1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)in.c 8.2 (Berkeley) 11/15/93 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/eventhandler.h> 73 #include <sys/errno.h> 74 #include <sys/jail.h> 75 #include <sys/malloc.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/sockio.h> 79 #include <sys/systm.h> 80 #include <sys/priv.h> 81 #include <sys/proc.h> 82 #include <sys/protosw.h> 83 #include <sys/time.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/rmlock.h> 87 #include <sys/syslog.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_types.h> 92 #include <net/route.h> 93 #include <net/if_dl.h> 94 #include <net/vnet.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <net/if_llatbl.h> 99 #include <netinet/if_ether.h> 100 #include <netinet/in_systm.h> 101 #include <netinet/ip.h> 102 #include <netinet/in_pcb.h> 103 #include <netinet/ip_carp.h> 104 105 #include <netinet/ip6.h> 106 #include <netinet6/ip6_var.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/mld6_var.h> 109 #include <netinet6/ip6_mroute.h> 110 #include <netinet6/in6_ifattach.h> 111 #include <netinet6/scope6_var.h> 112 #include <netinet6/in6_fib.h> 113 #include <netinet6/in6_pcb.h> 114 115 116 /* 117 * struct in6_ifreq and struct ifreq must be type punnable for common members 118 * of ifr_ifru to allow accessors to be shared. 119 */ 120 _Static_assert(offsetof(struct in6_ifreq, ifr_ifru) == 121 offsetof(struct ifreq, ifr_ifru), 122 "struct in6_ifreq and struct ifreq are not type punnable"); 123 124 VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); 125 #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) 126 127 /* 128 * Definitions of some costant IP6 addresses. 129 */ 130 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 131 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 132 const struct in6_addr in6addr_nodelocal_allnodes = 133 IN6ADDR_NODELOCAL_ALLNODES_INIT; 134 const struct in6_addr in6addr_linklocal_allnodes = 135 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 136 const struct in6_addr in6addr_linklocal_allrouters = 137 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 138 const struct in6_addr in6addr_linklocal_allv2routers = 139 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 140 141 const struct in6_addr in6mask0 = IN6MASK0; 142 const struct in6_addr in6mask32 = IN6MASK32; 143 const struct in6_addr in6mask64 = IN6MASK64; 144 const struct in6_addr in6mask96 = IN6MASK96; 145 const struct in6_addr in6mask128 = IN6MASK128; 146 147 const struct sockaddr_in6 sa6_any = 148 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 149 150 static int in6_notify_ifa(struct ifnet *, struct in6_ifaddr *, 151 struct in6_aliasreq *, int); 152 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 153 154 static int in6_validate_ifra(struct ifnet *, struct in6_aliasreq *, 155 struct in6_ifaddr *, int); 156 static struct in6_ifaddr *in6_alloc_ifa(struct ifnet *, 157 struct in6_aliasreq *, int flags); 158 static int in6_update_ifa_internal(struct ifnet *, struct in6_aliasreq *, 159 struct in6_ifaddr *, int, int); 160 static int in6_broadcast_ifa(struct ifnet *, struct in6_aliasreq *, 161 struct in6_ifaddr *, int); 162 163 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 164 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 165 166 167 void 168 in6_newaddrmsg(struct in6_ifaddr *ia, int cmd) 169 { 170 struct sockaddr_dl gateway; 171 struct sockaddr_in6 mask, addr; 172 struct rtentry rt; 173 int fibnum; 174 175 /* 176 * initialize for rtmsg generation 177 */ 178 bzero(&gateway, sizeof(gateway)); 179 gateway.sdl_len = sizeof(gateway); 180 gateway.sdl_family = AF_LINK; 181 182 bzero(&rt, sizeof(rt)); 183 rt.rt_gateway = (struct sockaddr *)&gateway; 184 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 185 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 186 rt_mask(&rt) = (struct sockaddr *)&mask; 187 rt_key(&rt) = (struct sockaddr *)&addr; 188 rt.rt_flags = RTF_HOST | RTF_STATIC; 189 if (cmd == RTM_ADD) 190 rt.rt_flags |= RTF_UP; 191 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ia62ifa(ia)->ifa_ifp->if_fib; 192 /* Announce arrival of local address to this FIB. */ 193 rt_newaddrmsg_fib(cmd, &ia->ia_ifa, 0, &rt, fibnum); 194 } 195 196 int 197 in6_mask2len(struct in6_addr *mask, u_char *lim0) 198 { 199 int x = 0, y; 200 u_char *lim = lim0, *p; 201 202 /* ignore the scope_id part */ 203 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 204 lim = (u_char *)mask + sizeof(*mask); 205 for (p = (u_char *)mask; p < lim; x++, p++) { 206 if (*p != 0xff) 207 break; 208 } 209 y = 0; 210 if (p < lim) { 211 for (y = 0; y < 8; y++) { 212 if ((*p & (0x80 >> y)) == 0) 213 break; 214 } 215 } 216 217 /* 218 * when the limit pointer is given, do a stricter check on the 219 * remaining bits. 220 */ 221 if (p < lim) { 222 if (y != 0 && (*p & (0x00ff >> y)) != 0) 223 return (-1); 224 for (p = p + 1; p < lim; p++) 225 if (*p != 0) 226 return (-1); 227 } 228 229 return x * 8 + y; 230 } 231 232 #ifdef COMPAT_FREEBSD32 233 struct in6_ndifreq32 { 234 char ifname[IFNAMSIZ]; 235 uint32_t ifindex; 236 }; 237 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 238 #endif 239 240 int 241 in6_control(struct socket *so, u_long cmd, caddr_t data, 242 struct ifnet *ifp, struct thread *td) 243 { 244 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 245 struct in6_ifaddr *ia = NULL; 246 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 247 struct sockaddr_in6 *sa6; 248 int carp_attached = 0; 249 int error; 250 u_long ocmd = cmd; 251 252 /* 253 * Compat to make pre-10.x ifconfig(8) operable. 254 */ 255 if (cmd == OSIOCAIFADDR_IN6) 256 cmd = SIOCAIFADDR_IN6; 257 258 switch (cmd) { 259 case SIOCGETSGCNT_IN6: 260 case SIOCGETMIFCNT_IN6: 261 /* 262 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 263 * We cannot see how that would be needed, so do not adjust the 264 * KPI blindly; more likely should clean up the IPv4 variant. 265 */ 266 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 267 } 268 269 switch (cmd) { 270 case SIOCAADDRCTL_POLICY: 271 case SIOCDADDRCTL_POLICY: 272 if (td != NULL) { 273 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 274 if (error) 275 return (error); 276 } 277 return (in6_src_ioctl(cmd, data)); 278 } 279 280 if (ifp == NULL) 281 return (EOPNOTSUPP); 282 283 switch (cmd) { 284 case SIOCSNDFLUSH_IN6: 285 case SIOCSPFXFLUSH_IN6: 286 case SIOCSRTRFLUSH_IN6: 287 case SIOCSDEFIFACE_IN6: 288 case SIOCSIFINFO_FLAGS: 289 case SIOCSIFINFO_IN6: 290 if (td != NULL) { 291 error = priv_check(td, PRIV_NETINET_ND6); 292 if (error) 293 return (error); 294 } 295 /* FALLTHROUGH */ 296 case OSIOCGIFINFO_IN6: 297 case SIOCGIFINFO_IN6: 298 case SIOCGNBRINFO_IN6: 299 case SIOCGDEFIFACE_IN6: 300 return (nd6_ioctl(cmd, data, ifp)); 301 302 #ifdef COMPAT_FREEBSD32 303 case SIOCGDEFIFACE32_IN6: 304 { 305 struct in6_ndifreq ndif; 306 struct in6_ndifreq32 *ndif32; 307 308 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 309 ifp); 310 if (error) 311 return (error); 312 ndif32 = (struct in6_ndifreq32 *)data; 313 ndif32->ifindex = ndif.ifindex; 314 return (0); 315 } 316 #endif 317 } 318 319 switch (cmd) { 320 case SIOCSIFPREFIX_IN6: 321 case SIOCDIFPREFIX_IN6: 322 case SIOCAIFPREFIX_IN6: 323 case SIOCCIFPREFIX_IN6: 324 case SIOCSGIFPREFIX_IN6: 325 case SIOCGIFPREFIX_IN6: 326 log(LOG_NOTICE, 327 "prefix ioctls are now invalidated. " 328 "please use ifconfig.\n"); 329 return (EOPNOTSUPP); 330 } 331 332 switch (cmd) { 333 case SIOCSSCOPE6: 334 if (td != NULL) { 335 error = priv_check(td, PRIV_NETINET_SCOPE6); 336 if (error) 337 return (error); 338 } 339 /* FALLTHROUGH */ 340 case SIOCGSCOPE6: 341 case SIOCGSCOPE6DEF: 342 return (scope6_ioctl(cmd, data, ifp)); 343 } 344 345 /* 346 * Find address for this interface, if it exists. 347 * 348 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 349 * only, and used the first interface address as the target of other 350 * operations (without checking ifra_addr). This was because netinet 351 * code/API assumed at most 1 interface address per interface. 352 * Since IPv6 allows a node to assign multiple addresses 353 * on a single interface, we almost always look and check the 354 * presence of ifra_addr, and reject invalid ones here. 355 * It also decreases duplicated code among SIOC*_IN6 operations. 356 */ 357 switch (cmd) { 358 case SIOCAIFADDR_IN6: 359 case SIOCSIFPHYADDR_IN6: 360 sa6 = &ifra->ifra_addr; 361 break; 362 case SIOCSIFADDR_IN6: 363 case SIOCGIFADDR_IN6: 364 case SIOCSIFDSTADDR_IN6: 365 case SIOCSIFNETMASK_IN6: 366 case SIOCGIFDSTADDR_IN6: 367 case SIOCGIFNETMASK_IN6: 368 case SIOCDIFADDR_IN6: 369 case SIOCGIFPSRCADDR_IN6: 370 case SIOCGIFPDSTADDR_IN6: 371 case SIOCGIFAFLAG_IN6: 372 case SIOCSNDFLUSH_IN6: 373 case SIOCSPFXFLUSH_IN6: 374 case SIOCSRTRFLUSH_IN6: 375 case SIOCGIFALIFETIME_IN6: 376 case SIOCGIFSTAT_IN6: 377 case SIOCGIFSTAT_ICMP6: 378 sa6 = &ifr->ifr_addr; 379 break; 380 case SIOCSIFADDR: 381 case SIOCSIFBRDADDR: 382 case SIOCSIFDSTADDR: 383 case SIOCSIFNETMASK: 384 /* 385 * Although we should pass any non-INET6 ioctl requests 386 * down to driver, we filter some legacy INET requests. 387 * Drivers trust SIOCSIFADDR et al to come from an already 388 * privileged layer, and do not perform any credentials 389 * checks or input validation. 390 */ 391 return (EINVAL); 392 default: 393 sa6 = NULL; 394 break; 395 } 396 if (sa6 && sa6->sin6_family == AF_INET6) { 397 if (sa6->sin6_scope_id != 0) 398 error = sa6_embedscope(sa6, 0); 399 else 400 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 401 if (error != 0) 402 return (error); 403 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 404 &sa6->sin6_addr)) != 0) 405 return (error); 406 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 407 } else 408 ia = NULL; 409 410 switch (cmd) { 411 case SIOCSIFADDR_IN6: 412 case SIOCSIFDSTADDR_IN6: 413 case SIOCSIFNETMASK_IN6: 414 /* 415 * Since IPv6 allows a node to assign multiple addresses 416 * on a single interface, SIOCSIFxxx ioctls are deprecated. 417 */ 418 /* we decided to obsolete this command (20000704) */ 419 error = EINVAL; 420 goto out; 421 422 case SIOCDIFADDR_IN6: 423 /* 424 * for IPv4, we look for existing in_ifaddr here to allow 425 * "ifconfig if0 delete" to remove the first IPv4 address on 426 * the interface. For IPv6, as the spec allows multiple 427 * interface address from the day one, we consider "remove the 428 * first one" semantics to be not preferable. 429 */ 430 if (ia == NULL) { 431 error = EADDRNOTAVAIL; 432 goto out; 433 } 434 /* FALLTHROUGH */ 435 case SIOCAIFADDR_IN6: 436 /* 437 * We always require users to specify a valid IPv6 address for 438 * the corresponding operation. 439 */ 440 if (ifra->ifra_addr.sin6_family != AF_INET6 || 441 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 442 error = EAFNOSUPPORT; 443 goto out; 444 } 445 446 if (td != NULL) { 447 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 448 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 449 if (error) 450 goto out; 451 } 452 /* FALLTHROUGH */ 453 case SIOCGIFSTAT_IN6: 454 case SIOCGIFSTAT_ICMP6: 455 if (ifp->if_afdata[AF_INET6] == NULL) { 456 error = EPFNOSUPPORT; 457 goto out; 458 } 459 break; 460 461 case SIOCGIFADDR_IN6: 462 /* This interface is basically deprecated. use SIOCGIFCONF. */ 463 /* FALLTHROUGH */ 464 case SIOCGIFAFLAG_IN6: 465 case SIOCGIFNETMASK_IN6: 466 case SIOCGIFDSTADDR_IN6: 467 case SIOCGIFALIFETIME_IN6: 468 /* must think again about its semantics */ 469 if (ia == NULL) { 470 error = EADDRNOTAVAIL; 471 goto out; 472 } 473 break; 474 } 475 476 switch (cmd) { 477 case SIOCGIFADDR_IN6: 478 ifr->ifr_addr = ia->ia_addr; 479 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 480 goto out; 481 break; 482 483 case SIOCGIFDSTADDR_IN6: 484 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 485 error = EINVAL; 486 goto out; 487 } 488 ifr->ifr_dstaddr = ia->ia_dstaddr; 489 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 490 goto out; 491 break; 492 493 case SIOCGIFNETMASK_IN6: 494 ifr->ifr_addr = ia->ia_prefixmask; 495 break; 496 497 case SIOCGIFAFLAG_IN6: 498 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 499 break; 500 501 case SIOCGIFSTAT_IN6: 502 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 503 ifp->if_afdata[AF_INET6])->in6_ifstat, 504 &ifr->ifr_ifru.ifru_stat, 505 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 506 break; 507 508 case SIOCGIFSTAT_ICMP6: 509 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 510 ifp->if_afdata[AF_INET6])->icmp6_ifstat, 511 &ifr->ifr_ifru.ifru_icmp6stat, 512 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 513 break; 514 515 case SIOCGIFALIFETIME_IN6: 516 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 517 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 518 time_t maxexpire; 519 struct in6_addrlifetime *retlt = 520 &ifr->ifr_ifru.ifru_lifetime; 521 522 /* 523 * XXX: adjust expiration time assuming time_t is 524 * signed. 525 */ 526 maxexpire = (-1) & 527 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 528 if (ia->ia6_lifetime.ia6t_vltime < 529 maxexpire - ia->ia6_updatetime) { 530 retlt->ia6t_expire = ia->ia6_updatetime + 531 ia->ia6_lifetime.ia6t_vltime; 532 } else 533 retlt->ia6t_expire = maxexpire; 534 } 535 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 536 time_t maxexpire; 537 struct in6_addrlifetime *retlt = 538 &ifr->ifr_ifru.ifru_lifetime; 539 540 /* 541 * XXX: adjust expiration time assuming time_t is 542 * signed. 543 */ 544 maxexpire = (-1) & 545 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 546 if (ia->ia6_lifetime.ia6t_pltime < 547 maxexpire - ia->ia6_updatetime) { 548 retlt->ia6t_preferred = ia->ia6_updatetime + 549 ia->ia6_lifetime.ia6t_pltime; 550 } else 551 retlt->ia6t_preferred = maxexpire; 552 } 553 break; 554 555 case SIOCAIFADDR_IN6: 556 { 557 struct nd_prefixctl pr0; 558 struct nd_prefix *pr; 559 560 /* 561 * first, make or update the interface address structure, 562 * and link it to the list. 563 */ 564 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 565 goto out; 566 if (ia != NULL) { 567 if (ia->ia_ifa.ifa_carp) 568 (*carp_detach_p)(&ia->ia_ifa, true); 569 ifa_free(&ia->ia_ifa); 570 } 571 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 572 == NULL) { 573 /* 574 * this can happen when the user specify the 0 valid 575 * lifetime. 576 */ 577 break; 578 } 579 580 if (cmd == ocmd && ifra->ifra_vhid > 0) { 581 if (carp_attach_p != NULL) 582 error = (*carp_attach_p)(&ia->ia_ifa, 583 ifra->ifra_vhid); 584 else 585 error = EPROTONOSUPPORT; 586 if (error) 587 goto out; 588 else 589 carp_attached = 1; 590 } 591 592 /* 593 * then, make the prefix on-link on the interface. 594 * XXX: we'd rather create the prefix before the address, but 595 * we need at least one address to install the corresponding 596 * interface route, so we configure the address first. 597 */ 598 599 /* 600 * convert mask to prefix length (prefixmask has already 601 * been validated in in6_update_ifa(). 602 */ 603 bzero(&pr0, sizeof(pr0)); 604 pr0.ndpr_ifp = ifp; 605 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 606 NULL); 607 if (pr0.ndpr_plen == 128) { 608 /* we don't need to install a host route. */ 609 goto aifaddr_out; 610 } 611 pr0.ndpr_prefix = ifra->ifra_addr; 612 /* apply the mask for safety. */ 613 IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, 614 &ifra->ifra_prefixmask.sin6_addr); 615 616 /* 617 * XXX: since we don't have an API to set prefix (not address) 618 * lifetimes, we just use the same lifetimes as addresses. 619 * The (temporarily) installed lifetimes can be overridden by 620 * later advertised RAs (when accept_rtadv is non 0), which is 621 * an intended behavior. 622 */ 623 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 624 pr0.ndpr_raf_auto = 625 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 626 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 627 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 628 629 /* add the prefix if not yet. */ 630 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 631 /* 632 * nd6_prelist_add will install the corresponding 633 * interface route. 634 */ 635 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 636 if (carp_attached) 637 (*carp_detach_p)(&ia->ia_ifa, false); 638 goto out; 639 } 640 } 641 642 /* relate the address to the prefix */ 643 if (ia->ia6_ndpr == NULL) { 644 ia->ia6_ndpr = pr; 645 pr->ndpr_addrcnt++; 646 647 /* 648 * If this is the first autoconf address from the 649 * prefix, create a temporary address as well 650 * (when required). 651 */ 652 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 653 V_ip6_use_tempaddr && pr->ndpr_addrcnt == 1) { 654 int e; 655 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 656 log(LOG_NOTICE, "in6_control: failed " 657 "to create a temporary address, " 658 "errno=%d\n", e); 659 } 660 } 661 } 662 nd6_prefix_rele(pr); 663 664 /* 665 * this might affect the status of autoconfigured addresses, 666 * that is, this address might make other addresses detached. 667 */ 668 pfxlist_onlink_check(); 669 670 aifaddr_out: 671 /* 672 * Try to clear the flag when a new IPv6 address is added 673 * onto an IFDISABLED interface and it succeeds. 674 */ 675 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 676 struct in6_ndireq nd; 677 678 memset(&nd, 0, sizeof(nd)); 679 nd.ndi.flags = ND_IFINFO(ifp)->flags; 680 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 681 if (nd6_ioctl(SIOCSIFINFO_FLAGS, (caddr_t)&nd, ifp) < 0) 682 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 683 "SIOCSIFINFO_FLAGS for -ifdisabled " 684 "failed."); 685 /* 686 * Ignore failure of clearing the flag intentionally. 687 * The failure means address duplication was detected. 688 */ 689 } 690 break; 691 } 692 693 case SIOCDIFADDR_IN6: 694 { 695 struct nd_prefix *pr; 696 697 /* 698 * If the address being deleted is the only one that owns 699 * the corresponding prefix, expire the prefix as well. 700 * XXX: theoretically, we don't have to worry about such 701 * relationship, since we separate the address management 702 * and the prefix management. We do this, however, to provide 703 * as much backward compatibility as possible in terms of 704 * the ioctl operation. 705 * Note that in6_purgeaddr() will decrement ndpr_addrcnt. 706 */ 707 pr = ia->ia6_ndpr; 708 in6_purgeaddr(&ia->ia_ifa); 709 if (pr != NULL && pr->ndpr_addrcnt == 0) { 710 ND6_WLOCK(); 711 nd6_prefix_unlink(pr, NULL); 712 ND6_WUNLOCK(); 713 nd6_prefix_del(pr); 714 } 715 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 716 break; 717 } 718 719 default: 720 if (ifp->if_ioctl == NULL) { 721 error = EOPNOTSUPP; 722 goto out; 723 } 724 error = (*ifp->if_ioctl)(ifp, cmd, data); 725 goto out; 726 } 727 728 error = 0; 729 out: 730 if (ia != NULL) 731 ifa_free(&ia->ia_ifa); 732 return (error); 733 } 734 735 736 static struct in6_multi_mship * 737 in6_joingroup_legacy(struct ifnet *ifp, const struct in6_addr *mcaddr, 738 int *errorp, int delay) 739 { 740 struct in6_multi_mship *imm; 741 int error; 742 743 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 744 if (imm == NULL) { 745 *errorp = ENOBUFS; 746 return (NULL); 747 } 748 749 delay = (delay * PR_FASTHZ) / hz; 750 751 error = in6_joingroup(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 752 if (error) { 753 *errorp = error; 754 free(imm, M_IP6MADDR); 755 return (NULL); 756 } 757 758 return (imm); 759 } 760 /* 761 * Join necessary multicast groups. Factored out from in6_update_ifa(). 762 * This entire work should only be done once, for the default FIB. 763 */ 764 static int 765 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 766 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 767 { 768 char ip6buf[INET6_ADDRSTRLEN]; 769 struct in6_addr mltaddr; 770 struct in6_multi_mship *imm; 771 int delay, error; 772 773 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 774 775 /* Join solicited multicast addr for new host id. */ 776 bzero(&mltaddr, sizeof(struct in6_addr)); 777 mltaddr.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 778 mltaddr.s6_addr32[2] = htonl(1); 779 mltaddr.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 780 mltaddr.s6_addr8[12] = 0xff; 781 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) { 782 /* XXX: should not happen */ 783 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 784 goto cleanup; 785 } 786 delay = error = 0; 787 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 788 /* 789 * We need a random delay for DAD on the address being 790 * configured. It also means delaying transmission of the 791 * corresponding MLD report to avoid report collision. 792 * [RFC 4861, Section 6.3.7] 793 */ 794 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 795 } 796 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); 797 if (imm == NULL) { 798 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 799 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 800 if_name(ifp), error)); 801 goto cleanup; 802 } 803 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 804 *in6m_sol = imm->i6mm_maddr; 805 806 /* 807 * Join link-local all-nodes address. 808 */ 809 mltaddr = in6addr_linklocal_allnodes; 810 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 811 goto cleanup; /* XXX: should not fail */ 812 813 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); 814 if (imm == NULL) { 815 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 816 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 817 if_name(ifp), error)); 818 goto cleanup; 819 } 820 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 821 822 /* 823 * Join node information group address. 824 */ 825 delay = 0; 826 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 827 /* 828 * The spec does not say anything about delay for this group, 829 * but the same logic should apply. 830 */ 831 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 832 } 833 if (in6_nigroup(ifp, NULL, -1, &mltaddr) == 0) { 834 /* XXX jinmei */ 835 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); 836 if (imm == NULL) 837 nd6log((LOG_WARNING, 838 "%s: in6_joingroup failed for %s on %s " 839 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 840 &mltaddr), if_name(ifp), error)); 841 /* XXX not very fatal, go on... */ 842 else 843 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 844 } 845 if (V_icmp6_nodeinfo_oldmcprefix && 846 in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr) == 0) { 847 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); 848 if (imm == NULL) 849 nd6log((LOG_WARNING, 850 "%s: in6_joingroup failed for %s on %s " 851 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 852 &mltaddr), if_name(ifp), error)); 853 /* XXX not very fatal, go on... */ 854 else 855 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 856 } 857 858 /* 859 * Join interface-local all-nodes address. 860 * (ff01::1%ifN, and ff01::%ifN/32) 861 */ 862 mltaddr = in6addr_nodelocal_allnodes; 863 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 864 goto cleanup; /* XXX: should not fail */ 865 866 imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); 867 if (imm == NULL) { 868 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 869 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 870 &mltaddr), if_name(ifp), error)); 871 goto cleanup; 872 } 873 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 874 875 cleanup: 876 return (error); 877 } 878 879 /* 880 * Update parameters of an IPv6 interface address. 881 * If necessary, a new entry is created and linked into address chains. 882 * This function is separated from in6_control(). 883 */ 884 int 885 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 886 struct in6_ifaddr *ia, int flags) 887 { 888 int error, hostIsNew = 0; 889 890 if ((error = in6_validate_ifra(ifp, ifra, ia, flags)) != 0) 891 return (error); 892 893 if (ia == NULL) { 894 hostIsNew = 1; 895 if ((ia = in6_alloc_ifa(ifp, ifra, flags)) == NULL) 896 return (ENOBUFS); 897 } 898 899 error = in6_update_ifa_internal(ifp, ifra, ia, hostIsNew, flags); 900 if (error != 0) { 901 if (hostIsNew != 0) { 902 in6_unlink_ifa(ia, ifp); 903 ifa_free(&ia->ia_ifa); 904 } 905 return (error); 906 } 907 908 if (hostIsNew) 909 error = in6_broadcast_ifa(ifp, ifra, ia, flags); 910 911 return (error); 912 } 913 914 /* 915 * Fill in basic IPv6 address request info. 916 */ 917 void 918 in6_prepare_ifra(struct in6_aliasreq *ifra, const struct in6_addr *addr, 919 const struct in6_addr *mask) 920 { 921 922 memset(ifra, 0, sizeof(struct in6_aliasreq)); 923 924 ifra->ifra_addr.sin6_family = AF_INET6; 925 ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); 926 if (addr != NULL) 927 ifra->ifra_addr.sin6_addr = *addr; 928 929 ifra->ifra_prefixmask.sin6_family = AF_INET6; 930 ifra->ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 931 if (mask != NULL) 932 ifra->ifra_prefixmask.sin6_addr = *mask; 933 } 934 935 static int 936 in6_validate_ifra(struct ifnet *ifp, struct in6_aliasreq *ifra, 937 struct in6_ifaddr *ia, int flags) 938 { 939 int plen = -1; 940 struct sockaddr_in6 dst6; 941 struct in6_addrlifetime *lt; 942 char ip6buf[INET6_ADDRSTRLEN]; 943 944 /* Validate parameters */ 945 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 946 return (EINVAL); 947 948 /* 949 * The destination address for a p2p link must have a family 950 * of AF_UNSPEC or AF_INET6. 951 */ 952 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 953 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 954 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 955 return (EAFNOSUPPORT); 956 957 /* 958 * Validate address 959 */ 960 if (ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6) || 961 ifra->ifra_addr.sin6_family != AF_INET6) 962 return (EINVAL); 963 964 /* 965 * validate ifra_prefixmask. don't check sin6_family, netmask 966 * does not carry fields other than sin6_len. 967 */ 968 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 969 return (EINVAL); 970 /* 971 * Because the IPv6 address architecture is classless, we require 972 * users to specify a (non 0) prefix length (mask) for a new address. 973 * We also require the prefix (when specified) mask is valid, and thus 974 * reject a non-consecutive mask. 975 */ 976 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 977 return (EINVAL); 978 if (ifra->ifra_prefixmask.sin6_len != 0) { 979 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 980 (u_char *)&ifra->ifra_prefixmask + 981 ifra->ifra_prefixmask.sin6_len); 982 if (plen <= 0) 983 return (EINVAL); 984 } else { 985 /* 986 * In this case, ia must not be NULL. We just use its prefix 987 * length. 988 */ 989 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 990 } 991 /* 992 * If the destination address on a p2p interface is specified, 993 * and the address is a scoped one, validate/set the scope 994 * zone identifier. 995 */ 996 dst6 = ifra->ifra_dstaddr; 997 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 998 (dst6.sin6_family == AF_INET6)) { 999 struct in6_addr in6_tmp; 1000 u_int32_t zoneid; 1001 1002 in6_tmp = dst6.sin6_addr; 1003 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 1004 return (EINVAL); /* XXX: should be impossible */ 1005 1006 if (dst6.sin6_scope_id != 0) { 1007 if (dst6.sin6_scope_id != zoneid) 1008 return (EINVAL); 1009 } else /* user omit to specify the ID. */ 1010 dst6.sin6_scope_id = zoneid; 1011 1012 /* convert into the internal form */ 1013 if (sa6_embedscope(&dst6, 0)) 1014 return (EINVAL); /* XXX: should be impossible */ 1015 } 1016 /* Modify original ifra_dstaddr to reflect changes */ 1017 ifra->ifra_dstaddr = dst6; 1018 1019 /* 1020 * The destination address can be specified only for a p2p or a 1021 * loopback interface. If specified, the corresponding prefix length 1022 * must be 128. 1023 */ 1024 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 1025 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 1026 /* XXX: noisy message */ 1027 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 1028 "be specified for a p2p or a loopback IF only\n")); 1029 return (EINVAL); 1030 } 1031 if (plen != 128) { 1032 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1033 "be 128 when dstaddr is specified\n")); 1034 return (EINVAL); 1035 } 1036 } 1037 /* lifetime consistency check */ 1038 lt = &ifra->ifra_lifetime; 1039 if (lt->ia6t_pltime > lt->ia6t_vltime) 1040 return (EINVAL); 1041 if (lt->ia6t_vltime == 0) { 1042 /* 1043 * the following log might be noisy, but this is a typical 1044 * configuration mistake or a tool's bug. 1045 */ 1046 nd6log((LOG_INFO, 1047 "in6_update_ifa: valid lifetime is 0 for %s\n", 1048 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1049 1050 if (ia == NULL) 1051 return (0); /* there's nothing to do */ 1052 } 1053 1054 /* Check prefix mask */ 1055 if (ia != NULL && ifra->ifra_prefixmask.sin6_len != 0) { 1056 /* 1057 * We prohibit changing the prefix length of an existing 1058 * address, because 1059 * + such an operation should be rare in IPv6, and 1060 * + the operation would confuse prefix management. 1061 */ 1062 if (ia->ia_prefixmask.sin6_len != 0 && 1063 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1064 nd6log((LOG_INFO, "in6_validate_ifa: the prefix length " 1065 "of an existing %s address should not be changed\n", 1066 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1067 1068 return (EINVAL); 1069 } 1070 } 1071 1072 return (0); 1073 } 1074 1075 1076 /* 1077 * Allocate a new ifaddr and link it into chains. 1078 */ 1079 static struct in6_ifaddr * 1080 in6_alloc_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int flags) 1081 { 1082 struct in6_ifaddr *ia; 1083 1084 /* 1085 * When in6_alloc_ifa() is called in a process of a received 1086 * RA, it is called under an interrupt context. So, we should 1087 * call malloc with M_NOWAIT. 1088 */ 1089 ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); 1090 if (ia == NULL) 1091 return (NULL); 1092 LIST_INIT(&ia->ia6_memberships); 1093 /* Initialize the address and masks, and put time stamp */ 1094 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1095 ia->ia_addr.sin6_family = AF_INET6; 1096 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1097 /* XXX: Can we assign ,sin6_addr and skip the rest? */ 1098 ia->ia_addr = ifra->ifra_addr; 1099 ia->ia6_createtime = time_uptime; 1100 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1101 /* 1102 * Some functions expect that ifa_dstaddr is not 1103 * NULL for p2p interfaces. 1104 */ 1105 ia->ia_ifa.ifa_dstaddr = 1106 (struct sockaddr *)&ia->ia_dstaddr; 1107 } else { 1108 ia->ia_ifa.ifa_dstaddr = NULL; 1109 } 1110 1111 /* set prefix mask if any */ 1112 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1113 if (ifra->ifra_prefixmask.sin6_len != 0) { 1114 ia->ia_prefixmask.sin6_family = AF_INET6; 1115 ia->ia_prefixmask.sin6_len = ifra->ifra_prefixmask.sin6_len; 1116 ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; 1117 } 1118 1119 ia->ia_ifp = ifp; 1120 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1121 IF_ADDR_WLOCK(ifp); 1122 CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1123 IF_ADDR_WUNLOCK(ifp); 1124 1125 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1126 IN6_IFADDR_WLOCK(); 1127 CK_STAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1128 CK_LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); 1129 IN6_IFADDR_WUNLOCK(); 1130 1131 return (ia); 1132 } 1133 1134 /* 1135 * Update/configure interface address parameters: 1136 * 1137 * 1) Update lifetime 1138 * 2) Update interface metric ad flags 1139 * 3) Notify other subsystems 1140 */ 1141 static int 1142 in6_update_ifa_internal(struct ifnet *ifp, struct in6_aliasreq *ifra, 1143 struct in6_ifaddr *ia, int hostIsNew, int flags) 1144 { 1145 int error; 1146 1147 /* update timestamp */ 1148 ia->ia6_updatetime = time_uptime; 1149 1150 /* 1151 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1152 * to see if the address is deprecated or invalidated, but initialize 1153 * these members for applications. 1154 */ 1155 ia->ia6_lifetime = ifra->ifra_lifetime; 1156 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1157 ia->ia6_lifetime.ia6t_expire = 1158 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1159 } else 1160 ia->ia6_lifetime.ia6t_expire = 0; 1161 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1162 ia->ia6_lifetime.ia6t_preferred = 1163 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1164 } else 1165 ia->ia6_lifetime.ia6t_preferred = 0; 1166 1167 /* 1168 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1169 * userland, make it deprecated. 1170 */ 1171 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1172 ia->ia6_lifetime.ia6t_pltime = 0; 1173 ia->ia6_lifetime.ia6t_preferred = time_uptime; 1174 } 1175 1176 /* 1177 * configure address flags. 1178 */ 1179 ia->ia6_flags = ifra->ifra_flags; 1180 1181 /* 1182 * Make the address tentative before joining multicast addresses, 1183 * so that corresponding MLD responses would not have a tentative 1184 * source address. 1185 */ 1186 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1187 1188 /* 1189 * DAD should be performed for an new address or addresses on 1190 * an interface with ND6_IFF_IFDISABLED. 1191 */ 1192 if (in6if_do_dad(ifp) && 1193 (hostIsNew || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED))) 1194 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1195 1196 /* notify other subsystems */ 1197 error = in6_notify_ifa(ifp, ia, ifra, hostIsNew); 1198 1199 return (error); 1200 } 1201 1202 /* 1203 * Do link-level ifa job: 1204 * 1) Add lle entry for added address 1205 * 2) Notifies routing socket users about new address 1206 * 3) join appropriate multicast group 1207 * 4) start DAD if enabled 1208 */ 1209 static int 1210 in6_broadcast_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1211 struct in6_ifaddr *ia, int flags) 1212 { 1213 struct in6_multi *in6m_sol; 1214 int error = 0; 1215 1216 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1217 if ((error = nd6_add_ifa_lle(ia)) != 0) { 1218 in6_purgeaddr(&ia->ia_ifa); 1219 ifa_free(&ia->ia_ifa); 1220 return (error); 1221 } 1222 1223 /* Join necessary multicast groups. */ 1224 in6m_sol = NULL; 1225 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1226 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1227 if (error != 0) { 1228 in6_purgeaddr(&ia->ia_ifa); 1229 ifa_free(&ia->ia_ifa); 1230 return (error); 1231 } 1232 } 1233 1234 /* Perform DAD, if the address is TENTATIVE. */ 1235 if ((ia->ia6_flags & IN6_IFF_TENTATIVE)) { 1236 int delay, mindelay, maxdelay; 1237 1238 delay = 0; 1239 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1240 /* 1241 * We need to impose a delay before sending an NS 1242 * for DAD. Check if we also needed a delay for the 1243 * corresponding MLD message. If we did, the delay 1244 * should be larger than the MLD delay (this could be 1245 * relaxed a bit, but this simple logic is at least 1246 * safe). 1247 * XXX: Break data hiding guidelines and look at 1248 * state for the solicited multicast group. 1249 */ 1250 mindelay = 0; 1251 if (in6m_sol != NULL && 1252 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1253 mindelay = in6m_sol->in6m_timer; 1254 } 1255 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1256 if (maxdelay - mindelay == 0) 1257 delay = 0; 1258 else { 1259 delay = 1260 (arc4random() % (maxdelay - mindelay)) + 1261 mindelay; 1262 } 1263 } 1264 nd6_dad_start((struct ifaddr *)ia, delay); 1265 } 1266 1267 in6_newaddrmsg(ia, RTM_ADD); 1268 ifa_free(&ia->ia_ifa); 1269 return (error); 1270 } 1271 1272 void 1273 in6_purgeaddr(struct ifaddr *ifa) 1274 { 1275 struct ifnet *ifp = ifa->ifa_ifp; 1276 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1277 struct in6_multi_mship *imm; 1278 int plen, error; 1279 1280 if (ifa->ifa_carp) 1281 (*carp_detach_p)(ifa, false); 1282 1283 /* 1284 * Remove the loopback route to the interface address. 1285 * The check for the current setting of "nd6_useloopback" 1286 * is not needed. 1287 */ 1288 if (ia->ia_flags & IFA_RTSELF) { 1289 error = ifa_del_loopback_route((struct ifaddr *)ia, 1290 (struct sockaddr *)&ia->ia_addr); 1291 if (error == 0) 1292 ia->ia_flags &= ~IFA_RTSELF; 1293 } 1294 1295 /* stop DAD processing */ 1296 nd6_dad_stop(ifa); 1297 1298 /* Leave multicast groups. */ 1299 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1300 LIST_REMOVE(imm, i6mm_chain); 1301 if (imm->i6mm_maddr != NULL) 1302 in6_leavegroup(imm->i6mm_maddr, NULL); 1303 free(imm, M_IP6MADDR); 1304 } 1305 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1306 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1307 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1308 (ia->ia_dstaddr.sin6_family == AF_INET6 ? RTF_HOST : 0)); 1309 if (error != 0) 1310 log(LOG_INFO, "%s: err=%d, destination address delete " 1311 "failed\n", __func__, error); 1312 ia->ia_flags &= ~IFA_ROUTE; 1313 } 1314 1315 in6_newaddrmsg(ia, RTM_DELETE); 1316 in6_unlink_ifa(ia, ifp); 1317 } 1318 1319 static void 1320 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1321 { 1322 char ip6buf[INET6_ADDRSTRLEN]; 1323 int remove_lle; 1324 1325 IF_ADDR_WLOCK(ifp); 1326 CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); 1327 IF_ADDR_WUNLOCK(ifp); 1328 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1329 1330 /* 1331 * Defer the release of what might be the last reference to the 1332 * in6_ifaddr so that it can't be freed before the remainder of the 1333 * cleanup. 1334 */ 1335 IN6_IFADDR_WLOCK(); 1336 CK_STAILQ_REMOVE(&V_in6_ifaddrhead, ia, in6_ifaddr, ia_link); 1337 CK_LIST_REMOVE(ia, ia6_hash); 1338 IN6_IFADDR_WUNLOCK(); 1339 1340 /* 1341 * Release the reference to the base prefix. There should be a 1342 * positive reference. 1343 */ 1344 remove_lle = 0; 1345 if (ia->ia6_ndpr == NULL) { 1346 nd6log((LOG_NOTICE, 1347 "in6_unlink_ifa: autoconf'ed address " 1348 "%s has no prefix\n", ip6_sprintf(ip6buf, IA6_IN6(ia)))); 1349 } else { 1350 ia->ia6_ndpr->ndpr_addrcnt--; 1351 /* Do not delete lles within prefix if refcont != 0 */ 1352 if (ia->ia6_ndpr->ndpr_addrcnt == 0) 1353 remove_lle = 1; 1354 ia->ia6_ndpr = NULL; 1355 } 1356 1357 nd6_rem_ifa_lle(ia, remove_lle); 1358 1359 /* 1360 * Also, if the address being removed is autoconf'ed, call 1361 * pfxlist_onlink_check() since the release might affect the status of 1362 * other (detached) addresses. 1363 */ 1364 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1365 pfxlist_onlink_check(); 1366 } 1367 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1368 } 1369 1370 /* 1371 * Notifies other subsystems about address change/arrival: 1372 * 1) Notifies device handler on the first IPv6 address assignment 1373 * 2) Handle routing table changes for P2P links and route 1374 * 3) Handle routing table changes for address host route 1375 */ 1376 static int 1377 in6_notify_ifa(struct ifnet *ifp, struct in6_ifaddr *ia, 1378 struct in6_aliasreq *ifra, int hostIsNew) 1379 { 1380 int error = 0, plen, ifacount = 0; 1381 struct ifaddr *ifa; 1382 struct sockaddr_in6 *pdst; 1383 char ip6buf[INET6_ADDRSTRLEN]; 1384 1385 /* 1386 * Give the interface a chance to initialize 1387 * if this is its first address, 1388 */ 1389 if (hostIsNew != 0) { 1390 IF_ADDR_RLOCK(ifp); 1391 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1392 if (ifa->ifa_addr->sa_family != AF_INET6) 1393 continue; 1394 ifacount++; 1395 } 1396 IF_ADDR_RUNLOCK(ifp); 1397 } 1398 1399 if (ifacount <= 1 && ifp->if_ioctl) { 1400 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1401 if (error) 1402 goto done; 1403 } 1404 1405 /* 1406 * If a new destination address is specified, scrub the old one and 1407 * install the new destination. Note that the interface must be 1408 * p2p or loopback. 1409 */ 1410 pdst = &ifra->ifra_dstaddr; 1411 if (pdst->sin6_family == AF_INET6 && 1412 !IN6_ARE_ADDR_EQUAL(&pdst->sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1413 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1414 (rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0)) { 1415 nd6log((LOG_ERR, "in6_update_ifa_internal: failed to " 1416 "remove a route to the old destination: %s\n", 1417 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1418 /* proceed anyway... */ 1419 } else 1420 ia->ia_flags &= ~IFA_ROUTE; 1421 ia->ia_dstaddr = *pdst; 1422 } 1423 1424 /* 1425 * If a new destination address is specified for a point-to-point 1426 * interface, install a route to the destination as an interface 1427 * direct route. 1428 * XXX: the logic below rejects assigning multiple addresses on a p2p 1429 * interface that share the same destination. 1430 */ 1431 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1432 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1433 ia->ia_dstaddr.sin6_family == AF_INET6) { 1434 int rtflags = RTF_UP | RTF_HOST; 1435 /* 1436 * Handle the case for ::1 . 1437 */ 1438 if (ifp->if_flags & IFF_LOOPBACK) 1439 ia->ia_flags |= IFA_RTSELF; 1440 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1441 if (error) 1442 goto done; 1443 ia->ia_flags |= IFA_ROUTE; 1444 } 1445 1446 /* 1447 * add a loopback route to self if not exists 1448 */ 1449 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1450 error = ifa_add_loopback_route((struct ifaddr *)ia, 1451 (struct sockaddr *)&ia->ia_addr); 1452 if (error == 0) 1453 ia->ia_flags |= IFA_RTSELF; 1454 } 1455 done: 1456 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1457 "Invoking IPv6 network device address event may sleep"); 1458 1459 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 1460 1461 return (error); 1462 } 1463 1464 /* 1465 * Find an IPv6 interface link-local address specific to an interface. 1466 * ifaddr is returned referenced. 1467 */ 1468 struct in6_ifaddr * 1469 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1470 { 1471 struct ifaddr *ifa; 1472 1473 IF_ADDR_RLOCK(ifp); 1474 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1475 if (ifa->ifa_addr->sa_family != AF_INET6) 1476 continue; 1477 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1478 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1479 ignoreflags) != 0) 1480 continue; 1481 ifa_ref(ifa); 1482 break; 1483 } 1484 } 1485 IF_ADDR_RUNLOCK(ifp); 1486 1487 return ((struct in6_ifaddr *)ifa); 1488 } 1489 1490 1491 /* 1492 * find the interface address corresponding to a given IPv6 address. 1493 * ifaddr is returned referenced. 1494 */ 1495 struct in6_ifaddr * 1496 in6ifa_ifwithaddr(const struct in6_addr *addr, uint32_t zoneid) 1497 { 1498 struct rm_priotracker in6_ifa_tracker; 1499 struct in6_ifaddr *ia; 1500 1501 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1502 CK_LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { 1503 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), addr)) { 1504 if (zoneid != 0 && 1505 zoneid != ia->ia_addr.sin6_scope_id) 1506 continue; 1507 ifa_ref(&ia->ia_ifa); 1508 break; 1509 } 1510 } 1511 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1512 return (ia); 1513 } 1514 1515 /* 1516 * find the internet address corresponding to a given interface and address. 1517 * ifaddr is returned referenced. 1518 */ 1519 struct in6_ifaddr * 1520 in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr) 1521 { 1522 struct ifaddr *ifa; 1523 1524 IF_ADDR_RLOCK(ifp); 1525 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1526 if (ifa->ifa_addr->sa_family != AF_INET6) 1527 continue; 1528 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1529 ifa_ref(ifa); 1530 break; 1531 } 1532 } 1533 IF_ADDR_RUNLOCK(ifp); 1534 1535 return ((struct in6_ifaddr *)ifa); 1536 } 1537 1538 /* 1539 * Find a link-local scoped address on ifp and return it if any. 1540 */ 1541 struct in6_ifaddr * 1542 in6ifa_llaonifp(struct ifnet *ifp) 1543 { 1544 struct sockaddr_in6 *sin6; 1545 struct ifaddr *ifa; 1546 1547 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1548 return (NULL); 1549 IF_ADDR_RLOCK(ifp); 1550 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1551 if (ifa->ifa_addr->sa_family != AF_INET6) 1552 continue; 1553 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 1554 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1555 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1556 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1557 break; 1558 } 1559 IF_ADDR_RUNLOCK(ifp); 1560 1561 return ((struct in6_ifaddr *)ifa); 1562 } 1563 1564 /* 1565 * Convert IP6 address to printable (loggable) representation. Caller 1566 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1567 */ 1568 static char digits[] = "0123456789abcdef"; 1569 char * 1570 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1571 { 1572 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1573 char *cp; 1574 const u_int16_t *a = (const u_int16_t *)addr; 1575 const u_int8_t *d; 1576 int dcolon = 0, zero = 0; 1577 1578 cp = ip6buf; 1579 1580 for (i = 0; i < 8; i++) { 1581 if (*(a + i) == 0) { 1582 cnt++; 1583 if (cnt == 1) 1584 idx = i; 1585 } 1586 else if (maxcnt < cnt) { 1587 maxcnt = cnt; 1588 index = idx; 1589 cnt = 0; 1590 } 1591 } 1592 if (maxcnt < cnt) { 1593 maxcnt = cnt; 1594 index = idx; 1595 } 1596 1597 for (i = 0; i < 8; i++) { 1598 if (dcolon == 1) { 1599 if (*a == 0) { 1600 if (i == 7) 1601 *cp++ = ':'; 1602 a++; 1603 continue; 1604 } else 1605 dcolon = 2; 1606 } 1607 if (*a == 0) { 1608 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 1609 if (i == 0) 1610 *cp++ = ':'; 1611 *cp++ = ':'; 1612 dcolon = 1; 1613 } else { 1614 *cp++ = '0'; 1615 *cp++ = ':'; 1616 } 1617 a++; 1618 continue; 1619 } 1620 d = (const u_char *)a; 1621 /* Try to eliminate leading zeros in printout like in :0001. */ 1622 zero = 1; 1623 *cp = digits[*d >> 4]; 1624 if (*cp != '0') { 1625 zero = 0; 1626 cp++; 1627 } 1628 *cp = digits[*d++ & 0xf]; 1629 if (zero == 0 || (*cp != '0')) { 1630 zero = 0; 1631 cp++; 1632 } 1633 *cp = digits[*d >> 4]; 1634 if (zero == 0 || (*cp != '0')) { 1635 zero = 0; 1636 cp++; 1637 } 1638 *cp++ = digits[*d & 0xf]; 1639 *cp++ = ':'; 1640 a++; 1641 } 1642 *--cp = '\0'; 1643 return (ip6buf); 1644 } 1645 1646 int 1647 in6_localaddr(struct in6_addr *in6) 1648 { 1649 struct rm_priotracker in6_ifa_tracker; 1650 struct in6_ifaddr *ia; 1651 1652 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1653 return 1; 1654 1655 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1656 CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1657 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1658 &ia->ia_prefixmask.sin6_addr)) { 1659 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1660 return 1; 1661 } 1662 } 1663 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1664 1665 return (0); 1666 } 1667 1668 /* 1669 * Return 1 if an internet address is for the local host and configured 1670 * on one of its interfaces. 1671 */ 1672 int 1673 in6_localip(struct in6_addr *in6) 1674 { 1675 struct rm_priotracker in6_ifa_tracker; 1676 struct in6_ifaddr *ia; 1677 1678 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1679 CK_LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { 1680 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 1681 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1682 return (1); 1683 } 1684 } 1685 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1686 return (0); 1687 } 1688 1689 /* 1690 * Return 1 if an internet address is configured on an interface. 1691 */ 1692 int 1693 in6_ifhasaddr(struct ifnet *ifp, struct in6_addr *addr) 1694 { 1695 struct in6_addr in6; 1696 struct ifaddr *ifa; 1697 struct in6_ifaddr *ia6; 1698 1699 in6 = *addr; 1700 if (in6_clearscope(&in6)) 1701 return (0); 1702 in6_setscope(&in6, ifp, NULL); 1703 1704 IF_ADDR_RLOCK(ifp); 1705 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1706 if (ifa->ifa_addr->sa_family != AF_INET6) 1707 continue; 1708 ia6 = (struct in6_ifaddr *)ifa; 1709 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &in6)) { 1710 IF_ADDR_RUNLOCK(ifp); 1711 return (1); 1712 } 1713 } 1714 IF_ADDR_RUNLOCK(ifp); 1715 1716 return (0); 1717 } 1718 1719 int 1720 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1721 { 1722 struct rm_priotracker in6_ifa_tracker; 1723 struct in6_ifaddr *ia; 1724 1725 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1726 CK_LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { 1727 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { 1728 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 1729 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1730 return (1); /* true */ 1731 } 1732 break; 1733 } 1734 } 1735 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1736 1737 return (0); /* false */ 1738 } 1739 1740 /* 1741 * return length of part which dst and src are equal 1742 * hard coding... 1743 */ 1744 int 1745 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1746 { 1747 int match = 0; 1748 u_char *s = (u_char *)src, *d = (u_char *)dst; 1749 u_char *lim = s + 16, r; 1750 1751 while (s < lim) 1752 if ((r = (*d++ ^ *s++)) != 0) { 1753 while (r < 128) { 1754 match++; 1755 r <<= 1; 1756 } 1757 break; 1758 } else 1759 match += 8; 1760 return match; 1761 } 1762 1763 /* XXX: to be scope conscious */ 1764 int 1765 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1766 { 1767 int bytelen, bitlen; 1768 1769 /* sanity check */ 1770 if (0 > len || len > 128) { 1771 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1772 len); 1773 return (0); 1774 } 1775 1776 bytelen = len / 8; 1777 bitlen = len % 8; 1778 1779 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1780 return (0); 1781 if (bitlen != 0 && 1782 p1->s6_addr[bytelen] >> (8 - bitlen) != 1783 p2->s6_addr[bytelen] >> (8 - bitlen)) 1784 return (0); 1785 1786 return (1); 1787 } 1788 1789 void 1790 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1791 { 1792 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1793 int bytelen, bitlen, i; 1794 1795 /* sanity check */ 1796 if (0 > len || len > 128) { 1797 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1798 len); 1799 return; 1800 } 1801 1802 bzero(maskp, sizeof(*maskp)); 1803 bytelen = len / 8; 1804 bitlen = len % 8; 1805 for (i = 0; i < bytelen; i++) 1806 maskp->s6_addr[i] = 0xff; 1807 if (bitlen) 1808 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1809 } 1810 1811 /* 1812 * return the best address out of the same scope. if no address was 1813 * found, return the first valid address from designated IF. 1814 */ 1815 struct in6_ifaddr * 1816 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1817 { 1818 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1819 struct ifaddr *ifa; 1820 struct in6_ifaddr *besta = NULL; 1821 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1822 1823 dep[0] = dep[1] = NULL; 1824 1825 /* 1826 * We first look for addresses in the same scope. 1827 * If there is one, return it. 1828 * If two or more, return one which matches the dst longest. 1829 * If none, return one of global addresses assigned other ifs. 1830 */ 1831 IF_ADDR_RLOCK(ifp); 1832 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1833 if (ifa->ifa_addr->sa_family != AF_INET6) 1834 continue; 1835 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1836 continue; /* XXX: is there any case to allow anycast? */ 1837 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1838 continue; /* don't use this interface */ 1839 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1840 continue; 1841 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1842 if (V_ip6_use_deprecated) 1843 dep[0] = (struct in6_ifaddr *)ifa; 1844 continue; 1845 } 1846 1847 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1848 /* 1849 * call in6_matchlen() as few as possible 1850 */ 1851 if (besta) { 1852 if (blen == -1) 1853 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1854 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1855 if (tlen > blen) { 1856 blen = tlen; 1857 besta = (struct in6_ifaddr *)ifa; 1858 } 1859 } else 1860 besta = (struct in6_ifaddr *)ifa; 1861 } 1862 } 1863 if (besta) { 1864 ifa_ref(&besta->ia_ifa); 1865 IF_ADDR_RUNLOCK(ifp); 1866 return (besta); 1867 } 1868 1869 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1870 if (ifa->ifa_addr->sa_family != AF_INET6) 1871 continue; 1872 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1873 continue; /* XXX: is there any case to allow anycast? */ 1874 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1875 continue; /* don't use this interface */ 1876 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1877 continue; 1878 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1879 if (V_ip6_use_deprecated) 1880 dep[1] = (struct in6_ifaddr *)ifa; 1881 continue; 1882 } 1883 1884 if (ifa != NULL) 1885 ifa_ref(ifa); 1886 IF_ADDR_RUNLOCK(ifp); 1887 return (struct in6_ifaddr *)ifa; 1888 } 1889 1890 /* use the last-resort values, that are, deprecated addresses */ 1891 if (dep[0]) { 1892 ifa_ref((struct ifaddr *)dep[0]); 1893 IF_ADDR_RUNLOCK(ifp); 1894 return dep[0]; 1895 } 1896 if (dep[1]) { 1897 ifa_ref((struct ifaddr *)dep[1]); 1898 IF_ADDR_RUNLOCK(ifp); 1899 return dep[1]; 1900 } 1901 1902 IF_ADDR_RUNLOCK(ifp); 1903 return NULL; 1904 } 1905 1906 /* 1907 * perform DAD when interface becomes IFF_UP. 1908 */ 1909 void 1910 in6_if_up(struct ifnet *ifp) 1911 { 1912 struct ifaddr *ifa; 1913 struct in6_ifaddr *ia; 1914 1915 IF_ADDR_RLOCK(ifp); 1916 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1917 if (ifa->ifa_addr->sa_family != AF_INET6) 1918 continue; 1919 ia = (struct in6_ifaddr *)ifa; 1920 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 1921 /* 1922 * The TENTATIVE flag was likely set by hand 1923 * beforehand, implicitly indicating the need for DAD. 1924 * We may be able to skip the random delay in this 1925 * case, but we impose delays just in case. 1926 */ 1927 nd6_dad_start(ifa, 1928 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 1929 } 1930 } 1931 IF_ADDR_RUNLOCK(ifp); 1932 1933 /* 1934 * special cases, like 6to4, are handled in in6_ifattach 1935 */ 1936 in6_ifattach(ifp, NULL); 1937 } 1938 1939 int 1940 in6if_do_dad(struct ifnet *ifp) 1941 { 1942 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1943 return (0); 1944 1945 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) || 1946 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD)) 1947 return (0); 1948 1949 /* 1950 * Our DAD routine requires the interface up and running. 1951 * However, some interfaces can be up before the RUNNING 1952 * status. Additionally, users may try to assign addresses 1953 * before the interface becomes up (or running). 1954 * This function returns EAGAIN in that case. 1955 * The caller should mark "tentative" on the address instead of 1956 * performing DAD immediately. 1957 */ 1958 if (!((ifp->if_flags & IFF_UP) && 1959 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 1960 return (EAGAIN); 1961 1962 return (1); 1963 } 1964 1965 /* 1966 * Calculate max IPv6 MTU through all the interfaces and store it 1967 * to in6_maxmtu. 1968 */ 1969 void 1970 in6_setmaxmtu(void) 1971 { 1972 unsigned long maxmtu = 0; 1973 struct ifnet *ifp; 1974 1975 IFNET_RLOCK_NOSLEEP(); 1976 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1977 /* this function can be called during ifnet initialization */ 1978 if (!ifp->if_afdata[AF_INET6]) 1979 continue; 1980 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 1981 IN6_LINKMTU(ifp) > maxmtu) 1982 maxmtu = IN6_LINKMTU(ifp); 1983 } 1984 IFNET_RUNLOCK_NOSLEEP(); 1985 if (maxmtu) /* update only when maxmtu is positive */ 1986 V_in6_maxmtu = maxmtu; 1987 } 1988 1989 /* 1990 * Provide the length of interface identifiers to be used for the link attached 1991 * to the given interface. The length should be defined in "IPv6 over 1992 * xxx-link" document. Note that address architecture might also define 1993 * the length for a particular set of address prefixes, regardless of the 1994 * link type. As clarified in rfc2462bis, those two definitions should be 1995 * consistent, and those really are as of August 2004. 1996 */ 1997 int 1998 in6_if2idlen(struct ifnet *ifp) 1999 { 2000 switch (ifp->if_type) { 2001 case IFT_ETHER: /* RFC2464 */ 2002 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2003 case IFT_L2VLAN: /* ditto */ 2004 case IFT_BRIDGE: /* bridge(4) only does Ethernet-like links */ 2005 case IFT_INFINIBAND: 2006 return (64); 2007 case IFT_PPP: /* RFC2472 */ 2008 return (64); 2009 case IFT_FRELAY: /* RFC2590 */ 2010 return (64); 2011 case IFT_IEEE1394: /* RFC3146 */ 2012 return (64); 2013 case IFT_GIF: 2014 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2015 case IFT_LOOP: 2016 return (64); /* XXX: is this really correct? */ 2017 default: 2018 /* 2019 * Unknown link type: 2020 * It might be controversial to use the today's common constant 2021 * of 64 for these cases unconditionally. For full compliance, 2022 * we should return an error in this case. On the other hand, 2023 * if we simply miss the standard for the link type or a new 2024 * standard is defined for a new link type, the IFID length 2025 * is very likely to be the common constant. As a compromise, 2026 * we always use the constant, but make an explicit notice 2027 * indicating the "unknown" case. 2028 */ 2029 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2030 return (64); 2031 } 2032 } 2033 2034 #include <sys/sysctl.h> 2035 2036 struct in6_llentry { 2037 struct llentry base; 2038 }; 2039 2040 #define IN6_LLTBL_DEFAULT_HSIZE 32 2041 #define IN6_LLTBL_HASH(k, h) \ 2042 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) 2043 2044 /* 2045 * Do actual deallocation of @lle. 2046 */ 2047 static void 2048 in6_lltable_destroy_lle_unlocked(epoch_context_t ctx) 2049 { 2050 struct llentry *lle; 2051 2052 lle = __containerof(ctx, struct llentry, lle_epoch_ctx); 2053 LLE_LOCK_DESTROY(lle); 2054 LLE_REQ_DESTROY(lle); 2055 free(lle, M_LLTABLE); 2056 } 2057 2058 /* 2059 * Called by LLE_FREE_LOCKED when number of references 2060 * drops to zero. 2061 */ 2062 static void 2063 in6_lltable_destroy_lle(struct llentry *lle) 2064 { 2065 2066 LLE_WUNLOCK(lle); 2067 epoch_call(net_epoch_preempt, &lle->lle_epoch_ctx, in6_lltable_destroy_lle_unlocked); 2068 } 2069 2070 static struct llentry * 2071 in6_lltable_new(const struct in6_addr *addr6, u_int flags) 2072 { 2073 struct in6_llentry *lle; 2074 2075 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2076 if (lle == NULL) /* NB: caller generates msg */ 2077 return NULL; 2078 2079 lle->base.r_l3addr.addr6 = *addr6; 2080 lle->base.lle_refcnt = 1; 2081 lle->base.lle_free = in6_lltable_destroy_lle; 2082 LLE_LOCK_INIT(&lle->base); 2083 LLE_REQ_INIT(&lle->base); 2084 callout_init(&lle->base.lle_timer, 1); 2085 2086 return (&lle->base); 2087 } 2088 2089 static int 2090 in6_lltable_match_prefix(const struct sockaddr *saddr, 2091 const struct sockaddr *smask, u_int flags, struct llentry *lle) 2092 { 2093 const struct in6_addr *addr, *mask, *lle_addr; 2094 2095 addr = &((const struct sockaddr_in6 *)saddr)->sin6_addr; 2096 mask = &((const struct sockaddr_in6 *)smask)->sin6_addr; 2097 lle_addr = &lle->r_l3addr.addr6; 2098 2099 if (IN6_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) 2100 return (0); 2101 2102 if (lle->la_flags & LLE_IFADDR) { 2103 2104 /* 2105 * Delete LLE_IFADDR records IFF address & flag matches. 2106 * Note that addr is the interface address within prefix 2107 * being matched. 2108 */ 2109 if (IN6_ARE_ADDR_EQUAL(addr, lle_addr) && 2110 (flags & LLE_STATIC) != 0) 2111 return (1); 2112 return (0); 2113 } 2114 2115 /* flags & LLE_STATIC means deleting both dynamic and static entries */ 2116 if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) 2117 return (1); 2118 2119 return (0); 2120 } 2121 2122 static void 2123 in6_lltable_free_entry(struct lltable *llt, struct llentry *lle) 2124 { 2125 struct ifnet *ifp; 2126 2127 LLE_WLOCK_ASSERT(lle); 2128 KASSERT(llt != NULL, ("lltable is NULL")); 2129 2130 /* Unlink entry from table */ 2131 if ((lle->la_flags & LLE_LINKED) != 0) { 2132 2133 ifp = llt->llt_ifp; 2134 IF_AFDATA_WLOCK_ASSERT(ifp); 2135 lltable_unlink_entry(llt, lle); 2136 } 2137 2138 llentry_free(lle); 2139 } 2140 2141 static int 2142 in6_lltable_rtcheck(struct ifnet *ifp, 2143 u_int flags, 2144 const struct sockaddr *l3addr) 2145 { 2146 const struct sockaddr_in6 *sin6; 2147 struct nhop6_basic nh6; 2148 struct in6_addr dst; 2149 uint32_t scopeid; 2150 int error; 2151 char ip6buf[INET6_ADDRSTRLEN]; 2152 int fibnum; 2153 2154 KASSERT(l3addr->sa_family == AF_INET6, 2155 ("sin_family %d", l3addr->sa_family)); 2156 2157 sin6 = (const struct sockaddr_in6 *)l3addr; 2158 in6_splitscope(&sin6->sin6_addr, &dst, &scopeid); 2159 fibnum = V_rt_add_addr_allfibs ? RT_DEFAULT_FIB : ifp->if_fib; 2160 error = fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6); 2161 if (error != 0 || (nh6.nh_flags & NHF_GATEWAY) || nh6.nh_ifp != ifp) { 2162 struct ifaddr *ifa; 2163 /* 2164 * Create an ND6 cache for an IPv6 neighbor 2165 * that is not covered by our own prefix. 2166 */ 2167 NET_EPOCH_ENTER(); 2168 ifa = ifaof_ifpforaddr(l3addr, ifp); 2169 if (ifa != NULL) { 2170 NET_EPOCH_EXIT(); 2171 return 0; 2172 } 2173 NET_EPOCH_EXIT(); 2174 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2175 ip6_sprintf(ip6buf, &sin6->sin6_addr)); 2176 return EINVAL; 2177 } 2178 return 0; 2179 } 2180 2181 /* 2182 * Called by the datapath to indicate that the entry was used. 2183 */ 2184 static void 2185 in6_lltable_mark_used(struct llentry *lle) 2186 { 2187 2188 LLE_REQ_LOCK(lle); 2189 lle->r_skip_req = 0; 2190 2191 /* 2192 * Set the hit time so the callback function 2193 * can determine the remaining time before 2194 * transiting to the DELAY state. 2195 */ 2196 lle->lle_hittime = time_uptime; 2197 LLE_REQ_UNLOCK(lle); 2198 } 2199 2200 static inline uint32_t 2201 in6_lltable_hash_dst(const struct in6_addr *dst, uint32_t hsize) 2202 { 2203 2204 return (IN6_LLTBL_HASH(dst->s6_addr32[3], hsize)); 2205 } 2206 2207 static uint32_t 2208 in6_lltable_hash(const struct llentry *lle, uint32_t hsize) 2209 { 2210 2211 return (in6_lltable_hash_dst(&lle->r_l3addr.addr6, hsize)); 2212 } 2213 2214 static void 2215 in6_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) 2216 { 2217 struct sockaddr_in6 *sin6; 2218 2219 sin6 = (struct sockaddr_in6 *)sa; 2220 bzero(sin6, sizeof(*sin6)); 2221 sin6->sin6_family = AF_INET6; 2222 sin6->sin6_len = sizeof(*sin6); 2223 sin6->sin6_addr = lle->r_l3addr.addr6; 2224 } 2225 2226 static inline struct llentry * 2227 in6_lltable_find_dst(struct lltable *llt, const struct in6_addr *dst) 2228 { 2229 struct llentry *lle; 2230 struct llentries *lleh; 2231 u_int hashidx; 2232 2233 hashidx = in6_lltable_hash_dst(dst, llt->llt_hsize); 2234 lleh = &llt->lle_head[hashidx]; 2235 CK_LIST_FOREACH(lle, lleh, lle_next) { 2236 if (lle->la_flags & LLE_DELETED) 2237 continue; 2238 if (IN6_ARE_ADDR_EQUAL(&lle->r_l3addr.addr6, dst)) 2239 break; 2240 } 2241 2242 return (lle); 2243 } 2244 2245 static void 2246 in6_lltable_delete_entry(struct lltable *llt, struct llentry *lle) 2247 { 2248 2249 lle->la_flags |= LLE_DELETED; 2250 EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); 2251 #ifdef DIAGNOSTIC 2252 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2253 #endif 2254 llentry_free(lle); 2255 } 2256 2257 static struct llentry * 2258 in6_lltable_alloc(struct lltable *llt, u_int flags, 2259 const struct sockaddr *l3addr) 2260 { 2261 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2262 struct ifnet *ifp = llt->llt_ifp; 2263 struct llentry *lle; 2264 char linkhdr[LLE_MAX_LINKHDR]; 2265 size_t linkhdrsize; 2266 int lladdr_off; 2267 2268 KASSERT(l3addr->sa_family == AF_INET6, 2269 ("sin_family %d", l3addr->sa_family)); 2270 2271 /* 2272 * A route that covers the given address must have 2273 * been installed 1st because we are doing a resolution, 2274 * verify this. 2275 */ 2276 if (!(flags & LLE_IFADDR) && 2277 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2278 return (NULL); 2279 2280 lle = in6_lltable_new(&sin6->sin6_addr, flags); 2281 if (lle == NULL) { 2282 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2283 return (NULL); 2284 } 2285 lle->la_flags = flags; 2286 if ((flags & LLE_IFADDR) == LLE_IFADDR) { 2287 linkhdrsize = LLE_MAX_LINKHDR; 2288 if (lltable_calc_llheader(ifp, AF_INET6, IF_LLADDR(ifp), 2289 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 2290 epoch_call(net_epoch_preempt, &lle->lle_epoch_ctx, in6_lltable_destroy_lle_unlocked); 2291 return (NULL); 2292 } 2293 lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, 2294 lladdr_off); 2295 lle->la_flags |= LLE_STATIC; 2296 } 2297 2298 if ((lle->la_flags & LLE_STATIC) != 0) 2299 lle->ln_state = ND6_LLINFO_REACHABLE; 2300 2301 return (lle); 2302 } 2303 2304 static struct llentry * 2305 in6_lltable_lookup(struct lltable *llt, u_int flags, 2306 const struct sockaddr *l3addr) 2307 { 2308 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2309 struct llentry *lle; 2310 2311 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); 2312 KASSERT(l3addr->sa_family == AF_INET6, 2313 ("sin_family %d", l3addr->sa_family)); 2314 2315 lle = in6_lltable_find_dst(llt, &sin6->sin6_addr); 2316 2317 if (lle == NULL) 2318 return (NULL); 2319 2320 KASSERT((flags & (LLE_UNLOCKED|LLE_EXCLUSIVE)) != 2321 (LLE_UNLOCKED|LLE_EXCLUSIVE),("wrong lle request flags: 0x%X", 2322 flags)); 2323 2324 if (flags & LLE_UNLOCKED) 2325 return (lle); 2326 2327 if (flags & LLE_EXCLUSIVE) 2328 LLE_WLOCK(lle); 2329 else 2330 LLE_RLOCK(lle); 2331 return (lle); 2332 } 2333 2334 static int 2335 in6_lltable_dump_entry(struct lltable *llt, struct llentry *lle, 2336 struct sysctl_req *wr) 2337 { 2338 struct ifnet *ifp = llt->llt_ifp; 2339 /* XXX stack use */ 2340 struct { 2341 struct rt_msghdr rtm; 2342 struct sockaddr_in6 sin6; 2343 /* 2344 * ndp.c assumes that sdl is word aligned 2345 */ 2346 #ifdef __LP64__ 2347 uint32_t pad; 2348 #endif 2349 struct sockaddr_dl sdl; 2350 } ndpc; 2351 struct sockaddr_dl *sdl; 2352 int error; 2353 2354 bzero(&ndpc, sizeof(ndpc)); 2355 /* skip deleted entries */ 2356 if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) 2357 return (0); 2358 /* Skip if jailed and not a valid IP of the prison. */ 2359 lltable_fill_sa_entry(lle, (struct sockaddr *)&ndpc.sin6); 2360 if (prison_if(wr->td->td_ucred, (struct sockaddr *)&ndpc.sin6) != 0) 2361 return (0); 2362 /* 2363 * produce a msg made of: 2364 * struct rt_msghdr; 2365 * struct sockaddr_in6 (IPv6) 2366 * struct sockaddr_dl; 2367 */ 2368 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2369 ndpc.rtm.rtm_version = RTM_VERSION; 2370 ndpc.rtm.rtm_type = RTM_GET; 2371 ndpc.rtm.rtm_flags = RTF_UP; 2372 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2373 if (V_deembed_scopeid) 2374 sa6_recoverscope(&ndpc.sin6); 2375 2376 /* publish */ 2377 if (lle->la_flags & LLE_PUB) 2378 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2379 2380 sdl = &ndpc.sdl; 2381 sdl->sdl_family = AF_LINK; 2382 sdl->sdl_len = sizeof(*sdl); 2383 sdl->sdl_index = ifp->if_index; 2384 sdl->sdl_type = ifp->if_type; 2385 if ((lle->la_flags & LLE_VALID) == LLE_VALID) { 2386 sdl->sdl_alen = ifp->if_addrlen; 2387 bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2388 } else { 2389 sdl->sdl_alen = 0; 2390 bzero(LLADDR(sdl), ifp->if_addrlen); 2391 } 2392 if (lle->la_expire != 0) 2393 ndpc.rtm.rtm_rmx.rmx_expire = lle->la_expire + 2394 lle->lle_remtime / hz + time_second - time_uptime; 2395 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2396 if (lle->la_flags & LLE_STATIC) 2397 ndpc.rtm.rtm_flags |= RTF_STATIC; 2398 if (lle->la_flags & LLE_IFADDR) 2399 ndpc.rtm.rtm_flags |= RTF_PINNED; 2400 if (lle->ln_router != 0) 2401 ndpc.rtm.rtm_flags |= RTF_GATEWAY; 2402 ndpc.rtm.rtm_rmx.rmx_pksent = lle->la_asked; 2403 /* Store state in rmx_weight value */ 2404 ndpc.rtm.rtm_rmx.rmx_state = lle->ln_state; 2405 ndpc.rtm.rtm_index = ifp->if_index; 2406 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2407 2408 return (error); 2409 } 2410 2411 static struct lltable * 2412 in6_lltattach(struct ifnet *ifp) 2413 { 2414 struct lltable *llt; 2415 2416 llt = lltable_allocate_htbl(IN6_LLTBL_DEFAULT_HSIZE); 2417 llt->llt_af = AF_INET6; 2418 llt->llt_ifp = ifp; 2419 2420 llt->llt_lookup = in6_lltable_lookup; 2421 llt->llt_alloc_entry = in6_lltable_alloc; 2422 llt->llt_delete_entry = in6_lltable_delete_entry; 2423 llt->llt_dump_entry = in6_lltable_dump_entry; 2424 llt->llt_hash = in6_lltable_hash; 2425 llt->llt_fill_sa_entry = in6_lltable_fill_sa_entry; 2426 llt->llt_free_entry = in6_lltable_free_entry; 2427 llt->llt_match_prefix = in6_lltable_match_prefix; 2428 llt->llt_mark_used = in6_lltable_mark_used; 2429 lltable_link(llt); 2430 2431 return (llt); 2432 } 2433 2434 void * 2435 in6_domifattach(struct ifnet *ifp) 2436 { 2437 struct in6_ifextra *ext; 2438 2439 /* There are not IPv6-capable interfaces. */ 2440 switch (ifp->if_type) { 2441 case IFT_PFLOG: 2442 case IFT_PFSYNC: 2443 case IFT_USB: 2444 return (NULL); 2445 } 2446 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2447 bzero(ext, sizeof(*ext)); 2448 2449 ext->in6_ifstat = malloc(sizeof(counter_u64_t) * 2450 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); 2451 COUNTER_ARRAY_ALLOC(ext->in6_ifstat, 2452 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); 2453 2454 ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * 2455 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, 2456 M_WAITOK); 2457 COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, 2458 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); 2459 2460 ext->nd_ifinfo = nd6_ifattach(ifp); 2461 ext->scope6_id = scope6_ifattach(ifp); 2462 ext->lltable = in6_lltattach(ifp); 2463 2464 ext->mld_ifinfo = mld_domifattach(ifp); 2465 2466 return ext; 2467 } 2468 2469 int 2470 in6_domifmtu(struct ifnet *ifp) 2471 { 2472 if (ifp->if_afdata[AF_INET6] == NULL) 2473 return ifp->if_mtu; 2474 2475 return (IN6_LINKMTU(ifp)); 2476 } 2477 2478 void 2479 in6_domifdetach(struct ifnet *ifp, void *aux) 2480 { 2481 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2482 2483 mld_domifdetach(ifp); 2484 scope6_ifdetach(ext->scope6_id); 2485 nd6_ifdetach(ifp, ext->nd_ifinfo); 2486 lltable_free(ext->lltable); 2487 COUNTER_ARRAY_FREE(ext->in6_ifstat, 2488 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 2489 free(ext->in6_ifstat, M_IFADDR); 2490 COUNTER_ARRAY_FREE(ext->icmp6_ifstat, 2491 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 2492 free(ext->icmp6_ifstat, M_IFADDR); 2493 free(ext, M_IFADDR); 2494 } 2495 2496 /* 2497 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2498 * v4 mapped addr or v4 compat addr 2499 */ 2500 void 2501 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2502 { 2503 2504 bzero(sin, sizeof(*sin)); 2505 sin->sin_len = sizeof(struct sockaddr_in); 2506 sin->sin_family = AF_INET; 2507 sin->sin_port = sin6->sin6_port; 2508 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2509 } 2510 2511 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2512 void 2513 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2514 { 2515 bzero(sin6, sizeof(*sin6)); 2516 sin6->sin6_len = sizeof(struct sockaddr_in6); 2517 sin6->sin6_family = AF_INET6; 2518 sin6->sin6_port = sin->sin_port; 2519 sin6->sin6_addr.s6_addr32[0] = 0; 2520 sin6->sin6_addr.s6_addr32[1] = 0; 2521 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2522 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2523 } 2524 2525 /* Convert sockaddr_in6 into sockaddr_in. */ 2526 void 2527 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2528 { 2529 struct sockaddr_in *sin_p; 2530 struct sockaddr_in6 sin6; 2531 2532 /* 2533 * Save original sockaddr_in6 addr and convert it 2534 * to sockaddr_in. 2535 */ 2536 sin6 = *(struct sockaddr_in6 *)nam; 2537 sin_p = (struct sockaddr_in *)nam; 2538 in6_sin6_2_sin(sin_p, &sin6); 2539 } 2540 2541 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2542 void 2543 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2544 { 2545 struct sockaddr_in *sin_p; 2546 struct sockaddr_in6 *sin6_p; 2547 2548 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2549 sin_p = (struct sockaddr_in *)*nam; 2550 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2551 free(*nam, M_SONAME); 2552 *nam = (struct sockaddr *)sin6_p; 2553 } 2554