1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 69 #include <sys/param.h> 70 #include <sys/errno.h> 71 #include <sys/jail.h> 72 #include <sys/malloc.h> 73 #include <sys/socket.h> 74 #include <sys/socketvar.h> 75 #include <sys/sockio.h> 76 #include <sys/systm.h> 77 #include <sys/priv.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 #include <sys/vimage.h> 83 84 #include <net/if.h> 85 #include <net/if_types.h> 86 #include <net/route.h> 87 #include <net/if_dl.h> 88 #include <net/vnet.h> 89 90 #include <netinet/in.h> 91 #include <netinet/in_var.h> 92 #include <net/if_llatbl.h> 93 #include <netinet/if_ether.h> 94 #include <netinet/in_systm.h> 95 #include <netinet/ip.h> 96 #include <netinet/in_pcb.h> 97 98 #include <netinet/ip6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/mld6_var.h> 102 #include <netinet6/ip6_mroute.h> 103 #include <netinet6/in6_ifattach.h> 104 #include <netinet6/scope6_var.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/vinet6.h> 107 108 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 109 110 /* 111 * Definitions of some costant IP6 addresses. 112 */ 113 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 114 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 115 const struct in6_addr in6addr_nodelocal_allnodes = 116 IN6ADDR_NODELOCAL_ALLNODES_INIT; 117 const struct in6_addr in6addr_linklocal_allnodes = 118 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 119 const struct in6_addr in6addr_linklocal_allrouters = 120 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 121 122 const struct in6_addr in6mask0 = IN6MASK0; 123 const struct in6_addr in6mask32 = IN6MASK32; 124 const struct in6_addr in6mask64 = IN6MASK64; 125 const struct in6_addr in6mask96 = IN6MASK96; 126 const struct in6_addr in6mask128 = IN6MASK128; 127 128 const struct sockaddr_in6 sa6_any = 129 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 130 131 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 132 struct ifnet *, struct thread *)); 133 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 134 struct sockaddr_in6 *, int)); 135 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 136 137 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 138 int (*faithprefix_p)(struct in6_addr *); 139 140 141 142 int 143 in6_mask2len(struct in6_addr *mask, u_char *lim0) 144 { 145 int x = 0, y; 146 u_char *lim = lim0, *p; 147 148 /* ignore the scope_id part */ 149 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 150 lim = (u_char *)mask + sizeof(*mask); 151 for (p = (u_char *)mask; p < lim; x++, p++) { 152 if (*p != 0xff) 153 break; 154 } 155 y = 0; 156 if (p < lim) { 157 for (y = 0; y < 8; y++) { 158 if ((*p & (0x80 >> y)) == 0) 159 break; 160 } 161 } 162 163 /* 164 * when the limit pointer is given, do a stricter check on the 165 * remaining bits. 166 */ 167 if (p < lim) { 168 if (y != 0 && (*p & (0x00ff >> y)) != 0) 169 return (-1); 170 for (p = p + 1; p < lim; p++) 171 if (*p != 0) 172 return (-1); 173 } 174 175 return x * 8 + y; 176 } 177 178 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 179 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 180 181 int 182 in6_control(struct socket *so, u_long cmd, caddr_t data, 183 struct ifnet *ifp, struct thread *td) 184 { 185 INIT_VNET_INET6(curvnet); 186 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 187 struct in6_ifaddr *ia = NULL; 188 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 189 struct sockaddr_in6 *sa6; 190 int error; 191 192 switch (cmd) { 193 case SIOCGETSGCNT_IN6: 194 case SIOCGETMIFCNT_IN6: 195 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 196 } 197 198 switch(cmd) { 199 case SIOCAADDRCTL_POLICY: 200 case SIOCDADDRCTL_POLICY: 201 if (td != NULL) { 202 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 203 if (error) 204 return (error); 205 } 206 return (in6_src_ioctl(cmd, data)); 207 } 208 209 if (ifp == NULL) 210 return (EOPNOTSUPP); 211 212 switch (cmd) { 213 case SIOCSNDFLUSH_IN6: 214 case SIOCSPFXFLUSH_IN6: 215 case SIOCSRTRFLUSH_IN6: 216 case SIOCSDEFIFACE_IN6: 217 case SIOCSIFINFO_FLAGS: 218 if (td != NULL) { 219 error = priv_check(td, PRIV_NETINET_ND6); 220 if (error) 221 return (error); 222 } 223 /* FALLTHROUGH */ 224 case OSIOCGIFINFO_IN6: 225 case SIOCGIFINFO_IN6: 226 case SIOCSIFINFO_IN6: 227 case SIOCGDRLST_IN6: 228 case SIOCGPRLST_IN6: 229 case SIOCGNBRINFO_IN6: 230 case SIOCGDEFIFACE_IN6: 231 return (nd6_ioctl(cmd, data, ifp)); 232 } 233 234 switch (cmd) { 235 case SIOCSIFPREFIX_IN6: 236 case SIOCDIFPREFIX_IN6: 237 case SIOCAIFPREFIX_IN6: 238 case SIOCCIFPREFIX_IN6: 239 case SIOCSGIFPREFIX_IN6: 240 case SIOCGIFPREFIX_IN6: 241 log(LOG_NOTICE, 242 "prefix ioctls are now invalidated. " 243 "please use ifconfig.\n"); 244 return (EOPNOTSUPP); 245 } 246 247 switch (cmd) { 248 case SIOCSSCOPE6: 249 if (td != NULL) { 250 error = priv_check(td, PRIV_NETINET_SCOPE6); 251 if (error) 252 return (error); 253 } 254 return (scope6_set(ifp, 255 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 256 case SIOCGSCOPE6: 257 return (scope6_get(ifp, 258 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 259 case SIOCGSCOPE6DEF: 260 return (scope6_get_default((struct scope6_id *) 261 ifr->ifr_ifru.ifru_scope_id)); 262 } 263 264 switch (cmd) { 265 case SIOCALIFADDR: 266 if (td != NULL) { 267 error = priv_check(td, PRIV_NET_ADDIFADDR); 268 if (error) 269 return (error); 270 } 271 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 272 273 case SIOCDLIFADDR: 274 if (td != NULL) { 275 error = priv_check(td, PRIV_NET_DELIFADDR); 276 if (error) 277 return (error); 278 } 279 /* FALLTHROUGH */ 280 case SIOCGLIFADDR: 281 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 282 } 283 284 /* 285 * Find address for this interface, if it exists. 286 * 287 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 288 * only, and used the first interface address as the target of other 289 * operations (without checking ifra_addr). This was because netinet 290 * code/API assumed at most 1 interface address per interface. 291 * Since IPv6 allows a node to assign multiple addresses 292 * on a single interface, we almost always look and check the 293 * presence of ifra_addr, and reject invalid ones here. 294 * It also decreases duplicated code among SIOC*_IN6 operations. 295 */ 296 switch (cmd) { 297 case SIOCAIFADDR_IN6: 298 case SIOCSIFPHYADDR_IN6: 299 sa6 = &ifra->ifra_addr; 300 break; 301 case SIOCSIFADDR_IN6: 302 case SIOCGIFADDR_IN6: 303 case SIOCSIFDSTADDR_IN6: 304 case SIOCSIFNETMASK_IN6: 305 case SIOCGIFDSTADDR_IN6: 306 case SIOCGIFNETMASK_IN6: 307 case SIOCDIFADDR_IN6: 308 case SIOCGIFPSRCADDR_IN6: 309 case SIOCGIFPDSTADDR_IN6: 310 case SIOCGIFAFLAG_IN6: 311 case SIOCSNDFLUSH_IN6: 312 case SIOCSPFXFLUSH_IN6: 313 case SIOCSRTRFLUSH_IN6: 314 case SIOCGIFALIFETIME_IN6: 315 case SIOCSIFALIFETIME_IN6: 316 case SIOCGIFSTAT_IN6: 317 case SIOCGIFSTAT_ICMP6: 318 sa6 = &ifr->ifr_addr; 319 break; 320 default: 321 sa6 = NULL; 322 break; 323 } 324 if (sa6 && sa6->sin6_family == AF_INET6) { 325 int error = 0; 326 327 if (sa6->sin6_scope_id != 0) 328 error = sa6_embedscope(sa6, 0); 329 else 330 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 331 if (error != 0) 332 return (error); 333 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 334 &sa6->sin6_addr)) != 0) 335 return (error); 336 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 337 } else 338 ia = NULL; 339 340 switch (cmd) { 341 case SIOCSIFADDR_IN6: 342 case SIOCSIFDSTADDR_IN6: 343 case SIOCSIFNETMASK_IN6: 344 /* 345 * Since IPv6 allows a node to assign multiple addresses 346 * on a single interface, SIOCSIFxxx ioctls are deprecated. 347 */ 348 /* we decided to obsolete this command (20000704) */ 349 return (EINVAL); 350 351 case SIOCDIFADDR_IN6: 352 /* 353 * for IPv4, we look for existing in_ifaddr here to allow 354 * "ifconfig if0 delete" to remove the first IPv4 address on 355 * the interface. For IPv6, as the spec allows multiple 356 * interface address from the day one, we consider "remove the 357 * first one" semantics to be not preferable. 358 */ 359 if (ia == NULL) 360 return (EADDRNOTAVAIL); 361 /* FALLTHROUGH */ 362 case SIOCAIFADDR_IN6: 363 /* 364 * We always require users to specify a valid IPv6 address for 365 * the corresponding operation. 366 */ 367 if (ifra->ifra_addr.sin6_family != AF_INET6 || 368 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 369 return (EAFNOSUPPORT); 370 371 if (td != NULL) { 372 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 373 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 374 if (error) 375 return (error); 376 } 377 378 break; 379 380 case SIOCGIFADDR_IN6: 381 /* This interface is basically deprecated. use SIOCGIFCONF. */ 382 /* FALLTHROUGH */ 383 case SIOCGIFAFLAG_IN6: 384 case SIOCGIFNETMASK_IN6: 385 case SIOCGIFDSTADDR_IN6: 386 case SIOCGIFALIFETIME_IN6: 387 /* must think again about its semantics */ 388 if (ia == NULL) 389 return (EADDRNOTAVAIL); 390 break; 391 case SIOCSIFALIFETIME_IN6: 392 { 393 struct in6_addrlifetime *lt; 394 395 if (td != NULL) { 396 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 397 if (error) 398 return (error); 399 } 400 if (ia == NULL) 401 return (EADDRNOTAVAIL); 402 /* sanity for overflow - beware unsigned */ 403 lt = &ifr->ifr_ifru.ifru_lifetime; 404 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 405 lt->ia6t_vltime + time_second < time_second) { 406 return EINVAL; 407 } 408 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 409 lt->ia6t_pltime + time_second < time_second) { 410 return EINVAL; 411 } 412 break; 413 } 414 } 415 416 switch (cmd) { 417 418 case SIOCGIFADDR_IN6: 419 ifr->ifr_addr = ia->ia_addr; 420 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 421 return (error); 422 break; 423 424 case SIOCGIFDSTADDR_IN6: 425 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 426 return (EINVAL); 427 /* 428 * XXX: should we check if ifa_dstaddr is NULL and return 429 * an error? 430 */ 431 ifr->ifr_dstaddr = ia->ia_dstaddr; 432 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 433 return (error); 434 break; 435 436 case SIOCGIFNETMASK_IN6: 437 ifr->ifr_addr = ia->ia_prefixmask; 438 break; 439 440 case SIOCGIFAFLAG_IN6: 441 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 442 break; 443 444 case SIOCGIFSTAT_IN6: 445 if (ifp == NULL) 446 return EINVAL; 447 bzero(&ifr->ifr_ifru.ifru_stat, 448 sizeof(ifr->ifr_ifru.ifru_stat)); 449 ifr->ifr_ifru.ifru_stat = 450 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 451 break; 452 453 case SIOCGIFSTAT_ICMP6: 454 if (ifp == NULL) 455 return EINVAL; 456 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 457 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 458 ifr->ifr_ifru.ifru_icmp6stat = 459 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 460 break; 461 462 case SIOCGIFALIFETIME_IN6: 463 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 464 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 465 time_t maxexpire; 466 struct in6_addrlifetime *retlt = 467 &ifr->ifr_ifru.ifru_lifetime; 468 469 /* 470 * XXX: adjust expiration time assuming time_t is 471 * signed. 472 */ 473 maxexpire = (-1) & 474 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 475 if (ia->ia6_lifetime.ia6t_vltime < 476 maxexpire - ia->ia6_updatetime) { 477 retlt->ia6t_expire = ia->ia6_updatetime + 478 ia->ia6_lifetime.ia6t_vltime; 479 } else 480 retlt->ia6t_expire = maxexpire; 481 } 482 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 483 time_t maxexpire; 484 struct in6_addrlifetime *retlt = 485 &ifr->ifr_ifru.ifru_lifetime; 486 487 /* 488 * XXX: adjust expiration time assuming time_t is 489 * signed. 490 */ 491 maxexpire = (-1) & 492 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 493 if (ia->ia6_lifetime.ia6t_pltime < 494 maxexpire - ia->ia6_updatetime) { 495 retlt->ia6t_preferred = ia->ia6_updatetime + 496 ia->ia6_lifetime.ia6t_pltime; 497 } else 498 retlt->ia6t_preferred = maxexpire; 499 } 500 break; 501 502 case SIOCSIFALIFETIME_IN6: 503 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 504 /* for sanity */ 505 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 506 ia->ia6_lifetime.ia6t_expire = 507 time_second + ia->ia6_lifetime.ia6t_vltime; 508 } else 509 ia->ia6_lifetime.ia6t_expire = 0; 510 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 511 ia->ia6_lifetime.ia6t_preferred = 512 time_second + ia->ia6_lifetime.ia6t_pltime; 513 } else 514 ia->ia6_lifetime.ia6t_preferred = 0; 515 break; 516 517 case SIOCAIFADDR_IN6: 518 { 519 int i, error = 0; 520 struct nd_prefixctl pr0; 521 struct nd_prefix *pr; 522 523 /* 524 * first, make or update the interface address structure, 525 * and link it to the list. 526 */ 527 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 528 return (error); 529 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 530 == NULL) { 531 /* 532 * this can happen when the user specify the 0 valid 533 * lifetime. 534 */ 535 break; 536 } 537 538 /* 539 * then, make the prefix on-link on the interface. 540 * XXX: we'd rather create the prefix before the address, but 541 * we need at least one address to install the corresponding 542 * interface route, so we configure the address first. 543 */ 544 545 /* 546 * convert mask to prefix length (prefixmask has already 547 * been validated in in6_update_ifa(). 548 */ 549 bzero(&pr0, sizeof(pr0)); 550 pr0.ndpr_ifp = ifp; 551 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 552 NULL); 553 if (pr0.ndpr_plen == 128) { 554 break; /* we don't need to install a host route. */ 555 } 556 pr0.ndpr_prefix = ifra->ifra_addr; 557 /* apply the mask for safety. */ 558 for (i = 0; i < 4; i++) { 559 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 560 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 561 } 562 /* 563 * XXX: since we don't have an API to set prefix (not address) 564 * lifetimes, we just use the same lifetimes as addresses. 565 * The (temporarily) installed lifetimes can be overridden by 566 * later advertised RAs (when accept_rtadv is non 0), which is 567 * an intended behavior. 568 */ 569 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 570 pr0.ndpr_raf_auto = 571 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 572 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 573 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 574 575 /* add the prefix if not yet. */ 576 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 577 /* 578 * nd6_prelist_add will install the corresponding 579 * interface route. 580 */ 581 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 582 return (error); 583 if (pr == NULL) { 584 log(LOG_ERR, "nd6_prelist_add succeeded but " 585 "no prefix\n"); 586 return (EINVAL); /* XXX panic here? */ 587 } 588 } 589 590 /* relate the address to the prefix */ 591 if (ia->ia6_ndpr == NULL) { 592 ia->ia6_ndpr = pr; 593 pr->ndpr_refcnt++; 594 595 /* 596 * If this is the first autoconf address from the 597 * prefix, create a temporary address as well 598 * (when required). 599 */ 600 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 601 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 602 int e; 603 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 604 log(LOG_NOTICE, "in6_control: failed " 605 "to create a temporary address, " 606 "errno=%d\n", e); 607 } 608 } 609 } 610 611 /* 612 * this might affect the status of autoconfigured addresses, 613 * that is, this address might make other addresses detached. 614 */ 615 pfxlist_onlink_check(); 616 if (error == 0 && ia) 617 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 618 break; 619 } 620 621 case SIOCDIFADDR_IN6: 622 { 623 struct nd_prefix *pr; 624 625 /* 626 * If the address being deleted is the only one that owns 627 * the corresponding prefix, expire the prefix as well. 628 * XXX: theoretically, we don't have to worry about such 629 * relationship, since we separate the address management 630 * and the prefix management. We do this, however, to provide 631 * as much backward compatibility as possible in terms of 632 * the ioctl operation. 633 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 634 */ 635 pr = ia->ia6_ndpr; 636 in6_purgeaddr(&ia->ia_ifa); 637 if (pr && pr->ndpr_refcnt == 0) 638 prelist_remove(pr); 639 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 640 break; 641 } 642 643 default: 644 if (ifp == NULL || ifp->if_ioctl == 0) 645 return (EOPNOTSUPP); 646 return ((*ifp->if_ioctl)(ifp, cmd, data)); 647 } 648 649 return (0); 650 } 651 652 /* 653 * Update parameters of an IPv6 interface address. 654 * If necessary, a new entry is created and linked into address chains. 655 * This function is separated from in6_control(). 656 * XXX: should this be performed under splnet()? 657 */ 658 int 659 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 660 struct in6_ifaddr *ia, int flags) 661 { 662 INIT_VNET_INET6(ifp->if_vnet); 663 INIT_VPROCG(TD_TO_VPROCG(curthread)); /* XXX V_hostname needs this */ 664 int error = 0, hostIsNew = 0, plen = -1; 665 struct in6_ifaddr *oia; 666 struct sockaddr_in6 dst6; 667 struct in6_addrlifetime *lt; 668 struct in6_multi_mship *imm; 669 struct in6_multi *in6m_sol; 670 struct rtentry *rt; 671 int delay; 672 char ip6buf[INET6_ADDRSTRLEN]; 673 674 /* Validate parameters */ 675 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 676 return (EINVAL); 677 678 /* 679 * The destination address for a p2p link must have a family 680 * of AF_UNSPEC or AF_INET6. 681 */ 682 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 683 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 684 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 685 return (EAFNOSUPPORT); 686 /* 687 * validate ifra_prefixmask. don't check sin6_family, netmask 688 * does not carry fields other than sin6_len. 689 */ 690 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 691 return (EINVAL); 692 /* 693 * Because the IPv6 address architecture is classless, we require 694 * users to specify a (non 0) prefix length (mask) for a new address. 695 * We also require the prefix (when specified) mask is valid, and thus 696 * reject a non-consecutive mask. 697 */ 698 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 699 return (EINVAL); 700 if (ifra->ifra_prefixmask.sin6_len != 0) { 701 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 702 (u_char *)&ifra->ifra_prefixmask + 703 ifra->ifra_prefixmask.sin6_len); 704 if (plen <= 0) 705 return (EINVAL); 706 } else { 707 /* 708 * In this case, ia must not be NULL. We just use its prefix 709 * length. 710 */ 711 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 712 } 713 /* 714 * If the destination address on a p2p interface is specified, 715 * and the address is a scoped one, validate/set the scope 716 * zone identifier. 717 */ 718 dst6 = ifra->ifra_dstaddr; 719 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 720 (dst6.sin6_family == AF_INET6)) { 721 struct in6_addr in6_tmp; 722 u_int32_t zoneid; 723 724 in6_tmp = dst6.sin6_addr; 725 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 726 return (EINVAL); /* XXX: should be impossible */ 727 728 if (dst6.sin6_scope_id != 0) { 729 if (dst6.sin6_scope_id != zoneid) 730 return (EINVAL); 731 } else /* user omit to specify the ID. */ 732 dst6.sin6_scope_id = zoneid; 733 734 /* convert into the internal form */ 735 if (sa6_embedscope(&dst6, 0)) 736 return (EINVAL); /* XXX: should be impossible */ 737 } 738 /* 739 * The destination address can be specified only for a p2p or a 740 * loopback interface. If specified, the corresponding prefix length 741 * must be 128. 742 */ 743 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 744 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 745 /* XXX: noisy message */ 746 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 747 "be specified for a p2p or a loopback IF only\n")); 748 return (EINVAL); 749 } 750 if (plen != 128) { 751 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 752 "be 128 when dstaddr is specified\n")); 753 return (EINVAL); 754 } 755 } 756 /* lifetime consistency check */ 757 lt = &ifra->ifra_lifetime; 758 if (lt->ia6t_pltime > lt->ia6t_vltime) 759 return (EINVAL); 760 if (lt->ia6t_vltime == 0) { 761 /* 762 * the following log might be noisy, but this is a typical 763 * configuration mistake or a tool's bug. 764 */ 765 nd6log((LOG_INFO, 766 "in6_update_ifa: valid lifetime is 0 for %s\n", 767 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 768 769 if (ia == NULL) 770 return (0); /* there's nothing to do */ 771 } 772 773 /* 774 * If this is a new address, allocate a new ifaddr and link it 775 * into chains. 776 */ 777 if (ia == NULL) { 778 hostIsNew = 1; 779 /* 780 * When in6_update_ifa() is called in a process of a received 781 * RA, it is called under an interrupt context. So, we should 782 * call malloc with M_NOWAIT. 783 */ 784 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 785 M_NOWAIT); 786 if (ia == NULL) 787 return (ENOBUFS); 788 bzero((caddr_t)ia, sizeof(*ia)); 789 LIST_INIT(&ia->ia6_memberships); 790 /* Initialize the address and masks, and put time stamp */ 791 IFA_LOCK_INIT(&ia->ia_ifa); 792 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 793 ia->ia_addr.sin6_family = AF_INET6; 794 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 795 ia->ia6_createtime = time_second; 796 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 797 /* 798 * XXX: some functions expect that ifa_dstaddr is not 799 * NULL for p2p interfaces. 800 */ 801 ia->ia_ifa.ifa_dstaddr = 802 (struct sockaddr *)&ia->ia_dstaddr; 803 } else { 804 ia->ia_ifa.ifa_dstaddr = NULL; 805 } 806 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 807 808 ia->ia_ifp = ifp; 809 if ((oia = V_in6_ifaddr) != NULL) { 810 for ( ; oia->ia_next; oia = oia->ia_next) 811 continue; 812 oia->ia_next = ia; 813 } else 814 V_in6_ifaddr = ia; 815 816 ia->ia_ifa.ifa_refcnt = 1; 817 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 818 } 819 820 /* update timestamp */ 821 ia->ia6_updatetime = time_second; 822 823 /* set prefix mask */ 824 if (ifra->ifra_prefixmask.sin6_len) { 825 /* 826 * We prohibit changing the prefix length of an existing 827 * address, because 828 * + such an operation should be rare in IPv6, and 829 * + the operation would confuse prefix management. 830 */ 831 if (ia->ia_prefixmask.sin6_len && 832 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 833 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 834 " existing (%s) address should not be changed\n", 835 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 836 error = EINVAL; 837 goto unlink; 838 } 839 ia->ia_prefixmask = ifra->ifra_prefixmask; 840 } 841 842 /* 843 * If a new destination address is specified, scrub the old one and 844 * install the new destination. Note that the interface must be 845 * p2p or loopback (see the check above.) 846 */ 847 if (dst6.sin6_family == AF_INET6 && 848 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 849 int e; 850 851 if ((ia->ia_flags & IFA_ROUTE) != 0 && 852 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 853 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 854 "a route to the old destination: %s\n", 855 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 856 /* proceed anyway... */ 857 } else 858 ia->ia_flags &= ~IFA_ROUTE; 859 ia->ia_dstaddr = dst6; 860 } 861 862 /* 863 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 864 * to see if the address is deprecated or invalidated, but initialize 865 * these members for applications. 866 */ 867 ia->ia6_lifetime = ifra->ifra_lifetime; 868 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 869 ia->ia6_lifetime.ia6t_expire = 870 time_second + ia->ia6_lifetime.ia6t_vltime; 871 } else 872 ia->ia6_lifetime.ia6t_expire = 0; 873 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 874 ia->ia6_lifetime.ia6t_preferred = 875 time_second + ia->ia6_lifetime.ia6t_pltime; 876 } else 877 ia->ia6_lifetime.ia6t_preferred = 0; 878 879 /* reset the interface and routing table appropriately. */ 880 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 881 goto unlink; 882 883 /* 884 * configure address flags. 885 */ 886 ia->ia6_flags = ifra->ifra_flags; 887 /* 888 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 889 * userland, make it deprecated. 890 */ 891 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 892 ia->ia6_lifetime.ia6t_pltime = 0; 893 ia->ia6_lifetime.ia6t_preferred = time_second; 894 } 895 /* 896 * Make the address tentative before joining multicast addresses, 897 * so that corresponding MLD responses would not have a tentative 898 * source address. 899 */ 900 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 901 if (hostIsNew && in6if_do_dad(ifp)) 902 ia->ia6_flags |= IN6_IFF_TENTATIVE; 903 904 /* 905 * We are done if we have simply modified an existing address. 906 */ 907 if (!hostIsNew) 908 return (error); 909 910 /* 911 * Beyond this point, we should call in6_purgeaddr upon an error, 912 * not just go to unlink. 913 */ 914 915 /* Join necessary multicast groups */ 916 in6m_sol = NULL; 917 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 918 struct sockaddr_in6 mltaddr, mltmask; 919 struct in6_addr llsol; 920 921 /* join solicited multicast addr for new host id */ 922 bzero(&llsol, sizeof(struct in6_addr)); 923 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 924 llsol.s6_addr32[1] = 0; 925 llsol.s6_addr32[2] = htonl(1); 926 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 927 llsol.s6_addr8[12] = 0xff; 928 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 929 /* XXX: should not happen */ 930 log(LOG_ERR, "in6_update_ifa: " 931 "in6_setscope failed\n"); 932 goto cleanup; 933 } 934 delay = 0; 935 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 936 /* 937 * We need a random delay for DAD on the address 938 * being configured. It also means delaying 939 * transmission of the corresponding MLD report to 940 * avoid report collision. 941 * [draft-ietf-ipv6-rfc2462bis-02.txt] 942 */ 943 delay = arc4random() % 944 (MAX_RTR_SOLICITATION_DELAY * hz); 945 } 946 imm = in6_joingroup(ifp, &llsol, &error, delay); 947 if (imm == NULL) { 948 nd6log((LOG_WARNING, 949 "in6_update_ifa: addmulti failed for " 950 "%s on %s (errno=%d)\n", 951 ip6_sprintf(ip6buf, &llsol), if_name(ifp), 952 error)); 953 in6_purgeaddr((struct ifaddr *)ia); 954 return (error); 955 } 956 LIST_INSERT_HEAD(&ia->ia6_memberships, 957 imm, i6mm_chain); 958 in6m_sol = imm->i6mm_maddr; 959 960 bzero(&mltmask, sizeof(mltmask)); 961 mltmask.sin6_len = sizeof(struct sockaddr_in6); 962 mltmask.sin6_family = AF_INET6; 963 mltmask.sin6_addr = in6mask32; 964 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 965 966 /* 967 * join link-local all-nodes address 968 */ 969 bzero(&mltaddr, sizeof(mltaddr)); 970 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 971 mltaddr.sin6_family = AF_INET6; 972 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 973 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 974 0) 975 goto cleanup; /* XXX: should not fail */ 976 977 /* 978 * XXX: do we really need this automatic routes? 979 * We should probably reconsider this stuff. Most applications 980 * actually do not need the routes, since they usually specify 981 * the outgoing interface. 982 */ 983 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 984 if (rt) { 985 /* XXX: only works in !SCOPEDROUTING case. */ 986 if (memcmp(&mltaddr.sin6_addr, 987 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 988 MLTMASK_LEN)) { 989 RTFREE_LOCKED(rt); 990 rt = NULL; 991 } 992 } 993 if (!rt) { 994 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 995 (struct sockaddr *)&ia->ia_addr, 996 (struct sockaddr *)&mltmask, RTF_UP, 997 (struct rtentry **)0); 998 if (error) 999 goto cleanup; 1000 } else { 1001 RTFREE_LOCKED(rt); 1002 } 1003 1004 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1005 if (!imm) { 1006 nd6log((LOG_WARNING, 1007 "in6_update_ifa: addmulti failed for " 1008 "%s on %s (errno=%d)\n", 1009 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1010 if_name(ifp), error)); 1011 goto cleanup; 1012 } 1013 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1014 1015 /* 1016 * join node information group address 1017 */ 1018 #define hostnamelen strlen(V_hostname) 1019 delay = 0; 1020 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1021 /* 1022 * The spec doesn't say anything about delay for this 1023 * group, but the same logic should apply. 1024 */ 1025 delay = arc4random() % 1026 (MAX_RTR_SOLICITATION_DELAY * hz); 1027 } 1028 mtx_lock(&hostname_mtx); 1029 if (in6_nigroup(ifp, V_hostname, hostnamelen, 1030 &mltaddr.sin6_addr) == 0) { 1031 mtx_unlock(&hostname_mtx); 1032 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1033 delay); /* XXX jinmei */ 1034 if (!imm) { 1035 nd6log((LOG_WARNING, "in6_update_ifa: " 1036 "addmulti failed for %s on %s " 1037 "(errno=%d)\n", 1038 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1039 if_name(ifp), error)); 1040 /* XXX not very fatal, go on... */ 1041 } else { 1042 LIST_INSERT_HEAD(&ia->ia6_memberships, 1043 imm, i6mm_chain); 1044 } 1045 } else 1046 mtx_unlock(&hostname_mtx); 1047 #undef hostnamelen 1048 1049 /* 1050 * join interface-local all-nodes address. 1051 * (ff01::1%ifN, and ff01::%ifN/32) 1052 */ 1053 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1054 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1055 != 0) 1056 goto cleanup; /* XXX: should not fail */ 1057 /* XXX: again, do we really need the route? */ 1058 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1059 if (rt) { 1060 if (memcmp(&mltaddr.sin6_addr, 1061 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1062 MLTMASK_LEN)) { 1063 RTFREE_LOCKED(rt); 1064 rt = NULL; 1065 } 1066 } 1067 if (!rt) { 1068 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1069 (struct sockaddr *)&ia->ia_addr, 1070 (struct sockaddr *)&mltmask, RTF_UP, 1071 (struct rtentry **)0); 1072 if (error) 1073 goto cleanup; 1074 } else 1075 RTFREE_LOCKED(rt); 1076 1077 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1078 if (!imm) { 1079 nd6log((LOG_WARNING, "in6_update_ifa: " 1080 "addmulti failed for %s on %s " 1081 "(errno=%d)\n", 1082 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1083 if_name(ifp), error)); 1084 goto cleanup; 1085 } 1086 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1087 #undef MLTMASK_LEN 1088 } 1089 1090 /* 1091 * Perform DAD, if needed. 1092 * XXX It may be of use, if we can administratively 1093 * disable DAD. 1094 */ 1095 if (hostIsNew && in6if_do_dad(ifp) && 1096 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1097 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1098 { 1099 int mindelay, maxdelay; 1100 1101 delay = 0; 1102 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1103 /* 1104 * We need to impose a delay before sending an NS 1105 * for DAD. Check if we also needed a delay for the 1106 * corresponding MLD message. If we did, the delay 1107 * should be larger than the MLD delay (this could be 1108 * relaxed a bit, but this simple logic is at least 1109 * safe). 1110 */ 1111 mindelay = 0; 1112 if (in6m_sol != NULL && 1113 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1114 mindelay = in6m_sol->in6m_timer; 1115 } 1116 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1117 if (maxdelay - mindelay == 0) 1118 delay = 0; 1119 else { 1120 delay = 1121 (arc4random() % (maxdelay - mindelay)) + 1122 mindelay; 1123 } 1124 } 1125 nd6_dad_start((struct ifaddr *)ia, delay); 1126 } 1127 1128 return (error); 1129 1130 unlink: 1131 /* 1132 * XXX: if a change of an existing address failed, keep the entry 1133 * anyway. 1134 */ 1135 if (hostIsNew) 1136 in6_unlink_ifa(ia, ifp); 1137 return (error); 1138 1139 cleanup: 1140 in6_purgeaddr(&ia->ia_ifa); 1141 return error; 1142 } 1143 1144 void 1145 in6_purgeaddr(struct ifaddr *ifa) 1146 { 1147 struct ifnet *ifp = ifa->ifa_ifp; 1148 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1149 struct in6_multi_mship *imm; 1150 1151 /* stop DAD processing */ 1152 nd6_dad_stop(ifa); 1153 1154 IF_AFDATA_LOCK(ifp); 1155 lla_lookup(LLTABLE6(ifp), (LLE_DELETE | LLE_IFADDR), 1156 (struct sockaddr *)&ia->ia_addr); 1157 IF_AFDATA_UNLOCK(ifp); 1158 1159 /* 1160 * leave from multicast groups we have joined for the interface 1161 */ 1162 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1163 LIST_REMOVE(imm, i6mm_chain); 1164 in6_leavegroup(imm); 1165 } 1166 1167 in6_unlink_ifa(ia, ifp); 1168 } 1169 1170 static void 1171 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1172 { 1173 INIT_VNET_INET6(ifp->if_vnet); 1174 struct in6_ifaddr *oia; 1175 int s = splnet(); 1176 1177 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1178 1179 oia = ia; 1180 if (oia == (ia = V_in6_ifaddr)) 1181 V_in6_ifaddr = ia->ia_next; 1182 else { 1183 while (ia->ia_next && (ia->ia_next != oia)) 1184 ia = ia->ia_next; 1185 if (ia->ia_next) 1186 ia->ia_next = oia->ia_next; 1187 else { 1188 /* search failed */ 1189 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1190 } 1191 } 1192 1193 /* 1194 * Release the reference to the base prefix. There should be a 1195 * positive reference. 1196 */ 1197 if (oia->ia6_ndpr == NULL) { 1198 nd6log((LOG_NOTICE, 1199 "in6_unlink_ifa: autoconf'ed address " 1200 "%p has no prefix\n", oia)); 1201 } else { 1202 oia->ia6_ndpr->ndpr_refcnt--; 1203 oia->ia6_ndpr = NULL; 1204 } 1205 1206 /* 1207 * Also, if the address being removed is autoconf'ed, call 1208 * pfxlist_onlink_check() since the release might affect the status of 1209 * other (detached) addresses. 1210 */ 1211 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1212 pfxlist_onlink_check(); 1213 } 1214 1215 /* 1216 * release another refcnt for the link from in6_ifaddr. 1217 * Note that we should decrement the refcnt at least once for all *BSD. 1218 */ 1219 IFAFREE(&oia->ia_ifa); 1220 1221 splx(s); 1222 } 1223 1224 void 1225 in6_purgeif(struct ifnet *ifp) 1226 { 1227 struct ifaddr *ifa, *nifa; 1228 1229 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1230 nifa = TAILQ_NEXT(ifa, ifa_list); 1231 if (ifa->ifa_addr->sa_family != AF_INET6) 1232 continue; 1233 in6_purgeaddr(ifa); 1234 } 1235 1236 in6_ifdetach(ifp); 1237 } 1238 1239 /* 1240 * SIOC[GAD]LIFADDR. 1241 * SIOCGLIFADDR: get first address. (?) 1242 * SIOCGLIFADDR with IFLR_PREFIX: 1243 * get first address that matches the specified prefix. 1244 * SIOCALIFADDR: add the specified address. 1245 * SIOCALIFADDR with IFLR_PREFIX: 1246 * add the specified prefix, filling hostid part from 1247 * the first link-local address. prefixlen must be <= 64. 1248 * SIOCDLIFADDR: delete the specified address. 1249 * SIOCDLIFADDR with IFLR_PREFIX: 1250 * delete the first address that matches the specified prefix. 1251 * return values: 1252 * EINVAL on invalid parameters 1253 * EADDRNOTAVAIL on prefix match failed/specified address not found 1254 * other values may be returned from in6_ioctl() 1255 * 1256 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1257 * this is to accomodate address naming scheme other than RFC2374, 1258 * in the future. 1259 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1260 * address encoding scheme. (see figure on page 8) 1261 */ 1262 static int 1263 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1264 struct ifnet *ifp, struct thread *td) 1265 { 1266 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1267 struct ifaddr *ifa; 1268 struct sockaddr *sa; 1269 1270 /* sanity checks */ 1271 if (!data || !ifp) { 1272 panic("invalid argument to in6_lifaddr_ioctl"); 1273 /* NOTREACHED */ 1274 } 1275 1276 switch (cmd) { 1277 case SIOCGLIFADDR: 1278 /* address must be specified on GET with IFLR_PREFIX */ 1279 if ((iflr->flags & IFLR_PREFIX) == 0) 1280 break; 1281 /* FALLTHROUGH */ 1282 case SIOCALIFADDR: 1283 case SIOCDLIFADDR: 1284 /* address must be specified on ADD and DELETE */ 1285 sa = (struct sockaddr *)&iflr->addr; 1286 if (sa->sa_family != AF_INET6) 1287 return EINVAL; 1288 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1289 return EINVAL; 1290 /* XXX need improvement */ 1291 sa = (struct sockaddr *)&iflr->dstaddr; 1292 if (sa->sa_family && sa->sa_family != AF_INET6) 1293 return EINVAL; 1294 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1295 return EINVAL; 1296 break; 1297 default: /* shouldn't happen */ 1298 #if 0 1299 panic("invalid cmd to in6_lifaddr_ioctl"); 1300 /* NOTREACHED */ 1301 #else 1302 return EOPNOTSUPP; 1303 #endif 1304 } 1305 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1306 return EINVAL; 1307 1308 switch (cmd) { 1309 case SIOCALIFADDR: 1310 { 1311 struct in6_aliasreq ifra; 1312 struct in6_addr *hostid = NULL; 1313 int prefixlen; 1314 1315 if ((iflr->flags & IFLR_PREFIX) != 0) { 1316 struct sockaddr_in6 *sin6; 1317 1318 /* 1319 * hostid is to fill in the hostid part of the 1320 * address. hostid points to the first link-local 1321 * address attached to the interface. 1322 */ 1323 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1324 if (!ifa) 1325 return EADDRNOTAVAIL; 1326 hostid = IFA_IN6(ifa); 1327 1328 /* prefixlen must be <= 64. */ 1329 if (64 < iflr->prefixlen) 1330 return EINVAL; 1331 prefixlen = iflr->prefixlen; 1332 1333 /* hostid part must be zero. */ 1334 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1335 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1336 sin6->sin6_addr.s6_addr32[3] != 0) { 1337 return EINVAL; 1338 } 1339 } else 1340 prefixlen = iflr->prefixlen; 1341 1342 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1343 bzero(&ifra, sizeof(ifra)); 1344 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1345 1346 bcopy(&iflr->addr, &ifra.ifra_addr, 1347 ((struct sockaddr *)&iflr->addr)->sa_len); 1348 if (hostid) { 1349 /* fill in hostid part */ 1350 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1351 hostid->s6_addr32[2]; 1352 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1353 hostid->s6_addr32[3]; 1354 } 1355 1356 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1357 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1358 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1359 if (hostid) { 1360 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1361 hostid->s6_addr32[2]; 1362 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1363 hostid->s6_addr32[3]; 1364 } 1365 } 1366 1367 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1368 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1369 1370 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1371 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1372 } 1373 case SIOCGLIFADDR: 1374 case SIOCDLIFADDR: 1375 { 1376 struct in6_ifaddr *ia; 1377 struct in6_addr mask, candidate, match; 1378 struct sockaddr_in6 *sin6; 1379 int cmp; 1380 1381 bzero(&mask, sizeof(mask)); 1382 if (iflr->flags & IFLR_PREFIX) { 1383 /* lookup a prefix rather than address. */ 1384 in6_prefixlen2mask(&mask, iflr->prefixlen); 1385 1386 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1387 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1388 match.s6_addr32[0] &= mask.s6_addr32[0]; 1389 match.s6_addr32[1] &= mask.s6_addr32[1]; 1390 match.s6_addr32[2] &= mask.s6_addr32[2]; 1391 match.s6_addr32[3] &= mask.s6_addr32[3]; 1392 1393 /* if you set extra bits, that's wrong */ 1394 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1395 return EINVAL; 1396 1397 cmp = 1; 1398 } else { 1399 if (cmd == SIOCGLIFADDR) { 1400 /* on getting an address, take the 1st match */ 1401 cmp = 0; /* XXX */ 1402 } else { 1403 /* on deleting an address, do exact match */ 1404 in6_prefixlen2mask(&mask, 128); 1405 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1406 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1407 1408 cmp = 1; 1409 } 1410 } 1411 1412 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1413 if (ifa->ifa_addr->sa_family != AF_INET6) 1414 continue; 1415 if (!cmp) 1416 break; 1417 1418 /* 1419 * XXX: this is adhoc, but is necessary to allow 1420 * a user to specify fe80::/64 (not /10) for a 1421 * link-local address. 1422 */ 1423 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1424 in6_clearscope(&candidate); 1425 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1426 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1427 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1428 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1429 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1430 break; 1431 } 1432 if (!ifa) 1433 return EADDRNOTAVAIL; 1434 ia = ifa2ia6(ifa); 1435 1436 if (cmd == SIOCGLIFADDR) { 1437 int error; 1438 1439 /* fill in the if_laddrreq structure */ 1440 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1441 error = sa6_recoverscope( 1442 (struct sockaddr_in6 *)&iflr->addr); 1443 if (error != 0) 1444 return (error); 1445 1446 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1447 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1448 ia->ia_dstaddr.sin6_len); 1449 error = sa6_recoverscope( 1450 (struct sockaddr_in6 *)&iflr->dstaddr); 1451 if (error != 0) 1452 return (error); 1453 } else 1454 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1455 1456 iflr->prefixlen = 1457 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1458 1459 iflr->flags = ia->ia6_flags; /* XXX */ 1460 1461 return 0; 1462 } else { 1463 struct in6_aliasreq ifra; 1464 1465 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1466 bzero(&ifra, sizeof(ifra)); 1467 bcopy(iflr->iflr_name, ifra.ifra_name, 1468 sizeof(ifra.ifra_name)); 1469 1470 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1471 ia->ia_addr.sin6_len); 1472 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1473 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1474 ia->ia_dstaddr.sin6_len); 1475 } else { 1476 bzero(&ifra.ifra_dstaddr, 1477 sizeof(ifra.ifra_dstaddr)); 1478 } 1479 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1480 ia->ia_prefixmask.sin6_len); 1481 1482 ifra.ifra_flags = ia->ia6_flags; 1483 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1484 ifp, td); 1485 } 1486 } 1487 } 1488 1489 return EOPNOTSUPP; /* just for safety */ 1490 } 1491 1492 /* 1493 * Initialize an interface's intetnet6 address 1494 * and routing table entry. 1495 */ 1496 static int 1497 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1498 struct sockaddr_in6 *sin6, int newhost) 1499 { 1500 int error = 0, plen, ifacount = 0; 1501 int s = splimp(); 1502 struct ifaddr *ifa; 1503 1504 /* 1505 * Give the interface a chance to initialize 1506 * if this is its first address, 1507 * and to validate the address if necessary. 1508 */ 1509 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1510 if (ifa->ifa_addr->sa_family != AF_INET6) 1511 continue; 1512 ifacount++; 1513 } 1514 1515 ia->ia_addr = *sin6; 1516 1517 if (ifacount <= 1 && ifp->if_ioctl) { 1518 IFF_LOCKGIANT(ifp); 1519 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1520 IFF_UNLOCKGIANT(ifp); 1521 if (error) { 1522 splx(s); 1523 return (error); 1524 } 1525 } 1526 splx(s); 1527 1528 ia->ia_ifa.ifa_metric = ifp->if_metric; 1529 1530 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1531 1532 /* 1533 * Special case: 1534 * If a new destination address is specified for a point-to-point 1535 * interface, install a route to the destination as an interface 1536 * direct route. 1537 * XXX: the logic below rejects assigning multiple addresses on a p2p 1538 * interface that share the same destination. 1539 */ 1540 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1541 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128) { 1542 struct sockaddr *dstaddr; 1543 int rtflags = RTF_UP | RTF_HOST; 1544 1545 /* 1546 * use the interface address if configuring an 1547 * interface address with a /128 prefix len 1548 */ 1549 if (ia->ia_dstaddr.sin6_family == AF_INET6) 1550 dstaddr = (struct sockaddr *)&ia->ia_dstaddr; 1551 else 1552 dstaddr = (struct sockaddr *)&ia->ia_addr; 1553 1554 error = rtrequest(RTM_ADD, 1555 (struct sockaddr *)dstaddr, 1556 (struct sockaddr *)&ia->ia_addr, 1557 (struct sockaddr *)&ia->ia_prefixmask, 1558 ia->ia_flags | rtflags, NULL); 1559 if (error != 0) 1560 return (error); 1561 ia->ia_flags |= IFA_ROUTE; 1562 } 1563 1564 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1565 if (newhost) { 1566 struct llentry *ln; 1567 1568 IF_AFDATA_LOCK(ifp); 1569 ia->ia_ifa.ifa_rtrequest = NULL; 1570 1571 /* XXX QL 1572 * we need to report rt_newaddrmsg 1573 */ 1574 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | LLE_EXCLUSIVE), 1575 (struct sockaddr *)&ia->ia_addr); 1576 IF_AFDATA_UNLOCK(ifp); 1577 if (ln != NULL) { 1578 ln->la_expire = 0; /* for IPv6 this means permanent */ 1579 ln->ln_state = ND6_LLINFO_REACHABLE; 1580 LLE_WUNLOCK(ln); 1581 } 1582 } 1583 1584 return (error); 1585 } 1586 1587 struct in6_multi_mship * 1588 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, 1589 int *errorp, int delay) 1590 { 1591 struct in6_multi_mship *imm; 1592 1593 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1594 if (!imm) { 1595 *errorp = ENOBUFS; 1596 return NULL; 1597 } 1598 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1599 if (!imm->i6mm_maddr) { 1600 /* *errorp is alrady set */ 1601 free(imm, M_IP6MADDR); 1602 return NULL; 1603 } 1604 return imm; 1605 } 1606 1607 int 1608 in6_leavegroup(struct in6_multi_mship *imm) 1609 { 1610 1611 if (imm->i6mm_maddr) 1612 in6_delmulti(imm->i6mm_maddr); 1613 free(imm, M_IP6MADDR); 1614 return 0; 1615 } 1616 1617 /* 1618 * Find an IPv6 interface link-local address specific to an interface. 1619 */ 1620 struct in6_ifaddr * 1621 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1622 { 1623 struct ifaddr *ifa; 1624 1625 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1626 if (ifa->ifa_addr->sa_family != AF_INET6) 1627 continue; 1628 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1629 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1630 ignoreflags) != 0) 1631 continue; 1632 break; 1633 } 1634 } 1635 1636 return ((struct in6_ifaddr *)ifa); 1637 } 1638 1639 1640 /* 1641 * find the internet address corresponding to a given interface and address. 1642 */ 1643 struct in6_ifaddr * 1644 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1645 { 1646 struct ifaddr *ifa; 1647 1648 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1649 if (ifa->ifa_addr->sa_family != AF_INET6) 1650 continue; 1651 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1652 break; 1653 } 1654 1655 return ((struct in6_ifaddr *)ifa); 1656 } 1657 1658 /* 1659 * Convert IP6 address to printable (loggable) representation. Caller 1660 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1661 */ 1662 static char digits[] = "0123456789abcdef"; 1663 char * 1664 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1665 { 1666 int i; 1667 char *cp; 1668 const u_int16_t *a = (const u_int16_t *)addr; 1669 const u_int8_t *d; 1670 int dcolon = 0, zero = 0; 1671 1672 cp = ip6buf; 1673 1674 for (i = 0; i < 8; i++) { 1675 if (dcolon == 1) { 1676 if (*a == 0) { 1677 if (i == 7) 1678 *cp++ = ':'; 1679 a++; 1680 continue; 1681 } else 1682 dcolon = 2; 1683 } 1684 if (*a == 0) { 1685 if (dcolon == 0 && *(a + 1) == 0) { 1686 if (i == 0) 1687 *cp++ = ':'; 1688 *cp++ = ':'; 1689 dcolon = 1; 1690 } else { 1691 *cp++ = '0'; 1692 *cp++ = ':'; 1693 } 1694 a++; 1695 continue; 1696 } 1697 d = (const u_char *)a; 1698 /* Try to eliminate leading zeros in printout like in :0001. */ 1699 zero = 1; 1700 *cp = digits[*d >> 4]; 1701 if (*cp != '0') { 1702 zero = 0; 1703 cp++; 1704 } 1705 *cp = digits[*d++ & 0xf]; 1706 if (zero == 0 || (*cp != '0')) { 1707 zero = 0; 1708 cp++; 1709 } 1710 *cp = digits[*d >> 4]; 1711 if (zero == 0 || (*cp != '0')) { 1712 zero = 0; 1713 cp++; 1714 } 1715 *cp++ = digits[*d & 0xf]; 1716 *cp++ = ':'; 1717 a++; 1718 } 1719 *--cp = '\0'; 1720 return (ip6buf); 1721 } 1722 1723 int 1724 in6_localaddr(struct in6_addr *in6) 1725 { 1726 INIT_VNET_INET6(curvnet); 1727 struct in6_ifaddr *ia; 1728 1729 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1730 return 1; 1731 1732 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1733 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1734 &ia->ia_prefixmask.sin6_addr)) { 1735 return 1; 1736 } 1737 } 1738 1739 return (0); 1740 } 1741 1742 int 1743 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1744 { 1745 INIT_VNET_INET6(curvnet); 1746 struct in6_ifaddr *ia; 1747 1748 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1749 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1750 &sa6->sin6_addr) && 1751 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1752 return (1); /* true */ 1753 1754 /* XXX: do we still have to go thru the rest of the list? */ 1755 } 1756 1757 return (0); /* false */ 1758 } 1759 1760 /* 1761 * return length of part which dst and src are equal 1762 * hard coding... 1763 */ 1764 int 1765 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1766 { 1767 int match = 0; 1768 u_char *s = (u_char *)src, *d = (u_char *)dst; 1769 u_char *lim = s + 16, r; 1770 1771 while (s < lim) 1772 if ((r = (*d++ ^ *s++)) != 0) { 1773 while (r < 128) { 1774 match++; 1775 r <<= 1; 1776 } 1777 break; 1778 } else 1779 match += 8; 1780 return match; 1781 } 1782 1783 /* XXX: to be scope conscious */ 1784 int 1785 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1786 { 1787 int bytelen, bitlen; 1788 1789 /* sanity check */ 1790 if (0 > len || len > 128) { 1791 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1792 len); 1793 return (0); 1794 } 1795 1796 bytelen = len / 8; 1797 bitlen = len % 8; 1798 1799 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1800 return (0); 1801 if (bitlen != 0 && 1802 p1->s6_addr[bytelen] >> (8 - bitlen) != 1803 p2->s6_addr[bytelen] >> (8 - bitlen)) 1804 return (0); 1805 1806 return (1); 1807 } 1808 1809 void 1810 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1811 { 1812 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1813 int bytelen, bitlen, i; 1814 1815 /* sanity check */ 1816 if (0 > len || len > 128) { 1817 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1818 len); 1819 return; 1820 } 1821 1822 bzero(maskp, sizeof(*maskp)); 1823 bytelen = len / 8; 1824 bitlen = len % 8; 1825 for (i = 0; i < bytelen; i++) 1826 maskp->s6_addr[i] = 0xff; 1827 if (bitlen) 1828 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1829 } 1830 1831 /* 1832 * return the best address out of the same scope. if no address was 1833 * found, return the first valid address from designated IF. 1834 */ 1835 struct in6_ifaddr * 1836 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1837 { 1838 INIT_VNET_INET6(curvnet); 1839 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1840 struct ifaddr *ifa; 1841 struct in6_ifaddr *besta = 0; 1842 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1843 1844 dep[0] = dep[1] = NULL; 1845 1846 /* 1847 * We first look for addresses in the same scope. 1848 * If there is one, return it. 1849 * If two or more, return one which matches the dst longest. 1850 * If none, return one of global addresses assigned other ifs. 1851 */ 1852 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1853 if (ifa->ifa_addr->sa_family != AF_INET6) 1854 continue; 1855 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1856 continue; /* XXX: is there any case to allow anycast? */ 1857 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1858 continue; /* don't use this interface */ 1859 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1860 continue; 1861 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1862 if (V_ip6_use_deprecated) 1863 dep[0] = (struct in6_ifaddr *)ifa; 1864 continue; 1865 } 1866 1867 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1868 /* 1869 * call in6_matchlen() as few as possible 1870 */ 1871 if (besta) { 1872 if (blen == -1) 1873 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1874 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1875 if (tlen > blen) { 1876 blen = tlen; 1877 besta = (struct in6_ifaddr *)ifa; 1878 } 1879 } else 1880 besta = (struct in6_ifaddr *)ifa; 1881 } 1882 } 1883 if (besta) 1884 return (besta); 1885 1886 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1887 if (ifa->ifa_addr->sa_family != AF_INET6) 1888 continue; 1889 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1890 continue; /* XXX: is there any case to allow anycast? */ 1891 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1892 continue; /* don't use this interface */ 1893 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1894 continue; 1895 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1896 if (V_ip6_use_deprecated) 1897 dep[1] = (struct in6_ifaddr *)ifa; 1898 continue; 1899 } 1900 1901 return (struct in6_ifaddr *)ifa; 1902 } 1903 1904 /* use the last-resort values, that are, deprecated addresses */ 1905 if (dep[0]) 1906 return dep[0]; 1907 if (dep[1]) 1908 return dep[1]; 1909 1910 return NULL; 1911 } 1912 1913 /* 1914 * perform DAD when interface becomes IFF_UP. 1915 */ 1916 void 1917 in6_if_up(struct ifnet *ifp) 1918 { 1919 struct ifaddr *ifa; 1920 struct in6_ifaddr *ia; 1921 1922 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1923 if (ifa->ifa_addr->sa_family != AF_INET6) 1924 continue; 1925 ia = (struct in6_ifaddr *)ifa; 1926 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 1927 /* 1928 * The TENTATIVE flag was likely set by hand 1929 * beforehand, implicitly indicating the need for DAD. 1930 * We may be able to skip the random delay in this 1931 * case, but we impose delays just in case. 1932 */ 1933 nd6_dad_start(ifa, 1934 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 1935 } 1936 } 1937 1938 /* 1939 * special cases, like 6to4, are handled in in6_ifattach 1940 */ 1941 in6_ifattach(ifp, NULL); 1942 } 1943 1944 int 1945 in6if_do_dad(struct ifnet *ifp) 1946 { 1947 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1948 return (0); 1949 1950 switch (ifp->if_type) { 1951 #ifdef IFT_DUMMY 1952 case IFT_DUMMY: 1953 #endif 1954 case IFT_FAITH: 1955 /* 1956 * These interfaces do not have the IFF_LOOPBACK flag, 1957 * but loop packets back. We do not have to do DAD on such 1958 * interfaces. We should even omit it, because loop-backed 1959 * NS would confuse the DAD procedure. 1960 */ 1961 return (0); 1962 default: 1963 /* 1964 * Our DAD routine requires the interface up and running. 1965 * However, some interfaces can be up before the RUNNING 1966 * status. Additionaly, users may try to assign addresses 1967 * before the interface becomes up (or running). 1968 * We simply skip DAD in such a case as a work around. 1969 * XXX: we should rather mark "tentative" on such addresses, 1970 * and do DAD after the interface becomes ready. 1971 */ 1972 if (!((ifp->if_flags & IFF_UP) && 1973 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 1974 return (0); 1975 1976 return (1); 1977 } 1978 } 1979 1980 /* 1981 * Calculate max IPv6 MTU through all the interfaces and store it 1982 * to in6_maxmtu. 1983 */ 1984 void 1985 in6_setmaxmtu(void) 1986 { 1987 INIT_VNET_NET(curvnet); 1988 INIT_VNET_INET6(curvnet); 1989 unsigned long maxmtu = 0; 1990 struct ifnet *ifp; 1991 1992 IFNET_RLOCK(); 1993 for (ifp = TAILQ_FIRST(&V_ifnet); ifp; 1994 ifp = TAILQ_NEXT(ifp, if_list)) { 1995 /* this function can be called during ifnet initialization */ 1996 if (!ifp->if_afdata[AF_INET6]) 1997 continue; 1998 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 1999 IN6_LINKMTU(ifp) > maxmtu) 2000 maxmtu = IN6_LINKMTU(ifp); 2001 } 2002 IFNET_RUNLOCK(); 2003 if (maxmtu) /* update only when maxmtu is positive */ 2004 V_in6_maxmtu = maxmtu; 2005 } 2006 2007 /* 2008 * Provide the length of interface identifiers to be used for the link attached 2009 * to the given interface. The length should be defined in "IPv6 over 2010 * xxx-link" document. Note that address architecture might also define 2011 * the length for a particular set of address prefixes, regardless of the 2012 * link type. As clarified in rfc2462bis, those two definitions should be 2013 * consistent, and those really are as of August 2004. 2014 */ 2015 int 2016 in6_if2idlen(struct ifnet *ifp) 2017 { 2018 switch (ifp->if_type) { 2019 case IFT_ETHER: /* RFC2464 */ 2020 #ifdef IFT_PROPVIRTUAL 2021 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2022 #endif 2023 #ifdef IFT_L2VLAN 2024 case IFT_L2VLAN: /* ditto */ 2025 #endif 2026 #ifdef IFT_IEEE80211 2027 case IFT_IEEE80211: /* ditto */ 2028 #endif 2029 #ifdef IFT_MIP 2030 case IFT_MIP: /* ditto */ 2031 #endif 2032 return (64); 2033 case IFT_FDDI: /* RFC2467 */ 2034 return (64); 2035 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2036 return (64); 2037 case IFT_PPP: /* RFC2472 */ 2038 return (64); 2039 case IFT_ARCNET: /* RFC2497 */ 2040 return (64); 2041 case IFT_FRELAY: /* RFC2590 */ 2042 return (64); 2043 case IFT_IEEE1394: /* RFC3146 */ 2044 return (64); 2045 case IFT_GIF: 2046 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2047 case IFT_LOOP: 2048 return (64); /* XXX: is this really correct? */ 2049 default: 2050 /* 2051 * Unknown link type: 2052 * It might be controversial to use the today's common constant 2053 * of 64 for these cases unconditionally. For full compliance, 2054 * we should return an error in this case. On the other hand, 2055 * if we simply miss the standard for the link type or a new 2056 * standard is defined for a new link type, the IFID length 2057 * is very likely to be the common constant. As a compromise, 2058 * we always use the constant, but make an explicit notice 2059 * indicating the "unknown" case. 2060 */ 2061 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2062 return (64); 2063 } 2064 } 2065 2066 #include <sys/sysctl.h> 2067 2068 struct in6_llentry { 2069 struct llentry base; 2070 struct sockaddr_in6 l3_addr6; 2071 }; 2072 2073 static struct llentry * 2074 in6_lltable_new(const struct sockaddr *l3addr, u_int flags) 2075 { 2076 struct in6_llentry *lle; 2077 2078 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, 2079 M_DONTWAIT | M_ZERO); 2080 if (lle == NULL) /* NB: caller generates msg */ 2081 return NULL; 2082 2083 callout_init(&lle->base.ln_timer_ch, CALLOUT_MPSAFE); 2084 lle->l3_addr6 = *(const struct sockaddr_in6 *)l3addr; 2085 lle->base.lle_refcnt = 1; 2086 LLE_LOCK_INIT(&lle->base); 2087 return &lle->base; 2088 } 2089 2090 /* 2091 * Deletes an address from the address table. 2092 * This function is called by the timer functions 2093 * such as arptimer() and nd6_llinfo_timer(), and 2094 * the caller does the locking. 2095 */ 2096 static void 2097 in6_lltable_free(struct lltable *llt, struct llentry *lle) 2098 { 2099 LLE_WUNLOCK(lle); 2100 LLE_LOCK_DESTROY(lle); 2101 free(lle, M_LLTABLE); 2102 } 2103 2104 static int 2105 in6_lltable_rtcheck(struct ifnet *ifp, const struct sockaddr *l3addr) 2106 { 2107 struct rtentry *rt; 2108 char ip6buf[INET6_ADDRSTRLEN]; 2109 2110 KASSERT(l3addr->sa_family == AF_INET6, 2111 ("sin_family %d", l3addr->sa_family)); 2112 2113 /* XXX rtalloc1 should take a const param */ 2114 rt = rtalloc1(__DECONST(struct sockaddr *, l3addr), 0, 0); 2115 if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) || rt->rt_ifp != ifp) { 2116 struct ifaddr *ifa; 2117 /* 2118 * Create an ND6 cache for an IPv6 neighbor 2119 * that is not covered by our own prefix. 2120 */ 2121 /* XXX ifaof_ifpforaddr should take a const param */ 2122 ifa = ifaof_ifpforaddr(__DECONST(struct sockaddr *, l3addr), ifp); 2123 if (ifa != NULL) { 2124 if (rt != NULL) 2125 RTFREE_LOCKED(rt); 2126 return 0; 2127 } 2128 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2129 ip6_sprintf(ip6buf, &((const struct sockaddr_in6 *)l3addr)->sin6_addr)); 2130 if (rt != NULL) 2131 RTFREE_LOCKED(rt); 2132 return EINVAL; 2133 } 2134 RTFREE_LOCKED(rt); 2135 return 0; 2136 } 2137 2138 static struct llentry * 2139 in6_lltable_lookup(struct lltable *llt, u_int flags, 2140 const struct sockaddr *l3addr) 2141 { 2142 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2143 struct ifnet *ifp = llt->llt_ifp; 2144 struct llentry *lle; 2145 struct llentries *lleh; 2146 u_int hashkey; 2147 2148 IF_AFDATA_LOCK_ASSERT(ifp); 2149 KASSERT(l3addr->sa_family == AF_INET6, 2150 ("sin_family %d", l3addr->sa_family)); 2151 2152 hashkey = sin6->sin6_addr.s6_addr32[3]; 2153 lleh = &llt->lle_head[LLATBL_HASH(hashkey, LLTBL_HASHMASK)]; 2154 LIST_FOREACH(lle, lleh, lle_next) { 2155 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)L3_ADDR(lle); 2156 if (lle->la_flags & LLE_DELETED) 2157 continue; 2158 if (bcmp(&sa6->sin6_addr, &sin6->sin6_addr, 2159 sizeof(struct in6_addr)) == 0) 2160 break; 2161 } 2162 2163 if (lle == NULL) { 2164 if (!(flags & LLE_CREATE)) 2165 return (NULL); 2166 /* 2167 * A route that covers the given address must have 2168 * been installed 1st because we are doing a resolution, 2169 * verify this. 2170 */ 2171 if (!(flags & LLE_IFADDR) && 2172 in6_lltable_rtcheck(ifp, l3addr) != 0) 2173 return NULL; 2174 2175 lle = in6_lltable_new(l3addr, flags); 2176 if (lle == NULL) { 2177 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2178 return NULL; 2179 } 2180 lle->la_flags = flags & ~LLE_CREATE; 2181 if ((flags & (LLE_CREATE | LLE_IFADDR)) == (LLE_CREATE | LLE_IFADDR)) { 2182 bcopy(IF_LLADDR(ifp), &lle->ll_addr, ifp->if_addrlen); 2183 lle->la_flags |= (LLE_VALID | LLE_STATIC); 2184 } 2185 2186 lle->lle_tbl = llt; 2187 lle->lle_head = lleh; 2188 LIST_INSERT_HEAD(lleh, lle, lle_next); 2189 } else if (flags & LLE_DELETE) { 2190 if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) { 2191 LLE_WLOCK(lle); 2192 lle->la_flags = LLE_DELETED; 2193 LLE_WUNLOCK(lle); 2194 #ifdef DIAGNOSTICS 2195 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2196 #endif 2197 } 2198 lle = (void *)-1; 2199 } 2200 if (LLE_IS_VALID(lle)) { 2201 if (flags & LLE_EXCLUSIVE) 2202 LLE_WLOCK(lle); 2203 else 2204 LLE_RLOCK(lle); 2205 } 2206 return (lle); 2207 } 2208 2209 static int 2210 in6_lltable_dump(struct lltable *llt, struct sysctl_req *wr) 2211 { 2212 struct ifnet *ifp = llt->llt_ifp; 2213 struct llentry *lle; 2214 /* XXX stack use */ 2215 struct { 2216 struct rt_msghdr rtm; 2217 struct sockaddr_in6 sin6; 2218 /* 2219 * ndp.c assumes that sdl is word aligned 2220 */ 2221 #ifdef __LP64__ 2222 uint32_t pad; 2223 #endif 2224 struct sockaddr_dl sdl; 2225 } ndpc; 2226 int i, error; 2227 2228 /* XXXXX 2229 * current IFNET_RLOCK() is mapped to IFNET_WLOCK() 2230 * so it is okay to use this ASSERT, change it when 2231 * IFNET lock is finalized 2232 */ 2233 IFNET_WLOCK_ASSERT(); 2234 2235 error = 0; 2236 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2237 LIST_FOREACH(lle, &llt->lle_head[i], lle_next) { 2238 struct sockaddr_dl *sdl; 2239 2240 /* skip deleted or invalid entries */ 2241 if ((lle->la_flags & (LLE_DELETED|LLE_VALID)) != LLE_VALID) 2242 continue; 2243 /* Skip if jailed and not a valid IP of the prison. */ 2244 if (prison_if(wr->td->td_ucred, L3_ADDR(lle)) != 0) 2245 continue; 2246 /* 2247 * produce a msg made of: 2248 * struct rt_msghdr; 2249 * struct sockaddr_in6 (IPv6) 2250 * struct sockaddr_dl; 2251 */ 2252 bzero(&ndpc, sizeof(ndpc)); 2253 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2254 ndpc.rtm.rtm_version = RTM_VERSION; 2255 ndpc.rtm.rtm_type = RTM_GET; 2256 ndpc.rtm.rtm_flags = RTF_UP; 2257 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2258 ndpc.sin6.sin6_family = AF_INET6; 2259 ndpc.sin6.sin6_len = sizeof(ndpc.sin6); 2260 bcopy(L3_ADDR(lle), &ndpc.sin6, L3_ADDR_LEN(lle)); 2261 2262 /* publish */ 2263 if (lle->la_flags & LLE_PUB) 2264 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2265 2266 sdl = &ndpc.sdl; 2267 sdl->sdl_family = AF_LINK; 2268 sdl->sdl_len = sizeof(*sdl); 2269 sdl->sdl_alen = ifp->if_addrlen; 2270 sdl->sdl_index = ifp->if_index; 2271 sdl->sdl_type = ifp->if_type; 2272 bcopy(&lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2273 ndpc.rtm.rtm_rmx.rmx_expire = 2274 lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; 2275 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2276 if (lle->la_flags & LLE_STATIC) 2277 ndpc.rtm.rtm_flags |= RTF_STATIC; 2278 ndpc.rtm.rtm_index = ifp->if_index; 2279 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2280 if (error) 2281 break; 2282 } 2283 } 2284 return error; 2285 } 2286 2287 void * 2288 in6_domifattach(struct ifnet *ifp) 2289 { 2290 struct in6_ifextra *ext; 2291 2292 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2293 bzero(ext, sizeof(*ext)); 2294 2295 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2296 M_IFADDR, M_WAITOK); 2297 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2298 2299 ext->icmp6_ifstat = 2300 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2301 M_IFADDR, M_WAITOK); 2302 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2303 2304 ext->nd_ifinfo = nd6_ifattach(ifp); 2305 ext->scope6_id = scope6_ifattach(ifp); 2306 ext->lltable = lltable_init(ifp, AF_INET6); 2307 if (ext->lltable != NULL) { 2308 ext->lltable->llt_new = in6_lltable_new; 2309 ext->lltable->llt_free = in6_lltable_free; 2310 ext->lltable->llt_rtcheck = in6_lltable_rtcheck; 2311 ext->lltable->llt_lookup = in6_lltable_lookup; 2312 ext->lltable->llt_dump = in6_lltable_dump; 2313 } 2314 return ext; 2315 } 2316 2317 void 2318 in6_domifdetach(struct ifnet *ifp, void *aux) 2319 { 2320 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2321 2322 scope6_ifdetach(ext->scope6_id); 2323 nd6_ifdetach(ext->nd_ifinfo); 2324 lltable_free(ext->lltable); 2325 free(ext->in6_ifstat, M_IFADDR); 2326 free(ext->icmp6_ifstat, M_IFADDR); 2327 free(ext, M_IFADDR); 2328 } 2329 2330 /* 2331 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2332 * v4 mapped addr or v4 compat addr 2333 */ 2334 void 2335 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2336 { 2337 2338 bzero(sin, sizeof(*sin)); 2339 sin->sin_len = sizeof(struct sockaddr_in); 2340 sin->sin_family = AF_INET; 2341 sin->sin_port = sin6->sin6_port; 2342 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2343 } 2344 2345 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2346 void 2347 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2348 { 2349 bzero(sin6, sizeof(*sin6)); 2350 sin6->sin6_len = sizeof(struct sockaddr_in6); 2351 sin6->sin6_family = AF_INET6; 2352 sin6->sin6_port = sin->sin_port; 2353 sin6->sin6_addr.s6_addr32[0] = 0; 2354 sin6->sin6_addr.s6_addr32[1] = 0; 2355 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2356 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2357 } 2358 2359 /* Convert sockaddr_in6 into sockaddr_in. */ 2360 void 2361 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2362 { 2363 struct sockaddr_in *sin_p; 2364 struct sockaddr_in6 sin6; 2365 2366 /* 2367 * Save original sockaddr_in6 addr and convert it 2368 * to sockaddr_in. 2369 */ 2370 sin6 = *(struct sockaddr_in6 *)nam; 2371 sin_p = (struct sockaddr_in *)nam; 2372 in6_sin6_2_sin(sin_p, &sin6); 2373 } 2374 2375 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2376 void 2377 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2378 { 2379 struct sockaddr_in *sin_p; 2380 struct sockaddr_in6 *sin6_p; 2381 2382 sin6_p = malloc(sizeof *sin6_p, M_SONAME, 2383 M_WAITOK); 2384 sin_p = (struct sockaddr_in *)*nam; 2385 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2386 free(*nam, M_SONAME); 2387 *nam = (struct sockaddr *)sin6_p; 2388 } 2389