 322 int 323 in6_control(struct socket *so, u_long cmd, caddr_t data, 324 struct ifnet *ifp, struct thread *td) 325 { 326 INIT_VNET_INET6(curvnet); 327 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 328 struct in6_ifaddr *ia = NULL; 329 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 330 struct sockaddr_in6 *sa6; 331 int error; 332 333 switch (cmd) { 334 case SIOCGETSGCNT_IN6: 335 case SIOCGETMIFCNT_IN6: 336 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 337 } 338 339 switch(cmd) { 340 case SIOCAADDRCTL_POLICY: 341 case SIOCDADDRCTL_POLICY: 342 if (td != NULL) { 343 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 344 if (error) 345 return (error); 346 } 347 return (in6_src_ioctl(cmd, data)); 348 } 349 350 if (ifp == NULL) 351 return (EOPNOTSUPP); 352 353 switch (cmd) { 354 case SIOCSNDFLUSH_IN6: 355 case SIOCSPFXFLUSH_IN6: 356 case SIOCSRTRFLUSH_IN6: 357 case SIOCSDEFIFACE_IN6: 358 case SIOCSIFINFO_FLAGS: 359 if (td != NULL) { 360 error = priv_check(td, PRIV_NETINET_ND6); 361 if (error) 362 return (error); 363 } 364 /* FALLTHROUGH */ 365 case OSIOCGIFINFO_IN6: 366 case SIOCGIFINFO_IN6: 367 case SIOCSIFINFO_IN6: 368 case SIOCGDRLST_IN6: 369 case SIOCGPRLST_IN6: 370 case SIOCGNBRINFO_IN6: 371 case SIOCGDEFIFACE_IN6: 372 return (nd6_ioctl(cmd, data, ifp)); 373 } 374 375 switch (cmd) { 376 case SIOCSIFPREFIX_IN6: 377 case SIOCDIFPREFIX_IN6: 378 case SIOCAIFPREFIX_IN6: 379 case SIOCCIFPREFIX_IN6: 380 case SIOCSGIFPREFIX_IN6: 381 case SIOCGIFPREFIX_IN6: 382 log(LOG_NOTICE, 383 "prefix ioctls are now invalidated. " 384 "please use ifconfig.\n"); 385 return (EOPNOTSUPP); 386 } 387 388 switch (cmd) { 389 case SIOCSSCOPE6: 390 if (td != NULL) { 391 error = priv_check(td, PRIV_NETINET_SCOPE6); 392 if (error) 393 return (error); 394 } 395 return (scope6_set(ifp, 396 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 397 case SIOCGSCOPE6: 398 return (scope6_get(ifp, 399 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 400 case SIOCGSCOPE6DEF: 401 return (scope6_get_default((struct scope6_id *) 402 ifr->ifr_ifru.ifru_scope_id)); 403 } 404 405 switch (cmd) { 406 case SIOCALIFADDR: 407 if (td != NULL) { 408 error = priv_check(td, PRIV_NET_ADDIFADDR); 409 if (error) 410 return (error); 411 } 412 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 413 414 case SIOCDLIFADDR: 415 if (td != NULL) { 416 error = priv_check(td, PRIV_NET_DELIFADDR); 417 if (error) 418 return (error); 419 } 420 /* FALLTHROUGH */ 421 case SIOCGLIFADDR: 422 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 423 } 424 425 /* 426 * Find address for this interface, if it exists. 427 * 428 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 429 * only, and used the first interface address as the target of other 430 * operations (without checking ifra_addr). This was because netinet 431 * code/API assumed at most 1 interface address per interface. 432 * Since IPv6 allows a node to assign multiple addresses 433 * on a single interface, we almost always look and check the 434 * presence of ifra_addr, and reject invalid ones here. 435 * It also decreases duplicated code among SIOC*_IN6 operations. 436 */ 437 switch (cmd) { 438 case SIOCAIFADDR_IN6: 439 case SIOCSIFPHYADDR_IN6: 440 sa6 = &ifra->ifra_addr; 441 break; 442 case SIOCSIFADDR_IN6: 443 case SIOCGIFADDR_IN6: 444 case SIOCSIFDSTADDR_IN6: 445 case SIOCSIFNETMASK_IN6: 446 case SIOCGIFDSTADDR_IN6: 447 case SIOCGIFNETMASK_IN6: 448 case SIOCDIFADDR_IN6: 449 case SIOCGIFPSRCADDR_IN6: 450 case SIOCGIFPDSTADDR_IN6: 451 case SIOCGIFAFLAG_IN6: 452 case SIOCSNDFLUSH_IN6: 453 case SIOCSPFXFLUSH_IN6: 454 case SIOCSRTRFLUSH_IN6: 455 case SIOCGIFALIFETIME_IN6: 456 case SIOCSIFALIFETIME_IN6: 457 case SIOCGIFSTAT_IN6: 458 case SIOCGIFSTAT_ICMP6: 459 sa6 = &ifr->ifr_addr; 460 break; 461 default: 462 sa6 = NULL; 463 break; 464 } 465 if (sa6 && sa6->sin6_family == AF_INET6) { 466 int error = 0; 467 468 if (sa6->sin6_scope_id != 0) 469 error = sa6_embedscope(sa6, 0); 470 else 471 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 472 if (error != 0) 473 return (error); 474 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 475 } else 476 ia = NULL; 477 478 switch (cmd) { 479 case SIOCSIFADDR_IN6: 480 case SIOCSIFDSTADDR_IN6: 481 case SIOCSIFNETMASK_IN6: 482 /* 483 * Since IPv6 allows a node to assign multiple addresses 484 * on a single interface, SIOCSIFxxx ioctls are deprecated. 485 */ 486 /* we decided to obsolete this command (20000704) */ 487 return (EINVAL); 488 489 case SIOCDIFADDR_IN6: 490 /* 491 * for IPv4, we look for existing in_ifaddr here to allow 492 * "ifconfig if0 delete" to remove the first IPv4 address on 493 * the interface. For IPv6, as the spec allows multiple 494 * interface address from the day one, we consider "remove the 495 * first one" semantics to be not preferable. 496 */ 497 if (ia == NULL) 498 return (EADDRNOTAVAIL); 499 /* FALLTHROUGH */ 500 case SIOCAIFADDR_IN6: 501 /* 502 * We always require users to specify a valid IPv6 address for 503 * the corresponding operation. 504 */ 505 if (ifra->ifra_addr.sin6_family != AF_INET6 || 506 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 507 return (EAFNOSUPPORT); 508 509 if (td != NULL) { 510 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 511 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 512 if (error) 513 return (error); 514 } 515 516 break; 517 518 case SIOCGIFADDR_IN6: 519 /* This interface is basically deprecated. use SIOCGIFCONF. */ 520 /* FALLTHROUGH */ 521 case SIOCGIFAFLAG_IN6: 522 case SIOCGIFNETMASK_IN6: 523 case SIOCGIFDSTADDR_IN6: 524 case SIOCGIFALIFETIME_IN6: 525 /* must think again about its semantics */ 526 if (ia == NULL) 527 return (EADDRNOTAVAIL); 528 break; 529 case SIOCSIFALIFETIME_IN6: 530 { 531 struct in6_addrlifetime *lt; 532 533 if (td != NULL) { 534 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 535 if (error) 536 return (error); 537 } 538 if (ia == NULL) 539 return (EADDRNOTAVAIL); 540 /* sanity for overflow - beware unsigned */ 541 lt = &ifr->ifr_ifru.ifru_lifetime; 542 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 543 lt->ia6t_vltime + time_second < time_second) { 544 return EINVAL; 545 } 546 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 547 lt->ia6t_pltime + time_second < time_second) { 548 return EINVAL; 549 } 550 break; 551 } 552 } 553 554 switch (cmd) { 555 556 case SIOCGIFADDR_IN6: 557 ifr->ifr_addr = ia->ia_addr; 558 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 559 return (error); 560 break; 561 562 case SIOCGIFDSTADDR_IN6: 563 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 564 return (EINVAL); 565 /* 566 * XXX: should we check if ifa_dstaddr is NULL and return 567 * an error? 568 */ 569 ifr->ifr_dstaddr = ia->ia_dstaddr; 570 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 571 return (error); 572 break; 573 574 case SIOCGIFNETMASK_IN6: 575 ifr->ifr_addr = ia->ia_prefixmask; 576 break; 577 578 case SIOCGIFAFLAG_IN6: 579 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 580 break; 581 582 case SIOCGIFSTAT_IN6: 583 if (ifp == NULL) 584 return EINVAL; 585 bzero(&ifr->ifr_ifru.ifru_stat, 586 sizeof(ifr->ifr_ifru.ifru_stat)); 587 ifr->ifr_ifru.ifru_stat = 588 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 589 break; 590 591 case SIOCGIFSTAT_ICMP6: 592 if (ifp == NULL) 593 return EINVAL; 594 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 595 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 596 ifr->ifr_ifru.ifru_icmp6stat = 597 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 598 break; 599 600 case SIOCGIFALIFETIME_IN6: 601 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 602 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 603 time_t maxexpire; 604 struct in6_addrlifetime *retlt = 605 &ifr->ifr_ifru.ifru_lifetime; 606 607 /* 608 * XXX: adjust expiration time assuming time_t is 609 * signed. 610 */ 611 maxexpire = (-1) & 612 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 613 if (ia->ia6_lifetime.ia6t_vltime < 614 maxexpire - ia->ia6_updatetime) { 615 retlt->ia6t_expire = ia->ia6_updatetime + 616 ia->ia6_lifetime.ia6t_vltime; 617 } else 618 retlt->ia6t_expire = maxexpire; 619 } 620 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 621 time_t maxexpire; 622 struct in6_addrlifetime *retlt = 623 &ifr->ifr_ifru.ifru_lifetime; 624 625 /* 626 * XXX: adjust expiration time assuming time_t is 627 * signed. 628 */ 629 maxexpire = (-1) & 630 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 631 if (ia->ia6_lifetime.ia6t_pltime < 632 maxexpire - ia->ia6_updatetime) { 633 retlt->ia6t_preferred = ia->ia6_updatetime + 634 ia->ia6_lifetime.ia6t_pltime; 635 } else 636 retlt->ia6t_preferred = maxexpire; 637 } 638 break; 639 640 case SIOCSIFALIFETIME_IN6: 641 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 642 /* for sanity */ 643 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 644 ia->ia6_lifetime.ia6t_expire = 645 time_second + ia->ia6_lifetime.ia6t_vltime; 646 } else 647 ia->ia6_lifetime.ia6t_expire = 0; 648 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 649 ia->ia6_lifetime.ia6t_preferred = 650 time_second + ia->ia6_lifetime.ia6t_pltime; 651 } else 652 ia->ia6_lifetime.ia6t_preferred = 0; 653 break; 654 655 case SIOCAIFADDR_IN6: 656 { 657 int i, error = 0; 658 struct nd_prefixctl pr0; 659 struct nd_prefix *pr; 660 661 /* 662 * first, make or update the interface address structure, 663 * and link it to the list. 664 */ 665 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 666 return (error); 667 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 668 == NULL) { 669 /* 670 * this can happen when the user specify the 0 valid 671 * lifetime. 672 */ 673 break; 674 } 675 676 /* 677 * then, make the prefix on-link on the interface. 678 * XXX: we'd rather create the prefix before the address, but 679 * we need at least one address to install the corresponding 680 * interface route, so we configure the address first. 681 */ 682 683 /* 684 * convert mask to prefix length (prefixmask has already 685 * been validated in in6_update_ifa(). 686 */ 687 bzero(&pr0, sizeof(pr0)); 688 pr0.ndpr_ifp = ifp; 689 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 690 NULL); 691 if (pr0.ndpr_plen == 128) { 692 break; /* we don't need to install a host route. */ 693 } 694 pr0.ndpr_prefix = ifra->ifra_addr; 695 /* apply the mask for safety. */ 696 for (i = 0; i < 4; i++) { 697 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 698 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 699 } 700 /* 701 * XXX: since we don't have an API to set prefix (not address) 702 * lifetimes, we just use the same lifetimes as addresses. 703 * The (temporarily) installed lifetimes can be overridden by 704 * later advertised RAs (when accept_rtadv is non 0), which is 705 * an intended behavior. 706 */ 707 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 708 pr0.ndpr_raf_auto = 709 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 710 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 711 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 712 713 /* add the prefix if not yet. */ 714 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 715 /* 716 * nd6_prelist_add will install the corresponding 717 * interface route. 718 */ 719 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 720 return (error); 721 if (pr == NULL) { 722 log(LOG_ERR, "nd6_prelist_add succeeded but " 723 "no prefix\n"); 724 return (EINVAL); /* XXX panic here? */ 725 } 726 } 727 728 /* relate the address to the prefix */ 729 if (ia->ia6_ndpr == NULL) { 730 ia->ia6_ndpr = pr; 731 pr->ndpr_refcnt++; 732 733 /* 734 * If this is the first autoconf address from the 735 * prefix, create a temporary address as well 736 * (when required). 737 */ 738 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 739 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 740 int e; 741 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 742 log(LOG_NOTICE, "in6_control: failed " 743 "to create a temporary address, " 744 "errno=%d\n", e); 745 } 746 } 747 } 748 749 /* 750 * this might affect the status of autoconfigured addresses, 751 * that is, this address might make other addresses detached. 752 */ 753 pfxlist_onlink_check(); 754 if (error == 0 && ia) 755 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 756 break; 757 } 758 759 case SIOCDIFADDR_IN6: 760 { 761 struct nd_prefix *pr; 762 763 /* 764 * If the address being deleted is the only one that owns 765 * the corresponding prefix, expire the prefix as well. 766 * XXX: theoretically, we don't have to worry about such 767 * relationship, since we separate the address management 768 * and the prefix management. We do this, however, to provide 769 * as much backward compatibility as possible in terms of 770 * the ioctl operation. 771 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 772 */ 773 pr = ia->ia6_ndpr; 774 in6_purgeaddr(&ia->ia_ifa); 775 if (pr && pr->ndpr_refcnt == 0) 776 prelist_remove(pr); 777 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 778 break; 779 } 780 781 default: 782 if (ifp == NULL || ifp->if_ioctl == 0) 783 return (EOPNOTSUPP); 784 return ((*ifp->if_ioctl)(ifp, cmd, data)); 785 } 786 787 return (0); 788 } 789 790 /* 791 * Update parameters of an IPv6 interface address. 792 * If necessary, a new entry is created and linked into address chains. 793 * This function is separated from in6_control(). 794 * XXX: should this be performed under splnet()? 795 */ 796 int 797 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 798 struct in6_ifaddr *ia, int flags) 799 { 800 INIT_VNET_INET6(ifp->if_vnet); 801 INIT_VPROCG(TD_TO_VPROCG(curthread)); /* XXX V_hostname needs this */ 802 int error = 0, hostIsNew = 0, plen = -1; 803 struct in6_ifaddr *oia; 804 struct sockaddr_in6 dst6; 805 struct in6_addrlifetime *lt; 806 struct in6_multi_mship *imm; 807 struct in6_multi *in6m_sol; 808 struct rtentry *rt; 809 int delay; 810 char ip6buf[INET6_ADDRSTRLEN]; 811 812 /* Validate parameters */ 813 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 814 return (EINVAL); 815 816 /* 817 * The destination address for a p2p link must have a family 818 * of AF_UNSPEC or AF_INET6. 819 */ 820 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 821 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 822 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 823 return (EAFNOSUPPORT); 824 /* 825 * validate ifra_prefixmask. don't check sin6_family, netmask 826 * does not carry fields other than sin6_len. 827 */ 828 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 829 return (EINVAL); 830 /* 831 * Because the IPv6 address architecture is classless, we require 832 * users to specify a (non 0) prefix length (mask) for a new address. 833 * We also require the prefix (when specified) mask is valid, and thus 834 * reject a non-consecutive mask. 835 */ 836 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 837 return (EINVAL); 838 if (ifra->ifra_prefixmask.sin6_len != 0) { 839 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 840 (u_char *)&ifra->ifra_prefixmask + 841 ifra->ifra_prefixmask.sin6_len); 842 if (plen <= 0) 843 return (EINVAL); 844 } else { 845 /* 846 * In this case, ia must not be NULL. We just use its prefix 847 * length. 848 */ 849 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 850 } 851 /* 852 * If the destination address on a p2p interface is specified, 853 * and the address is a scoped one, validate/set the scope 854 * zone identifier. 855 */ 856 dst6 = ifra->ifra_dstaddr; 857 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 858 (dst6.sin6_family == AF_INET6)) { 859 struct in6_addr in6_tmp; 860 u_int32_t zoneid; 861 862 in6_tmp = dst6.sin6_addr; 863 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 864 return (EINVAL); /* XXX: should be impossible */ 865 866 if (dst6.sin6_scope_id != 0) { 867 if (dst6.sin6_scope_id != zoneid) 868 return (EINVAL); 869 } else /* user omit to specify the ID. */ 870 dst6.sin6_scope_id = zoneid; 871 872 /* convert into the internal form */ 873 if (sa6_embedscope(&dst6, 0)) 874 return (EINVAL); /* XXX: should be impossible */ 875 } 876 /* 877 * The destination address can be specified only for a p2p or a 878 * loopback interface. If specified, the corresponding prefix length 879 * must be 128. 880 */ 881 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 882 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 883 /* XXX: noisy message */ 884 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 885 "be specified for a p2p or a loopback IF only\n")); 886 return (EINVAL); 887 } 888 if (plen != 128) { 889 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 890 "be 128 when dstaddr is specified\n")); 891 return (EINVAL); 892 } 893 } 894 /* lifetime consistency check */ 895 lt = &ifra->ifra_lifetime; 896 if (lt->ia6t_pltime > lt->ia6t_vltime) 897 return (EINVAL); 898 if (lt->ia6t_vltime == 0) { 899 /* 900 * the following log might be noisy, but this is a typical 901 * configuration mistake or a tool's bug. 902 */ 903 nd6log((LOG_INFO, 904 "in6_update_ifa: valid lifetime is 0 for %s\n", 905 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 906 907 if (ia == NULL) 908 return (0); /* there's nothing to do */ 909 } 910 911 /* 912 * If this is a new address, allocate a new ifaddr and link it 913 * into chains. 914 */ 915 if (ia == NULL) { 916 hostIsNew = 1; 917 /* 918 * When in6_update_ifa() is called in a process of a received 919 * RA, it is called under an interrupt context. So, we should 920 * call malloc with M_NOWAIT. 921 */ 922 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 923 M_NOWAIT); 924 if (ia == NULL) 925 return (ENOBUFS); 926 bzero((caddr_t)ia, sizeof(*ia)); 927 LIST_INIT(&ia->ia6_memberships); 928 /* Initialize the address and masks, and put time stamp */ 929 IFA_LOCK_INIT(&ia->ia_ifa); 930 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 931 ia->ia_addr.sin6_family = AF_INET6; 932 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 933 ia->ia6_createtime = time_second; 934 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 935 /* 936 * XXX: some functions expect that ifa_dstaddr is not 937 * NULL for p2p interfaces. 938 */ 939 ia->ia_ifa.ifa_dstaddr = 940 (struct sockaddr *)&ia->ia_dstaddr; 941 } else { 942 ia->ia_ifa.ifa_dstaddr = NULL; 943 } 944 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 945 946 ia->ia_ifp = ifp; 947 if ((oia = V_in6_ifaddr) != NULL) { 948 for ( ; oia->ia_next; oia = oia->ia_next) 949 continue; 950 oia->ia_next = ia; 951 } else 952 V_in6_ifaddr = ia; 953 954 ia->ia_ifa.ifa_refcnt = 1; 955 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 956 } 957 958 /* update timestamp */ 959 ia->ia6_updatetime = time_second; 960 961 /* set prefix mask */ 962 if (ifra->ifra_prefixmask.sin6_len) { 963 /* 964 * We prohibit changing the prefix length of an existing 965 * address, because 966 * + such an operation should be rare in IPv6, and 967 * + the operation would confuse prefix management. 968 */ 969 if (ia->ia_prefixmask.sin6_len && 970 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 971 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 972 " existing (%s) address should not be changed\n", 973 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 974 error = EINVAL; 975 goto unlink; 976 } 977 ia->ia_prefixmask = ifra->ifra_prefixmask; 978 } 979 980 /* 981 * If a new destination address is specified, scrub the old one and 982 * install the new destination. Note that the interface must be 983 * p2p or loopback (see the check above.) 984 */ 985 if (dst6.sin6_family == AF_INET6 && 986 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 987 int e; 988 989 if ((ia->ia_flags & IFA_ROUTE) != 0 && 990 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 991 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 992 "a route to the old destination: %s\n", 993 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 994 /* proceed anyway... */ 995 } else 996 ia->ia_flags &= ~IFA_ROUTE; 997 ia->ia_dstaddr = dst6; 998 } 999 1000 /* 1001 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1002 * to see if the address is deprecated or invalidated, but initialize 1003 * these members for applications. 1004 */ 1005 ia->ia6_lifetime = ifra->ifra_lifetime; 1006 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1007 ia->ia6_lifetime.ia6t_expire = 1008 time_second + ia->ia6_lifetime.ia6t_vltime; 1009 } else 1010 ia->ia6_lifetime.ia6t_expire = 0; 1011 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1012 ia->ia6_lifetime.ia6t_preferred = 1013 time_second + ia->ia6_lifetime.ia6t_pltime; 1014 } else 1015 ia->ia6_lifetime.ia6t_preferred = 0; 1016 1017 /* reset the interface and routing table appropriately. */ 1018 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1019 goto unlink; 1020 1021 /* 1022 * configure address flags. 1023 */ 1024 ia->ia6_flags = ifra->ifra_flags; 1025 /* 1026 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1027 * userland, make it deprecated. 1028 */ 1029 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1030 ia->ia6_lifetime.ia6t_pltime = 0; 1031 ia->ia6_lifetime.ia6t_preferred = time_second; 1032 } 1033 /* 1034 * Make the address tentative before joining multicast addresses, 1035 * so that corresponding MLD responses would not have a tentative 1036 * source address. 1037 */ 1038 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1039 if (hostIsNew && in6if_do_dad(ifp)) 1040 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1041 1042 /* 1043 * We are done if we have simply modified an existing address. 1044 */ 1045 if (!hostIsNew) 1046 return (error); 1047 1048 /* 1049 * Beyond this point, we should call in6_purgeaddr upon an error, 1050 * not just go to unlink. 1051 */ 1052 1053 /* Join necessary multicast groups */ 1054 in6m_sol = NULL; 1055 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1056 struct sockaddr_in6 mltaddr, mltmask; 1057 struct in6_addr llsol; 1058 1059 /* join solicited multicast addr for new host id */ 1060 bzero(&llsol, sizeof(struct in6_addr)); 1061 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1062 llsol.s6_addr32[1] = 0; 1063 llsol.s6_addr32[2] = htonl(1); 1064 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1065 llsol.s6_addr8[12] = 0xff; 1066 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1067 /* XXX: should not happen */ 1068 log(LOG_ERR, "in6_update_ifa: " 1069 "in6_setscope failed\n"); 1070 goto cleanup; 1071 } 1072 delay = 0; 1073 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1074 /* 1075 * We need a random delay for DAD on the address 1076 * being configured. It also means delaying 1077 * transmission of the corresponding MLD report to 1078 * avoid report collision. 1079 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1080 */ 1081 delay = arc4random() % 1082 (MAX_RTR_SOLICITATION_DELAY * hz); 1083 } 1084 imm = in6_joingroup(ifp, &llsol, &error, delay); 1085 if (imm == NULL) { 1086 nd6log((LOG_WARNING, 1087 "in6_update_ifa: addmulti failed for " 1088 "%s on %s (errno=%d)\n", 1089 ip6_sprintf(ip6buf, &llsol), if_name(ifp), 1090 error)); 1091 in6_purgeaddr((struct ifaddr *)ia); 1092 return (error); 1093 } 1094 LIST_INSERT_HEAD(&ia->ia6_memberships, 1095 imm, i6mm_chain); 1096 in6m_sol = imm->i6mm_maddr; 1097 1098 bzero(&mltmask, sizeof(mltmask)); 1099 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1100 mltmask.sin6_family = AF_INET6; 1101 mltmask.sin6_addr = in6mask32; 1102 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1103 1104 /* 1105 * join link-local all-nodes address 1106 */ 1107 bzero(&mltaddr, sizeof(mltaddr)); 1108 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1109 mltaddr.sin6_family = AF_INET6; 1110 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1111 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1112 0) 1113 goto cleanup; /* XXX: should not fail */ 1114 1115 /* 1116 * XXX: do we really need this automatic routes? 1117 * We should probably reconsider this stuff. Most applications 1118 * actually do not need the routes, since they usually specify 1119 * the outgoing interface. 1120 */ 1121 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1122 if (rt) { 1123 /* XXX: only works in !SCOPEDROUTING case. */ 1124 if (memcmp(&mltaddr.sin6_addr, 1125 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1126 MLTMASK_LEN)) { 1127 RTFREE_LOCKED(rt); 1128 rt = NULL; 1129 } 1130 } 1131 if (!rt) { 1132 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1133 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1134 (struct sockaddr *)&ia->ia_addr, 1135 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1136 (struct rtentry **)0); 1137 if (error) 1138 goto cleanup; 1139 } else { 1140 RTFREE_LOCKED(rt); 1141 } 1142 1143 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1144 if (!imm) { 1145 nd6log((LOG_WARNING, 1146 "in6_update_ifa: addmulti failed for " 1147 "%s on %s (errno=%d)\n", 1148 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1149 if_name(ifp), error)); 1150 goto cleanup; 1151 } 1152 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1153 1154 /* 1155 * join node information group address 1156 */ 1157 #define hostnamelen strlen(V_hostname) 1158 delay = 0; 1159 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1160 /* 1161 * The spec doesn't say anything about delay for this 1162 * group, but the same logic should apply. 1163 */ 1164 delay = arc4random() % 1165 (MAX_RTR_SOLICITATION_DELAY * hz); 1166 } 1167 mtx_lock(&hostname_mtx); 1168 if (in6_nigroup(ifp, V_hostname, hostnamelen, 1169 &mltaddr.sin6_addr) == 0) { 1170 mtx_unlock(&hostname_mtx); 1171 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1172 delay); /* XXX jinmei */ 1173 if (!imm) { 1174 nd6log((LOG_WARNING, "in6_update_ifa: " 1175 "addmulti failed for %s on %s " 1176 "(errno=%d)\n", 1177 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1178 if_name(ifp), error)); 1179 /* XXX not very fatal, go on... */ 1180 } else { 1181 LIST_INSERT_HEAD(&ia->ia6_memberships, 1182 imm, i6mm_chain); 1183 } 1184 } else 1185 mtx_unlock(&hostname_mtx); 1186 #undef hostnamelen 1187 1188 /* 1189 * join interface-local all-nodes address. 1190 * (ff01::1%ifN, and ff01::%ifN/32) 1191 */ 1192 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1193 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1194 != 0) 1195 goto cleanup; /* XXX: should not fail */ 1196 /* XXX: again, do we really need the route? */ 1197 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1198 if (rt) { 1199 if (memcmp(&mltaddr.sin6_addr, 1200 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1201 MLTMASK_LEN)) { 1202 RTFREE_LOCKED(rt); 1203 rt = NULL; 1204 } 1205 } 1206 if (!rt) { 1207 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1208 (struct sockaddr *)&ia->ia_addr, 1209 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1210 (struct rtentry **)0); 1211 if (error) 1212 goto cleanup; 1213 } else 1214 RTFREE_LOCKED(rt); 1215 1216 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1217 if (!imm) { 1218 nd6log((LOG_WARNING, "in6_update_ifa: " 1219 "addmulti failed for %s on %s " 1220 "(errno=%d)\n", 1221 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1222 if_name(ifp), error)); 1223 goto cleanup; 1224 } 1225 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1226 #undef MLTMASK_LEN 1227 } 1228 1229 /* 1230 * Perform DAD, if needed. 1231 * XXX It may be of use, if we can administratively 1232 * disable DAD. 1233 */ 1234 if (hostIsNew && in6if_do_dad(ifp) && 1235 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1236 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1237 { 1238 int mindelay, maxdelay; 1239 1240 delay = 0; 1241 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1242 /* 1243 * We need to impose a delay before sending an NS 1244 * for DAD. Check if we also needed a delay for the 1245 * corresponding MLD message. If we did, the delay 1246 * should be larger than the MLD delay (this could be 1247 * relaxed a bit, but this simple logic is at least 1248 * safe). 1249 */ 1250 mindelay = 0; 1251 if (in6m_sol != NULL && 1252 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1253 mindelay = in6m_sol->in6m_timer; 1254 } 1255 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1256 if (maxdelay - mindelay == 0) 1257 delay = 0; 1258 else { 1259 delay = 1260 (arc4random() % (maxdelay - mindelay)) + 1261 mindelay; 1262 } 1263 } 1264 nd6_dad_start((struct ifaddr *)ia, delay); 1265 } 1266 1267 return (error); 1268 1269 unlink: 1270 /* 1271 * XXX: if a change of an existing address failed, keep the entry 1272 * anyway. 1273 */ 1274 if (hostIsNew) 1275 in6_unlink_ifa(ia, ifp); 1276 return (error); 1277 1278 cleanup: 1279 in6_purgeaddr(&ia->ia_ifa); 1280 return error; 1281 } 1282 1283 void 1284 in6_purgeaddr(struct ifaddr *ifa) 1285 { 1286 struct ifnet *ifp = ifa->ifa_ifp; 1287 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1288 char ip6buf[INET6_ADDRSTRLEN]; 1289 struct in6_multi_mship *imm; 1290 1291 /* stop DAD processing */ 1292 nd6_dad_stop(ifa); 1293 1294 /* 1295 * delete route to the destination of the address being purged. 1296 * The interface must be p2p or loopback in this case. 1297 */ 1298 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1299 int e; 1300 1301 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1302 != 0) { 1303 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1304 "a route to the p2p destination: %s on %s, " 1305 "errno=%d\n", 1306 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), 1307 if_name(ifp), e); 1308 /* proceed anyway... */ 1309 } else 1310 ia->ia_flags &= ~IFA_ROUTE; 1311 } 1312 1313 /* Remove ownaddr's loopback rtentry, if it exists. */ 1314 in6_ifremloop(&(ia->ia_ifa)); 1315 1316 /* 1317 * leave from multicast groups we have joined for the interface 1318 */ 1319 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1320 LIST_REMOVE(imm, i6mm_chain); 1321 in6_leavegroup(imm); 1322 } 1323 1324 in6_unlink_ifa(ia, ifp); 1325 } 1326 1327 static void 1328 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1329 { 1330 INIT_VNET_INET6(ifp->if_vnet); 1331 struct in6_ifaddr *oia; 1332 int s = splnet(); 1333 1334 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1335 1336 oia = ia; 1337 if (oia == (ia = V_in6_ifaddr)) 1338 V_in6_ifaddr = ia->ia_next; 1339 else { 1340 while (ia->ia_next && (ia->ia_next != oia)) 1341 ia = ia->ia_next; 1342 if (ia->ia_next) 1343 ia->ia_next = oia->ia_next; 1344 else { 1345 /* search failed */ 1346 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1347 } 1348 } 1349 1350 /* 1351 * Release the reference to the base prefix. There should be a 1352 * positive reference. 1353 */ 1354 if (oia->ia6_ndpr == NULL) { 1355 nd6log((LOG_NOTICE, 1356 "in6_unlink_ifa: autoconf'ed address " 1357 "%p has no prefix\n", oia)); 1358 } else { 1359 oia->ia6_ndpr->ndpr_refcnt--; 1360 oia->ia6_ndpr = NULL; 1361 } 1362 1363 /* 1364 * Also, if the address being removed is autoconf'ed, call 1365 * pfxlist_onlink_check() since the release might affect the status of 1366 * other (detached) addresses. 1367 */ 1368 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1369 pfxlist_onlink_check(); 1370 } 1371 1372 /* 1373 * release another refcnt for the link from in6_ifaddr. 1374 * Note that we should decrement the refcnt at least once for all *BSD. 1375 */ 1376 IFAFREE(&oia->ia_ifa); 1377 1378 splx(s); 1379 } 1380 1381 void 1382 in6_purgeif(struct ifnet *ifp) 1383 { 1384 struct ifaddr *ifa, *nifa; 1385 1386 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1387 nifa = TAILQ_NEXT(ifa, ifa_list); 1388 if (ifa->ifa_addr->sa_family != AF_INET6) 1389 continue; 1390 in6_purgeaddr(ifa); 1391 } 1392 1393 in6_ifdetach(ifp); 1394 } 1395 1396 /* 1397 * SIOC[GAD]LIFADDR. 1398 * SIOCGLIFADDR: get first address. (?) 1399 * SIOCGLIFADDR with IFLR_PREFIX: 1400 * get first address that matches the specified prefix. 1401 * SIOCALIFADDR: add the specified address. 1402 * SIOCALIFADDR with IFLR_PREFIX: 1403 * add the specified prefix, filling hostid part from 1404 * the first link-local address. prefixlen must be <= 64. 1405 * SIOCDLIFADDR: delete the specified address. 1406 * SIOCDLIFADDR with IFLR_PREFIX: 1407 * delete the first address that matches the specified prefix. 1408 * return values: 1409 * EINVAL on invalid parameters 1410 * EADDRNOTAVAIL on prefix match failed/specified address not found 1411 * other values may be returned from in6_ioctl() 1412 * 1413 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1414 * this is to accomodate address naming scheme other than RFC2374, 1415 * in the future. 1416 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1417 * address encoding scheme. (see figure on page 8) 1418 */ 1419 static int 1420 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1421 struct ifnet *ifp, struct thread *td) 1422 { 1423 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1424 struct ifaddr *ifa; 1425 struct sockaddr *sa; 1426 1427 /* sanity checks */ 1428 if (!data || !ifp) { 1429 panic("invalid argument to in6_lifaddr_ioctl"); 1430 /* NOTREACHED */ 1431 } 1432 1433 switch (cmd) { 1434 case SIOCGLIFADDR: 1435 /* address must be specified on GET with IFLR_PREFIX */ 1436 if ((iflr->flags & IFLR_PREFIX) == 0) 1437 break; 1438 /* FALLTHROUGH */ 1439 case SIOCALIFADDR: 1440 case SIOCDLIFADDR: 1441 /* address must be specified on ADD and DELETE */ 1442 sa = (struct sockaddr *)&iflr->addr; 1443 if (sa->sa_family != AF_INET6) 1444 return EINVAL; 1445 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1446 return EINVAL; 1447 /* XXX need improvement */ 1448 sa = (struct sockaddr *)&iflr->dstaddr; 1449 if (sa->sa_family && sa->sa_family != AF_INET6) 1450 return EINVAL; 1451 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1452 return EINVAL; 1453 break; 1454 default: /* shouldn't happen */ 1455 #if 0 1456 panic("invalid cmd to in6_lifaddr_ioctl"); 1457 /* NOTREACHED */ 1458 #else 1459 return EOPNOTSUPP; 1460 #endif 1461 } 1462 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1463 return EINVAL; 1464 1465 switch (cmd) { 1466 case SIOCALIFADDR: 1467 { 1468 struct in6_aliasreq ifra; 1469 struct in6_addr *hostid = NULL; 1470 int prefixlen; 1471 1472 if ((iflr->flags & IFLR_PREFIX) != 0) { 1473 struct sockaddr_in6 *sin6; 1474 1475 /* 1476 * hostid is to fill in the hostid part of the 1477 * address. hostid points to the first link-local 1478 * address attached to the interface. 1479 */ 1480 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1481 if (!ifa) 1482 return EADDRNOTAVAIL; 1483 hostid = IFA_IN6(ifa); 1484 1485 /* prefixlen must be <= 64. */ 1486 if (64 < iflr->prefixlen) 1487 return EINVAL; 1488 prefixlen = iflr->prefixlen; 1489 1490 /* hostid part must be zero. */ 1491 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1492 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1493 sin6->sin6_addr.s6_addr32[3] != 0) { 1494 return EINVAL; 1495 } 1496 } else 1497 prefixlen = iflr->prefixlen; 1498 1499 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1500 bzero(&ifra, sizeof(ifra)); 1501 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1502 1503 bcopy(&iflr->addr, &ifra.ifra_addr, 1504 ((struct sockaddr *)&iflr->addr)->sa_len); 1505 if (hostid) { 1506 /* fill in hostid part */ 1507 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1508 hostid->s6_addr32[2]; 1509 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1510 hostid->s6_addr32[3]; 1511 } 1512 1513 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1514 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1515 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1516 if (hostid) { 1517 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1518 hostid->s6_addr32[2]; 1519 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1520 hostid->s6_addr32[3]; 1521 } 1522 } 1523 1524 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1525 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1526 1527 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1528 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1529 } 1530 case SIOCGLIFADDR: 1531 case SIOCDLIFADDR: 1532 { 1533 struct in6_ifaddr *ia; 1534 struct in6_addr mask, candidate, match; 1535 struct sockaddr_in6 *sin6; 1536 int cmp; 1537 1538 bzero(&mask, sizeof(mask)); 1539 if (iflr->flags & IFLR_PREFIX) { 1540 /* lookup a prefix rather than address. */ 1541 in6_prefixlen2mask(&mask, iflr->prefixlen); 1542 1543 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1544 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1545 match.s6_addr32[0] &= mask.s6_addr32[0]; 1546 match.s6_addr32[1] &= mask.s6_addr32[1]; 1547 match.s6_addr32[2] &= mask.s6_addr32[2]; 1548 match.s6_addr32[3] &= mask.s6_addr32[3]; 1549 1550 /* if you set extra bits, that's wrong */ 1551 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1552 return EINVAL; 1553 1554 cmp = 1; 1555 } else { 1556 if (cmd == SIOCGLIFADDR) { 1557 /* on getting an address, take the 1st match */ 1558 cmp = 0; /* XXX */ 1559 } else { 1560 /* on deleting an address, do exact match */ 1561 in6_prefixlen2mask(&mask, 128); 1562 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1563 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1564 1565 cmp = 1; 1566 } 1567 } 1568 1569 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1570 if (ifa->ifa_addr->sa_family != AF_INET6) 1571 continue; 1572 if (!cmp) 1573 break; 1574 1575 /* 1576 * XXX: this is adhoc, but is necessary to allow 1577 * a user to specify fe80::/64 (not /10) for a 1578 * link-local address. 1579 */ 1580 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1581 in6_clearscope(&candidate); 1582 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1583 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1584 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1585 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1586 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1587 break; 1588 } 1589 if (!ifa) 1590 return EADDRNOTAVAIL; 1591 ia = ifa2ia6(ifa); 1592 1593 if (cmd == SIOCGLIFADDR) { 1594 int error; 1595 1596 /* fill in the if_laddrreq structure */ 1597 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1598 error = sa6_recoverscope( 1599 (struct sockaddr_in6 *)&iflr->addr); 1600 if (error != 0) 1601 return (error); 1602 1603 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1604 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1605 ia->ia_dstaddr.sin6_len); 1606 error = sa6_recoverscope( 1607 (struct sockaddr_in6 *)&iflr->dstaddr); 1608 if (error != 0) 1609 return (error); 1610 } else 1611 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1612 1613 iflr->prefixlen = 1614 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1615 1616 iflr->flags = ia->ia6_flags; /* XXX */ 1617 1618 return 0; 1619 } else { 1620 struct in6_aliasreq ifra; 1621 1622 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1623 bzero(&ifra, sizeof(ifra)); 1624 bcopy(iflr->iflr_name, ifra.ifra_name, 1625 sizeof(ifra.ifra_name)); 1626 1627 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1628 ia->ia_addr.sin6_len); 1629 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1630 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1631 ia->ia_dstaddr.sin6_len); 1632 } else { 1633 bzero(&ifra.ifra_dstaddr, 1634 sizeof(ifra.ifra_dstaddr)); 1635 } 1636 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1637 ia->ia_prefixmask.sin6_len); 1638 1639 ifra.ifra_flags = ia->ia6_flags; 1640 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1641 ifp, td); 1642 } 1643 } 1644 } 1645 1646 return EOPNOTSUPP; /* just for safety */ 1647 } 1648 1649 /* 1650 * Initialize an interface's intetnet6 address 1651 * and routing table entry. 1652 */ 1653 static int 1654 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1655 struct sockaddr_in6 *sin6, int newhost) 1656 { 1657 int error = 0, plen, ifacount = 0; 1658 int s = splimp(); 1659 struct ifaddr *ifa; 1660 1661 /* 1662 * Give the interface a chance to initialize 1663 * if this is its first address, 1664 * and to validate the address if necessary. 1665 */ 1666 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1667 if (ifa->ifa_addr->sa_family != AF_INET6) 1668 continue; 1669 ifacount++; 1670 } 1671 1672 ia->ia_addr = *sin6; 1673 1674 if (ifacount <= 1 && ifp->if_ioctl) { 1675 IFF_LOCKGIANT(ifp); 1676 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1677 IFF_UNLOCKGIANT(ifp); 1678 if (error) { 1679 splx(s); 1680 return (error); 1681 } 1682 } 1683 splx(s); 1684 1685 ia->ia_ifa.ifa_metric = ifp->if_metric; 1686 1687 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1688 1689 if (newhost) { 1690 /* 1691 * set the rtrequest function to create llinfo. It also 1692 * adjust outgoing interface of the route for the local 1693 * address when called via in6_ifaddloop() below. 1694 */ 1695 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1696 } 1697 1698 /* 1699 * Special case: 1700 * If a new destination address is specified for a point-to-point 1701 * interface, install a route to the destination as an interface 1702 * direct route. In addition, if the link is expected to have neighbor 1703 * cache entries, specify RTF_LLINFO so that a cache entry for the 1704 * destination address will be created. 1705 * created 1706 * XXX: the logic below rejects assigning multiple addresses on a p2p 1707 * interface that share the same destination. 1708 */ 1709 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1710 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1711 ia->ia_dstaddr.sin6_family == AF_INET6) { 1712 int rtflags = RTF_UP | RTF_HOST; 1713 struct rtentry *rt = NULL, **rtp = NULL; 1714 1715 if (nd6_need_cache(ifp) != 0) { 1716 rtflags |= RTF_LLINFO; 1717 rtp = &rt; 1718 } 1719 1720 error = rtrequest(RTM_ADD, 1721 (struct sockaddr *)&ia->ia_dstaddr, 1722 (struct sockaddr *)&ia->ia_addr, 1723 (struct sockaddr *)&ia->ia_prefixmask, 1724 ia->ia_flags | rtflags, rtp); 1725 if (error != 0) 1726 return (error); 1727 if (rt != NULL) { 1728 struct llinfo_nd6 *ln; 1729 1730 RT_LOCK(rt); 1731 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1732 if (ln != NULL) { 1733 /* 1734 * Set the state to STALE because we don't 1735 * have to perform address resolution on this 1736 * link. 1737 */ 1738 ln->ln_state = ND6_LLINFO_STALE; 1739 } 1740 RT_REMREF(rt); 1741 RT_UNLOCK(rt); 1742 } 1743 ia->ia_flags |= IFA_ROUTE; 1744 } 1745 if (plen < 128) { 1746 /* 1747 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1748 */ 1749 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1750 } 1751 1752 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1753 if (newhost) 1754 in6_ifaddloop(&(ia->ia_ifa)); 1755 1756 return (error); 1757 } 1758 1759 struct in6_multi_mship * 1760 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, 1761 int *errorp, int delay) 1762 { 1763 struct in6_multi_mship *imm; 1764 1765 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1766 if (!imm) { 1767 *errorp = ENOBUFS; 1768 return NULL; 1769 } 1770 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1771 if (!imm->i6mm_maddr) { 1772 /* *errorp is alrady set */ 1773 free(imm, M_IP6MADDR); 1774 return NULL; 1775 } 1776 return imm; 1777 } 1778 1779 int 1780 in6_leavegroup(struct in6_multi_mship *imm) 1781 { 1782 1783 if (imm->i6mm_maddr) 1784 in6_delmulti(imm->i6mm_maddr); 1785 free(imm, M_IP6MADDR); 1786 return 0; 1787 } 1788 1789 /* 1790 * Find an IPv6 interface link-local address specific to an interface. 1791 */ 1792 struct in6_ifaddr * 1793 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1794 { 1795 struct ifaddr *ifa; 1796 1797 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1798 if (ifa->ifa_addr->sa_family != AF_INET6) 1799 continue; 1800 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1801 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1802 ignoreflags) != 0) 1803 continue; 1804 break; 1805 } 1806 } 1807 1808 return ((struct in6_ifaddr *)ifa); 1809 } 1810 1811 1812 /* 1813 * find the internet address corresponding to a given interface and address. 1814 */ 1815 struct in6_ifaddr * 1816 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1817 { 1818 struct ifaddr *ifa; 1819 1820 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1821 if (ifa->ifa_addr->sa_family != AF_INET6) 1822 continue; 1823 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1824 break; 1825 } 1826 1827 return ((struct in6_ifaddr *)ifa); 1828 } 1829 1830 /* 1831 * Convert IP6 address to printable (loggable) representation. Caller 1832 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1833 */ 1834 static char digits[] = "0123456789abcdef"; 1835 char * 1836 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1837 { 1838 int i; 1839 char *cp; 1840 const u_int16_t *a = (const u_int16_t *)addr; 1841 const u_int8_t *d; 1842 int dcolon = 0, zero = 0; 1843 1844 cp = ip6buf; 1845 1846 for (i = 0; i < 8; i++) { 1847 if (dcolon == 1) { 1848 if (*a == 0) { 1849 if (i == 7) 1850 *cp++ = ':'; 1851 a++; 1852 continue; 1853 } else 1854 dcolon = 2; 1855 } 1856 if (*a == 0) { 1857 if (dcolon == 0 && *(a + 1) == 0) { 1858 if (i == 0) 1859 *cp++ = ':'; 1860 *cp++ = ':'; 1861 dcolon = 1; 1862 } else { 1863 *cp++ = '0'; 1864 *cp++ = ':'; 1865 } 1866 a++; 1867 continue; 1868 } 1869 d = (const u_char *)a; 1870 /* Try to eliminate leading zeros in printout like in :0001. */ 1871 zero = 1; 1872 *cp = digits[*d >> 4]; 1873 if (*cp != '0') { 1874 zero = 0; 1875 cp++; 1876 } 1877 *cp = digits[*d++ & 0xf]; 1878 if (zero == 0 || (*cp != '0')) { 1879 zero = 0; 1880 cp++; 1881 } 1882 *cp = digits[*d >> 4]; 1883 if (zero == 0 || (*cp != '0')) { 1884 zero = 0; 1885 cp++; 1886 } 1887 *cp++ = digits[*d & 0xf]; 1888 *cp++ = ':'; 1889 a++; 1890 } 1891 *--cp = '\0'; 1892 return (ip6buf); 1893 } 1894 1895 int 1896 in6_localaddr(struct in6_addr *in6) 1897 { 1898 INIT_VNET_INET6(curvnet); 1899 struct in6_ifaddr *ia; 1900 1901 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1902 return 1; 1903 1904 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1905 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1906 &ia->ia_prefixmask.sin6_addr)) { 1907 return 1; 1908 } 1909 } 1910 1911 return (0); 1912 } 1913 1914 int 1915 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1916 { 1917 INIT_VNET_INET6(curvnet); 1918 struct in6_ifaddr *ia; 1919 1920 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1921 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1922 &sa6->sin6_addr) && 1923 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1924 return (1); /* true */ 1925 1926 /* XXX: do we still have to go thru the rest of the list? */ 1927 } 1928 1929 return (0); /* false */ 1930 } 1931 1932 /* 1933 * return length of part which dst and src are equal 1934 * hard coding... 1935 */ 1936 int 1937 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1938 { 1939 int match = 0; 1940 u_char *s = (u_char *)src, *d = (u_char *)dst; 1941 u_char *lim = s + 16, r; 1942 1943 while (s < lim) 1944 if ((r = (*d++ ^ *s++)) != 0) { 1945 while (r < 128) { 1946 match++; 1947 r <<= 1; 1948 } 1949 break; 1950 } else 1951 match += 8; 1952 return match; 1953 } 1954 1955 /* XXX: to be scope conscious */ 1956 int 1957 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1958 { 1959 int bytelen, bitlen; 1960 1961 /* sanity check */ 1962 if (0 > len || len > 128) { 1963 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1964 len); 1965 return (0); 1966 } 1967 1968 bytelen = len / 8; 1969 bitlen = len % 8; 1970 1971 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1972 return (0); 1973 if (bitlen != 0 && 1974 p1->s6_addr[bytelen] >> (8 - bitlen) != 1975 p2->s6_addr[bytelen] >> (8 - bitlen)) 1976 return (0); 1977 1978 return (1); 1979 } 1980 1981 void 1982 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1983 { 1984 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1985 int bytelen, bitlen, i; 1986 1987 /* sanity check */ 1988 if (0 > len || len > 128) { 1989 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1990 len); 1991 return; 1992 } 1993 1994 bzero(maskp, sizeof(*maskp)); 1995 bytelen = len / 8; 1996 bitlen = len % 8; 1997 for (i = 0; i < bytelen; i++) 1998 maskp->s6_addr[i] = 0xff; 1999 if (bitlen) 2000 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2001 } 2002 2003 /* 2004 * return the best address out of the same scope. if no address was 2005 * found, return the first valid address from designated IF. 2006 */ 2007 struct in6_ifaddr * 2008 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2009 { 2010 INIT_VNET_INET6(curvnet); 2011 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2012 struct ifaddr *ifa; 2013 struct in6_ifaddr *besta = 0; 2014 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2015 2016 dep[0] = dep[1] = NULL; 2017 2018 /* 2019 * We first look for addresses in the same scope. 2020 * If there is one, return it. 2021 * If two or more, return one which matches the dst longest. 2022 * If none, return one of global addresses assigned other ifs. 2023 */ 2024 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2025 if (ifa->ifa_addr->sa_family != AF_INET6) 2026 continue; 2027 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2028 continue; /* XXX: is there any case to allow anycast? */ 2029 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2030 continue; /* don't use this interface */ 2031 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2032 continue; 2033 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2034 if (V_ip6_use_deprecated) 2035 dep[0] = (struct in6_ifaddr *)ifa; 2036 continue; 2037 } 2038 2039 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2040 /* 2041 * call in6_matchlen() as few as possible 2042 */ 2043 if (besta) { 2044 if (blen == -1) 2045 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2046 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2047 if (tlen > blen) { 2048 blen = tlen; 2049 besta = (struct in6_ifaddr *)ifa; 2050 } 2051 } else 2052 besta = (struct in6_ifaddr *)ifa; 2053 } 2054 } 2055 if (besta) 2056 return (besta); 2057 2058 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2059 if (ifa->ifa_addr->sa_family != AF_INET6) 2060 continue; 2061 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2062 continue; /* XXX: is there any case to allow anycast? */ 2063 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2064 continue; /* don't use this interface */ 2065 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2066 continue; 2067 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2068 if (V_ip6_use_deprecated) 2069 dep[1] = (struct in6_ifaddr *)ifa; 2070 continue; 2071 } 2072 2073 return (struct in6_ifaddr *)ifa; 2074 } 2075 2076 /* use the last-resort values, that are, deprecated addresses */ 2077 if (dep[0]) 2078 return dep[0]; 2079 if (dep[1]) 2080 return dep[1]; 2081 2082 return NULL; 2083 } 2084 2085 /* 2086 * perform DAD when interface becomes IFF_UP. 2087 */ 2088 void 2089 in6_if_up(struct ifnet *ifp) 2090 { 2091 struct ifaddr *ifa; 2092 struct in6_ifaddr *ia; 2093 2094 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2095 if (ifa->ifa_addr->sa_family != AF_INET6) 2096 continue; 2097 ia = (struct in6_ifaddr *)ifa; 2098 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2099 /* 2100 * The TENTATIVE flag was likely set by hand 2101 * beforehand, implicitly indicating the need for DAD. 2102 * We may be able to skip the random delay in this 2103 * case, but we impose delays just in case. 2104 */ 2105 nd6_dad_start(ifa, 2106 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2107 } 2108 } 2109 2110 /* 2111 * special cases, like 6to4, are handled in in6_ifattach 2112 */ 2113 in6_ifattach(ifp, NULL); 2114 } 2115 2116 int 2117 in6if_do_dad(struct ifnet *ifp) 2118 { 2119 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2120 return (0); 2121 2122 switch (ifp->if_type) { 2123 #ifdef IFT_DUMMY 2124 case IFT_DUMMY: 2125 #endif 2126 case IFT_FAITH: 2127 /* 2128 * These interfaces do not have the IFF_LOOPBACK flag, 2129 * but loop packets back. We do not have to do DAD on such 2130 * interfaces. We should even omit it, because loop-backed 2131 * NS would confuse the DAD procedure. 2132 */ 2133 return (0); 2134 default: 2135 /* 2136 * Our DAD routine requires the interface up and running. 2137 * However, some interfaces can be up before the RUNNING 2138 * status. Additionaly, users may try to assign addresses 2139 * before the interface becomes up (or running). 2140 * We simply skip DAD in such a case as a work around. 2141 * XXX: we should rather mark "tentative" on such addresses, 2142 * and do DAD after the interface becomes ready. 2143 */ 2144 if (!((ifp->if_flags & IFF_UP) && 2145 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2146 return (0); 2147 2148 return (1); 2149 } 2150 } 2151 2152 /* 2153 * Calculate max IPv6 MTU through all the interfaces and store it 2154 * to in6_maxmtu. 2155 */ 2156 void 2157 in6_setmaxmtu(void) 2158 { 2159 INIT_VNET_NET(curvnet); 2160 INIT_VNET_INET6(curvnet); 2161 unsigned long maxmtu = 0; 2162 struct ifnet *ifp; 2163 2164 IFNET_RLOCK(); 2165 for (ifp = TAILQ_FIRST(&V_ifnet); ifp; 2166 ifp = TAILQ_NEXT(ifp, if_list)) { 2167 /* this function can be called during ifnet initialization */ 2168 if (!ifp->if_afdata[AF_INET6]) 2169 continue; 2170 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2171 IN6_LINKMTU(ifp) > maxmtu) 2172 maxmtu = IN6_LINKMTU(ifp); 2173 } 2174 IFNET_RUNLOCK(); 2175 if (maxmtu) /* update only when maxmtu is positive */ 2176 V_in6_maxmtu = maxmtu; 2177 } 2178 2179 /* 2180 * Provide the length of interface identifiers to be used for the link attached 2181 * to the given interface. The length should be defined in "IPv6 over 2182 * xxx-link" document. Note that address architecture might also define 2183 * the length for a particular set of address prefixes, regardless of the 2184 * link type. As clarified in rfc2462bis, those two definitions should be 2185 * consistent, and those really are as of August 2004. 2186 */ 2187 int 2188 in6_if2idlen(struct ifnet *ifp) 2189 { 2190 switch (ifp->if_type) { 2191 case IFT_ETHER: /* RFC2464 */ 2192 #ifdef IFT_PROPVIRTUAL 2193 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2194 #endif 2195 #ifdef IFT_L2VLAN 2196 case IFT_L2VLAN: /* ditto */ 2197 #endif 2198 #ifdef IFT_IEEE80211 2199 case IFT_IEEE80211: /* ditto */ 2200 #endif 2201 #ifdef IFT_MIP 2202 case IFT_MIP: /* ditto */ 2203 #endif 2204 return (64); 2205 case IFT_FDDI: /* RFC2467 */ 2206 return (64); 2207 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2208 return (64); 2209 case IFT_PPP: /* RFC2472 */ 2210 return (64); 2211 case IFT_ARCNET: /* RFC2497 */ 2212 return (64); 2213 case IFT_FRELAY: /* RFC2590 */ 2214 return (64); 2215 case IFT_IEEE1394: /* RFC3146 */ 2216 return (64); 2217 case IFT_GIF: 2218 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2219 case IFT_LOOP: 2220 return (64); /* XXX: is this really correct? */ 2221 default: 2222 /* 2223 * Unknown link type: 2224 * It might be controversial to use the today's common constant 2225 * of 64 for these cases unconditionally. For full compliance, 2226 * we should return an error in this case. On the other hand, 2227 * if we simply miss the standard for the link type or a new 2228 * standard is defined for a new link type, the IFID length 2229 * is very likely to be the common constant. As a compromise, 2230 * we always use the constant, but make an explicit notice 2231 * indicating the "unknown" case. 2232 */ 2233 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2234 return (64); 2235 } 2236 } 2237 2238 void * 2239 in6_domifattach(struct ifnet *ifp) 2240 { 2241 struct in6_ifextra *ext; 2242 2243 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2244 bzero(ext, sizeof(*ext)); 2245 2246 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2247 M_IFADDR, M_WAITOK); 2248 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2249 2250 ext->icmp6_ifstat = 2251 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2252 M_IFADDR, M_WAITOK); 2253 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2254 2255 ext->nd_ifinfo = nd6_ifattach(ifp); 2256 ext->scope6_id = scope6_ifattach(ifp); 2257 return ext; 2258 } 2259 2260 void 2261 in6_domifdetach(struct ifnet *ifp, void *aux) 2262 { 2263 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2264 2265 scope6_ifdetach(ext->scope6_id); 2266 nd6_ifdetach(ext->nd_ifinfo); 2267 free(ext->in6_ifstat, M_IFADDR); 2268 free(ext->icmp6_ifstat, M_IFADDR); 2269 free(ext, M_IFADDR); 2270 } 2271 2272 /* 2273 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2274 * v4 mapped addr or v4 compat addr 2275 */ 2276 void 2277 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2278 { 2279 2280 bzero(sin, sizeof(*sin)); 2281 sin->sin_len = sizeof(struct sockaddr_in); 2282 sin->sin_family = AF_INET; 2283 sin->sin_port = sin6->sin6_port; 2284 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2285 } 2286 2287 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2288 void 2289 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2290 { 2291 bzero(sin6, sizeof(*sin6)); 2292 sin6->sin6_len = sizeof(struct sockaddr_in6); 2293 sin6->sin6_family = AF_INET6; 2294 sin6->sin6_port = sin->sin_port; 2295 sin6->sin6_addr.s6_addr32[0] = 0; 2296 sin6->sin6_addr.s6_addr32[1] = 0; 2297 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2298 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2299 } 2300 2301 /* Convert sockaddr_in6 into sockaddr_in. */ 2302 void 2303 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2304 { 2305 struct sockaddr_in *sin_p; 2306 struct sockaddr_in6 sin6; 2307 2308 /* 2309 * Save original sockaddr_in6 addr and convert it 2310 * to sockaddr_in. 2311 */ 2312 sin6 = *(struct sockaddr_in6 *)nam; 2313 sin_p = (struct sockaddr_in *)nam; 2314 in6_sin6_2_sin(sin_p, &sin6); 2315 } 2316 2317 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2318 void 2319 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2320 { 2321 struct sockaddr_in *sin_p; 2322 struct sockaddr_in6 *sin6_p; 2323 2324 sin6_p = malloc(sizeof *sin6_p, M_SONAME, 2325 M_WAITOK); 2326 sin_p = (struct sockaddr_in *)*nam; 2327 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2328 free(*nam, M_SONAME); 2329 *nam = (struct sockaddr *)sin6_p; 2330 } 2331