xref: /freebsd/sys/netinet6/in6.c (revision 84ee9401a3fc8d3c22424266f421a928989cd692)
1 /*	$FreeBSD$	*/
2 /*	$KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*-
34  * Copyright (c) 1982, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 4. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)in.c	8.2 (Berkeley) 11/15/93
62  */
63 
64 #include "opt_inet.h"
65 #include "opt_inet6.h"
66 
67 #include <sys/param.h>
68 #include <sys/errno.h>
69 #include <sys/malloc.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/sockio.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/time.h>
76 #include <sys/kernel.h>
77 #include <sys/syslog.h>
78 
79 #include <net/if.h>
80 #include <net/if_types.h>
81 #include <net/route.h>
82 #include <net/if_dl.h>
83 
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/if_ether.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/in_pcb.h>
90 
91 #include <netinet/ip6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/mld6_var.h>
95 #include <netinet6/ip6_mroute.h>
96 #include <netinet6/in6_ifattach.h>
97 #include <netinet6/scope6_var.h>
98 #include <netinet6/in6_pcb.h>
99 
100 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address");
101 
102 /*
103  * Definitions of some costant IP6 addresses.
104  */
105 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
106 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
107 const struct in6_addr in6addr_nodelocal_allnodes =
108 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
109 const struct in6_addr in6addr_linklocal_allnodes =
110 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
111 const struct in6_addr in6addr_linklocal_allrouters =
112 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
113 
114 const struct in6_addr in6mask0 = IN6MASK0;
115 const struct in6_addr in6mask32 = IN6MASK32;
116 const struct in6_addr in6mask64 = IN6MASK64;
117 const struct in6_addr in6mask96 = IN6MASK96;
118 const struct in6_addr in6mask128 = IN6MASK128;
119 
120 const struct sockaddr_in6 sa6_any =
121 	{ sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 };
122 
123 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
124 	struct ifnet *, struct thread *));
125 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
126 	struct sockaddr_in6 *, int));
127 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
128 
129 struct in6_multihead in6_multihead;	/* XXX BSS initialization */
130 int	(*faithprefix_p)(struct in6_addr *);
131 
132 /*
133  * Subroutine for in6_ifaddloop() and in6_ifremloop().
134  * This routine does actual work.
135  */
136 static void
137 in6_ifloop_request(int cmd, struct ifaddr *ifa)
138 {
139 	struct sockaddr_in6 all1_sa;
140 	struct rtentry *nrt = NULL;
141 	int e;
142 
143 	bzero(&all1_sa, sizeof(all1_sa));
144 	all1_sa.sin6_family = AF_INET6;
145 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
146 	all1_sa.sin6_addr = in6mask128;
147 
148 	/*
149 	 * We specify the address itself as the gateway, and set the
150 	 * RTF_LLINFO flag, so that the corresponding host route would have
151 	 * the flag, and thus applications that assume traditional behavior
152 	 * would be happy.  Note that we assume the caller of the function
153 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
154 	 * which changes the outgoing interface to the loopback interface.
155 	 */
156 	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
157 	    (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
158 	if (e != 0) {
159 		/* XXX need more descriptive message */
160 		log(LOG_ERR, "in6_ifloop_request: "
161 		    "%s operation failed for %s (errno=%d)\n",
162 		    cmd == RTM_ADD ? "ADD" : "DELETE",
163 		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
164 		    e);
165 	}
166 
167 	/*
168 	 * Report the addition/removal of the address to the routing socket.
169 	 * XXX: since we called rtinit for a p2p interface with a destination,
170 	 *      we end up reporting twice in such a case.  Should we rather
171 	 *      omit the second report?
172 	 */
173 	if (nrt) {
174 		RT_LOCK(nrt);
175 		/*
176 		 * Make sure rt_ifa be equal to IFA, the second argument of
177 		 * the function.  We need this because when we refer to
178 		 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa
179 		 * points to the address instead of the loopback address.
180 		 */
181 		if (cmd == RTM_ADD && ifa != nrt->rt_ifa) {
182 			IFAFREE(nrt->rt_ifa);
183 			IFAREF(ifa);
184 			nrt->rt_ifa = ifa;
185 		}
186 
187 		rt_newaddrmsg(cmd, ifa, e, nrt);
188 		if (cmd == RTM_DELETE) {
189 			rtfree(nrt);
190 		} else {
191 			/* the cmd must be RTM_ADD here */
192 			RT_REMREF(nrt);
193 			RT_UNLOCK(nrt);
194 		}
195 	}
196 }
197 
198 /*
199  * Add ownaddr as loopback rtentry.  We previously add the route only if
200  * necessary (ex. on a p2p link).  However, since we now manage addresses
201  * separately from prefixes, we should always add the route.  We can't
202  * rely on the cloning mechanism from the corresponding interface route
203  * any more.
204  */
205 void
206 in6_ifaddloop(struct ifaddr *ifa)
207 {
208 	struct rtentry *rt;
209 	int need_loop;
210 
211 	/* If there is no loopback entry, allocate one. */
212 	rt = rtalloc1(ifa->ifa_addr, 0, 0);
213 	need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
214 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0);
215 	if (rt)
216 		rtfree(rt);
217 	if (need_loop)
218 		in6_ifloop_request(RTM_ADD, ifa);
219 }
220 
221 /*
222  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
223  * if it exists.
224  */
225 void
226 in6_ifremloop(struct ifaddr *ifa)
227 {
228 	struct in6_ifaddr *ia;
229 	struct rtentry *rt;
230 	int ia_count = 0;
231 
232 	/*
233 	 * Some of BSD variants do not remove cloned routes
234 	 * from an interface direct route, when removing the direct route
235 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
236 	 * cloned routes, they could fail to remove the cloned routes when
237 	 * we handle multple addresses that share a common prefix.
238 	 * So, we should remove the route corresponding to the deleted address.
239 	 */
240 
241 	/*
242 	 * Delete the entry only if exact one ifa exists.  More than one ifa
243 	 * can exist if we assign a same single address to multiple
244 	 * (probably p2p) interfaces.
245 	 * XXX: we should avoid such a configuration in IPv6...
246 	 */
247 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
248 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
249 			ia_count++;
250 			if (ia_count > 1)
251 				break;
252 		}
253 	}
254 
255 	if (ia_count == 1) {
256 		/*
257 		 * Before deleting, check if a corresponding loopbacked host
258 		 * route surely exists.  With this check, we can avoid to
259 		 * delete an interface direct route whose destination is same
260 		 * as the address being removed.  This can happen when removing
261 		 * a subnet-router anycast address on an interface attahced
262 		 * to a shared medium.
263 		 */
264 		rt = rtalloc1(ifa->ifa_addr, 0, 0);
265 		if (rt != NULL) {
266 			if ((rt->rt_flags & RTF_HOST) != 0 &&
267 			    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
268 				rtfree(rt);
269 				in6_ifloop_request(RTM_DELETE, ifa);
270 			} else
271 				RT_UNLOCK(rt);
272 		}
273 	}
274 }
275 
276 int
277 in6_mask2len(mask, lim0)
278 	struct in6_addr *mask;
279 	u_char *lim0;
280 {
281 	int x = 0, y;
282 	u_char *lim = lim0, *p;
283 
284 	/* ignore the scope_id part */
285 	if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
286 		lim = (u_char *)mask + sizeof(*mask);
287 	for (p = (u_char *)mask; p < lim; x++, p++) {
288 		if (*p != 0xff)
289 			break;
290 	}
291 	y = 0;
292 	if (p < lim) {
293 		for (y = 0; y < 8; y++) {
294 			if ((*p & (0x80 >> y)) == 0)
295 				break;
296 		}
297 	}
298 
299 	/*
300 	 * when the limit pointer is given, do a stricter check on the
301 	 * remaining bits.
302 	 */
303 	if (p < lim) {
304 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
305 			return (-1);
306 		for (p = p + 1; p < lim; p++)
307 			if (*p != 0)
308 				return (-1);
309 	}
310 
311 	return x * 8 + y;
312 }
313 
314 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
315 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
316 
317 int
318 in6_control(so, cmd, data, ifp, td)
319 	struct	socket *so;
320 	u_long cmd;
321 	caddr_t	data;
322 	struct ifnet *ifp;
323 	struct thread *td;
324 {
325 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
326 	struct	in6_ifaddr *ia = NULL;
327 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
328 	int error, privileged;
329 	struct sockaddr_in6 *sa6;
330 
331 	privileged = 0;
332 	if (td == NULL || !suser(td))
333 		privileged++;
334 
335 	switch (cmd) {
336 	case SIOCGETSGCNT_IN6:
337 	case SIOCGETMIFCNT_IN6:
338 		return (mrt6_ioctl(cmd, data));
339 	}
340 
341 	switch(cmd) {
342 	case SIOCAADDRCTL_POLICY:
343 	case SIOCDADDRCTL_POLICY:
344 		if (!privileged)
345 			return (EPERM);
346 		return (in6_src_ioctl(cmd, data));
347 	}
348 
349 	if (ifp == NULL)
350 		return (EOPNOTSUPP);
351 
352 	switch (cmd) {
353 	case SIOCSNDFLUSH_IN6:
354 	case SIOCSPFXFLUSH_IN6:
355 	case SIOCSRTRFLUSH_IN6:
356 	case SIOCSDEFIFACE_IN6:
357 	case SIOCSIFINFO_FLAGS:
358 		if (!privileged)
359 			return (EPERM);
360 		/* FALLTHROUGH */
361 	case OSIOCGIFINFO_IN6:
362 	case SIOCGIFINFO_IN6:
363 	case SIOCSIFINFO_IN6:
364 	case SIOCGDRLST_IN6:
365 	case SIOCGPRLST_IN6:
366 	case SIOCGNBRINFO_IN6:
367 	case SIOCGDEFIFACE_IN6:
368 		return (nd6_ioctl(cmd, data, ifp));
369 	}
370 
371 	switch (cmd) {
372 	case SIOCSIFPREFIX_IN6:
373 	case SIOCDIFPREFIX_IN6:
374 	case SIOCAIFPREFIX_IN6:
375 	case SIOCCIFPREFIX_IN6:
376 	case SIOCSGIFPREFIX_IN6:
377 	case SIOCGIFPREFIX_IN6:
378 		log(LOG_NOTICE,
379 		    "prefix ioctls are now invalidated. "
380 		    "please use ifconfig.\n");
381 		return (EOPNOTSUPP);
382 	}
383 
384 	switch (cmd) {
385 	case SIOCSSCOPE6:
386 		if (!privileged)
387 			return (EPERM);
388 		return (scope6_set(ifp,
389 		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
390 	case SIOCGSCOPE6:
391 		return (scope6_get(ifp,
392 		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
393 	case SIOCGSCOPE6DEF:
394 		return (scope6_get_default((struct scope6_id *)
395 		    ifr->ifr_ifru.ifru_scope_id));
396 	}
397 
398 	switch (cmd) {
399 	case SIOCALIFADDR:
400 	case SIOCDLIFADDR:
401 		if (!privileged)
402 			return (EPERM);
403 		/* FALLTHROUGH */
404 	case SIOCGLIFADDR:
405 		return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
406 	}
407 
408 	/*
409 	 * Find address for this interface, if it exists.
410 	 *
411 	 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
412 	 * only, and used the first interface address as the target of other
413 	 * operations (without checking ifra_addr).  This was because netinet
414 	 * code/API assumed at most 1 interface address per interface.
415 	 * Since IPv6 allows a node to assign multiple addresses
416 	 * on a single interface, we almost always look and check the
417 	 * presence of ifra_addr, and reject invalid ones here.
418 	 * It also decreases duplicated code among SIOC*_IN6 operations.
419 	 */
420 	switch (cmd) {
421 	case SIOCAIFADDR_IN6:
422 	case SIOCSIFPHYADDR_IN6:
423 		sa6 = &ifra->ifra_addr;
424 		break;
425 	case SIOCSIFADDR_IN6:
426 	case SIOCGIFADDR_IN6:
427 	case SIOCSIFDSTADDR_IN6:
428 	case SIOCSIFNETMASK_IN6:
429 	case SIOCGIFDSTADDR_IN6:
430 	case SIOCGIFNETMASK_IN6:
431 	case SIOCDIFADDR_IN6:
432 	case SIOCGIFPSRCADDR_IN6:
433 	case SIOCGIFPDSTADDR_IN6:
434 	case SIOCGIFAFLAG_IN6:
435 	case SIOCSNDFLUSH_IN6:
436 	case SIOCSPFXFLUSH_IN6:
437 	case SIOCSRTRFLUSH_IN6:
438 	case SIOCGIFALIFETIME_IN6:
439 	case SIOCSIFALIFETIME_IN6:
440 	case SIOCGIFSTAT_IN6:
441 	case SIOCGIFSTAT_ICMP6:
442 		sa6 = &ifr->ifr_addr;
443 		break;
444 	default:
445 		sa6 = NULL;
446 		break;
447 	}
448 	if (sa6 && sa6->sin6_family == AF_INET6) {
449 		int error = 0;
450 
451 		if (sa6->sin6_scope_id != 0)
452 			error = sa6_embedscope(sa6, 0);
453 		else
454 			error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
455 		if (error != 0)
456 			return (error);
457 		ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
458 	} else
459 		ia = NULL;
460 
461 	switch (cmd) {
462 	case SIOCSIFADDR_IN6:
463 	case SIOCSIFDSTADDR_IN6:
464 	case SIOCSIFNETMASK_IN6:
465 		/*
466 		 * Since IPv6 allows a node to assign multiple addresses
467 		 * on a single interface, SIOCSIFxxx ioctls are deprecated.
468 		 */
469 		/* we decided to obsolete this command (20000704) */
470 		return (EINVAL);
471 
472 	case SIOCDIFADDR_IN6:
473 		/*
474 		 * for IPv4, we look for existing in_ifaddr here to allow
475 		 * "ifconfig if0 delete" to remove the first IPv4 address on
476 		 * the interface.  For IPv6, as the spec allows multiple
477 		 * interface address from the day one, we consider "remove the
478 		 * first one" semantics to be not preferable.
479 		 */
480 		if (ia == NULL)
481 			return (EADDRNOTAVAIL);
482 		/* FALLTHROUGH */
483 	case SIOCAIFADDR_IN6:
484 		/*
485 		 * We always require users to specify a valid IPv6 address for
486 		 * the corresponding operation.
487 		 */
488 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
489 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
490 			return (EAFNOSUPPORT);
491 		if (!privileged)
492 			return (EPERM);
493 
494 		break;
495 
496 	case SIOCGIFADDR_IN6:
497 		/* This interface is basically deprecated. use SIOCGIFCONF. */
498 		/* FALLTHROUGH */
499 	case SIOCGIFAFLAG_IN6:
500 	case SIOCGIFNETMASK_IN6:
501 	case SIOCGIFDSTADDR_IN6:
502 	case SIOCGIFALIFETIME_IN6:
503 		/* must think again about its semantics */
504 		if (ia == NULL)
505 			return (EADDRNOTAVAIL);
506 		break;
507 	case SIOCSIFALIFETIME_IN6:
508 	    {
509 		struct in6_addrlifetime *lt;
510 
511 		if (!privileged)
512 			return (EPERM);
513 		if (ia == NULL)
514 			return (EADDRNOTAVAIL);
515 		/* sanity for overflow - beware unsigned */
516 		lt = &ifr->ifr_ifru.ifru_lifetime;
517 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME &&
518 		    lt->ia6t_vltime + time_second < time_second) {
519 			return EINVAL;
520 		}
521 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME &&
522 		    lt->ia6t_pltime + time_second < time_second) {
523 			return EINVAL;
524 		}
525 		break;
526 	    }
527 	}
528 
529 	switch (cmd) {
530 
531 	case SIOCGIFADDR_IN6:
532 		ifr->ifr_addr = ia->ia_addr;
533 		if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
534 			return (error);
535 		break;
536 
537 	case SIOCGIFDSTADDR_IN6:
538 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
539 			return (EINVAL);
540 		/*
541 		 * XXX: should we check if ifa_dstaddr is NULL and return
542 		 * an error?
543 		 */
544 		ifr->ifr_dstaddr = ia->ia_dstaddr;
545 		if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
546 			return (error);
547 		break;
548 
549 	case SIOCGIFNETMASK_IN6:
550 		ifr->ifr_addr = ia->ia_prefixmask;
551 		break;
552 
553 	case SIOCGIFAFLAG_IN6:
554 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
555 		break;
556 
557 	case SIOCGIFSTAT_IN6:
558 		if (ifp == NULL)
559 			return EINVAL;
560 		bzero(&ifr->ifr_ifru.ifru_stat,
561 		    sizeof(ifr->ifr_ifru.ifru_stat));
562 		ifr->ifr_ifru.ifru_stat =
563 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
564 		break;
565 
566 	case SIOCGIFSTAT_ICMP6:
567 		if (ifp == NULL)
568 			return EINVAL;
569 		bzero(&ifr->ifr_ifru.ifru_icmp6stat,
570 		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
571 		ifr->ifr_ifru.ifru_icmp6stat =
572 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
573 		break;
574 
575 	case SIOCGIFALIFETIME_IN6:
576 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
577 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
578 			time_t maxexpire;
579 			struct in6_addrlifetime *retlt =
580 			    &ifr->ifr_ifru.ifru_lifetime;
581 
582 			/*
583 			 * XXX: adjust expiration time assuming time_t is
584 			 * signed.
585 			 */
586 			maxexpire = (-1) &
587 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
588 			if (ia->ia6_lifetime.ia6t_vltime <
589 			    maxexpire - ia->ia6_updatetime) {
590 				retlt->ia6t_expire = ia->ia6_updatetime +
591 				    ia->ia6_lifetime.ia6t_vltime;
592 			} else
593 				retlt->ia6t_expire = maxexpire;
594 		}
595 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
596 			time_t maxexpire;
597 			struct in6_addrlifetime *retlt =
598 			    &ifr->ifr_ifru.ifru_lifetime;
599 
600 			/*
601 			 * XXX: adjust expiration time assuming time_t is
602 			 * signed.
603 			 */
604 			maxexpire = (-1) &
605 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
606 			if (ia->ia6_lifetime.ia6t_pltime <
607 			    maxexpire - ia->ia6_updatetime) {
608 				retlt->ia6t_preferred = ia->ia6_updatetime +
609 				    ia->ia6_lifetime.ia6t_pltime;
610 			} else
611 				retlt->ia6t_preferred = maxexpire;
612 		}
613 		break;
614 
615 	case SIOCSIFALIFETIME_IN6:
616 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
617 		/* for sanity */
618 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
619 			ia->ia6_lifetime.ia6t_expire =
620 				time_second + ia->ia6_lifetime.ia6t_vltime;
621 		} else
622 			ia->ia6_lifetime.ia6t_expire = 0;
623 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
624 			ia->ia6_lifetime.ia6t_preferred =
625 				time_second + ia->ia6_lifetime.ia6t_pltime;
626 		} else
627 			ia->ia6_lifetime.ia6t_preferred = 0;
628 		break;
629 
630 	case SIOCAIFADDR_IN6:
631 	{
632 		int i, error = 0;
633 		struct nd_prefixctl pr0;
634 		struct nd_prefix *pr;
635 
636 		/*
637 		 * first, make or update the interface address structure,
638 		 * and link it to the list.
639 		 */
640 		if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
641 			return (error);
642 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
643 		    == NULL) {
644 		    	/*
645 			 * this can happen when the user specify the 0 valid
646 			 * lifetime.
647 			 */
648 			break;
649 		}
650 
651 		/*
652 		 * then, make the prefix on-link on the interface.
653 		 * XXX: we'd rather create the prefix before the address, but
654 		 * we need at least one address to install the corresponding
655 		 * interface route, so we configure the address first.
656 		 */
657 
658 		/*
659 		 * convert mask to prefix length (prefixmask has already
660 		 * been validated in in6_update_ifa().
661 		 */
662 		bzero(&pr0, sizeof(pr0));
663 		pr0.ndpr_ifp = ifp;
664 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
665 		    NULL);
666 		if (pr0.ndpr_plen == 128) {
667 			break;	/* we don't need to install a host route. */
668 		}
669 		pr0.ndpr_prefix = ifra->ifra_addr;
670 		/* apply the mask for safety. */
671 		for (i = 0; i < 4; i++) {
672 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
673 			    ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
674 		}
675 		/*
676 		 * XXX: since we don't have an API to set prefix (not address)
677 		 * lifetimes, we just use the same lifetimes as addresses.
678 		 * The (temporarily) installed lifetimes can be overridden by
679 		 * later advertised RAs (when accept_rtadv is non 0), which is
680 		 * an intended behavior.
681 		 */
682 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
683 		pr0.ndpr_raf_auto =
684 		    ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
685 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
686 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
687 
688 		/* add the prefix if not yet. */
689 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
690 			/*
691 			 * nd6_prelist_add will install the corresponding
692 			 * interface route.
693 			 */
694 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
695 				return (error);
696 			if (pr == NULL) {
697 				log(LOG_ERR, "nd6_prelist_add succeeded but "
698 				    "no prefix\n");
699 				return (EINVAL); /* XXX panic here? */
700 			}
701 		}
702 
703 		/* relate the address to the prefix */
704 		if (ia->ia6_ndpr == NULL) {
705 			ia->ia6_ndpr = pr;
706 			pr->ndpr_refcnt++;
707 
708 			/*
709 			 * If this is the first autoconf address from the
710 			 * prefix, create a temporary address as well
711 			 * (when required).
712 			 */
713 			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
714 			    ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
715 				int e;
716 				if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
717 					log(LOG_NOTICE, "in6_control: failed "
718 					    "to create a temporary address, "
719 					    "errno=%d\n", e);
720 				}
721 			}
722 		}
723 
724 		/*
725 		 * this might affect the status of autoconfigured addresses,
726 		 * that is, this address might make other addresses detached.
727 		 */
728 		pfxlist_onlink_check();
729 		if (error == 0 && ia)
730 			EVENTHANDLER_INVOKE(ifaddr_event, ifp);
731 		break;
732 	}
733 
734 	case SIOCDIFADDR_IN6:
735 	{
736 		struct nd_prefix *pr;
737 
738 		/*
739 		 * If the address being deleted is the only one that owns
740 		 * the corresponding prefix, expire the prefix as well.
741 		 * XXX: theoretically, we don't have to worry about such
742 		 * relationship, since we separate the address management
743 		 * and the prefix management.  We do this, however, to provide
744 		 * as much backward compatibility as possible in terms of
745 		 * the ioctl operation.
746 		 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
747 		 */
748 		pr = ia->ia6_ndpr;
749 		in6_purgeaddr(&ia->ia_ifa);
750 		if (pr && pr->ndpr_refcnt == 0)
751 			prelist_remove(pr);
752 		EVENTHANDLER_INVOKE(ifaddr_event, ifp);
753 		break;
754 	}
755 
756 	default:
757 		if (ifp == NULL || ifp->if_ioctl == 0)
758 			return (EOPNOTSUPP);
759 		return ((*ifp->if_ioctl)(ifp, cmd, data));
760 	}
761 
762 	return (0);
763 }
764 
765 /*
766  * Update parameters of an IPv6 interface address.
767  * If necessary, a new entry is created and linked into address chains.
768  * This function is separated from in6_control().
769  * XXX: should this be performed under splnet()?
770  */
771 int
772 in6_update_ifa(ifp, ifra, ia, flags)
773 	struct ifnet *ifp;
774 	struct in6_aliasreq *ifra;
775 	struct in6_ifaddr *ia;
776 	int flags;
777 {
778 	int error = 0, hostIsNew = 0, plen = -1;
779 	struct in6_ifaddr *oia;
780 	struct sockaddr_in6 dst6;
781 	struct in6_addrlifetime *lt;
782 	struct in6_multi_mship *imm;
783 	struct in6_multi *in6m_sol;
784 	struct rtentry *rt;
785 	int delay;
786 
787 	/* Validate parameters */
788 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
789 		return (EINVAL);
790 
791 	/*
792 	 * The destination address for a p2p link must have a family
793 	 * of AF_UNSPEC or AF_INET6.
794 	 */
795 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
796 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
797 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
798 		return (EAFNOSUPPORT);
799 	/*
800 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
801 	 * does not carry fields other than sin6_len.
802 	 */
803 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
804 		return (EINVAL);
805 	/*
806 	 * Because the IPv6 address architecture is classless, we require
807 	 * users to specify a (non 0) prefix length (mask) for a new address.
808 	 * We also require the prefix (when specified) mask is valid, and thus
809 	 * reject a non-consecutive mask.
810 	 */
811 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
812 		return (EINVAL);
813 	if (ifra->ifra_prefixmask.sin6_len != 0) {
814 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
815 		    (u_char *)&ifra->ifra_prefixmask +
816 		    ifra->ifra_prefixmask.sin6_len);
817 		if (plen <= 0)
818 			return (EINVAL);
819 	} else {
820 		/*
821 		 * In this case, ia must not be NULL.  We just use its prefix
822 		 * length.
823 		 */
824 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
825 	}
826 	/*
827 	 * If the destination address on a p2p interface is specified,
828 	 * and the address is a scoped one, validate/set the scope
829 	 * zone identifier.
830 	 */
831 	dst6 = ifra->ifra_dstaddr;
832 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
833 	    (dst6.sin6_family == AF_INET6)) {
834 		struct in6_addr in6_tmp;
835 		u_int32_t zoneid;
836 
837 		in6_tmp = dst6.sin6_addr;
838 		if (in6_setscope(&in6_tmp, ifp, &zoneid))
839 			return (EINVAL); /* XXX: should be impossible */
840 
841 		if (dst6.sin6_scope_id != 0) {
842 			if (dst6.sin6_scope_id != zoneid)
843 				return (EINVAL);
844 		} else		/* user omit to specify the ID. */
845 			dst6.sin6_scope_id = zoneid;
846 
847 		/* convert into the internal form */
848 		if (sa6_embedscope(&dst6, 0))
849 			return (EINVAL); /* XXX: should be impossible */
850 	}
851 	/*
852 	 * The destination address can be specified only for a p2p or a
853 	 * loopback interface.  If specified, the corresponding prefix length
854 	 * must be 128.
855 	 */
856 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
857 		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
858 			/* XXX: noisy message */
859 			nd6log((LOG_INFO, "in6_update_ifa: a destination can "
860 			    "be specified for a p2p or a loopback IF only\n"));
861 			return (EINVAL);
862 		}
863 		if (plen != 128) {
864 			nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
865 			    "be 128 when dstaddr is specified\n"));
866 			return (EINVAL);
867 		}
868 	}
869 	/* lifetime consistency check */
870 	lt = &ifra->ifra_lifetime;
871 	if (lt->ia6t_pltime > lt->ia6t_vltime)
872 		return (EINVAL);
873 	if (lt->ia6t_vltime == 0) {
874 		/*
875 		 * the following log might be noisy, but this is a typical
876 		 * configuration mistake or a tool's bug.
877 		 */
878 		nd6log((LOG_INFO,
879 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
880 		    ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
881 
882 		if (ia == NULL)
883 			return (0); /* there's nothing to do */
884 	}
885 
886 	/*
887 	 * If this is a new address, allocate a new ifaddr and link it
888 	 * into chains.
889 	 */
890 	if (ia == NULL) {
891 		hostIsNew = 1;
892 		/*
893 		 * When in6_update_ifa() is called in a process of a received
894 		 * RA, it is called under an interrupt context.  So, we should
895 		 * call malloc with M_NOWAIT.
896 		 */
897 		ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
898 		    M_NOWAIT);
899 		if (ia == NULL)
900 			return (ENOBUFS);
901 		bzero((caddr_t)ia, sizeof(*ia));
902 		/* Initialize the address and masks, and put time stamp */
903 		IFA_LOCK_INIT(&ia->ia_ifa);
904 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
905 		ia->ia_addr.sin6_family = AF_INET6;
906 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
907 		ia->ia6_createtime = time_second;
908 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
909 			/*
910 			 * XXX: some functions expect that ifa_dstaddr is not
911 			 * NULL for p2p interfaces.
912 			 */
913 			ia->ia_ifa.ifa_dstaddr =
914 			    (struct sockaddr *)&ia->ia_dstaddr;
915 		} else {
916 			ia->ia_ifa.ifa_dstaddr = NULL;
917 		}
918 		ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
919 
920 		ia->ia_ifp = ifp;
921 		if ((oia = in6_ifaddr) != NULL) {
922 			for ( ; oia->ia_next; oia = oia->ia_next)
923 				continue;
924 			oia->ia_next = ia;
925 		} else
926 			in6_ifaddr = ia;
927 
928 		ia->ia_ifa.ifa_refcnt = 1;
929 		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
930 	}
931 
932 	/* update timestamp */
933 	ia->ia6_updatetime = time_second;
934 
935 	/* set prefix mask */
936 	if (ifra->ifra_prefixmask.sin6_len) {
937 		/*
938 		 * We prohibit changing the prefix length of an existing
939 		 * address, because
940 		 * + such an operation should be rare in IPv6, and
941 		 * + the operation would confuse prefix management.
942 		 */
943 		if (ia->ia_prefixmask.sin6_len &&
944 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
945 			nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
946 			    " existing (%s) address should not be changed\n",
947 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
948 			error = EINVAL;
949 			goto unlink;
950 		}
951 		ia->ia_prefixmask = ifra->ifra_prefixmask;
952 	}
953 
954 	/*
955 	 * If a new destination address is specified, scrub the old one and
956 	 * install the new destination.  Note that the interface must be
957 	 * p2p or loopback (see the check above.)
958 	 */
959 	if (dst6.sin6_family == AF_INET6 &&
960 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
961 		int e;
962 
963 		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
964 		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
965 			nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
966 			    "a route to the old destination: %s\n",
967 			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
968 			/* proceed anyway... */
969 		} else
970 			ia->ia_flags &= ~IFA_ROUTE;
971 		ia->ia_dstaddr = dst6;
972 	}
973 
974 	/*
975 	 * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
976 	 * to see if the address is deprecated or invalidated, but initialize
977 	 * these members for applications.
978 	 */
979 	ia->ia6_lifetime = ifra->ifra_lifetime;
980 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
981 		ia->ia6_lifetime.ia6t_expire =
982 		    time_second + ia->ia6_lifetime.ia6t_vltime;
983 	} else
984 		ia->ia6_lifetime.ia6t_expire = 0;
985 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
986 		ia->ia6_lifetime.ia6t_preferred =
987 		    time_second + ia->ia6_lifetime.ia6t_pltime;
988 	} else
989 		ia->ia6_lifetime.ia6t_preferred = 0;
990 
991 	/* reset the interface and routing table appropriately. */
992 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
993 		goto unlink;
994 
995 	/*
996 	 * configure address flags.
997 	 */
998 	ia->ia6_flags = ifra->ifra_flags;
999 	/*
1000 	 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1001 	 * userland, make it deprecated.
1002 	 */
1003 	if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1004 		ia->ia6_lifetime.ia6t_pltime = 0;
1005 		ia->ia6_lifetime.ia6t_preferred = time_second;
1006 	}
1007 	/*
1008 	 * Make the address tentative before joining multicast addresses,
1009 	 * so that corresponding MLD responses would not have a tentative
1010 	 * source address.
1011 	 */
1012 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/* safety */
1013 	if (hostIsNew && in6if_do_dad(ifp))
1014 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1015 
1016 	/*
1017 	 * We are done if we have simply modified an existing address.
1018 	 */
1019 	if (!hostIsNew)
1020 		return (error);
1021 
1022 	/*
1023 	 * Beyond this point, we should call in6_purgeaddr upon an error,
1024 	 * not just go to unlink.
1025 	 */
1026 
1027 	/* Join necessary multicast groups */
1028 	in6m_sol = NULL;
1029 	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1030 		struct sockaddr_in6 mltaddr, mltmask;
1031 		struct in6_addr llsol;
1032 
1033 		/* join solicited multicast addr for new host id */
1034 		bzero(&llsol, sizeof(struct in6_addr));
1035 		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1036 		llsol.s6_addr32[1] = 0;
1037 		llsol.s6_addr32[2] = htonl(1);
1038 		llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
1039 		llsol.s6_addr8[12] = 0xff;
1040 		if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1041 			/* XXX: should not happen */
1042 			log(LOG_ERR, "in6_update_ifa: "
1043 			    "in6_setscope failed\n");
1044 			goto cleanup;
1045 		}
1046 		delay = 0;
1047 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1048 			/*
1049 			 * We need a random delay for DAD on the address
1050 			 * being configured.  It also means delaying
1051 			 * transmission of the corresponding MLD report to
1052 			 * avoid report collision.
1053 			 * [draft-ietf-ipv6-rfc2462bis-02.txt]
1054 			 */
1055 			delay = arc4random() %
1056 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1057 		}
1058 		imm = in6_joingroup(ifp, &llsol, &error, delay);
1059 		if (error != 0) {
1060 			nd6log((LOG_WARNING,
1061 			    "in6_update_ifa: addmulti failed for "
1062 			    "%s on %s (errno=%d)\n",
1063 			    ip6_sprintf(&llsol), if_name(ifp),
1064 			    error));
1065 			in6_purgeaddr((struct ifaddr *)ia);
1066 			return (error);
1067 		}
1068 		in6m_sol = imm->i6mm_maddr;
1069 
1070 		bzero(&mltmask, sizeof(mltmask));
1071 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1072 		mltmask.sin6_family = AF_INET6;
1073 		mltmask.sin6_addr = in6mask32;
1074 #define	MLTMASK_LEN  4	/* mltmask's masklen (=32bit=4octet) */
1075 
1076 		/*
1077 		 * join link-local all-nodes address
1078 		 */
1079 		bzero(&mltaddr, sizeof(mltaddr));
1080 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1081 		mltaddr.sin6_family = AF_INET6;
1082 		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1083 		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) !=
1084 		    0)
1085 			goto cleanup; /* XXX: should not fail */
1086 
1087 		/*
1088 		 * XXX: do we really need this automatic routes?
1089 		 * We should probably reconsider this stuff.  Most applications
1090 		 * actually do not need the routes, since they usually specify
1091 		 * the outgoing interface.
1092 		 */
1093 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1094 		if (rt) {
1095 			if (memcmp(&mltaddr.sin6_addr,
1096 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1097 			    MLTMASK_LEN)) {
1098 				RTFREE_LOCKED(rt);
1099 				rt = NULL;
1100 			}
1101 		}
1102 		if (!rt) {
1103 			/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1104 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1105 			    (struct sockaddr *)&ia->ia_addr,
1106 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1107 			    (struct rtentry **)0);
1108 			if (error)
1109 				goto cleanup;
1110 		} else
1111 			RTFREE_LOCKED(rt);
1112 
1113 		/*
1114 		 * XXX: do we really need this automatic routes?
1115 		 * We should probably reconsider this stuff.  Most applications
1116 		 * actually do not need the routes, since they usually specify
1117 		 * the outgoing interface.
1118 		 */
1119 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1120 		if (rt) {
1121 			/* XXX: only works in !SCOPEDROUTING case. */
1122 			if (memcmp(&mltaddr.sin6_addr,
1123 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1124 			    MLTMASK_LEN)) {
1125 				RTFREE_LOCKED(rt);
1126 				rt = NULL;
1127 			}
1128 		}
1129 		if (!rt) {
1130 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1131 			    (struct sockaddr *)&ia->ia_addr,
1132 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1133 			    (struct rtentry **)0);
1134 			if (error)
1135 				goto cleanup;
1136 		} else {
1137 			RTFREE_LOCKED(rt);
1138 		}
1139 
1140 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1141 		if (!imm) {
1142 			nd6log((LOG_WARNING,
1143 			    "in6_update_ifa: addmulti failed for "
1144 			    "%s on %s (errno=%d)\n",
1145 			    ip6_sprintf(&mltaddr.sin6_addr),
1146 			    if_name(ifp), error));
1147 			goto cleanup;
1148 		}
1149 
1150 		/*
1151 		 * join node information group address
1152 		 */
1153 #define hostnamelen	strlen(hostname)
1154 		delay = 0;
1155 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1156 			/*
1157 			 * The spec doesn't say anything about delay for this
1158 			 * group, but the same logic should apply.
1159 			 */
1160 			delay = arc4random() %
1161 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1162 		}
1163 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1164 		    == 0) {
1165 			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1166 			    delay); /* XXX jinmei */
1167 			if (!imm) {
1168 				nd6log((LOG_WARNING, "in6_update_ifa: "
1169 				    "addmulti failed for %s on %s "
1170 				    "(errno=%d)\n",
1171 				    ip6_sprintf(&mltaddr.sin6_addr),
1172 				    if_name(ifp), error));
1173 				/* XXX not very fatal, go on... */
1174 			}
1175 		}
1176 #undef hostnamelen
1177 
1178 		/*
1179 		 * join interface-local all-nodes address.
1180 		 * (ff01::1%ifN, and ff01::%ifN/32)
1181 		 */
1182 		mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1183 		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL))
1184 		    != 0)
1185 			goto cleanup; /* XXX: should not fail */
1186 		/* XXX: again, do we really need the route? */
1187 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1188 		if (rt) {
1189 			if (memcmp(&mltaddr.sin6_addr,
1190 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1191 			    MLTMASK_LEN)) {
1192 				RTFREE_LOCKED(rt);
1193 				rt = NULL;
1194 			}
1195 		}
1196 		if (!rt) {
1197 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1198 			    (struct sockaddr *)&ia->ia_addr,
1199 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1200 			    (struct rtentry **)0);
1201 			if (error)
1202 				goto cleanup;
1203 		} else
1204 			RTFREE_LOCKED(rt);
1205 
1206 		/* XXX: again, do we really need the route? */
1207 		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1208 		if (rt) {
1209 			if (memcmp(&mltaddr.sin6_addr,
1210 			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1211 			    MLTMASK_LEN)) {
1212 				RTFREE_LOCKED(rt);
1213 				rt = NULL;
1214 			}
1215 		}
1216 		if (!rt) {
1217 			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1218 			    (struct sockaddr *)&ia->ia_addr,
1219 			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1220 			    (struct rtentry **)0);
1221 			if (error)
1222 				goto cleanup;
1223 		} else {
1224 			RTFREE_LOCKED(rt);
1225 		}
1226 
1227 		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1228 		if (!imm) {
1229 			nd6log((LOG_WARNING, "in6_update_ifa: "
1230 			    "addmulti failed for %s on %s "
1231 			    "(errno=%d)\n",
1232 			    ip6_sprintf(&mltaddr.sin6_addr),
1233 			    if_name(ifp), error));
1234 			goto cleanup;
1235 		}
1236 #undef	MLTMASK_LEN
1237 	}
1238 
1239 	/*
1240 	 * Perform DAD, if needed.
1241 	 * XXX It may be of use, if we can administratively
1242 	 * disable DAD.
1243 	 */
1244 	if (hostIsNew && in6if_do_dad(ifp) &&
1245 	    ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1246 	    (ia->ia6_flags & IN6_IFF_TENTATIVE))
1247 	{
1248 		int mindelay, maxdelay;
1249 
1250 		delay = 0;
1251 		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1252 			/*
1253 			 * We need to impose a delay before sending an NS
1254 			 * for DAD.  Check if we also needed a delay for the
1255 			 * corresponding MLD message.  If we did, the delay
1256 			 * should be larger than the MLD delay (this could be
1257 			 * relaxed a bit, but this simple logic is at least
1258 			 * safe).
1259 			 */
1260 			mindelay = 0;
1261 			if (in6m_sol != NULL &&
1262 			    in6m_sol->in6m_state == MLD_REPORTPENDING) {
1263 				mindelay = in6m_sol->in6m_timer;
1264 			}
1265 			maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1266 			if (maxdelay - mindelay == 0)
1267 				delay = 0;
1268 			else {
1269 				delay =
1270 				    (arc4random() % (maxdelay - mindelay)) +
1271 				    mindelay;
1272 			}
1273 		}
1274 		nd6_dad_start((struct ifaddr *)ia, delay);
1275 	}
1276 
1277 	return (error);
1278 
1279   unlink:
1280 	/*
1281 	 * XXX: if a change of an existing address failed, keep the entry
1282 	 * anyway.
1283 	 */
1284 	if (hostIsNew)
1285 		in6_unlink_ifa(ia, ifp);
1286 	return (error);
1287 
1288   cleanup:
1289 	in6_purgeaddr(&ia->ia_ifa);
1290 	return error;
1291 }
1292 
1293 void
1294 in6_purgeaddr(ifa)
1295 	struct ifaddr *ifa;
1296 {
1297 	struct ifnet *ifp = ifa->ifa_ifp;
1298 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1299 
1300 	/* stop DAD processing */
1301 	nd6_dad_stop(ifa);
1302 
1303 	/*
1304 	 * delete route to the destination of the address being purged.
1305 	 * The interface must be p2p or loopback in this case.
1306 	 */
1307 	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1308 		int e;
1309 
1310 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1311 		    != 0) {
1312 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1313 			    "a route to the p2p destination: %s on %s, "
1314 			    "errno=%d\n",
1315 			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1316 			    e);
1317 			/* proceed anyway... */
1318 		} else
1319 			ia->ia_flags &= ~IFA_ROUTE;
1320 	}
1321 
1322 	/* Remove ownaddr's loopback rtentry, if it exists. */
1323 	in6_ifremloop(&(ia->ia_ifa));
1324 
1325 	if (ifp->if_flags & IFF_MULTICAST) {
1326 		/*
1327 		 * delete solicited multicast addr for deleting host id
1328 		 */
1329 		struct in6_multi *in6m;
1330 		struct in6_addr llsol;
1331 		bzero(&llsol, sizeof(struct in6_addr));
1332 		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1333 		llsol.s6_addr32[1] = 0;
1334 		llsol.s6_addr32[2] = htonl(1);
1335 		llsol.s6_addr32[3] =
1336 			ia->ia_addr.sin6_addr.s6_addr32[3];
1337 		llsol.s6_addr8[12] = 0xff;
1338 		(void)in6_setscope(&llsol, ifp, NULL); /* XXX proceed anyway */
1339 
1340 		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1341 		if (in6m)
1342 			in6_delmulti(in6m);
1343 	}
1344 
1345 	in6_unlink_ifa(ia, ifp);
1346 }
1347 
1348 static void
1349 in6_unlink_ifa(ia, ifp)
1350 	struct in6_ifaddr *ia;
1351 	struct ifnet *ifp;
1352 {
1353 	struct in6_ifaddr *oia;
1354 	int	s = splnet();
1355 
1356 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1357 
1358 	oia = ia;
1359 	if (oia == (ia = in6_ifaddr))
1360 		in6_ifaddr = ia->ia_next;
1361 	else {
1362 		while (ia->ia_next && (ia->ia_next != oia))
1363 			ia = ia->ia_next;
1364 		if (ia->ia_next)
1365 			ia->ia_next = oia->ia_next;
1366 		else {
1367 			/* search failed */
1368 			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Release the reference to the base prefix.  There should be a
1374 	 * positive reference.
1375 	 */
1376 	if (oia->ia6_ndpr == NULL) {
1377 		nd6log((LOG_NOTICE,
1378 		    "in6_unlink_ifa: autoconf'ed address "
1379 		    "%p has no prefix\n", oia));
1380 	} else {
1381 		oia->ia6_ndpr->ndpr_refcnt--;
1382 		oia->ia6_ndpr = NULL;
1383 	}
1384 
1385 	/*
1386 	 * Also, if the address being removed is autoconf'ed, call
1387 	 * pfxlist_onlink_check() since the release might affect the status of
1388 	 * other (detached) addresses.
1389 	 */
1390 	if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) {
1391 		pfxlist_onlink_check();
1392 	}
1393 
1394 	/*
1395 	 * release another refcnt for the link from in6_ifaddr.
1396 	 * Note that we should decrement the refcnt at least once for all *BSD.
1397 	 */
1398 	IFAFREE(&oia->ia_ifa);
1399 
1400 	splx(s);
1401 }
1402 
1403 void
1404 in6_purgeif(ifp)
1405 	struct ifnet *ifp;
1406 {
1407 	struct ifaddr *ifa, *nifa;
1408 
1409 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
1410 		nifa = TAILQ_NEXT(ifa, ifa_list);
1411 		if (ifa->ifa_addr->sa_family != AF_INET6)
1412 			continue;
1413 		in6_purgeaddr(ifa);
1414 	}
1415 
1416 	in6_ifdetach(ifp);
1417 }
1418 
1419 /*
1420  * SIOC[GAD]LIFADDR.
1421  *	SIOCGLIFADDR: get first address. (?)
1422  *	SIOCGLIFADDR with IFLR_PREFIX:
1423  *		get first address that matches the specified prefix.
1424  *	SIOCALIFADDR: add the specified address.
1425  *	SIOCALIFADDR with IFLR_PREFIX:
1426  *		add the specified prefix, filling hostid part from
1427  *		the first link-local address.  prefixlen must be <= 64.
1428  *	SIOCDLIFADDR: delete the specified address.
1429  *	SIOCDLIFADDR with IFLR_PREFIX:
1430  *		delete the first address that matches the specified prefix.
1431  * return values:
1432  *	EINVAL on invalid parameters
1433  *	EADDRNOTAVAIL on prefix match failed/specified address not found
1434  *	other values may be returned from in6_ioctl()
1435  *
1436  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1437  * this is to accomodate address naming scheme other than RFC2374,
1438  * in the future.
1439  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1440  * address encoding scheme. (see figure on page 8)
1441  */
1442 static int
1443 in6_lifaddr_ioctl(so, cmd, data, ifp, td)
1444 	struct socket *so;
1445 	u_long cmd;
1446 	caddr_t	data;
1447 	struct ifnet *ifp;
1448 	struct thread *td;
1449 {
1450 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1451 	struct ifaddr *ifa;
1452 	struct sockaddr *sa;
1453 
1454 	/* sanity checks */
1455 	if (!data || !ifp) {
1456 		panic("invalid argument to in6_lifaddr_ioctl");
1457 		/* NOTREACHED */
1458 	}
1459 
1460 	switch (cmd) {
1461 	case SIOCGLIFADDR:
1462 		/* address must be specified on GET with IFLR_PREFIX */
1463 		if ((iflr->flags & IFLR_PREFIX) == 0)
1464 			break;
1465 		/* FALLTHROUGH */
1466 	case SIOCALIFADDR:
1467 	case SIOCDLIFADDR:
1468 		/* address must be specified on ADD and DELETE */
1469 		sa = (struct sockaddr *)&iflr->addr;
1470 		if (sa->sa_family != AF_INET6)
1471 			return EINVAL;
1472 		if (sa->sa_len != sizeof(struct sockaddr_in6))
1473 			return EINVAL;
1474 		/* XXX need improvement */
1475 		sa = (struct sockaddr *)&iflr->dstaddr;
1476 		if (sa->sa_family && sa->sa_family != AF_INET6)
1477 			return EINVAL;
1478 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1479 			return EINVAL;
1480 		break;
1481 	default: /* shouldn't happen */
1482 #if 0
1483 		panic("invalid cmd to in6_lifaddr_ioctl");
1484 		/* NOTREACHED */
1485 #else
1486 		return EOPNOTSUPP;
1487 #endif
1488 	}
1489 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1490 		return EINVAL;
1491 
1492 	switch (cmd) {
1493 	case SIOCALIFADDR:
1494 	    {
1495 		struct in6_aliasreq ifra;
1496 		struct in6_addr *hostid = NULL;
1497 		int prefixlen;
1498 
1499 		if ((iflr->flags & IFLR_PREFIX) != 0) {
1500 			struct sockaddr_in6 *sin6;
1501 
1502 			/*
1503 			 * hostid is to fill in the hostid part of the
1504 			 * address.  hostid points to the first link-local
1505 			 * address attached to the interface.
1506 			 */
1507 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1508 			if (!ifa)
1509 				return EADDRNOTAVAIL;
1510 			hostid = IFA_IN6(ifa);
1511 
1512 		 	/* prefixlen must be <= 64. */
1513 			if (64 < iflr->prefixlen)
1514 				return EINVAL;
1515 			prefixlen = iflr->prefixlen;
1516 
1517 			/* hostid part must be zero. */
1518 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1519 			if (sin6->sin6_addr.s6_addr32[2] != 0 ||
1520 			    sin6->sin6_addr.s6_addr32[3] != 0) {
1521 				return EINVAL;
1522 			}
1523 		} else
1524 			prefixlen = iflr->prefixlen;
1525 
1526 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1527 		bzero(&ifra, sizeof(ifra));
1528 		bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1529 
1530 		bcopy(&iflr->addr, &ifra.ifra_addr,
1531 		    ((struct sockaddr *)&iflr->addr)->sa_len);
1532 		if (hostid) {
1533 			/* fill in hostid part */
1534 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1535 			    hostid->s6_addr32[2];
1536 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1537 			    hostid->s6_addr32[3];
1538 		}
1539 
1540 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1541 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1542 			    ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1543 			if (hostid) {
1544 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1545 				    hostid->s6_addr32[2];
1546 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1547 				    hostid->s6_addr32[3];
1548 			}
1549 		}
1550 
1551 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1552 		in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1553 
1554 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1555 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1556 	    }
1557 	case SIOCGLIFADDR:
1558 	case SIOCDLIFADDR:
1559 	    {
1560 		struct in6_ifaddr *ia;
1561 		struct in6_addr mask, candidate, match;
1562 		struct sockaddr_in6 *sin6;
1563 		int cmp;
1564 
1565 		bzero(&mask, sizeof(mask));
1566 		if (iflr->flags & IFLR_PREFIX) {
1567 			/* lookup a prefix rather than address. */
1568 			in6_prefixlen2mask(&mask, iflr->prefixlen);
1569 
1570 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1571 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1572 			match.s6_addr32[0] &= mask.s6_addr32[0];
1573 			match.s6_addr32[1] &= mask.s6_addr32[1];
1574 			match.s6_addr32[2] &= mask.s6_addr32[2];
1575 			match.s6_addr32[3] &= mask.s6_addr32[3];
1576 
1577 			/* if you set extra bits, that's wrong */
1578 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1579 				return EINVAL;
1580 
1581 			cmp = 1;
1582 		} else {
1583 			if (cmd == SIOCGLIFADDR) {
1584 				/* on getting an address, take the 1st match */
1585 				cmp = 0;	/* XXX */
1586 			} else {
1587 				/* on deleting an address, do exact match */
1588 				in6_prefixlen2mask(&mask, 128);
1589 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1590 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1591 
1592 				cmp = 1;
1593 			}
1594 		}
1595 
1596 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1597 			if (ifa->ifa_addr->sa_family != AF_INET6)
1598 				continue;
1599 			if (!cmp)
1600 				break;
1601 
1602 			/*
1603 			 * XXX: this is adhoc, but is necessary to allow
1604 			 * a user to specify fe80::/64 (not /10) for a
1605 			 * link-local address.
1606 			 */
1607 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1608 			in6_clearscope(&candidate);
1609 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1610 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1611 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1612 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1613 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1614 				break;
1615 		}
1616 		if (!ifa)
1617 			return EADDRNOTAVAIL;
1618 		ia = ifa2ia6(ifa);
1619 
1620 		if (cmd == SIOCGLIFADDR) {
1621 			int error;
1622 
1623 			/* fill in the if_laddrreq structure */
1624 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1625 			error = sa6_recoverscope(
1626 			    (struct sockaddr_in6 *)&iflr->addr);
1627 			if (error != 0)
1628 				return (error);
1629 
1630 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1631 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1632 				    ia->ia_dstaddr.sin6_len);
1633 				error = sa6_recoverscope(
1634 				    (struct sockaddr_in6 *)&iflr->dstaddr);
1635 				if (error != 0)
1636 					return (error);
1637 			} else
1638 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1639 
1640 			iflr->prefixlen =
1641 			    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1642 
1643 			iflr->flags = ia->ia6_flags;	/* XXX */
1644 
1645 			return 0;
1646 		} else {
1647 			struct in6_aliasreq ifra;
1648 
1649 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1650 			bzero(&ifra, sizeof(ifra));
1651 			bcopy(iflr->iflr_name, ifra.ifra_name,
1652 			    sizeof(ifra.ifra_name));
1653 
1654 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1655 			    ia->ia_addr.sin6_len);
1656 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1657 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1658 				    ia->ia_dstaddr.sin6_len);
1659 			} else {
1660 				bzero(&ifra.ifra_dstaddr,
1661 				    sizeof(ifra.ifra_dstaddr));
1662 			}
1663 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1664 			    ia->ia_prefixmask.sin6_len);
1665 
1666 			ifra.ifra_flags = ia->ia6_flags;
1667 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1668 			    ifp, td);
1669 		}
1670 	    }
1671 	}
1672 
1673 	return EOPNOTSUPP;	/* just for safety */
1674 }
1675 
1676 /*
1677  * Initialize an interface's intetnet6 address
1678  * and routing table entry.
1679  */
1680 static int
1681 in6_ifinit(ifp, ia, sin6, newhost)
1682 	struct ifnet *ifp;
1683 	struct in6_ifaddr *ia;
1684 	struct sockaddr_in6 *sin6;
1685 	int newhost;
1686 {
1687 	int	error = 0, plen, ifacount = 0;
1688 	int	s = splimp();
1689 	struct ifaddr *ifa;
1690 
1691 	/*
1692 	 * Give the interface a chance to initialize
1693 	 * if this is its first address,
1694 	 * and to validate the address if necessary.
1695 	 */
1696 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1697 		if (ifa->ifa_addr->sa_family != AF_INET6)
1698 			continue;
1699 		ifacount++;
1700 	}
1701 
1702 	ia->ia_addr = *sin6;
1703 
1704 	if (ifacount <= 1 && ifp->if_ioctl) {
1705 		IFF_LOCKGIANT(ifp);
1706 		error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
1707 		IFF_UNLOCKGIANT(ifp);
1708 		if (error) {
1709 			splx(s);
1710 			return (error);
1711 		}
1712 	}
1713 	splx(s);
1714 
1715 	ia->ia_ifa.ifa_metric = ifp->if_metric;
1716 
1717 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1718 
1719 	if (newhost) {
1720 		/*
1721 		 * set the rtrequest function to create llinfo.  It also
1722 		 * adjust outgoing interface of the route for the local
1723 		 * address when called via in6_ifaddloop() below.
1724 		 */
1725 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1726 	}
1727 
1728 	/*
1729 	 * Special case:
1730 	 * If a new destination address is specified for a point-to-point
1731 	 * interface, install a route to the destination as an interface
1732 	 * direct route.  In addition, if the link is expected to have neighbor
1733 	 * cache entries, specify RTF_LLINFO so that a cache entry for the
1734 	 * destination address will be created.
1735 	 * created
1736 	 * XXX: the logic below rejects assigning multiple addresses on a p2p
1737 	 * interface that share the same destination.
1738 	 */
1739 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1740 	if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 &&
1741 	    ia->ia_dstaddr.sin6_family == AF_INET6) {
1742 		int rtflags = RTF_UP | RTF_HOST;
1743 		struct rtentry *rt = NULL, **rtp = NULL;
1744 
1745 		if (nd6_need_cache(ifp) != 0) {
1746 			rtflags |= RTF_LLINFO;
1747 			rtp = &rt;
1748 		}
1749 
1750 		error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr,
1751 		    (struct sockaddr *)&ia->ia_addr,
1752 		    (struct sockaddr *)&ia->ia_prefixmask,
1753 		    ia->ia_flags | rtflags, rtp);
1754 		if (error != 0)
1755 			return (error);
1756 		if (rt != NULL) {
1757 			struct llinfo_nd6 *ln;
1758 
1759 			RT_LOCK(rt);
1760 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1761 			if (ln != NULL) {
1762 				/*
1763 				 * Set the state to STALE because we don't
1764 				 * have to perform address resolution on this
1765 				 * link.
1766 				 */
1767 				ln->ln_state = ND6_LLINFO_STALE;
1768 			}
1769 			RT_REMREF(rt);
1770 			RT_UNLOCK(rt);
1771 		}
1772 		ia->ia_flags |= IFA_ROUTE;
1773 	}
1774 	if (plen < 128) {
1775 		/*
1776 		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1777 		 */
1778 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1779 	}
1780 
1781 	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1782 	if (newhost)
1783 		in6_ifaddloop(&(ia->ia_ifa));
1784 
1785 	return (error);
1786 }
1787 
1788 struct in6_multi_mship *
1789 in6_joingroup(ifp, addr, errorp, delay)
1790 	struct ifnet *ifp;
1791 	struct in6_addr *addr;
1792 	int *errorp;
1793 	int delay;
1794 {
1795 	struct in6_multi_mship *imm;
1796 
1797 	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1798 	if (!imm) {
1799 		*errorp = ENOBUFS;
1800 		return NULL;
1801 	}
1802 	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay);
1803 	if (!imm->i6mm_maddr) {
1804 		/* *errorp is alrady set */
1805 		free(imm, M_IP6MADDR);
1806 		return NULL;
1807 	}
1808 	return imm;
1809 }
1810 
1811 int
1812 in6_leavegroup(imm)
1813 	struct in6_multi_mship *imm;
1814 {
1815 
1816 	if (imm->i6mm_maddr)
1817 		in6_delmulti(imm->i6mm_maddr);
1818 	free(imm,  M_IP6MADDR);
1819 	return 0;
1820 }
1821 
1822 /*
1823  * Find an IPv6 interface link-local address specific to an interface.
1824  */
1825 struct in6_ifaddr *
1826 in6ifa_ifpforlinklocal(ifp, ignoreflags)
1827 	struct ifnet *ifp;
1828 	int ignoreflags;
1829 {
1830 	struct ifaddr *ifa;
1831 
1832 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1833 		if (ifa->ifa_addr->sa_family != AF_INET6)
1834 			continue;
1835 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1836 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1837 			     ignoreflags) != 0)
1838 				continue;
1839 			break;
1840 		}
1841 	}
1842 
1843 	return ((struct in6_ifaddr *)ifa);
1844 }
1845 
1846 
1847 /*
1848  * find the internet address corresponding to a given interface and address.
1849  */
1850 struct in6_ifaddr *
1851 in6ifa_ifpwithaddr(ifp, addr)
1852 	struct ifnet *ifp;
1853 	struct in6_addr *addr;
1854 {
1855 	struct ifaddr *ifa;
1856 
1857 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1858 		if (ifa->ifa_addr->sa_family != AF_INET6)
1859 			continue;
1860 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1861 			break;
1862 	}
1863 
1864 	return ((struct in6_ifaddr *)ifa);
1865 }
1866 
1867 /*
1868  * Convert IP6 address to printable (loggable) representation.
1869  */
1870 static char digits[] = "0123456789abcdef";
1871 static int ip6round = 0;
1872 char *
1873 ip6_sprintf(addr)
1874 	const struct in6_addr *addr;
1875 {
1876 	static char ip6buf[8][48];
1877 	int i;
1878 	char *cp;
1879 	const u_int16_t *a = (const u_int16_t *)addr;
1880 	const u_int8_t *d;
1881 	int dcolon = 0;
1882 
1883 	ip6round = (ip6round + 1) & 7;
1884 	cp = ip6buf[ip6round];
1885 
1886 	for (i = 0; i < 8; i++) {
1887 		if (dcolon == 1) {
1888 			if (*a == 0) {
1889 				if (i == 7)
1890 					*cp++ = ':';
1891 				a++;
1892 				continue;
1893 			} else
1894 				dcolon = 2;
1895 		}
1896 		if (*a == 0) {
1897 			if (dcolon == 0 && *(a + 1) == 0) {
1898 				if (i == 0)
1899 					*cp++ = ':';
1900 				*cp++ = ':';
1901 				dcolon = 1;
1902 			} else {
1903 				*cp++ = '0';
1904 				*cp++ = ':';
1905 			}
1906 			a++;
1907 			continue;
1908 		}
1909 		d = (const u_char *)a;
1910 		*cp++ = digits[*d >> 4];
1911 		*cp++ = digits[*d++ & 0xf];
1912 		*cp++ = digits[*d >> 4];
1913 		*cp++ = digits[*d & 0xf];
1914 		*cp++ = ':';
1915 		a++;
1916 	}
1917 	*--cp = 0;
1918 	return (ip6buf[ip6round]);
1919 }
1920 
1921 int
1922 in6_localaddr(in6)
1923 	struct in6_addr *in6;
1924 {
1925 	struct in6_ifaddr *ia;
1926 
1927 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1928 		return 1;
1929 
1930 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1931 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1932 		    &ia->ia_prefixmask.sin6_addr)) {
1933 			return 1;
1934 		}
1935 	}
1936 
1937 	return (0);
1938 }
1939 
1940 int
1941 in6_is_addr_deprecated(sa6)
1942 	struct sockaddr_in6 *sa6;
1943 {
1944 	struct in6_ifaddr *ia;
1945 
1946 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1947 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1948 				       &sa6->sin6_addr) &&
1949 		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1950 			return (1); /* true */
1951 
1952 		/* XXX: do we still have to go thru the rest of the list? */
1953 	}
1954 
1955 	return (0);		/* false */
1956 }
1957 
1958 /*
1959  * return length of part which dst and src are equal
1960  * hard coding...
1961  */
1962 int
1963 in6_matchlen(src, dst)
1964 struct in6_addr *src, *dst;
1965 {
1966 	int match = 0;
1967 	u_char *s = (u_char *)src, *d = (u_char *)dst;
1968 	u_char *lim = s + 16, r;
1969 
1970 	while (s < lim)
1971 		if ((r = (*d++ ^ *s++)) != 0) {
1972 			while (r < 128) {
1973 				match++;
1974 				r <<= 1;
1975 			}
1976 			break;
1977 		} else
1978 			match += 8;
1979 	return match;
1980 }
1981 
1982 /* XXX: to be scope conscious */
1983 int
1984 in6_are_prefix_equal(p1, p2, len)
1985 	struct in6_addr *p1, *p2;
1986 	int len;
1987 {
1988 	int bytelen, bitlen;
1989 
1990 	/* sanity check */
1991 	if (0 > len || len > 128) {
1992 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
1993 		    len);
1994 		return (0);
1995 	}
1996 
1997 	bytelen = len / 8;
1998 	bitlen = len % 8;
1999 
2000 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2001 		return (0);
2002 	if (bitlen != 0 &&
2003 	    p1->s6_addr[bytelen] >> (8 - bitlen) !=
2004 	    p2->s6_addr[bytelen] >> (8 - bitlen))
2005 		return (0);
2006 
2007 	return (1);
2008 }
2009 
2010 void
2011 in6_prefixlen2mask(maskp, len)
2012 	struct in6_addr *maskp;
2013 	int len;
2014 {
2015 	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2016 	int bytelen, bitlen, i;
2017 
2018 	/* sanity check */
2019 	if (0 > len || len > 128) {
2020 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2021 		    len);
2022 		return;
2023 	}
2024 
2025 	bzero(maskp, sizeof(*maskp));
2026 	bytelen = len / 8;
2027 	bitlen = len % 8;
2028 	for (i = 0; i < bytelen; i++)
2029 		maskp->s6_addr[i] = 0xff;
2030 	if (bitlen)
2031 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2032 }
2033 
2034 /*
2035  * return the best address out of the same scope. if no address was
2036  * found, return the first valid address from designated IF.
2037  */
2038 struct in6_ifaddr *
2039 in6_ifawithifp(ifp, dst)
2040 	struct ifnet *ifp;
2041 	struct in6_addr *dst;
2042 {
2043 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2044 	struct ifaddr *ifa;
2045 	struct in6_ifaddr *besta = 0;
2046 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
2047 
2048 	dep[0] = dep[1] = NULL;
2049 
2050 	/*
2051 	 * We first look for addresses in the same scope.
2052 	 * If there is one, return it.
2053 	 * If two or more, return one which matches the dst longest.
2054 	 * If none, return one of global addresses assigned other ifs.
2055 	 */
2056 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2057 		if (ifa->ifa_addr->sa_family != AF_INET6)
2058 			continue;
2059 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2060 			continue; /* XXX: is there any case to allow anycast? */
2061 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2062 			continue; /* don't use this interface */
2063 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2064 			continue;
2065 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2066 			if (ip6_use_deprecated)
2067 				dep[0] = (struct in6_ifaddr *)ifa;
2068 			continue;
2069 		}
2070 
2071 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2072 			/*
2073 			 * call in6_matchlen() as few as possible
2074 			 */
2075 			if (besta) {
2076 				if (blen == -1)
2077 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2078 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2079 				if (tlen > blen) {
2080 					blen = tlen;
2081 					besta = (struct in6_ifaddr *)ifa;
2082 				}
2083 			} else
2084 				besta = (struct in6_ifaddr *)ifa;
2085 		}
2086 	}
2087 	if (besta)
2088 		return (besta);
2089 
2090 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2091 		if (ifa->ifa_addr->sa_family != AF_INET6)
2092 			continue;
2093 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2094 			continue; /* XXX: is there any case to allow anycast? */
2095 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2096 			continue; /* don't use this interface */
2097 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2098 			continue;
2099 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2100 			if (ip6_use_deprecated)
2101 				dep[1] = (struct in6_ifaddr *)ifa;
2102 			continue;
2103 		}
2104 
2105 		return (struct in6_ifaddr *)ifa;
2106 	}
2107 
2108 	/* use the last-resort values, that are, deprecated addresses */
2109 	if (dep[0])
2110 		return dep[0];
2111 	if (dep[1])
2112 		return dep[1];
2113 
2114 	return NULL;
2115 }
2116 
2117 /*
2118  * perform DAD when interface becomes IFF_UP.
2119  */
2120 void
2121 in6_if_up(ifp)
2122 	struct ifnet *ifp;
2123 {
2124 	struct ifaddr *ifa;
2125 	struct in6_ifaddr *ia;
2126 
2127 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2128 		if (ifa->ifa_addr->sa_family != AF_INET6)
2129 			continue;
2130 		ia = (struct in6_ifaddr *)ifa;
2131 		if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2132 			/*
2133 			 * The TENTATIVE flag was likely set by hand
2134 			 * beforehand, implicitly indicating the need for DAD.
2135 			 * We may be able to skip the random delay in this
2136 			 * case, but we impose delays just in case.
2137 			 */
2138 			nd6_dad_start(ifa,
2139 			    arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
2140 		}
2141 	}
2142 
2143 	/*
2144 	 * special cases, like 6to4, are handled in in6_ifattach
2145 	 */
2146 	in6_ifattach(ifp, NULL);
2147 }
2148 
2149 int
2150 in6if_do_dad(ifp)
2151 	struct ifnet *ifp;
2152 {
2153 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2154 		return (0);
2155 
2156 	switch (ifp->if_type) {
2157 #ifdef IFT_DUMMY
2158 	case IFT_DUMMY:
2159 #endif
2160 	case IFT_FAITH:
2161 		/*
2162 		 * These interfaces do not have the IFF_LOOPBACK flag,
2163 		 * but loop packets back.  We do not have to do DAD on such
2164 		 * interfaces.  We should even omit it, because loop-backed
2165 		 * NS would confuse the DAD procedure.
2166 		 */
2167 		return (0);
2168 	default:
2169 		/*
2170 		 * Our DAD routine requires the interface up and running.
2171 		 * However, some interfaces can be up before the RUNNING
2172 		 * status.  Additionaly, users may try to assign addresses
2173 		 * before the interface becomes up (or running).
2174 		 * We simply skip DAD in such a case as a work around.
2175 		 * XXX: we should rather mark "tentative" on such addresses,
2176 		 * and do DAD after the interface becomes ready.
2177 		 */
2178 		if (!((ifp->if_flags & IFF_UP) &&
2179 		    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
2180 			return (0);
2181 
2182 		return (1);
2183 	}
2184 }
2185 
2186 /*
2187  * Calculate max IPv6 MTU through all the interfaces and store it
2188  * to in6_maxmtu.
2189  */
2190 void
2191 in6_setmaxmtu()
2192 {
2193 	unsigned long maxmtu = 0;
2194 	struct ifnet *ifp;
2195 
2196 	IFNET_RLOCK();
2197 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
2198 		/* this function can be called during ifnet initialization */
2199 		if (!ifp->if_afdata[AF_INET6])
2200 			continue;
2201 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2202 		    IN6_LINKMTU(ifp) > maxmtu)
2203 			maxmtu = IN6_LINKMTU(ifp);
2204 	}
2205 	IFNET_RUNLOCK();
2206 	if (maxmtu)	     /* update only when maxmtu is positive */
2207 		in6_maxmtu = maxmtu;
2208 }
2209 
2210 /*
2211  * Provide the length of interface identifiers to be used for the link attached
2212  * to the given interface.  The length should be defined in "IPv6 over
2213  * xxx-link" document.  Note that address architecture might also define
2214  * the length for a particular set of address prefixes, regardless of the
2215  * link type.  As clarified in rfc2462bis, those two definitions should be
2216  * consistent, and those really are as of August 2004.
2217  */
2218 int
2219 in6_if2idlen(ifp)
2220 	struct ifnet *ifp;
2221 {
2222 	switch (ifp->if_type) {
2223 	case IFT_ETHER:		/* RFC2464 */
2224 #ifdef IFT_PROPVIRTUAL
2225 	case IFT_PROPVIRTUAL:	/* XXX: no RFC. treat it as ether */
2226 #endif
2227 #ifdef IFT_L2VLAN
2228 	case IFT_L2VLAN:	/* ditto */
2229 #endif
2230 #ifdef IFT_IEEE80211
2231 	case IFT_IEEE80211:	/* ditto */
2232 #endif
2233 #ifdef IFT_MIP
2234 	case IFT_MIP:	/* ditto */
2235 #endif
2236 		return (64);
2237 	case IFT_FDDI:		/* RFC2467 */
2238 		return (64);
2239 	case IFT_ISO88025:	/* RFC2470 (IPv6 over Token Ring) */
2240 		return (64);
2241 	case IFT_PPP:		/* RFC2472 */
2242 		return (64);
2243 	case IFT_ARCNET:	/* RFC2497 */
2244 		return (64);
2245 	case IFT_FRELAY:	/* RFC2590 */
2246 		return (64);
2247 	case IFT_IEEE1394:	/* RFC3146 */
2248 		return (64);
2249 	case IFT_GIF:
2250 		return (64);	/* draft-ietf-v6ops-mech-v2-07 */
2251 	case IFT_LOOP:
2252 		return (64);	/* XXX: is this really correct? */
2253 	default:
2254 		/*
2255 		 * Unknown link type:
2256 		 * It might be controversial to use the today's common constant
2257 		 * of 64 for these cases unconditionally.  For full compliance,
2258 		 * we should return an error in this case.  On the other hand,
2259 		 * if we simply miss the standard for the link type or a new
2260 		 * standard is defined for a new link type, the IFID length
2261 		 * is very likely to be the common constant.  As a compromise,
2262 		 * we always use the constant, but make an explicit notice
2263 		 * indicating the "unknown" case.
2264 		 */
2265 		printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2266 		return (64);
2267 	}
2268 }
2269 
2270 void *
2271 in6_domifattach(ifp)
2272 	struct ifnet *ifp;
2273 {
2274 	struct in6_ifextra *ext;
2275 
2276 	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2277 	bzero(ext, sizeof(*ext));
2278 
2279 	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2280 	    M_IFADDR, M_WAITOK);
2281 	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2282 
2283 	ext->icmp6_ifstat =
2284 	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2285 	    M_IFADDR, M_WAITOK);
2286 	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2287 
2288 	ext->nd_ifinfo = nd6_ifattach(ifp);
2289 	ext->scope6_id = scope6_ifattach(ifp);
2290 	return ext;
2291 }
2292 
2293 void
2294 in6_domifdetach(ifp, aux)
2295 	struct ifnet *ifp;
2296 	void *aux;
2297 {
2298 	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2299 
2300 	scope6_ifdetach(ext->scope6_id);
2301 	nd6_ifdetach(ext->nd_ifinfo);
2302 	free(ext->in6_ifstat, M_IFADDR);
2303 	free(ext->icmp6_ifstat, M_IFADDR);
2304 	free(ext, M_IFADDR);
2305 }
2306 
2307 /*
2308  * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
2309  * v4 mapped addr or v4 compat addr
2310  */
2311 void
2312 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2313 {
2314 	bzero(sin, sizeof(*sin));
2315 	sin->sin_len = sizeof(struct sockaddr_in);
2316 	sin->sin_family = AF_INET;
2317 	sin->sin_port = sin6->sin6_port;
2318 	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2319 }
2320 
2321 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2322 void
2323 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2324 {
2325 	bzero(sin6, sizeof(*sin6));
2326 	sin6->sin6_len = sizeof(struct sockaddr_in6);
2327 	sin6->sin6_family = AF_INET6;
2328 	sin6->sin6_port = sin->sin_port;
2329 	sin6->sin6_addr.s6_addr32[0] = 0;
2330 	sin6->sin6_addr.s6_addr32[1] = 0;
2331 	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2332 	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2333 }
2334 
2335 /* Convert sockaddr_in6 into sockaddr_in. */
2336 void
2337 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2338 {
2339 	struct sockaddr_in *sin_p;
2340 	struct sockaddr_in6 sin6;
2341 
2342 	/*
2343 	 * Save original sockaddr_in6 addr and convert it
2344 	 * to sockaddr_in.
2345 	 */
2346 	sin6 = *(struct sockaddr_in6 *)nam;
2347 	sin_p = (struct sockaddr_in *)nam;
2348 	in6_sin6_2_sin(sin_p, &sin6);
2349 }
2350 
2351 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2352 void
2353 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2354 {
2355 	struct sockaddr_in *sin_p;
2356 	struct sockaddr_in6 *sin6_p;
2357 
2358 	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2359 	       M_WAITOK);
2360 	sin_p = (struct sockaddr_in *)*nam;
2361 	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2362 	FREE(*nam, M_SONAME);
2363 	*nam = (struct sockaddr *)sin6_p;
2364 }
2365