1 /* $FreeBSD$ */ 2 /* $KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)in.c 8.2 (Berkeley) 11/15/93 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/errno.h> 73 #include <sys/malloc.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #ifndef SCOPEDROUTING 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/in_pcb.h> 95 #endif 96 97 #include <netinet6/nd6.h> 98 #include <netinet/ip6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #ifndef SCOPEDROUTING 105 #include <netinet6/in6_pcb.h> 106 #endif 107 108 #include <net/net_osdep.h> 109 110 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); 111 112 /* 113 * Definitions of some costant IP6 addresses. 114 */ 115 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 116 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 117 const struct in6_addr in6addr_nodelocal_allnodes = 118 IN6ADDR_NODELOCAL_ALLNODES_INIT; 119 const struct in6_addr in6addr_linklocal_allnodes = 120 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 121 const struct in6_addr in6addr_linklocal_allrouters = 122 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 123 124 const struct in6_addr in6mask0 = IN6MASK0; 125 const struct in6_addr in6mask32 = IN6MASK32; 126 const struct in6_addr in6mask64 = IN6MASK64; 127 const struct in6_addr in6mask96 = IN6MASK96; 128 const struct in6_addr in6mask128 = IN6MASK128; 129 130 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 131 0, 0, IN6ADDR_ANY_INIT, 0}; 132 133 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 134 struct ifnet *, struct thread *)); 135 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 136 struct sockaddr_in6 *, int)); 137 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 138 139 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 140 141 /* 142 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 143 * This routine does actual work. 144 */ 145 static void 146 in6_ifloop_request(int cmd, struct ifaddr *ifa) 147 { 148 struct sockaddr_in6 all1_sa; 149 struct rtentry *nrt = NULL; 150 int e; 151 152 bzero(&all1_sa, sizeof(all1_sa)); 153 all1_sa.sin6_family = AF_INET6; 154 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 155 all1_sa.sin6_addr = in6mask128; 156 157 /* 158 * We specify the address itself as the gateway, and set the 159 * RTF_LLINFO flag, so that the corresponding host route would have 160 * the flag, and thus applications that assume traditional behavior 161 * would be happy. Note that we assume the caller of the function 162 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 163 * which changes the outgoing interface to the loopback interface. 164 */ 165 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 166 (struct sockaddr *)&all1_sa, 167 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 168 if (e != 0) { 169 log(LOG_ERR, "in6_ifloop_request: " 170 "%s operation failed for %s (errno=%d)\n", 171 cmd == RTM_ADD ? "ADD" : "DELETE", 172 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 173 e); 174 } 175 176 /* 177 * Make sure rt_ifa be equal to IFA, the second argument of the 178 * function. 179 * We need this because when we refer to rt_ifa->ia6_flags in 180 * ip6_input, we assume that the rt_ifa points to the address instead 181 * of the loopback address. 182 */ 183 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 184 IFAFREE(nrt->rt_ifa); 185 IFAREF(ifa); 186 nrt->rt_ifa = ifa; 187 } 188 189 /* 190 * Report the addition/removal of the address to the routing socket. 191 * XXX: since we called rtinit for a p2p interface with a destination, 192 * we end up reporting twice in such a case. Should we rather 193 * omit the second report? 194 */ 195 if (nrt) { 196 rt_newaddrmsg(cmd, ifa, e, nrt); 197 if (cmd == RTM_DELETE) { 198 if (nrt->rt_refcnt <= 0) { 199 /* XXX: we should free the entry ourselves. */ 200 nrt->rt_refcnt++; 201 rtfree(nrt); 202 } 203 } else { 204 /* the cmd must be RTM_ADD here */ 205 nrt->rt_refcnt--; 206 } 207 } 208 } 209 210 /* 211 * Add ownaddr as loopback rtentry. We previously add the route only if 212 * necessary (ex. on a p2p link). However, since we now manage addresses 213 * separately from prefixes, we should always add the route. We can't 214 * rely on the cloning mechanism from the corresponding interface route 215 * any more. 216 */ 217 static void 218 in6_ifaddloop(struct ifaddr *ifa) 219 { 220 struct rtentry *rt; 221 222 /* If there is no loopback entry, allocate one. */ 223 rt = rtalloc1(ifa->ifa_addr, 0, 0); 224 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 225 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 226 in6_ifloop_request(RTM_ADD, ifa); 227 if (rt) 228 rt->rt_refcnt--; 229 } 230 231 /* 232 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 233 * if it exists. 234 */ 235 static void 236 in6_ifremloop(struct ifaddr *ifa) 237 { 238 struct in6_ifaddr *ia; 239 struct rtentry *rt; 240 int ia_count = 0; 241 242 /* 243 * Some of BSD variants do not remove cloned routes 244 * from an interface direct route, when removing the direct route 245 * (see comments in net/net_osdep.h). Even for variants that do remove 246 * cloned routes, they could fail to remove the cloned routes when 247 * we handle multple addresses that share a common prefix. 248 * So, we should remove the route corresponding to the deleted address 249 * regardless of the result of in6_is_ifloop_auto(). 250 */ 251 252 /* 253 * Delete the entry only if exact one ifa exists. More than one ifa 254 * can exist if we assign a same single address to multiple 255 * (probably p2p) interfaces. 256 * XXX: we should avoid such a configuration in IPv6... 257 */ 258 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 259 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 260 ia_count++; 261 if (ia_count > 1) 262 break; 263 } 264 } 265 266 if (ia_count == 1) { 267 /* 268 * Before deleting, check if a corresponding loopbacked host 269 * route surely exists. With this check, we can avoid to 270 * delete an interface direct route whose destination is same 271 * as the address being removed. This can happen when remofing 272 * a subnet-router anycast address on an interface attahced 273 * to a shared medium. 274 */ 275 rt = rtalloc1(ifa->ifa_addr, 0, 0); 276 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 && 277 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 278 rt->rt_refcnt--; 279 in6_ifloop_request(RTM_DELETE, ifa); 280 } 281 } 282 } 283 284 int 285 in6_ifindex2scopeid(idx) 286 int idx; 287 { 288 struct ifnet *ifp; 289 struct ifaddr *ifa; 290 struct sockaddr_in6 *sin6; 291 292 if (idx < 0 || if_index < idx) 293 return -1; 294 ifp = ifnet_byindex(idx); 295 296 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 297 { 298 if (ifa->ifa_addr->sa_family != AF_INET6) 299 continue; 300 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 301 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 302 return sin6->sin6_scope_id & 0xffff; 303 } 304 305 return -1; 306 } 307 308 int 309 in6_mask2len(mask, lim0) 310 struct in6_addr *mask; 311 u_char *lim0; 312 { 313 int x = 0, y; 314 u_char *lim = lim0, *p; 315 316 if (lim0 == NULL || 317 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 318 lim = (u_char *)mask + sizeof(*mask); 319 for (p = (u_char *)mask; p < lim; x++, p++) { 320 if (*p != 0xff) 321 break; 322 } 323 y = 0; 324 if (p < lim) { 325 for (y = 0; y < 8; y++) { 326 if ((*p & (0x80 >> y)) == 0) 327 break; 328 } 329 } 330 331 /* 332 * when the limit pointer is given, do a stricter check on the 333 * remaining bits. 334 */ 335 if (p < lim) { 336 if (y != 0 && (*p & (0x00ff >> y)) != 0) 337 return(-1); 338 for (p = p + 1; p < lim; p++) 339 if (*p != 0) 340 return(-1); 341 } 342 343 return x * 8 + y; 344 } 345 346 void 347 in6_len2mask(mask, len) 348 struct in6_addr *mask; 349 int len; 350 { 351 int i; 352 353 bzero(mask, sizeof(*mask)); 354 for (i = 0; i < len / 8; i++) 355 mask->s6_addr8[i] = 0xff; 356 if (len % 8) 357 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 358 } 359 360 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 361 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 362 363 int 364 in6_control(so, cmd, data, ifp, td) 365 struct socket *so; 366 u_long cmd; 367 caddr_t data; 368 struct ifnet *ifp; 369 struct thread *td; 370 { 371 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 372 struct in6_ifaddr *ia = NULL; 373 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 374 int privileged; 375 376 privileged = 0; 377 if (td == NULL || !suser_td(td)) 378 privileged++; 379 380 switch (cmd) { 381 case SIOCGETSGCNT_IN6: 382 case SIOCGETMIFCNT_IN6: 383 return (mrt6_ioctl(cmd, data)); 384 } 385 386 if (ifp == NULL) 387 return(EOPNOTSUPP); 388 389 switch (cmd) { 390 case SIOCSNDFLUSH_IN6: 391 case SIOCSPFXFLUSH_IN6: 392 case SIOCSRTRFLUSH_IN6: 393 case SIOCSDEFIFACE_IN6: 394 case SIOCSIFINFO_FLAGS: 395 if (!privileged) 396 return(EPERM); 397 /*fall through*/ 398 case OSIOCGIFINFO_IN6: 399 case SIOCGIFINFO_IN6: 400 case SIOCGDRLST_IN6: 401 case SIOCGPRLST_IN6: 402 case SIOCGNBRINFO_IN6: 403 case SIOCGDEFIFACE_IN6: 404 return(nd6_ioctl(cmd, data, ifp)); 405 } 406 407 switch (cmd) { 408 case SIOCSIFPREFIX_IN6: 409 case SIOCDIFPREFIX_IN6: 410 case SIOCAIFPREFIX_IN6: 411 case SIOCCIFPREFIX_IN6: 412 case SIOCSGIFPREFIX_IN6: 413 case SIOCGIFPREFIX_IN6: 414 log(LOG_NOTICE, 415 "prefix ioctls are now invalidated. " 416 "please use ifconfig.\n"); 417 return(EOPNOTSUPP); 418 } 419 420 switch(cmd) { 421 case SIOCSSCOPE6: 422 if (!privileged) 423 return(EPERM); 424 return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id)); 425 break; 426 case SIOCGSCOPE6: 427 return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id)); 428 break; 429 case SIOCGSCOPE6DEF: 430 return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id)); 431 break; 432 } 433 434 switch (cmd) { 435 case SIOCALIFADDR: 436 case SIOCDLIFADDR: 437 if (!privileged) 438 return(EPERM); 439 /*fall through*/ 440 case SIOCGLIFADDR: 441 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 442 } 443 444 /* 445 * Find address for this interface, if it exists. 446 */ 447 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 448 struct sockaddr_in6 *sa6 = 449 (struct sockaddr_in6 *)&ifra->ifra_addr; 450 451 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 452 if (sa6->sin6_addr.s6_addr16[1] == 0) { 453 /* link ID is not embedded by the user */ 454 sa6->sin6_addr.s6_addr16[1] = 455 htons(ifp->if_index); 456 } else if (sa6->sin6_addr.s6_addr16[1] != 457 htons(ifp->if_index)) { 458 return(EINVAL); /* link ID contradicts */ 459 } 460 if (sa6->sin6_scope_id) { 461 if (sa6->sin6_scope_id != 462 (u_int32_t)ifp->if_index) 463 return(EINVAL); 464 sa6->sin6_scope_id = 0; /* XXX: good way? */ 465 } 466 } 467 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 468 } 469 470 switch (cmd) { 471 case SIOCSIFADDR_IN6: 472 case SIOCSIFDSTADDR_IN6: 473 case SIOCSIFNETMASK_IN6: 474 /* 475 * Since IPv6 allows a node to assign multiple addresses 476 * on a single interface, SIOCSIFxxx ioctls are not suitable 477 * and should be unused. 478 */ 479 /* we decided to obsolete this command (20000704) */ 480 return(EINVAL); 481 482 case SIOCDIFADDR_IN6: 483 /* 484 * for IPv4, we look for existing in_ifaddr here to allow 485 * "ifconfig if0 delete" to remove first IPv4 address on the 486 * interface. For IPv6, as the spec allow multiple interface 487 * address from the day one, we consider "remove the first one" 488 * semantics to be not preferable. 489 */ 490 if (ia == NULL) 491 return(EADDRNOTAVAIL); 492 /* FALLTHROUGH */ 493 case SIOCAIFADDR_IN6: 494 /* 495 * We always require users to specify a valid IPv6 address for 496 * the corresponding operation. 497 */ 498 if (ifra->ifra_addr.sin6_family != AF_INET6 || 499 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 500 return(EAFNOSUPPORT); 501 if (!privileged) 502 return(EPERM); 503 504 break; 505 506 case SIOCGIFADDR_IN6: 507 /* This interface is basically deprecated. use SIOCGIFCONF. */ 508 /* fall through */ 509 case SIOCGIFAFLAG_IN6: 510 case SIOCGIFNETMASK_IN6: 511 case SIOCGIFDSTADDR_IN6: 512 case SIOCGIFALIFETIME_IN6: 513 /* must think again about its semantics */ 514 if (ia == NULL) 515 return(EADDRNOTAVAIL); 516 break; 517 case SIOCSIFALIFETIME_IN6: 518 { 519 struct in6_addrlifetime *lt; 520 521 if (!privileged) 522 return(EPERM); 523 if (ia == NULL) 524 return(EADDRNOTAVAIL); 525 /* sanity for overflow - beware unsigned */ 526 lt = &ifr->ifr_ifru.ifru_lifetime; 527 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 528 && lt->ia6t_vltime + time_second < time_second) { 529 return EINVAL; 530 } 531 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 532 && lt->ia6t_pltime + time_second < time_second) { 533 return EINVAL; 534 } 535 break; 536 } 537 } 538 539 switch (cmd) { 540 541 case SIOCGIFADDR_IN6: 542 ifr->ifr_addr = ia->ia_addr; 543 break; 544 545 case SIOCGIFDSTADDR_IN6: 546 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 547 return(EINVAL); 548 /* 549 * XXX: should we check if ifa_dstaddr is NULL and return 550 * an error? 551 */ 552 ifr->ifr_dstaddr = ia->ia_dstaddr; 553 break; 554 555 case SIOCGIFNETMASK_IN6: 556 ifr->ifr_addr = ia->ia_prefixmask; 557 break; 558 559 case SIOCGIFAFLAG_IN6: 560 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 561 break; 562 563 case SIOCGIFSTAT_IN6: 564 if (ifp == NULL) 565 return EINVAL; 566 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax 567 || in6_ifstat[ifp->if_index] == NULL) { 568 /* return EAFNOSUPPORT? */ 569 bzero(&ifr->ifr_ifru.ifru_stat, 570 sizeof(ifr->ifr_ifru.ifru_stat)); 571 } else 572 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index]; 573 break; 574 575 case SIOCGIFSTAT_ICMP6: 576 if (ifp == NULL) 577 return EINVAL; 578 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax || 579 icmp6_ifstat[ifp->if_index] == NULL) { 580 /* return EAFNOSUPPORT? */ 581 bzero(&ifr->ifr_ifru.ifru_stat, 582 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 583 } else 584 ifr->ifr_ifru.ifru_icmp6stat = 585 *icmp6_ifstat[ifp->if_index]; 586 break; 587 588 case SIOCGIFALIFETIME_IN6: 589 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 590 break; 591 592 case SIOCSIFALIFETIME_IN6: 593 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 594 /* for sanity */ 595 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 596 ia->ia6_lifetime.ia6t_expire = 597 time_second + ia->ia6_lifetime.ia6t_vltime; 598 } else 599 ia->ia6_lifetime.ia6t_expire = 0; 600 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 601 ia->ia6_lifetime.ia6t_preferred = 602 time_second + ia->ia6_lifetime.ia6t_pltime; 603 } else 604 ia->ia6_lifetime.ia6t_preferred = 0; 605 break; 606 607 case SIOCAIFADDR_IN6: 608 { 609 int i, error = 0; 610 struct nd_prefix pr0, *pr; 611 612 /* 613 * first, make or update the interface address structure, 614 * and link it to the list. 615 */ 616 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 617 return(error); 618 619 /* 620 * then, make the prefix on-link on the interface. 621 * XXX: we'd rather create the prefix before the address, but 622 * we need at least one address to install the corresponding 623 * interface route, so we configure the address first. 624 */ 625 626 /* 627 * convert mask to prefix length (prefixmask has already 628 * been validated in in6_update_ifa(). 629 */ 630 bzero(&pr0, sizeof(pr0)); 631 pr0.ndpr_ifp = ifp; 632 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 633 NULL); 634 if (pr0.ndpr_plen == 128) 635 break; /* we don't need to install a host route. */ 636 pr0.ndpr_prefix = ifra->ifra_addr; 637 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 638 /* apply the mask for safety. */ 639 for (i = 0; i < 4; i++) { 640 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 641 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 642 } 643 /* 644 * XXX: since we don't have enough APIs, we just set inifinity 645 * to lifetimes. They can be overridden by later advertised 646 * RAs (when accept_rtadv is non 0), but we'd rather intend 647 * such a behavior. 648 */ 649 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 650 pr0.ndpr_raf_auto = 651 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 652 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 653 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 654 655 /* add the prefix if there's one. */ 656 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 657 /* 658 * nd6_prelist_add will install the corresponding 659 * interface route. 660 */ 661 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 662 return(error); 663 if (pr == NULL) { 664 log(LOG_ERR, "nd6_prelist_add succedded but " 665 "no prefix\n"); 666 return(EINVAL); /* XXX panic here? */ 667 } 668 } 669 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 670 == NULL) { 671 /* XXX: this should not happen! */ 672 log(LOG_ERR, "in6_control: addition succeeded, but" 673 " no ifaddr\n"); 674 } else { 675 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 676 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 677 ia->ia6_ndpr = pr; 678 pr->ndpr_refcnt++; 679 680 /* 681 * If this is the first autoconf address from 682 * the prefix, create a temporary address 683 * as well (when specified). 684 */ 685 if (ip6_use_tempaddr && 686 pr->ndpr_refcnt == 1) { 687 int e; 688 if ((e = in6_tmpifadd(ia, 1)) != 0) { 689 log(LOG_NOTICE, "in6_control: " 690 "failed to create a " 691 "temporary address, " 692 "errno=%d\n", 693 e); 694 } 695 } 696 } 697 698 /* 699 * this might affect the status of autoconfigured 700 * addresses, that is, this address might make 701 * other addresses detached. 702 */ 703 pfxlist_onlink_check(); 704 } 705 break; 706 } 707 708 case SIOCDIFADDR_IN6: 709 { 710 int i = 0; 711 struct nd_prefix pr0, *pr; 712 713 /* 714 * If the address being deleted is the only one that owns 715 * the corresponding prefix, expire the prefix as well. 716 * XXX: theoretically, we don't have to warry about such 717 * relationship, since we separate the address management 718 * and the prefix management. We do this, however, to provide 719 * as much backward compatibility as possible in terms of 720 * the ioctl operation. 721 */ 722 bzero(&pr0, sizeof(pr0)); 723 pr0.ndpr_ifp = ifp; 724 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 725 NULL); 726 if (pr0.ndpr_plen == 128) 727 goto purgeaddr; 728 pr0.ndpr_prefix = ia->ia_addr; 729 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 730 for (i = 0; i < 4; i++) { 731 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 732 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 733 } 734 /* 735 * The logic of the following condition is a bit complicated. 736 * We expire the prefix when 737 * 1. the address obeys autoconfiguration and it is the 738 * only owner of the associated prefix, or 739 * 2. the address does not obey autoconf and there is no 740 * other owner of the prefix. 741 */ 742 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 743 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 744 pr->ndpr_refcnt == 1) || 745 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && 746 pr->ndpr_refcnt == 0))) { 747 pr->ndpr_expire = 1; /* XXX: just for expiration */ 748 } 749 750 purgeaddr: 751 in6_purgeaddr(&ia->ia_ifa); 752 break; 753 } 754 755 default: 756 if (ifp == NULL || ifp->if_ioctl == 0) 757 return(EOPNOTSUPP); 758 return((*ifp->if_ioctl)(ifp, cmd, data)); 759 } 760 761 return(0); 762 } 763 764 /* 765 * Update parameters of an IPv6 interface address. 766 * If necessary, a new entry is created and linked into address chains. 767 * This function is separated from in6_control(). 768 * XXX: should this be performed under splnet()? 769 */ 770 int 771 in6_update_ifa(ifp, ifra, ia) 772 struct ifnet *ifp; 773 struct in6_aliasreq *ifra; 774 struct in6_ifaddr *ia; 775 { 776 int error = 0, hostIsNew = 0, plen = -1; 777 struct in6_ifaddr *oia; 778 struct sockaddr_in6 dst6; 779 struct in6_addrlifetime *lt; 780 781 /* Validate parameters */ 782 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 783 return(EINVAL); 784 785 /* 786 * The destination address for a p2p link must have a family 787 * of AF_UNSPEC or AF_INET6. 788 */ 789 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 790 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 791 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 792 return(EAFNOSUPPORT); 793 /* 794 * validate ifra_prefixmask. don't check sin6_family, netmask 795 * does not carry fields other than sin6_len. 796 */ 797 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 798 return(EINVAL); 799 /* 800 * Because the IPv6 address architecture is classless, we require 801 * users to specify a (non 0) prefix length (mask) for a new address. 802 * We also require the prefix (when specified) mask is valid, and thus 803 * reject a non-consecutive mask. 804 */ 805 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 806 return(EINVAL); 807 if (ifra->ifra_prefixmask.sin6_len != 0) { 808 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 809 (u_char *)&ifra->ifra_prefixmask + 810 ifra->ifra_prefixmask.sin6_len); 811 if (plen <= 0) 812 return(EINVAL); 813 } 814 else { 815 /* 816 * In this case, ia must not be NULL. We just use its prefix 817 * length. 818 */ 819 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 820 } 821 /* 822 * If the destination address on a p2p interface is specified, 823 * and the address is a scoped one, validate/set the scope 824 * zone identifier. 825 */ 826 dst6 = ifra->ifra_dstaddr; 827 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 828 (dst6.sin6_family == AF_INET6)) { 829 int scopeid; 830 831 #ifndef SCOPEDROUTING 832 if ((error = in6_recoverscope(&dst6, 833 &ifra->ifra_dstaddr.sin6_addr, 834 ifp)) != 0) 835 return(error); 836 #endif 837 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 838 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 839 dst6.sin6_scope_id = scopeid; 840 else if (dst6.sin6_scope_id != scopeid) 841 return(EINVAL); /* scope ID mismatch. */ 842 #ifndef SCOPEDROUTING 843 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 844 != 0) 845 return(error); 846 dst6.sin6_scope_id = 0; /* XXX */ 847 #endif 848 } 849 /* 850 * The destination address can be specified only for a p2p or a 851 * loopback interface. If specified, the corresponding prefix length 852 * must be 128. 853 */ 854 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 855 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 856 /* XXX: noisy message */ 857 log(LOG_INFO, "in6_update_ifa: a destination can be " 858 "specified for a p2p or a loopback IF only\n"); 859 return(EINVAL); 860 } 861 if (plen != 128) { 862 /* 863 * The following message seems noisy, but we dare to 864 * add it for diagnosis. 865 */ 866 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 867 "when dstaddr is specified\n"); 868 return(EINVAL); 869 } 870 } 871 /* lifetime consistency check */ 872 lt = &ifra->ifra_lifetime; 873 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 874 && lt->ia6t_vltime + time_second < time_second) { 875 return EINVAL; 876 } 877 if (lt->ia6t_vltime == 0) { 878 /* 879 * the following log might be noisy, but this is a typical 880 * configuration mistake or a tool's bug. 881 */ 882 log(LOG_INFO, 883 "in6_update_ifa: valid lifetime is 0 for %s\n", 884 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 885 } 886 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 887 && lt->ia6t_pltime + time_second < time_second) { 888 return EINVAL; 889 } 890 891 /* 892 * If this is a new address, allocate a new ifaddr and link it 893 * into chains. 894 */ 895 if (ia == NULL) { 896 hostIsNew = 1; 897 /* 898 * When in6_update_ifa() is called in a process of a received 899 * RA, it is called under splnet(). So, we should call malloc 900 * with M_NOWAIT. 901 */ 902 ia = (struct in6_ifaddr *) 903 malloc(sizeof(*ia), M_IFADDR, M_NOWAIT); 904 if (ia == NULL) 905 return (ENOBUFS); 906 bzero((caddr_t)ia, sizeof(*ia)); 907 /* Initialize the address and masks */ 908 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 909 ia->ia_addr.sin6_family = AF_INET6; 910 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 911 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 912 /* 913 * XXX: some functions expect that ifa_dstaddr is not 914 * NULL for p2p interfaces. 915 */ 916 ia->ia_ifa.ifa_dstaddr 917 = (struct sockaddr *)&ia->ia_dstaddr; 918 } else { 919 ia->ia_ifa.ifa_dstaddr = NULL; 920 } 921 ia->ia_ifa.ifa_netmask 922 = (struct sockaddr *)&ia->ia_prefixmask; 923 924 ia->ia_ifp = ifp; 925 if ((oia = in6_ifaddr) != NULL) { 926 for ( ; oia->ia_next; oia = oia->ia_next) 927 continue; 928 oia->ia_next = ia; 929 } else 930 in6_ifaddr = ia; 931 932 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 933 ifa_list); 934 } 935 936 /* set prefix mask */ 937 if (ifra->ifra_prefixmask.sin6_len) { 938 /* 939 * We prohibit changing the prefix length of an existing 940 * address, because 941 * + such an operation should be rare in IPv6, and 942 * + the operation would confuse prefix management. 943 */ 944 if (ia->ia_prefixmask.sin6_len && 945 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 946 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 947 " existing (%s) address should not be changed\n", 948 ip6_sprintf(&ia->ia_addr.sin6_addr)); 949 error = EINVAL; 950 goto unlink; 951 } 952 ia->ia_prefixmask = ifra->ifra_prefixmask; 953 } 954 955 /* 956 * If a new destination address is specified, scrub the old one and 957 * install the new destination. Note that the interface must be 958 * p2p or loopback (see the check above.) 959 */ 960 if (dst6.sin6_family == AF_INET6 && 961 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 962 &ia->ia_dstaddr.sin6_addr)) { 963 int e; 964 965 if ((ia->ia_flags & IFA_ROUTE) != 0 && 966 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 967 != 0) { 968 log(LOG_ERR, "in6_update_ifa: failed to remove " 969 "a route to the old destination: %s\n", 970 ip6_sprintf(&ia->ia_addr.sin6_addr)); 971 /* proceed anyway... */ 972 } 973 else 974 ia->ia_flags &= ~IFA_ROUTE; 975 ia->ia_dstaddr = dst6; 976 } 977 978 /* reset the interface and routing table appropriately. */ 979 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 980 goto unlink; 981 982 /* 983 * Beyond this point, we should call in6_purgeaddr upon an error, 984 * not just go to unlink. 985 */ 986 987 #if 0 /* disable this mechanism for now */ 988 /* update prefix list */ 989 if (hostIsNew && 990 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 991 int iilen; 992 993 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 994 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 995 in6_purgeaddr((struct ifaddr *)ia); 996 return(error); 997 } 998 } 999 #endif 1000 1001 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1002 struct sockaddr_in6 mltaddr, mltmask; 1003 struct in6_multi *in6m; 1004 1005 if (hostIsNew) { 1006 /* 1007 * join solicited multicast addr for new host id 1008 */ 1009 struct in6_addr llsol; 1010 bzero(&llsol, sizeof(struct in6_addr)); 1011 llsol.s6_addr16[0] = htons(0xff02); 1012 llsol.s6_addr16[1] = htons(ifp->if_index); 1013 llsol.s6_addr32[1] = 0; 1014 llsol.s6_addr32[2] = htonl(1); 1015 llsol.s6_addr32[3] = 1016 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1017 llsol.s6_addr8[12] = 0xff; 1018 (void)in6_addmulti(&llsol, ifp, &error); 1019 if (error != 0) { 1020 log(LOG_WARNING, 1021 "in6_update_ifa: addmulti failed for " 1022 "%s on %s (errno=%d)\n", 1023 ip6_sprintf(&llsol), if_name(ifp), 1024 error); 1025 in6_purgeaddr((struct ifaddr *)ia); 1026 return(error); 1027 } 1028 } 1029 1030 bzero(&mltmask, sizeof(mltmask)); 1031 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1032 mltmask.sin6_family = AF_INET6; 1033 mltmask.sin6_addr = in6mask32; 1034 1035 /* 1036 * join link-local all-nodes address 1037 */ 1038 bzero(&mltaddr, sizeof(mltaddr)); 1039 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1040 mltaddr.sin6_family = AF_INET6; 1041 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1042 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1043 1044 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1045 if (in6m == NULL) { 1046 rtrequest(RTM_ADD, 1047 (struct sockaddr *)&mltaddr, 1048 (struct sockaddr *)&ia->ia_addr, 1049 (struct sockaddr *)&mltmask, 1050 RTF_UP|RTF_CLONING, /* xxx */ 1051 (struct rtentry **)0); 1052 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1053 if (error != 0) { 1054 log(LOG_WARNING, 1055 "in6_update_ifa: addmulti failed for " 1056 "%s on %s (errno=%d)\n", 1057 ip6_sprintf(&mltaddr.sin6_addr), 1058 if_name(ifp), error); 1059 } 1060 } 1061 1062 /* 1063 * join node information group address 1064 */ 1065 #define hostnamelen strlen(hostname) 1066 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1067 == 0) { 1068 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1069 if (in6m == NULL && ia != NULL) { 1070 (void)in6_addmulti(&mltaddr.sin6_addr, 1071 ifp, &error); 1072 if (error != 0) { 1073 log(LOG_WARNING, "in6_update_ifa: " 1074 "addmulti failed for " 1075 "%s on %s (errno=%d)\n", 1076 ip6_sprintf(&mltaddr.sin6_addr), 1077 if_name(ifp), error); 1078 } 1079 } 1080 } 1081 #undef hostnamelen 1082 1083 /* 1084 * join node-local all-nodes address, on loopback. 1085 * XXX: since "node-local" is obsoleted by interface-local, 1086 * we have to join the group on every interface with 1087 * some interface-boundary restriction. 1088 */ 1089 if (ifp->if_flags & IFF_LOOPBACK) { 1090 struct in6_ifaddr *ia_loop; 1091 1092 struct in6_addr loop6 = in6addr_loopback; 1093 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); 1094 1095 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1096 1097 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1098 if (in6m == NULL && ia_loop != NULL) { 1099 rtrequest(RTM_ADD, 1100 (struct sockaddr *)&mltaddr, 1101 (struct sockaddr *)&ia_loop->ia_addr, 1102 (struct sockaddr *)&mltmask, 1103 RTF_UP, 1104 (struct rtentry **)0); 1105 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, 1106 &error); 1107 if (error != 0) { 1108 log(LOG_WARNING, "in6_update_ifa: " 1109 "addmulti failed for %s on %s " 1110 "(errno=%d)\n", 1111 ip6_sprintf(&mltaddr.sin6_addr), 1112 if_name(ifp), error); 1113 } 1114 } 1115 } 1116 } 1117 1118 ia->ia6_flags = ifra->ifra_flags; 1119 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1120 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1121 1122 ia->ia6_lifetime = ifra->ifra_lifetime; 1123 /* for sanity */ 1124 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1125 ia->ia6_lifetime.ia6t_expire = 1126 time_second + ia->ia6_lifetime.ia6t_vltime; 1127 } else 1128 ia->ia6_lifetime.ia6t_expire = 0; 1129 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1130 ia->ia6_lifetime.ia6t_preferred = 1131 time_second + ia->ia6_lifetime.ia6t_pltime; 1132 } else 1133 ia->ia6_lifetime.ia6t_preferred = 0; 1134 1135 /* 1136 * make sure to initialize ND6 information. this is to workaround 1137 * issues with interfaces with IPv6 addresses, which have never brought 1138 * up. We are assuming that it is safe to nd6_ifattach multiple times. 1139 */ 1140 nd6_ifattach(ifp); 1141 1142 /* 1143 * Perform DAD, if needed. 1144 * XXX It may be of use, if we can administratively 1145 * disable DAD. 1146 */ 1147 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { 1148 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1149 nd6_dad_start((struct ifaddr *)ia, NULL); 1150 } 1151 1152 return(error); 1153 1154 unlink: 1155 /* 1156 * XXX: if a change of an existing address failed, keep the entry 1157 * anyway. 1158 */ 1159 if (hostIsNew) 1160 in6_unlink_ifa(ia, ifp); 1161 return(error); 1162 } 1163 1164 void 1165 in6_purgeaddr(ifa) 1166 struct ifaddr *ifa; 1167 { 1168 struct ifnet *ifp = ifa->ifa_ifp; 1169 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1170 1171 /* stop DAD processing */ 1172 nd6_dad_stop(ifa); 1173 1174 /* 1175 * delete route to the destination of the address being purged. 1176 * The interface must be p2p or loopback in this case. 1177 */ 1178 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1179 int e; 1180 1181 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1182 != 0) { 1183 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1184 "a route to the p2p destination: %s on %s, " 1185 "errno=%d\n", 1186 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1187 e); 1188 /* proceed anyway... */ 1189 } 1190 else 1191 ia->ia_flags &= ~IFA_ROUTE; 1192 } 1193 1194 /* Remove ownaddr's loopback rtentry, if it exists. */ 1195 in6_ifremloop(&(ia->ia_ifa)); 1196 1197 if (ifp->if_flags & IFF_MULTICAST) { 1198 /* 1199 * delete solicited multicast addr for deleting host id 1200 */ 1201 struct in6_multi *in6m; 1202 struct in6_addr llsol; 1203 bzero(&llsol, sizeof(struct in6_addr)); 1204 llsol.s6_addr16[0] = htons(0xff02); 1205 llsol.s6_addr16[1] = htons(ifp->if_index); 1206 llsol.s6_addr32[1] = 0; 1207 llsol.s6_addr32[2] = htonl(1); 1208 llsol.s6_addr32[3] = 1209 ia->ia_addr.sin6_addr.s6_addr32[3]; 1210 llsol.s6_addr8[12] = 0xff; 1211 1212 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1213 if (in6m) 1214 in6_delmulti(in6m); 1215 } 1216 1217 in6_unlink_ifa(ia, ifp); 1218 } 1219 1220 static void 1221 in6_unlink_ifa(ia, ifp) 1222 struct in6_ifaddr *ia; 1223 struct ifnet *ifp; 1224 { 1225 int plen, iilen; 1226 struct in6_ifaddr *oia; 1227 int s = splnet(); 1228 1229 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1230 1231 oia = ia; 1232 if (oia == (ia = in6_ifaddr)) 1233 in6_ifaddr = ia->ia_next; 1234 else { 1235 while (ia->ia_next && (ia->ia_next != oia)) 1236 ia = ia->ia_next; 1237 if (ia->ia_next) 1238 ia->ia_next = oia->ia_next; 1239 else { 1240 /* search failed */ 1241 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1242 } 1243 } 1244 1245 if (oia->ia6_ifpr) { /* check for safety */ 1246 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1247 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1248 in6_prefix_remove_ifid(iilen, oia); 1249 } 1250 1251 /* 1252 * When an autoconfigured address is being removed, release the 1253 * reference to the base prefix. Also, since the release might 1254 * affect the status of other (detached) addresses, call 1255 * pfxlist_onlink_check(). 1256 */ 1257 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1258 if (oia->ia6_ndpr == NULL) { 1259 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1260 "%p has no prefix\n", oia); 1261 } else { 1262 oia->ia6_ndpr->ndpr_refcnt--; 1263 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1264 oia->ia6_ndpr = NULL; 1265 } 1266 1267 pfxlist_onlink_check(); 1268 } 1269 1270 /* 1271 * release another refcnt for the link from in6_ifaddr. 1272 * Note that we should decrement the refcnt at least once for all *BSD. 1273 */ 1274 IFAFREE(&oia->ia_ifa); 1275 1276 splx(s); 1277 } 1278 1279 void 1280 in6_purgeif(ifp) 1281 struct ifnet *ifp; 1282 { 1283 struct ifaddr *ifa, *nifa; 1284 1285 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1286 { 1287 nifa = TAILQ_NEXT(ifa, ifa_list); 1288 if (ifa->ifa_addr->sa_family != AF_INET6) 1289 continue; 1290 in6_purgeaddr(ifa); 1291 } 1292 1293 in6_ifdetach(ifp); 1294 } 1295 1296 /* 1297 * SIOC[GAD]LIFADDR. 1298 * SIOCGLIFADDR: get first address. (?) 1299 * SIOCGLIFADDR with IFLR_PREFIX: 1300 * get first address that matches the specified prefix. 1301 * SIOCALIFADDR: add the specified address. 1302 * SIOCALIFADDR with IFLR_PREFIX: 1303 * add the specified prefix, filling hostid part from 1304 * the first link-local address. prefixlen must be <= 64. 1305 * SIOCDLIFADDR: delete the specified address. 1306 * SIOCDLIFADDR with IFLR_PREFIX: 1307 * delete the first address that matches the specified prefix. 1308 * return values: 1309 * EINVAL on invalid parameters 1310 * EADDRNOTAVAIL on prefix match failed/specified address not found 1311 * other values may be returned from in6_ioctl() 1312 * 1313 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1314 * this is to accomodate address naming scheme other than RFC2374, 1315 * in the future. 1316 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1317 * address encoding scheme. (see figure on page 8) 1318 */ 1319 static int 1320 in6_lifaddr_ioctl(so, cmd, data, ifp, td) 1321 struct socket *so; 1322 u_long cmd; 1323 caddr_t data; 1324 struct ifnet *ifp; 1325 struct thread *td; 1326 { 1327 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1328 struct ifaddr *ifa; 1329 struct sockaddr *sa; 1330 1331 /* sanity checks */ 1332 if (!data || !ifp) { 1333 panic("invalid argument to in6_lifaddr_ioctl"); 1334 /*NOTRECHED*/ 1335 } 1336 1337 switch (cmd) { 1338 case SIOCGLIFADDR: 1339 /* address must be specified on GET with IFLR_PREFIX */ 1340 if ((iflr->flags & IFLR_PREFIX) == 0) 1341 break; 1342 /*FALLTHROUGH*/ 1343 case SIOCALIFADDR: 1344 case SIOCDLIFADDR: 1345 /* address must be specified on ADD and DELETE */ 1346 sa = (struct sockaddr *)&iflr->addr; 1347 if (sa->sa_family != AF_INET6) 1348 return EINVAL; 1349 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1350 return EINVAL; 1351 /* XXX need improvement */ 1352 sa = (struct sockaddr *)&iflr->dstaddr; 1353 if (sa->sa_family && sa->sa_family != AF_INET6) 1354 return EINVAL; 1355 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1356 return EINVAL; 1357 break; 1358 default: /*shouldn't happen*/ 1359 #if 0 1360 panic("invalid cmd to in6_lifaddr_ioctl"); 1361 /*NOTREACHED*/ 1362 #else 1363 return EOPNOTSUPP; 1364 #endif 1365 } 1366 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1367 return EINVAL; 1368 1369 switch (cmd) { 1370 case SIOCALIFADDR: 1371 { 1372 struct in6_aliasreq ifra; 1373 struct in6_addr *hostid = NULL; 1374 int prefixlen; 1375 1376 if ((iflr->flags & IFLR_PREFIX) != 0) { 1377 struct sockaddr_in6 *sin6; 1378 1379 /* 1380 * hostid is to fill in the hostid part of the 1381 * address. hostid points to the first link-local 1382 * address attached to the interface. 1383 */ 1384 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1385 if (!ifa) 1386 return EADDRNOTAVAIL; 1387 hostid = IFA_IN6(ifa); 1388 1389 /* prefixlen must be <= 64. */ 1390 if (64 < iflr->prefixlen) 1391 return EINVAL; 1392 prefixlen = iflr->prefixlen; 1393 1394 /* hostid part must be zero. */ 1395 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1396 if (sin6->sin6_addr.s6_addr32[2] != 0 1397 || sin6->sin6_addr.s6_addr32[3] != 0) { 1398 return EINVAL; 1399 } 1400 } else 1401 prefixlen = iflr->prefixlen; 1402 1403 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1404 bzero(&ifra, sizeof(ifra)); 1405 bcopy(iflr->iflr_name, ifra.ifra_name, 1406 sizeof(ifra.ifra_name)); 1407 1408 bcopy(&iflr->addr, &ifra.ifra_addr, 1409 ((struct sockaddr *)&iflr->addr)->sa_len); 1410 if (hostid) { 1411 /* fill in hostid part */ 1412 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1413 hostid->s6_addr32[2]; 1414 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1415 hostid->s6_addr32[3]; 1416 } 1417 1418 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1419 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1420 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1421 if (hostid) { 1422 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1423 hostid->s6_addr32[2]; 1424 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1425 hostid->s6_addr32[3]; 1426 } 1427 } 1428 1429 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1430 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1431 1432 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1433 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1434 } 1435 case SIOCGLIFADDR: 1436 case SIOCDLIFADDR: 1437 { 1438 struct in6_ifaddr *ia; 1439 struct in6_addr mask, candidate, match; 1440 struct sockaddr_in6 *sin6; 1441 int cmp; 1442 1443 bzero(&mask, sizeof(mask)); 1444 if (iflr->flags & IFLR_PREFIX) { 1445 /* lookup a prefix rather than address. */ 1446 in6_len2mask(&mask, iflr->prefixlen); 1447 1448 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1449 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1450 match.s6_addr32[0] &= mask.s6_addr32[0]; 1451 match.s6_addr32[1] &= mask.s6_addr32[1]; 1452 match.s6_addr32[2] &= mask.s6_addr32[2]; 1453 match.s6_addr32[3] &= mask.s6_addr32[3]; 1454 1455 /* if you set extra bits, that's wrong */ 1456 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1457 return EINVAL; 1458 1459 cmp = 1; 1460 } else { 1461 if (cmd == SIOCGLIFADDR) { 1462 /* on getting an address, take the 1st match */ 1463 cmp = 0; /*XXX*/ 1464 } else { 1465 /* on deleting an address, do exact match */ 1466 in6_len2mask(&mask, 128); 1467 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1468 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1469 1470 cmp = 1; 1471 } 1472 } 1473 1474 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1475 { 1476 if (ifa->ifa_addr->sa_family != AF_INET6) 1477 continue; 1478 if (!cmp) 1479 break; 1480 1481 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1482 #ifndef SCOPEDROUTING 1483 /* 1484 * XXX: this is adhoc, but is necessary to allow 1485 * a user to specify fe80::/64 (not /10) for a 1486 * link-local address. 1487 */ 1488 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1489 candidate.s6_addr16[1] = 0; 1490 #endif 1491 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1492 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1493 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1494 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1495 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1496 break; 1497 } 1498 if (!ifa) 1499 return EADDRNOTAVAIL; 1500 ia = ifa2ia6(ifa); 1501 1502 if (cmd == SIOCGLIFADDR) { 1503 #ifndef SCOPEDROUTING 1504 struct sockaddr_in6 *s6; 1505 #endif 1506 1507 /* fill in the if_laddrreq structure */ 1508 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1509 #ifndef SCOPEDROUTING /* XXX see above */ 1510 s6 = (struct sockaddr_in6 *)&iflr->addr; 1511 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1512 s6->sin6_addr.s6_addr16[1] = 0; 1513 s6->sin6_scope_id = 1514 in6_addr2scopeid(ifp, &s6->sin6_addr); 1515 } 1516 #endif 1517 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1518 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1519 ia->ia_dstaddr.sin6_len); 1520 #ifndef SCOPEDROUTING /* XXX see above */ 1521 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1522 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1523 s6->sin6_addr.s6_addr16[1] = 0; 1524 s6->sin6_scope_id = 1525 in6_addr2scopeid(ifp, 1526 &s6->sin6_addr); 1527 } 1528 #endif 1529 } else 1530 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1531 1532 iflr->prefixlen = 1533 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1534 NULL); 1535 1536 iflr->flags = ia->ia6_flags; /*XXX*/ 1537 1538 return 0; 1539 } else { 1540 struct in6_aliasreq ifra; 1541 1542 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1543 bzero(&ifra, sizeof(ifra)); 1544 bcopy(iflr->iflr_name, ifra.ifra_name, 1545 sizeof(ifra.ifra_name)); 1546 1547 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1548 ia->ia_addr.sin6_len); 1549 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1550 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1551 ia->ia_dstaddr.sin6_len); 1552 } else { 1553 bzero(&ifra.ifra_dstaddr, 1554 sizeof(ifra.ifra_dstaddr)); 1555 } 1556 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1557 ia->ia_prefixmask.sin6_len); 1558 1559 ifra.ifra_flags = ia->ia6_flags; 1560 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1561 ifp, td); 1562 } 1563 } 1564 } 1565 1566 return EOPNOTSUPP; /*just for safety*/ 1567 } 1568 1569 /* 1570 * Initialize an interface's intetnet6 address 1571 * and routing table entry. 1572 */ 1573 static int 1574 in6_ifinit(ifp, ia, sin6, newhost) 1575 struct ifnet *ifp; 1576 struct in6_ifaddr *ia; 1577 struct sockaddr_in6 *sin6; 1578 int newhost; 1579 { 1580 int error = 0, plen, ifacount = 0; 1581 int s = splimp(); 1582 struct ifaddr *ifa; 1583 1584 /* 1585 * Give the interface a chance to initialize 1586 * if this is its first address, 1587 * and to validate the address if necessary. 1588 */ 1589 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1590 { 1591 if (ifa->ifa_addr == NULL) 1592 continue; /* just for safety */ 1593 if (ifa->ifa_addr->sa_family != AF_INET6) 1594 continue; 1595 ifacount++; 1596 } 1597 1598 ia->ia_addr = *sin6; 1599 1600 if (ifacount <= 1 && ifp->if_ioctl && 1601 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { 1602 splx(s); 1603 return(error); 1604 } 1605 splx(s); 1606 1607 ia->ia_ifa.ifa_metric = ifp->if_metric; 1608 1609 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1610 1611 /* 1612 * Special case: 1613 * If the destination address is specified for a point-to-point 1614 * interface, install a route to the destination as an interface 1615 * direct route. 1616 */ 1617 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1618 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1619 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1620 RTF_UP | RTF_HOST)) != 0) 1621 return(error); 1622 ia->ia_flags |= IFA_ROUTE; 1623 } 1624 if (plen < 128) { 1625 /* 1626 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1627 */ 1628 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1629 } 1630 1631 /* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */ 1632 if (newhost) { 1633 /* set the rtrequest function to create llinfo */ 1634 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1635 in6_ifaddloop(&(ia->ia_ifa)); 1636 } 1637 1638 return(error); 1639 } 1640 1641 /* 1642 * Add an address to the list of IP6 multicast addresses for a 1643 * given interface. 1644 */ 1645 struct in6_multi * 1646 in6_addmulti(maddr6, ifp, errorp) 1647 struct in6_addr *maddr6; 1648 struct ifnet *ifp; 1649 int *errorp; 1650 { 1651 struct in6_multi *in6m; 1652 struct sockaddr_in6 sin6; 1653 struct ifmultiaddr *ifma; 1654 int s = splnet(); 1655 1656 *errorp = 0; 1657 1658 /* 1659 * Call generic routine to add membership or increment 1660 * refcount. It wants addresses in the form of a sockaddr, 1661 * so we build one here (being careful to zero the unused bytes). 1662 */ 1663 bzero(&sin6, sizeof sin6); 1664 sin6.sin6_family = AF_INET6; 1665 sin6.sin6_len = sizeof sin6; 1666 sin6.sin6_addr = *maddr6; 1667 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1668 if (*errorp) { 1669 splx(s); 1670 return 0; 1671 } 1672 1673 /* 1674 * If ifma->ifma_protospec is null, then if_addmulti() created 1675 * a new record. Otherwise, we are done. 1676 */ 1677 if (ifma->ifma_protospec != 0) 1678 return ifma->ifma_protospec; 1679 1680 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1681 at interrupt time? If so, need to fix if_addmulti. XXX */ 1682 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1683 if (in6m == NULL) { 1684 splx(s); 1685 return (NULL); 1686 } 1687 1688 bzero(in6m, sizeof *in6m); 1689 in6m->in6m_addr = *maddr6; 1690 in6m->in6m_ifp = ifp; 1691 in6m->in6m_ifma = ifma; 1692 ifma->ifma_protospec = in6m; 1693 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1694 1695 /* 1696 * Let MLD6 know that we have joined a new IP6 multicast 1697 * group. 1698 */ 1699 mld6_start_listening(in6m); 1700 splx(s); 1701 return(in6m); 1702 } 1703 1704 /* 1705 * Delete a multicast address record. 1706 */ 1707 void 1708 in6_delmulti(in6m) 1709 struct in6_multi *in6m; 1710 { 1711 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1712 int s = splnet(); 1713 1714 if (ifma->ifma_refcount == 1) { 1715 /* 1716 * No remaining claims to this record; let MLD6 know 1717 * that we are leaving the multicast group. 1718 */ 1719 mld6_stop_listening(in6m); 1720 ifma->ifma_protospec = 0; 1721 LIST_REMOVE(in6m, in6m_entry); 1722 free(in6m, M_IPMADDR); 1723 } 1724 /* XXX - should be separate API for when we have an ifma? */ 1725 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1726 splx(s); 1727 } 1728 1729 /* 1730 * Find an IPv6 interface link-local address specific to an interface. 1731 */ 1732 struct in6_ifaddr * 1733 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1734 struct ifnet *ifp; 1735 int ignoreflags; 1736 { 1737 struct ifaddr *ifa; 1738 1739 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1740 { 1741 if (ifa->ifa_addr == NULL) 1742 continue; /* just for safety */ 1743 if (ifa->ifa_addr->sa_family != AF_INET6) 1744 continue; 1745 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1746 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1747 ignoreflags) != 0) 1748 continue; 1749 break; 1750 } 1751 } 1752 1753 return((struct in6_ifaddr *)ifa); 1754 } 1755 1756 1757 /* 1758 * find the internet address corresponding to a given interface and address. 1759 */ 1760 struct in6_ifaddr * 1761 in6ifa_ifpwithaddr(ifp, addr) 1762 struct ifnet *ifp; 1763 struct in6_addr *addr; 1764 { 1765 struct ifaddr *ifa; 1766 1767 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1768 { 1769 if (ifa->ifa_addr == NULL) 1770 continue; /* just for safety */ 1771 if (ifa->ifa_addr->sa_family != AF_INET6) 1772 continue; 1773 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1774 break; 1775 } 1776 1777 return((struct in6_ifaddr *)ifa); 1778 } 1779 1780 /* 1781 * Convert IP6 address to printable (loggable) representation. 1782 */ 1783 static char digits[] = "0123456789abcdef"; 1784 static int ip6round = 0; 1785 char * 1786 ip6_sprintf(addr) 1787 const struct in6_addr *addr; 1788 { 1789 static char ip6buf[8][48]; 1790 int i; 1791 char *cp; 1792 u_short *a = (u_short *)addr; 1793 u_char *d; 1794 int dcolon = 0; 1795 1796 ip6round = (ip6round + 1) & 7; 1797 cp = ip6buf[ip6round]; 1798 1799 for (i = 0; i < 8; i++) { 1800 if (dcolon == 1) { 1801 if (*a == 0) { 1802 if (i == 7) 1803 *cp++ = ':'; 1804 a++; 1805 continue; 1806 } else 1807 dcolon = 2; 1808 } 1809 if (*a == 0) { 1810 if (dcolon == 0 && *(a + 1) == 0) { 1811 if (i == 0) 1812 *cp++ = ':'; 1813 *cp++ = ':'; 1814 dcolon = 1; 1815 } else { 1816 *cp++ = '0'; 1817 *cp++ = ':'; 1818 } 1819 a++; 1820 continue; 1821 } 1822 d = (u_char *)a; 1823 *cp++ = digits[*d >> 4]; 1824 *cp++ = digits[*d++ & 0xf]; 1825 *cp++ = digits[*d >> 4]; 1826 *cp++ = digits[*d & 0xf]; 1827 *cp++ = ':'; 1828 a++; 1829 } 1830 *--cp = 0; 1831 return(ip6buf[ip6round]); 1832 } 1833 1834 int 1835 in6_localaddr(in6) 1836 struct in6_addr *in6; 1837 { 1838 struct in6_ifaddr *ia; 1839 1840 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1841 return 1; 1842 1843 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1844 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1845 &ia->ia_prefixmask.sin6_addr)) 1846 return 1; 1847 1848 return (0); 1849 } 1850 1851 int 1852 in6_is_addr_deprecated(sa6) 1853 struct sockaddr_in6 *sa6; 1854 { 1855 struct in6_ifaddr *ia; 1856 1857 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1858 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1859 &sa6->sin6_addr) && 1860 #ifdef SCOPEDROUTING 1861 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 1862 #endif 1863 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1864 return(1); /* true */ 1865 1866 /* XXX: do we still have to go thru the rest of the list? */ 1867 } 1868 1869 return(0); /* false */ 1870 } 1871 1872 /* 1873 * return length of part which dst and src are equal 1874 * hard coding... 1875 */ 1876 int 1877 in6_matchlen(src, dst) 1878 struct in6_addr *src, *dst; 1879 { 1880 int match = 0; 1881 u_char *s = (u_char *)src, *d = (u_char *)dst; 1882 u_char *lim = s + 16, r; 1883 1884 while (s < lim) 1885 if ((r = (*d++ ^ *s++)) != 0) { 1886 while (r < 128) { 1887 match++; 1888 r <<= 1; 1889 } 1890 break; 1891 } else 1892 match += 8; 1893 return match; 1894 } 1895 1896 /* XXX: to be scope conscious */ 1897 int 1898 in6_are_prefix_equal(p1, p2, len) 1899 struct in6_addr *p1, *p2; 1900 int len; 1901 { 1902 int bytelen, bitlen; 1903 1904 /* sanity check */ 1905 if (0 > len || len > 128) { 1906 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1907 len); 1908 return(0); 1909 } 1910 1911 bytelen = len / 8; 1912 bitlen = len % 8; 1913 1914 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1915 return(0); 1916 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1917 p2->s6_addr[bytelen] >> (8 - bitlen)) 1918 return(0); 1919 1920 return(1); 1921 } 1922 1923 void 1924 in6_prefixlen2mask(maskp, len) 1925 struct in6_addr *maskp; 1926 int len; 1927 { 1928 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1929 int bytelen, bitlen, i; 1930 1931 /* sanity check */ 1932 if (0 > len || len > 128) { 1933 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1934 len); 1935 return; 1936 } 1937 1938 bzero(maskp, sizeof(*maskp)); 1939 bytelen = len / 8; 1940 bitlen = len % 8; 1941 for (i = 0; i < bytelen; i++) 1942 maskp->s6_addr[i] = 0xff; 1943 if (bitlen) 1944 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1945 } 1946 1947 /* 1948 * return the best address out of the same scope 1949 */ 1950 struct in6_ifaddr * 1951 in6_ifawithscope(oifp, dst) 1952 struct ifnet *oifp; 1953 struct in6_addr *dst; 1954 { 1955 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1956 int blen = -1; 1957 struct ifaddr *ifa; 1958 struct ifnet *ifp; 1959 struct in6_ifaddr *ifa_best = NULL; 1960 1961 if (oifp == NULL) { 1962 #if 0 1963 printf("in6_ifawithscope: output interface is not specified\n"); 1964 #endif 1965 return(NULL); 1966 } 1967 1968 /* 1969 * We search for all addresses on all interfaces from the beginning. 1970 * Comparing an interface with the outgoing interface will be done 1971 * only at the final stage of tiebreaking. 1972 */ 1973 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1974 { 1975 /* 1976 * We can never take an address that breaks the scope zone 1977 * of the destination. 1978 */ 1979 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1980 continue; 1981 1982 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1983 { 1984 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1985 1986 if (ifa->ifa_addr->sa_family != AF_INET6) 1987 continue; 1988 1989 src_scope = in6_addrscope(IFA_IN6(ifa)); 1990 1991 /* 1992 * Don't use an address before completing DAD 1993 * nor a duplicated address. 1994 */ 1995 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1996 IN6_IFF_NOTREADY) 1997 continue; 1998 1999 /* XXX: is there any case to allow anycasts? */ 2000 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2001 IN6_IFF_ANYCAST) 2002 continue; 2003 2004 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2005 IN6_IFF_DETACHED) 2006 continue; 2007 2008 /* 2009 * If this is the first address we find, 2010 * keep it anyway. 2011 */ 2012 if (ifa_best == NULL) 2013 goto replace; 2014 2015 /* 2016 * ifa_best is never NULL beyond this line except 2017 * within the block labeled "replace". 2018 */ 2019 2020 /* 2021 * If ifa_best has a smaller scope than dst and 2022 * the current address has a larger one than 2023 * (or equal to) dst, always replace ifa_best. 2024 * Also, if the current address has a smaller scope 2025 * than dst, ignore it unless ifa_best also has a 2026 * smaller scope. 2027 * Consequently, after the two if-clause below, 2028 * the followings must be satisfied: 2029 * (scope(src) < scope(dst) && 2030 * scope(best) < scope(dst)) 2031 * OR 2032 * (scope(best) >= scope(dst) && 2033 * scope(src) >= scope(dst)) 2034 */ 2035 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2036 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2037 goto replace; /* (A) */ 2038 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2039 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2040 continue; /* (B) */ 2041 2042 /* 2043 * A deprecated address SHOULD NOT be used in new 2044 * communications if an alternate (non-deprecated) 2045 * address is available and has sufficient scope. 2046 * RFC 2462, Section 5.5.4. 2047 */ 2048 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2049 IN6_IFF_DEPRECATED) { 2050 /* 2051 * Ignore any deprecated addresses if 2052 * specified by configuration. 2053 */ 2054 if (!ip6_use_deprecated) 2055 continue; 2056 2057 /* 2058 * If we have already found a non-deprecated 2059 * candidate, just ignore deprecated addresses. 2060 */ 2061 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2062 == 0) 2063 continue; 2064 } 2065 2066 /* 2067 * A non-deprecated address is always preferred 2068 * to a deprecated one regardless of scopes and 2069 * address matching (Note invariants ensured by the 2070 * conditions (A) and (B) above.) 2071 */ 2072 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2073 (((struct in6_ifaddr *)ifa)->ia6_flags & 2074 IN6_IFF_DEPRECATED) == 0) 2075 goto replace; 2076 2077 /* 2078 * When we use temporary addresses described in 2079 * RFC 3041, we prefer temporary addresses to 2080 * public autoconf addresses. Again, note the 2081 * invariants from (A) and (B). Also note that we 2082 * don't have any preference between static addresses 2083 * and autoconf addresses (despite of whether or not 2084 * the latter is temporary or public.) 2085 */ 2086 if (ip6_use_tempaddr) { 2087 struct in6_ifaddr *ifat; 2088 2089 ifat = (struct in6_ifaddr *)ifa; 2090 if ((ifa_best->ia6_flags & 2091 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2092 == IN6_IFF_AUTOCONF && 2093 (ifat->ia6_flags & 2094 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2095 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2096 goto replace; 2097 } 2098 if ((ifa_best->ia6_flags & 2099 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2100 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2101 (ifat->ia6_flags & 2102 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2103 == IN6_IFF_AUTOCONF) { 2104 continue; 2105 } 2106 } 2107 2108 /* 2109 * At this point, we have two cases: 2110 * 1. we are looking at a non-deprecated address, 2111 * and ifa_best is also non-deprecated. 2112 * 2. we are looking at a deprecated address, 2113 * and ifa_best is also deprecated. 2114 * Also, we do not have to consider a case where 2115 * the scope of if_best is larger(smaller) than dst and 2116 * the scope of the current address is smaller(larger) 2117 * than dst. Such a case has already been covered. 2118 * Tiebreaking is done according to the following 2119 * items: 2120 * - the scope comparison between the address and 2121 * dst (dscopecmp) 2122 * - the scope comparison between the address and 2123 * ifa_best (bscopecmp) 2124 * - if the address match dst longer than ifa_best 2125 * (matchcmp) 2126 * - if the address is on the outgoing I/F (outI/F) 2127 * 2128 * Roughly speaking, the selection policy is 2129 * - the most important item is scope. The same scope 2130 * is best. Then search for a larger scope. 2131 * Smaller scopes are the last resort. 2132 * - A deprecated address is chosen only when we have 2133 * no address that has an enough scope, but is 2134 * prefered to any addresses of smaller scopes 2135 * (this must be already done above.) 2136 * - addresses on the outgoing I/F are preferred to 2137 * ones on other interfaces if none of above 2138 * tiebreaks. In the table below, the column "bI" 2139 * means if the best_ifa is on the outgoing 2140 * interface, and the column "sI" means if the ifa 2141 * is on the outgoing interface. 2142 * - If there is no other reasons to choose one, 2143 * longest address match against dst is considered. 2144 * 2145 * The precise decision table is as follows: 2146 * dscopecmp bscopecmp match bI oI | replace? 2147 * N/A equal N/A Y N | No (1) 2148 * N/A equal N/A N Y | Yes (2) 2149 * N/A equal larger N/A | Yes (3) 2150 * N/A equal !larger N/A | No (4) 2151 * larger larger N/A N/A | No (5) 2152 * larger smaller N/A N/A | Yes (6) 2153 * smaller larger N/A N/A | Yes (7) 2154 * smaller smaller N/A N/A | No (8) 2155 * equal smaller N/A N/A | Yes (9) 2156 * equal larger (already done at A above) 2157 */ 2158 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2159 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2160 2161 if (bscopecmp == 0) { 2162 struct ifnet *bifp = ifa_best->ia_ifp; 2163 2164 if (bifp == oifp && ifp != oifp) /* (1) */ 2165 continue; 2166 if (bifp != oifp && ifp == oifp) /* (2) */ 2167 goto replace; 2168 2169 /* 2170 * Both bifp and ifp are on the outgoing 2171 * interface, or both two are on a different 2172 * interface from the outgoing I/F. 2173 * now we need address matching against dst 2174 * for tiebreaking. 2175 */ 2176 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2177 matchcmp = tlen - blen; 2178 if (matchcmp > 0) /* (3) */ 2179 goto replace; 2180 continue; /* (4) */ 2181 } 2182 if (dscopecmp > 0) { 2183 if (bscopecmp > 0) /* (5) */ 2184 continue; 2185 goto replace; /* (6) */ 2186 } 2187 if (dscopecmp < 0) { 2188 if (bscopecmp > 0) /* (7) */ 2189 goto replace; 2190 continue; /* (8) */ 2191 } 2192 2193 /* now dscopecmp must be 0 */ 2194 if (bscopecmp < 0) 2195 goto replace; /* (9) */ 2196 2197 replace: 2198 ifa_best = (struct in6_ifaddr *)ifa; 2199 blen = tlen >= 0 ? tlen : 2200 in6_matchlen(IFA_IN6(ifa), dst); 2201 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2202 } 2203 } 2204 2205 /* count statistics for future improvements */ 2206 if (ifa_best == NULL) 2207 ip6stat.ip6s_sources_none++; 2208 else { 2209 if (oifp == ifa_best->ia_ifp) 2210 ip6stat.ip6s_sources_sameif[best_scope]++; 2211 else 2212 ip6stat.ip6s_sources_otherif[best_scope]++; 2213 2214 if (best_scope == dst_scope) 2215 ip6stat.ip6s_sources_samescope[best_scope]++; 2216 else 2217 ip6stat.ip6s_sources_otherscope[best_scope]++; 2218 2219 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2220 ip6stat.ip6s_sources_deprecated[best_scope]++; 2221 } 2222 2223 return(ifa_best); 2224 } 2225 2226 /* 2227 * return the best address out of the same scope. if no address was 2228 * found, return the first valid address from designated IF. 2229 */ 2230 struct in6_ifaddr * 2231 in6_ifawithifp(ifp, dst) 2232 struct ifnet *ifp; 2233 struct in6_addr *dst; 2234 { 2235 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2236 struct ifaddr *ifa; 2237 struct in6_ifaddr *besta = 0; 2238 struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/ 2239 2240 dep[0] = dep[1] = NULL; 2241 2242 /* 2243 * We first look for addresses in the same scope. 2244 * If there is one, return it. 2245 * If two or more, return one which matches the dst longest. 2246 * If none, return one of global addresses assigned other ifs. 2247 */ 2248 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2249 { 2250 if (ifa->ifa_addr->sa_family != AF_INET6) 2251 continue; 2252 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2253 continue; /* XXX: is there any case to allow anycast? */ 2254 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2255 continue; /* don't use this interface */ 2256 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2257 continue; 2258 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2259 if (ip6_use_deprecated) 2260 dep[0] = (struct in6_ifaddr *)ifa; 2261 continue; 2262 } 2263 2264 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2265 /* 2266 * call in6_matchlen() as few as possible 2267 */ 2268 if (besta) { 2269 if (blen == -1) 2270 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2271 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2272 if (tlen > blen) { 2273 blen = tlen; 2274 besta = (struct in6_ifaddr *)ifa; 2275 } 2276 } else 2277 besta = (struct in6_ifaddr *)ifa; 2278 } 2279 } 2280 if (besta) 2281 return(besta); 2282 2283 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2284 { 2285 if (ifa->ifa_addr->sa_family != AF_INET6) 2286 continue; 2287 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2288 continue; /* XXX: is there any case to allow anycast? */ 2289 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2290 continue; /* don't use this interface */ 2291 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2292 continue; 2293 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2294 if (ip6_use_deprecated) 2295 dep[1] = (struct in6_ifaddr *)ifa; 2296 continue; 2297 } 2298 2299 return (struct in6_ifaddr *)ifa; 2300 } 2301 2302 /* use the last-resort values, that are, deprecated addresses */ 2303 if (dep[0]) 2304 return dep[0]; 2305 if (dep[1]) 2306 return dep[1]; 2307 2308 return NULL; 2309 } 2310 2311 /* 2312 * perform DAD when interface becomes IFF_UP. 2313 */ 2314 void 2315 in6_if_up(ifp) 2316 struct ifnet *ifp; 2317 { 2318 struct ifaddr *ifa; 2319 struct in6_ifaddr *ia; 2320 int dad_delay; /* delay ticks before DAD output */ 2321 2322 /* 2323 * special cases, like 6to4, are handled in in6_ifattach 2324 */ 2325 in6_ifattach(ifp, NULL); 2326 2327 dad_delay = 0; 2328 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2329 { 2330 if (ifa->ifa_addr->sa_family != AF_INET6) 2331 continue; 2332 ia = (struct in6_ifaddr *)ifa; 2333 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2334 nd6_dad_start(ifa, &dad_delay); 2335 } 2336 } 2337 2338 int 2339 in6if_do_dad(ifp) 2340 struct ifnet *ifp; 2341 { 2342 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2343 return(0); 2344 2345 switch (ifp->if_type) { 2346 #ifdef IFT_DUMMY 2347 case IFT_DUMMY: 2348 #endif 2349 case IFT_FAITH: 2350 /* 2351 * These interfaces do not have the IFF_LOOPBACK flag, 2352 * but loop packets back. We do not have to do DAD on such 2353 * interfaces. We should even omit it, because loop-backed 2354 * NS would confuse the DAD procedure. 2355 */ 2356 return(0); 2357 default: 2358 /* 2359 * Our DAD routine requires the interface up and running. 2360 * However, some interfaces can be up before the RUNNING 2361 * status. Additionaly, users may try to assign addresses 2362 * before the interface becomes up (or running). 2363 * We simply skip DAD in such a case as a work around. 2364 * XXX: we should rather mark "tentative" on such addresses, 2365 * and do DAD after the interface becomes ready. 2366 */ 2367 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2368 (IFF_UP|IFF_RUNNING)) 2369 return(0); 2370 2371 return(1); 2372 } 2373 } 2374 2375 /* 2376 * Calculate max IPv6 MTU through all the interfaces and store it 2377 * to in6_maxmtu. 2378 */ 2379 void 2380 in6_setmaxmtu() 2381 { 2382 unsigned long maxmtu = 0; 2383 struct ifnet *ifp; 2384 2385 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2386 { 2387 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2388 nd_ifinfo[ifp->if_index].linkmtu > maxmtu) 2389 maxmtu = nd_ifinfo[ifp->if_index].linkmtu; 2390 } 2391 if (maxmtu) /* update only when maxmtu is positive */ 2392 in6_maxmtu = maxmtu; 2393 } 2394 2395 /* 2396 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2397 * v4 mapped addr or v4 compat addr 2398 */ 2399 void 2400 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2401 { 2402 bzero(sin, sizeof(*sin)); 2403 sin->sin_len = sizeof(struct sockaddr_in); 2404 sin->sin_family = AF_INET; 2405 sin->sin_port = sin6->sin6_port; 2406 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2407 } 2408 2409 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2410 void 2411 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2412 { 2413 bzero(sin6, sizeof(*sin6)); 2414 sin6->sin6_len = sizeof(struct sockaddr_in6); 2415 sin6->sin6_family = AF_INET6; 2416 sin6->sin6_port = sin->sin_port; 2417 sin6->sin6_addr.s6_addr32[0] = 0; 2418 sin6->sin6_addr.s6_addr32[1] = 0; 2419 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2420 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2421 } 2422 2423 /* Convert sockaddr_in6 into sockaddr_in. */ 2424 void 2425 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2426 { 2427 struct sockaddr_in *sin_p; 2428 struct sockaddr_in6 sin6; 2429 2430 /* 2431 * Save original sockaddr_in6 addr and convert it 2432 * to sockaddr_in. 2433 */ 2434 sin6 = *(struct sockaddr_in6 *)nam; 2435 sin_p = (struct sockaddr_in *)nam; 2436 in6_sin6_2_sin(sin_p, &sin6); 2437 } 2438 2439 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2440 void 2441 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2442 { 2443 struct sockaddr_in *sin_p; 2444 struct sockaddr_in6 *sin6_p; 2445 2446 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2447 M_WAITOK); 2448 sin_p = (struct sockaddr_in *)*nam; 2449 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2450 FREE(*nam, M_SONAME); 2451 *nam = (struct sockaddr *)sin6_p; 2452 } 2453