1 /* $FreeBSD$ */ 2 /* $KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)in.c 8.2 (Berkeley) 11/15/93 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/errno.h> 73 #include <sys/malloc.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #ifndef SCOPEDROUTING 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/in_pcb.h> 95 #endif 96 97 #include <netinet6/nd6.h> 98 #include <netinet/ip6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #ifndef SCOPEDROUTING 105 #include <netinet6/in6_pcb.h> 106 #endif 107 108 #include <net/net_osdep.h> 109 110 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); 111 112 /* 113 * Definitions of some costant IP6 addresses. 114 */ 115 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 116 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 117 const struct in6_addr in6addr_nodelocal_allnodes = 118 IN6ADDR_NODELOCAL_ALLNODES_INIT; 119 const struct in6_addr in6addr_linklocal_allnodes = 120 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 121 const struct in6_addr in6addr_linklocal_allrouters = 122 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 123 124 const struct in6_addr in6mask0 = IN6MASK0; 125 const struct in6_addr in6mask32 = IN6MASK32; 126 const struct in6_addr in6mask64 = IN6MASK64; 127 const struct in6_addr in6mask96 = IN6MASK96; 128 const struct in6_addr in6mask128 = IN6MASK128; 129 130 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 131 0, 0, IN6ADDR_ANY_INIT, 0}; 132 133 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 134 struct ifnet *, struct proc *)); 135 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 136 struct sockaddr_in6 *, int)); 137 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 138 139 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 140 141 /* 142 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 143 * This routine does actual work. 144 */ 145 static void 146 in6_ifloop_request(int cmd, struct ifaddr *ifa) 147 { 148 struct sockaddr_in6 all1_sa; 149 struct rtentry *nrt = NULL; 150 int e; 151 152 bzero(&all1_sa, sizeof(all1_sa)); 153 all1_sa.sin6_family = AF_INET6; 154 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 155 all1_sa.sin6_addr = in6mask128; 156 157 /* 158 * We specify the address itself as the gateway, and set the 159 * RTF_LLINFO flag, so that the corresponding host route would have 160 * the flag, and thus applications that assume traditional behavior 161 * would be happy. Note that we assume the caller of the function 162 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 163 * which changes the outgoing interface to the loopback interface. 164 */ 165 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 166 (struct sockaddr *)&all1_sa, 167 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 168 if (e != 0) { 169 log(LOG_ERR, "in6_ifloop_request: " 170 "%s operation failed for %s (errno=%d)\n", 171 cmd == RTM_ADD ? "ADD" : "DELETE", 172 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 173 e); 174 } 175 176 /* 177 * Make sure rt_ifa be equal to IFA, the second argument of the 178 * function. 179 * We need this because when we refer to rt_ifa->ia6_flags in 180 * ip6_input, we assume that the rt_ifa points to the address instead 181 * of the loopback address. 182 */ 183 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 184 IFAFREE(nrt->rt_ifa); 185 IFAREF(ifa); 186 nrt->rt_ifa = ifa; 187 } 188 189 /* 190 * Report the addition/removal of the address to the routing socket. 191 * XXX: since we called rtinit for a p2p interface with a destination, 192 * we end up reporting twice in such a case. Should we rather 193 * omit the second report? 194 */ 195 if (nrt) { 196 rt_newaddrmsg(cmd, ifa, e, nrt); 197 if (cmd == RTM_DELETE) { 198 if (nrt->rt_refcnt <= 0) { 199 /* XXX: we should free the entry ourselves. */ 200 nrt->rt_refcnt++; 201 rtfree(nrt); 202 } 203 } else { 204 /* the cmd must be RTM_ADD here */ 205 nrt->rt_refcnt--; 206 } 207 } 208 } 209 210 /* 211 * Add ownaddr as loopback rtentry. We previously add the route only if 212 * necessary (ex. on a p2p link). However, since we now manage addresses 213 * separately from prefixes, we should always add the route. We can't 214 * rely on the cloning mechanism from the corresponding interface route 215 * any more. 216 */ 217 static void 218 in6_ifaddloop(struct ifaddr *ifa) 219 { 220 struct rtentry *rt; 221 222 /* If there is no loopback entry, allocate one. */ 223 rt = rtalloc1(ifa->ifa_addr, 0, 0); 224 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 225 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 226 in6_ifloop_request(RTM_ADD, ifa); 227 if (rt) 228 rt->rt_refcnt--; 229 } 230 231 /* 232 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 233 * if it exists. 234 */ 235 static void 236 in6_ifremloop(struct ifaddr *ifa) 237 { 238 struct in6_ifaddr *ia; 239 struct rtentry *rt; 240 int ia_count = 0; 241 242 /* 243 * Some of BSD variants do not remove cloned routes 244 * from an interface direct route, when removing the direct route 245 * (see comments in net/net_osdep.h). Even for variants that do remove 246 * cloned routes, they could fail to remove the cloned routes when 247 * we handle multple addresses that share a common prefix. 248 * So, we should remove the route corresponding to the deleted address 249 * regardless of the result of in6_is_ifloop_auto(). 250 */ 251 252 /* 253 * Delete the entry only if exact one ifa exists. More than one ifa 254 * can exist if we assign a same single address to multiple 255 * (probably p2p) interfaces. 256 * XXX: we should avoid such a configuration in IPv6... 257 */ 258 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 259 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 260 ia_count++; 261 if (ia_count > 1) 262 break; 263 } 264 } 265 266 if (ia_count == 1) { 267 /* 268 * Before deleting, check if a corresponding loopbacked host 269 * route surely exists. With this check, we can avoid to 270 * delete an interface direct route whose destination is same 271 * as the address being removed. This can happen when remofing 272 * a subnet-router anycast address on an interface attahced 273 * to a shared medium. 274 */ 275 rt = rtalloc1(ifa->ifa_addr, 0, 0); 276 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 && 277 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 278 rt->rt_refcnt--; 279 in6_ifloop_request(RTM_DELETE, ifa); 280 } 281 } 282 } 283 284 int 285 in6_ifindex2scopeid(idx) 286 int idx; 287 { 288 struct ifnet *ifp; 289 struct ifaddr *ifa; 290 struct sockaddr_in6 *sin6; 291 292 if (idx < 0 || if_index < idx) 293 return -1; 294 ifp = ifindex2ifnet[idx]; 295 296 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 297 { 298 if (ifa->ifa_addr->sa_family != AF_INET6) 299 continue; 300 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 301 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 302 return sin6->sin6_scope_id & 0xffff; 303 } 304 305 return -1; 306 } 307 308 int 309 in6_mask2len(mask, lim0) 310 struct in6_addr *mask; 311 u_char *lim0; 312 { 313 int x = 0, y; 314 u_char *lim = lim0, *p; 315 316 if (lim0 == NULL || 317 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 318 lim = (u_char *)mask + sizeof(*mask); 319 for (p = (u_char *)mask; p < lim; x++, p++) { 320 if (*p != 0xff) 321 break; 322 } 323 y = 0; 324 if (p < lim) { 325 for (y = 0; y < 8; y++) { 326 if ((*p & (0x80 >> y)) == 0) 327 break; 328 } 329 } 330 331 /* 332 * when the limit pointer is given, do a stricter check on the 333 * remaining bits. 334 */ 335 if (p < lim) { 336 if (y != 0 && (*p & (0x00ff >> y)) != 0) 337 return(-1); 338 for (p = p + 1; p < lim; p++) 339 if (*p != 0) 340 return(-1); 341 } 342 343 return x * 8 + y; 344 } 345 346 void 347 in6_len2mask(mask, len) 348 struct in6_addr *mask; 349 int len; 350 { 351 int i; 352 353 bzero(mask, sizeof(*mask)); 354 for (i = 0; i < len / 8; i++) 355 mask->s6_addr8[i] = 0xff; 356 if (len % 8) 357 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 358 } 359 360 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 361 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 362 363 int 364 in6_control(so, cmd, data, ifp, p) 365 struct socket *so; 366 u_long cmd; 367 caddr_t data; 368 struct ifnet *ifp; 369 struct proc *p; 370 { 371 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 372 struct in6_ifaddr *ia = NULL; 373 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 374 int privileged; 375 376 privileged = 0; 377 if (p == NULL || !suser(p)) 378 privileged++; 379 380 switch (cmd) { 381 case SIOCGETSGCNT_IN6: 382 case SIOCGETMIFCNT_IN6: 383 return (mrt6_ioctl(cmd, data)); 384 } 385 386 if (ifp == NULL) 387 return(EOPNOTSUPP); 388 389 switch (cmd) { 390 case SIOCSNDFLUSH_IN6: 391 case SIOCSPFXFLUSH_IN6: 392 case SIOCSRTRFLUSH_IN6: 393 case SIOCSDEFIFACE_IN6: 394 case SIOCSIFINFO_FLAGS: 395 if (!privileged) 396 return(EPERM); 397 /*fall through*/ 398 case OSIOCGIFINFO_IN6: 399 case SIOCGIFINFO_IN6: 400 case SIOCGDRLST_IN6: 401 case SIOCGPRLST_IN6: 402 case SIOCGNBRINFO_IN6: 403 case SIOCGDEFIFACE_IN6: 404 return(nd6_ioctl(cmd, data, ifp)); 405 } 406 407 switch (cmd) { 408 case SIOCSIFPREFIX_IN6: 409 case SIOCDIFPREFIX_IN6: 410 case SIOCAIFPREFIX_IN6: 411 case SIOCCIFPREFIX_IN6: 412 case SIOCSGIFPREFIX_IN6: 413 case SIOCGIFPREFIX_IN6: 414 log(LOG_NOTICE, 415 "prefix ioctls are now invalidated. " 416 "please use ifconfig.\n"); 417 return(EOPNOTSUPP); 418 } 419 420 switch(cmd) { 421 case SIOCSSCOPE6: 422 if (!privileged) 423 return(EPERM); 424 return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id)); 425 break; 426 case SIOCGSCOPE6: 427 return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id)); 428 break; 429 case SIOCGSCOPE6DEF: 430 return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id)); 431 break; 432 } 433 434 switch (cmd) { 435 case SIOCALIFADDR: 436 case SIOCDLIFADDR: 437 if (!privileged) 438 return(EPERM); 439 /*fall through*/ 440 case SIOCGLIFADDR: 441 return in6_lifaddr_ioctl(so, cmd, data, ifp, p); 442 } 443 444 /* 445 * Find address for this interface, if it exists. 446 */ 447 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 448 struct sockaddr_in6 *sa6 = 449 (struct sockaddr_in6 *)&ifra->ifra_addr; 450 451 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 452 if (sa6->sin6_addr.s6_addr16[1] == 0) { 453 /* link ID is not embedded by the user */ 454 sa6->sin6_addr.s6_addr16[1] = 455 htons(ifp->if_index); 456 } else if (sa6->sin6_addr.s6_addr16[1] != 457 htons(ifp->if_index)) { 458 return(EINVAL); /* link ID contradicts */ 459 } 460 if (sa6->sin6_scope_id) { 461 if (sa6->sin6_scope_id != 462 (u_int32_t)ifp->if_index) 463 return(EINVAL); 464 sa6->sin6_scope_id = 0; /* XXX: good way? */ 465 } 466 } 467 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 468 } 469 470 switch (cmd) { 471 case SIOCSIFADDR_IN6: 472 case SIOCSIFDSTADDR_IN6: 473 case SIOCSIFNETMASK_IN6: 474 /* 475 * Since IPv6 allows a node to assign multiple addresses 476 * on a single interface, SIOCSIFxxx ioctls are not suitable 477 * and should be unused. 478 */ 479 /* we decided to obsolete this command (20000704) */ 480 return(EINVAL); 481 482 case SIOCDIFADDR_IN6: 483 /* 484 * for IPv4, we look for existing in_ifaddr here to allow 485 * "ifconfig if0 delete" to remove first IPv4 address on the 486 * interface. For IPv6, as the spec allow multiple interface 487 * address from the day one, we consider "remove the first one" 488 * semantics to be not preferable. 489 */ 490 if (ia == NULL) 491 return(EADDRNOTAVAIL); 492 /* FALLTHROUGH */ 493 case SIOCAIFADDR_IN6: 494 /* 495 * We always require users to specify a valid IPv6 address for 496 * the corresponding operation. 497 */ 498 if (ifra->ifra_addr.sin6_family != AF_INET6 || 499 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 500 return(EAFNOSUPPORT); 501 if (!privileged) 502 return(EPERM); 503 504 break; 505 506 case SIOCGIFADDR_IN6: 507 /* This interface is basically deprecated. use SIOCGIFCONF. */ 508 /* fall through */ 509 case SIOCGIFAFLAG_IN6: 510 case SIOCGIFNETMASK_IN6: 511 case SIOCGIFDSTADDR_IN6: 512 case SIOCGIFALIFETIME_IN6: 513 /* must think again about its semantics */ 514 if (ia == NULL) 515 return(EADDRNOTAVAIL); 516 break; 517 case SIOCSIFALIFETIME_IN6: 518 { 519 struct in6_addrlifetime *lt; 520 521 if (!privileged) 522 return(EPERM); 523 if (ia == NULL) 524 return(EADDRNOTAVAIL); 525 /* sanity for overflow - beware unsigned */ 526 lt = &ifr->ifr_ifru.ifru_lifetime; 527 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 528 && lt->ia6t_vltime + time_second < time_second) { 529 return EINVAL; 530 } 531 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 532 && lt->ia6t_pltime + time_second < time_second) { 533 return EINVAL; 534 } 535 break; 536 } 537 } 538 539 switch (cmd) { 540 541 case SIOCGIFADDR_IN6: 542 ifr->ifr_addr = ia->ia_addr; 543 break; 544 545 case SIOCGIFDSTADDR_IN6: 546 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 547 return(EINVAL); 548 /* 549 * XXX: should we check if ifa_dstaddr is NULL and return 550 * an error? 551 */ 552 ifr->ifr_dstaddr = ia->ia_dstaddr; 553 break; 554 555 case SIOCGIFNETMASK_IN6: 556 ifr->ifr_addr = ia->ia_prefixmask; 557 break; 558 559 case SIOCGIFAFLAG_IN6: 560 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 561 break; 562 563 case SIOCGIFSTAT_IN6: 564 if (ifp == NULL) 565 return EINVAL; 566 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax 567 || in6_ifstat[ifp->if_index] == NULL) { 568 /* return EAFNOSUPPORT? */ 569 bzero(&ifr->ifr_ifru.ifru_stat, 570 sizeof(ifr->ifr_ifru.ifru_stat)); 571 } else 572 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index]; 573 break; 574 575 case SIOCGIFSTAT_ICMP6: 576 if (ifp == NULL) 577 return EINVAL; 578 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax || 579 icmp6_ifstat[ifp->if_index] == NULL) { 580 /* return EAFNOSUPPORT? */ 581 bzero(&ifr->ifr_ifru.ifru_stat, 582 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 583 } else 584 ifr->ifr_ifru.ifru_icmp6stat = 585 *icmp6_ifstat[ifp->if_index]; 586 break; 587 588 case SIOCGIFALIFETIME_IN6: 589 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 590 break; 591 592 case SIOCSIFALIFETIME_IN6: 593 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 594 /* for sanity */ 595 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 596 ia->ia6_lifetime.ia6t_expire = 597 time_second + ia->ia6_lifetime.ia6t_vltime; 598 } else 599 ia->ia6_lifetime.ia6t_expire = 0; 600 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 601 ia->ia6_lifetime.ia6t_preferred = 602 time_second + ia->ia6_lifetime.ia6t_pltime; 603 } else 604 ia->ia6_lifetime.ia6t_preferred = 0; 605 break; 606 607 case SIOCAIFADDR_IN6: 608 { 609 int i, error = 0; 610 struct nd_prefix pr0, *pr; 611 612 /* 613 * first, make or update the interface address structure, 614 * and link it to the list. 615 */ 616 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 617 return(error); 618 619 /* 620 * then, make the prefix on-link on the interface. 621 * XXX: we'd rather create the prefix before the address, but 622 * we need at least one address to install the corresponding 623 * interface route, so we configure the address first. 624 */ 625 626 /* 627 * convert mask to prefix length (prefixmask has already 628 * been validated in in6_update_ifa(). 629 */ 630 bzero(&pr0, sizeof(pr0)); 631 pr0.ndpr_ifp = ifp; 632 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 633 NULL); 634 if (pr0.ndpr_plen == 128) 635 break; /* we don't need to install a host route. */ 636 pr0.ndpr_prefix = ifra->ifra_addr; 637 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 638 /* apply the mask for safety. */ 639 for (i = 0; i < 4; i++) { 640 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 641 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 642 } 643 /* 644 * XXX: since we don't have enough APIs, we just set inifinity 645 * to lifetimes. They can be overridden by later advertised 646 * RAs (when accept_rtadv is non 0), but we'd rather intend 647 * such a behavior. 648 */ 649 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 650 pr0.ndpr_raf_auto = 651 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 652 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 653 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 654 655 /* add the prefix if there's one. */ 656 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 657 /* 658 * nd6_prelist_add will install the corresponding 659 * interface route. 660 */ 661 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 662 return(error); 663 if (pr == NULL) { 664 log(LOG_ERR, "nd6_prelist_add succedded but " 665 "no prefix\n"); 666 return(EINVAL); /* XXX panic here? */ 667 } 668 } 669 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 670 == NULL) { 671 /* XXX: this should not happen! */ 672 log(LOG_ERR, "in6_control: addition succeeded, but" 673 " no ifaddr\n"); 674 } else { 675 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 676 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 677 ia->ia6_ndpr = pr; 678 pr->ndpr_refcnt++; 679 680 /* 681 * If this is the first autoconf address from 682 * the prefix, create a temporary address 683 * as well (when specified). 684 */ 685 if (ip6_use_tempaddr && 686 pr->ndpr_refcnt == 1) { 687 int e; 688 if ((e = in6_tmpifadd(ia, 1)) != 0) { 689 log(LOG_NOTICE, "in6_control: " 690 "failed to create a " 691 "temporary address, " 692 "errno=%d\n", 693 e); 694 } 695 } 696 } 697 698 /* 699 * this might affect the status of autoconfigured 700 * addresses, that is, this address might make 701 * other addresses detached. 702 */ 703 pfxlist_onlink_check(); 704 } 705 break; 706 } 707 708 case SIOCDIFADDR_IN6: 709 { 710 int i = 0; 711 struct nd_prefix pr0, *pr; 712 713 /* 714 * If the address being deleted is the only one that owns 715 * the corresponding prefix, expire the prefix as well. 716 * XXX: theoretically, we don't have to warry about such 717 * relationship, since we separate the address management 718 * and the prefix management. We do this, however, to provide 719 * as much backward compatibility as possible in terms of 720 * the ioctl operation. 721 */ 722 bzero(&pr0, sizeof(pr0)); 723 pr0.ndpr_ifp = ifp; 724 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 725 NULL); 726 if (pr0.ndpr_plen == 128) 727 goto purgeaddr; 728 pr0.ndpr_prefix = ia->ia_addr; 729 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 730 for (i = 0; i < 4; i++) { 731 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 732 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 733 } 734 /* 735 * The logic of the following condition is a bit complicated. 736 * We expire the prefix when 737 * 1. the address obeys autoconfiguration and it is the 738 * only owner of the associated prefix, or 739 * 2. the address does not obey autoconf and there is no 740 * other owner of the prefix. 741 */ 742 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 743 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 744 pr->ndpr_refcnt == 1) || 745 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && 746 pr->ndpr_refcnt == 0))) { 747 pr->ndpr_expire = 1; /* XXX: just for expiration */ 748 } 749 750 purgeaddr: 751 in6_purgeaddr(&ia->ia_ifa); 752 break; 753 } 754 755 default: 756 if (ifp == NULL || ifp->if_ioctl == 0) 757 return(EOPNOTSUPP); 758 return((*ifp->if_ioctl)(ifp, cmd, data)); 759 } 760 761 return(0); 762 } 763 764 /* 765 * Update parameters of an IPv6 interface address. 766 * If necessary, a new entry is created and linked into address chains. 767 * This function is separated from in6_control(). 768 * XXX: should this be performed under splnet()? 769 */ 770 int 771 in6_update_ifa(ifp, ifra, ia) 772 struct ifnet *ifp; 773 struct in6_aliasreq *ifra; 774 struct in6_ifaddr *ia; 775 { 776 int error = 0, hostIsNew = 0, plen = -1; 777 struct in6_ifaddr *oia; 778 struct sockaddr_in6 dst6; 779 struct in6_addrlifetime *lt; 780 781 /* Validate parameters */ 782 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 783 return(EINVAL); 784 785 /* 786 * The destination address for a p2p link must have a family 787 * of AF_UNSPEC or AF_INET6. 788 */ 789 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 790 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 791 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 792 return(EAFNOSUPPORT); 793 /* 794 * validate ifra_prefixmask. don't check sin6_family, netmask 795 * does not carry fields other than sin6_len. 796 */ 797 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 798 return(EINVAL); 799 /* 800 * Because the IPv6 address architecture is classless, we require 801 * users to specify a (non 0) prefix length (mask) for a new address. 802 * We also require the prefix (when specified) mask is valid, and thus 803 * reject a non-consecutive mask. 804 */ 805 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 806 return(EINVAL); 807 if (ifra->ifra_prefixmask.sin6_len != 0) { 808 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 809 (u_char *)&ifra->ifra_prefixmask + 810 ifra->ifra_prefixmask.sin6_len); 811 if (plen <= 0) 812 return(EINVAL); 813 } 814 else { 815 /* 816 * In this case, ia must not be NULL. We just use its prefix 817 * length. 818 */ 819 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 820 } 821 /* 822 * If the destination address on a p2p interface is specified, 823 * and the address is a scoped one, validate/set the scope 824 * zone identifier. 825 */ 826 dst6 = ifra->ifra_dstaddr; 827 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 828 (dst6.sin6_family == AF_INET6)) { 829 int scopeid; 830 831 #ifndef SCOPEDROUTING 832 if ((error = in6_recoverscope(&dst6, 833 &ifra->ifra_dstaddr.sin6_addr, 834 ifp)) != 0) 835 return(error); 836 #endif 837 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 838 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 839 dst6.sin6_scope_id = scopeid; 840 else if (dst6.sin6_scope_id != scopeid) 841 return(EINVAL); /* scope ID mismatch. */ 842 #ifndef SCOPEDROUTING 843 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 844 != 0) 845 return(error); 846 dst6.sin6_scope_id = 0; /* XXX */ 847 #endif 848 } 849 /* 850 * The destination address can be specified only for a p2p or a 851 * loopback interface. If specified, the corresponding prefix length 852 * must be 128. 853 */ 854 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 855 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 856 /* XXX: noisy message */ 857 log(LOG_INFO, "in6_update_ifa: a destination can be " 858 "specified for a p2p or a loopback IF only\n"); 859 return(EINVAL); 860 } 861 if (plen != 128) { 862 /* 863 * The following message seems noisy, but we dare to 864 * add it for diagnosis. 865 */ 866 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 867 "when dstaddr is specified\n"); 868 return(EINVAL); 869 } 870 } 871 /* lifetime consistency check */ 872 lt = &ifra->ifra_lifetime; 873 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 874 && lt->ia6t_vltime + time_second < time_second) { 875 return EINVAL; 876 } 877 if (lt->ia6t_vltime == 0) { 878 /* 879 * the following log might be noisy, but this is a typical 880 * configuration mistake or a tool's bug. 881 */ 882 log(LOG_INFO, 883 "in6_update_ifa: valid lifetime is 0 for %s\n", 884 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 885 } 886 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 887 && lt->ia6t_pltime + time_second < time_second) { 888 return EINVAL; 889 } 890 891 /* 892 * If this is a new address, allocate a new ifaddr and link it 893 * into chains. 894 */ 895 if (ia == NULL) { 896 hostIsNew = 1; 897 ia = (struct in6_ifaddr *) 898 malloc(sizeof(*ia), M_IFADDR, M_WAITOK); 899 if (ia == NULL) 900 return (ENOBUFS); 901 bzero((caddr_t)ia, sizeof(*ia)); 902 /* Initialize the address and masks */ 903 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 904 ia->ia_addr.sin6_family = AF_INET6; 905 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 906 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 907 /* 908 * XXX: some functions expect that ifa_dstaddr is not 909 * NULL for p2p interfaces. 910 */ 911 ia->ia_ifa.ifa_dstaddr 912 = (struct sockaddr *)&ia->ia_dstaddr; 913 } else { 914 ia->ia_ifa.ifa_dstaddr = NULL; 915 } 916 ia->ia_ifa.ifa_netmask 917 = (struct sockaddr *)&ia->ia_prefixmask; 918 919 ia->ia_ifp = ifp; 920 if ((oia = in6_ifaddr) != NULL) { 921 for ( ; oia->ia_next; oia = oia->ia_next) 922 continue; 923 oia->ia_next = ia; 924 } else 925 in6_ifaddr = ia; 926 927 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 928 ifa_list); 929 } 930 931 /* set prefix mask */ 932 if (ifra->ifra_prefixmask.sin6_len) { 933 /* 934 * We prohibit changing the prefix length of an existing 935 * address, because 936 * + such an operation should be rare in IPv6, and 937 * + the operation would confuse prefix management. 938 */ 939 if (ia->ia_prefixmask.sin6_len && 940 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 941 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 942 " existing (%s) address should not be changed\n", 943 ip6_sprintf(&ia->ia_addr.sin6_addr)); 944 error = EINVAL; 945 goto unlink; 946 } 947 ia->ia_prefixmask = ifra->ifra_prefixmask; 948 } 949 950 /* 951 * If a new destination address is specified, scrub the old one and 952 * install the new destination. Note that the interface must be 953 * p2p or loopback (see the check above.) 954 */ 955 if (dst6.sin6_family == AF_INET6 && 956 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 957 &ia->ia_dstaddr.sin6_addr)) { 958 int e; 959 960 if ((ia->ia_flags & IFA_ROUTE) != 0 && 961 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 962 != 0) { 963 log(LOG_ERR, "in6_update_ifa: failed to remove " 964 "a route to the old destination: %s\n", 965 ip6_sprintf(&ia->ia_addr.sin6_addr)); 966 /* proceed anyway... */ 967 } 968 else 969 ia->ia_flags &= ~IFA_ROUTE; 970 ia->ia_dstaddr = dst6; 971 } 972 973 /* reset the interface and routing table appropriately. */ 974 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 975 goto unlink; 976 977 /* 978 * Beyond this point, we should call in6_purgeaddr upon an error, 979 * not just go to unlink. 980 */ 981 982 #if 0 /* disable this mechanism for now */ 983 /* update prefix list */ 984 if (hostIsNew && 985 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 986 int iilen; 987 988 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 989 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 990 in6_purgeaddr((struct ifaddr *)ia); 991 return(error); 992 } 993 } 994 #endif 995 996 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 997 struct sockaddr_in6 mltaddr, mltmask; 998 struct in6_multi *in6m; 999 1000 if (hostIsNew) { 1001 /* 1002 * join solicited multicast addr for new host id 1003 */ 1004 struct in6_addr llsol; 1005 bzero(&llsol, sizeof(struct in6_addr)); 1006 llsol.s6_addr16[0] = htons(0xff02); 1007 llsol.s6_addr16[1] = htons(ifp->if_index); 1008 llsol.s6_addr32[1] = 0; 1009 llsol.s6_addr32[2] = htonl(1); 1010 llsol.s6_addr32[3] = 1011 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1012 llsol.s6_addr8[12] = 0xff; 1013 (void)in6_addmulti(&llsol, ifp, &error); 1014 if (error != 0) { 1015 log(LOG_WARNING, 1016 "in6_update_ifa: addmulti failed for " 1017 "%s on %s (errno=%d)\n", 1018 ip6_sprintf(&llsol), if_name(ifp), 1019 error); 1020 in6_purgeaddr((struct ifaddr *)ia); 1021 return(error); 1022 } 1023 } 1024 1025 bzero(&mltmask, sizeof(mltmask)); 1026 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1027 mltmask.sin6_family = AF_INET6; 1028 mltmask.sin6_addr = in6mask32; 1029 1030 /* 1031 * join link-local all-nodes address 1032 */ 1033 bzero(&mltaddr, sizeof(mltaddr)); 1034 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1035 mltaddr.sin6_family = AF_INET6; 1036 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1037 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1038 1039 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1040 if (in6m == NULL) { 1041 rtrequest(RTM_ADD, 1042 (struct sockaddr *)&mltaddr, 1043 (struct sockaddr *)&ia->ia_addr, 1044 (struct sockaddr *)&mltmask, 1045 RTF_UP|RTF_CLONING, /* xxx */ 1046 (struct rtentry **)0); 1047 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1048 if (error != 0) { 1049 log(LOG_WARNING, 1050 "in6_update_ifa: addmulti failed for " 1051 "%s on %s (errno=%d)\n", 1052 ip6_sprintf(&mltaddr.sin6_addr), 1053 if_name(ifp), error); 1054 } 1055 } 1056 1057 /* 1058 * join node information group address 1059 */ 1060 #define hostnamelen strlen(hostname) 1061 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1062 == 0) { 1063 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1064 if (in6m == NULL && ia != NULL) { 1065 (void)in6_addmulti(&mltaddr.sin6_addr, 1066 ifp, &error); 1067 if (error != 0) { 1068 log(LOG_WARNING, "in6_update_ifa: " 1069 "addmulti failed for " 1070 "%s on %s (errno=%d)\n", 1071 ip6_sprintf(&mltaddr.sin6_addr), 1072 if_name(ifp), error); 1073 } 1074 } 1075 } 1076 #undef hostnamelen 1077 1078 /* 1079 * join node-local all-nodes address, on loopback. 1080 * XXX: since "node-local" is obsoleted by interface-local, 1081 * we have to join the group on every interface with 1082 * some interface-boundary restriction. 1083 */ 1084 if (ifp->if_flags & IFF_LOOPBACK) { 1085 struct in6_addr loop6 = in6addr_loopback; 1086 ia = in6ifa_ifpwithaddr(ifp, &loop6); 1087 1088 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1089 1090 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1091 if (in6m == NULL && ia != NULL) { 1092 rtrequest(RTM_ADD, 1093 (struct sockaddr *)&mltaddr, 1094 (struct sockaddr *)&ia->ia_addr, 1095 (struct sockaddr *)&mltmask, 1096 RTF_UP, 1097 (struct rtentry **)0); 1098 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, 1099 &error); 1100 if (error != 0) { 1101 log(LOG_WARNING, "in6_update_ifa: " 1102 "addmulti failed for %s on %s " 1103 "(errno=%d)\n", 1104 ip6_sprintf(&mltaddr.sin6_addr), 1105 if_name(ifp), error); 1106 } 1107 } 1108 } 1109 } 1110 1111 ia->ia6_flags = ifra->ifra_flags; 1112 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1113 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1114 1115 ia->ia6_lifetime = ifra->ifra_lifetime; 1116 /* for sanity */ 1117 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1118 ia->ia6_lifetime.ia6t_expire = 1119 time_second + ia->ia6_lifetime.ia6t_vltime; 1120 } else 1121 ia->ia6_lifetime.ia6t_expire = 0; 1122 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1123 ia->ia6_lifetime.ia6t_preferred = 1124 time_second + ia->ia6_lifetime.ia6t_pltime; 1125 } else 1126 ia->ia6_lifetime.ia6t_preferred = 0; 1127 1128 /* 1129 * make sure to initialize ND6 information. this is to workaround 1130 * issues with interfaces with IPv6 addresses, which have never brought 1131 * up. We are assuming that it is safe to nd6_ifattach multiple times. 1132 */ 1133 nd6_ifattach(ifp); 1134 1135 /* 1136 * Perform DAD, if needed. 1137 * XXX It may be of use, if we can administratively 1138 * disable DAD. 1139 */ 1140 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { 1141 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1142 nd6_dad_start((struct ifaddr *)ia, NULL); 1143 } 1144 1145 return(error); 1146 1147 unlink: 1148 /* 1149 * XXX: if a change of an existing address failed, keep the entry 1150 * anyway. 1151 */ 1152 if (hostIsNew) 1153 in6_unlink_ifa(ia, ifp); 1154 return(error); 1155 } 1156 1157 void 1158 in6_purgeaddr(ifa) 1159 struct ifaddr *ifa; 1160 { 1161 struct ifnet *ifp = ifa->ifa_ifp; 1162 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1163 1164 /* stop DAD processing */ 1165 nd6_dad_stop(ifa); 1166 1167 /* 1168 * delete route to the destination of the address being purged. 1169 * The interface must be p2p or loopback in this case. 1170 */ 1171 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1172 int e; 1173 1174 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1175 != 0) { 1176 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1177 "a route to the p2p destination: %s on %s, " 1178 "errno=%d\n", 1179 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1180 e); 1181 /* proceed anyway... */ 1182 } 1183 else 1184 ia->ia_flags &= ~IFA_ROUTE; 1185 } 1186 1187 /* Remove ownaddr's loopback rtentry, if it exists. */ 1188 in6_ifremloop(&(ia->ia_ifa)); 1189 1190 if (ifp->if_flags & IFF_MULTICAST) { 1191 /* 1192 * delete solicited multicast addr for deleting host id 1193 */ 1194 struct in6_multi *in6m; 1195 struct in6_addr llsol; 1196 bzero(&llsol, sizeof(struct in6_addr)); 1197 llsol.s6_addr16[0] = htons(0xff02); 1198 llsol.s6_addr16[1] = htons(ifp->if_index); 1199 llsol.s6_addr32[1] = 0; 1200 llsol.s6_addr32[2] = htonl(1); 1201 llsol.s6_addr32[3] = 1202 ia->ia_addr.sin6_addr.s6_addr32[3]; 1203 llsol.s6_addr8[12] = 0xff; 1204 1205 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1206 if (in6m) 1207 in6_delmulti(in6m); 1208 } 1209 1210 in6_unlink_ifa(ia, ifp); 1211 } 1212 1213 static void 1214 in6_unlink_ifa(ia, ifp) 1215 struct in6_ifaddr *ia; 1216 struct ifnet *ifp; 1217 { 1218 int plen, iilen; 1219 struct in6_ifaddr *oia; 1220 int s = splnet(); 1221 1222 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1223 1224 oia = ia; 1225 if (oia == (ia = in6_ifaddr)) 1226 in6_ifaddr = ia->ia_next; 1227 else { 1228 while (ia->ia_next && (ia->ia_next != oia)) 1229 ia = ia->ia_next; 1230 if (ia->ia_next) 1231 ia->ia_next = oia->ia_next; 1232 else { 1233 /* search failed */ 1234 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1235 } 1236 } 1237 1238 if (oia->ia6_ifpr) { /* check for safety */ 1239 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1240 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1241 in6_prefix_remove_ifid(iilen, oia); 1242 } 1243 1244 /* 1245 * When an autoconfigured address is being removed, release the 1246 * reference to the base prefix. Also, since the release might 1247 * affect the status of other (detached) addresses, call 1248 * pfxlist_onlink_check(). 1249 */ 1250 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1251 if (oia->ia6_ndpr == NULL) { 1252 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1253 "%p has no prefix\n", oia); 1254 } else { 1255 oia->ia6_ndpr->ndpr_refcnt--; 1256 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1257 oia->ia6_ndpr = NULL; 1258 } 1259 1260 pfxlist_onlink_check(); 1261 } 1262 1263 /* 1264 * release another refcnt for the link from in6_ifaddr. 1265 * Note that we should decrement the refcnt at least once for all *BSD. 1266 */ 1267 IFAFREE(&oia->ia_ifa); 1268 1269 splx(s); 1270 } 1271 1272 void 1273 in6_purgeif(ifp) 1274 struct ifnet *ifp; 1275 { 1276 struct ifaddr *ifa, *nifa; 1277 1278 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1279 { 1280 nifa = TAILQ_NEXT(ifa, ifa_list); 1281 if (ifa->ifa_addr->sa_family != AF_INET6) 1282 continue; 1283 in6_purgeaddr(ifa); 1284 } 1285 1286 in6_ifdetach(ifp); 1287 } 1288 1289 /* 1290 * SIOC[GAD]LIFADDR. 1291 * SIOCGLIFADDR: get first address. (?) 1292 * SIOCGLIFADDR with IFLR_PREFIX: 1293 * get first address that matches the specified prefix. 1294 * SIOCALIFADDR: add the specified address. 1295 * SIOCALIFADDR with IFLR_PREFIX: 1296 * add the specified prefix, filling hostid part from 1297 * the first link-local address. prefixlen must be <= 64. 1298 * SIOCDLIFADDR: delete the specified address. 1299 * SIOCDLIFADDR with IFLR_PREFIX: 1300 * delete the first address that matches the specified prefix. 1301 * return values: 1302 * EINVAL on invalid parameters 1303 * EADDRNOTAVAIL on prefix match failed/specified address not found 1304 * other values may be returned from in6_ioctl() 1305 * 1306 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1307 * this is to accomodate address naming scheme other than RFC2374, 1308 * in the future. 1309 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1310 * address encoding scheme. (see figure on page 8) 1311 */ 1312 static int 1313 in6_lifaddr_ioctl(so, cmd, data, ifp, p) 1314 struct socket *so; 1315 u_long cmd; 1316 caddr_t data; 1317 struct ifnet *ifp; 1318 struct proc *p; 1319 { 1320 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1321 struct ifaddr *ifa; 1322 struct sockaddr *sa; 1323 1324 /* sanity checks */ 1325 if (!data || !ifp) { 1326 panic("invalid argument to in6_lifaddr_ioctl"); 1327 /*NOTRECHED*/ 1328 } 1329 1330 switch (cmd) { 1331 case SIOCGLIFADDR: 1332 /* address must be specified on GET with IFLR_PREFIX */ 1333 if ((iflr->flags & IFLR_PREFIX) == 0) 1334 break; 1335 /*FALLTHROUGH*/ 1336 case SIOCALIFADDR: 1337 case SIOCDLIFADDR: 1338 /* address must be specified on ADD and DELETE */ 1339 sa = (struct sockaddr *)&iflr->addr; 1340 if (sa->sa_family != AF_INET6) 1341 return EINVAL; 1342 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1343 return EINVAL; 1344 /* XXX need improvement */ 1345 sa = (struct sockaddr *)&iflr->dstaddr; 1346 if (sa->sa_family && sa->sa_family != AF_INET6) 1347 return EINVAL; 1348 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1349 return EINVAL; 1350 break; 1351 default: /*shouldn't happen*/ 1352 #if 0 1353 panic("invalid cmd to in6_lifaddr_ioctl"); 1354 /*NOTREACHED*/ 1355 #else 1356 return EOPNOTSUPP; 1357 #endif 1358 } 1359 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1360 return EINVAL; 1361 1362 switch (cmd) { 1363 case SIOCALIFADDR: 1364 { 1365 struct in6_aliasreq ifra; 1366 struct in6_addr *hostid = NULL; 1367 int prefixlen; 1368 1369 if ((iflr->flags & IFLR_PREFIX) != 0) { 1370 struct sockaddr_in6 *sin6; 1371 1372 /* 1373 * hostid is to fill in the hostid part of the 1374 * address. hostid points to the first link-local 1375 * address attached to the interface. 1376 */ 1377 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1378 if (!ifa) 1379 return EADDRNOTAVAIL; 1380 hostid = IFA_IN6(ifa); 1381 1382 /* prefixlen must be <= 64. */ 1383 if (64 < iflr->prefixlen) 1384 return EINVAL; 1385 prefixlen = iflr->prefixlen; 1386 1387 /* hostid part must be zero. */ 1388 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1389 if (sin6->sin6_addr.s6_addr32[2] != 0 1390 || sin6->sin6_addr.s6_addr32[3] != 0) { 1391 return EINVAL; 1392 } 1393 } else 1394 prefixlen = iflr->prefixlen; 1395 1396 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1397 bzero(&ifra, sizeof(ifra)); 1398 bcopy(iflr->iflr_name, ifra.ifra_name, 1399 sizeof(ifra.ifra_name)); 1400 1401 bcopy(&iflr->addr, &ifra.ifra_addr, 1402 ((struct sockaddr *)&iflr->addr)->sa_len); 1403 if (hostid) { 1404 /* fill in hostid part */ 1405 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1406 hostid->s6_addr32[2]; 1407 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1408 hostid->s6_addr32[3]; 1409 } 1410 1411 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1412 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1413 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1414 if (hostid) { 1415 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1416 hostid->s6_addr32[2]; 1417 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1418 hostid->s6_addr32[3]; 1419 } 1420 } 1421 1422 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1423 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1424 1425 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1426 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p); 1427 } 1428 case SIOCGLIFADDR: 1429 case SIOCDLIFADDR: 1430 { 1431 struct in6_ifaddr *ia; 1432 struct in6_addr mask, candidate, match; 1433 struct sockaddr_in6 *sin6; 1434 int cmp; 1435 1436 bzero(&mask, sizeof(mask)); 1437 if (iflr->flags & IFLR_PREFIX) { 1438 /* lookup a prefix rather than address. */ 1439 in6_len2mask(&mask, iflr->prefixlen); 1440 1441 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1442 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1443 match.s6_addr32[0] &= mask.s6_addr32[0]; 1444 match.s6_addr32[1] &= mask.s6_addr32[1]; 1445 match.s6_addr32[2] &= mask.s6_addr32[2]; 1446 match.s6_addr32[3] &= mask.s6_addr32[3]; 1447 1448 /* if you set extra bits, that's wrong */ 1449 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1450 return EINVAL; 1451 1452 cmp = 1; 1453 } else { 1454 if (cmd == SIOCGLIFADDR) { 1455 /* on getting an address, take the 1st match */ 1456 cmp = 0; /*XXX*/ 1457 } else { 1458 /* on deleting an address, do exact match */ 1459 in6_len2mask(&mask, 128); 1460 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1461 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1462 1463 cmp = 1; 1464 } 1465 } 1466 1467 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1468 { 1469 if (ifa->ifa_addr->sa_family != AF_INET6) 1470 continue; 1471 if (!cmp) 1472 break; 1473 1474 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1475 #ifndef SCOPEDROUTING 1476 /* 1477 * XXX: this is adhoc, but is necessary to allow 1478 * a user to specify fe80::/64 (not /10) for a 1479 * link-local address. 1480 */ 1481 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1482 candidate.s6_addr16[1] = 0; 1483 #endif 1484 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1485 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1486 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1487 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1488 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1489 break; 1490 } 1491 if (!ifa) 1492 return EADDRNOTAVAIL; 1493 ia = ifa2ia6(ifa); 1494 1495 if (cmd == SIOCGLIFADDR) { 1496 #ifndef SCOPEDROUTING 1497 struct sockaddr_in6 *s6; 1498 #endif 1499 1500 /* fill in the if_laddrreq structure */ 1501 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1502 #ifndef SCOPEDROUTING /* XXX see above */ 1503 s6 = (struct sockaddr_in6 *)&iflr->addr; 1504 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1505 s6->sin6_addr.s6_addr16[1] = 0; 1506 s6->sin6_scope_id = 1507 in6_addr2scopeid(ifp, &s6->sin6_addr); 1508 } 1509 #endif 1510 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1511 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1512 ia->ia_dstaddr.sin6_len); 1513 #ifndef SCOPEDROUTING /* XXX see above */ 1514 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1515 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1516 s6->sin6_addr.s6_addr16[1] = 0; 1517 s6->sin6_scope_id = 1518 in6_addr2scopeid(ifp, 1519 &s6->sin6_addr); 1520 } 1521 #endif 1522 } else 1523 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1524 1525 iflr->prefixlen = 1526 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1527 NULL); 1528 1529 iflr->flags = ia->ia6_flags; /*XXX*/ 1530 1531 return 0; 1532 } else { 1533 struct in6_aliasreq ifra; 1534 1535 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1536 bzero(&ifra, sizeof(ifra)); 1537 bcopy(iflr->iflr_name, ifra.ifra_name, 1538 sizeof(ifra.ifra_name)); 1539 1540 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1541 ia->ia_addr.sin6_len); 1542 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1543 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1544 ia->ia_dstaddr.sin6_len); 1545 } else { 1546 bzero(&ifra.ifra_dstaddr, 1547 sizeof(ifra.ifra_dstaddr)); 1548 } 1549 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1550 ia->ia_prefixmask.sin6_len); 1551 1552 ifra.ifra_flags = ia->ia6_flags; 1553 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1554 ifp, p); 1555 } 1556 } 1557 } 1558 1559 return EOPNOTSUPP; /*just for safety*/ 1560 } 1561 1562 /* 1563 * Initialize an interface's intetnet6 address 1564 * and routing table entry. 1565 */ 1566 static int 1567 in6_ifinit(ifp, ia, sin6, newhost) 1568 struct ifnet *ifp; 1569 struct in6_ifaddr *ia; 1570 struct sockaddr_in6 *sin6; 1571 int newhost; 1572 { 1573 int error = 0, plen, ifacount = 0; 1574 int s = splimp(); 1575 struct ifaddr *ifa; 1576 1577 /* 1578 * Give the interface a chance to initialize 1579 * if this is its first address, 1580 * and to validate the address if necessary. 1581 */ 1582 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1583 { 1584 if (ifa->ifa_addr == NULL) 1585 continue; /* just for safety */ 1586 if (ifa->ifa_addr->sa_family != AF_INET6) 1587 continue; 1588 ifacount++; 1589 } 1590 1591 ia->ia_addr = *sin6; 1592 1593 if (ifacount <= 1 && ifp->if_ioctl && 1594 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { 1595 splx(s); 1596 return(error); 1597 } 1598 splx(s); 1599 1600 ia->ia_ifa.ifa_metric = ifp->if_metric; 1601 1602 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1603 1604 /* 1605 * Special case: 1606 * If the destination address is specified for a point-to-point 1607 * interface, install a route to the destination as an interface 1608 * direct route. 1609 */ 1610 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1611 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1612 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1613 RTF_UP | RTF_HOST)) != 0) 1614 return(error); 1615 ia->ia_flags |= IFA_ROUTE; 1616 } 1617 if (plen < 128) { 1618 /* 1619 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1620 */ 1621 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1622 } 1623 1624 /* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */ 1625 if (newhost) { 1626 /* set the rtrequest function to create llinfo */ 1627 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1628 in6_ifaddloop(&(ia->ia_ifa)); 1629 } 1630 1631 return(error); 1632 } 1633 1634 /* 1635 * Add an address to the list of IP6 multicast addresses for a 1636 * given interface. 1637 */ 1638 struct in6_multi * 1639 in6_addmulti(maddr6, ifp, errorp) 1640 struct in6_addr *maddr6; 1641 struct ifnet *ifp; 1642 int *errorp; 1643 { 1644 struct in6_multi *in6m; 1645 struct sockaddr_in6 sin6; 1646 struct ifmultiaddr *ifma; 1647 int s = splnet(); 1648 1649 *errorp = 0; 1650 1651 /* 1652 * Call generic routine to add membership or increment 1653 * refcount. It wants addresses in the form of a sockaddr, 1654 * so we build one here (being careful to zero the unused bytes). 1655 */ 1656 bzero(&sin6, sizeof sin6); 1657 sin6.sin6_family = AF_INET6; 1658 sin6.sin6_len = sizeof sin6; 1659 sin6.sin6_addr = *maddr6; 1660 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1661 if (*errorp) { 1662 splx(s); 1663 return 0; 1664 } 1665 1666 /* 1667 * If ifma->ifma_protospec is null, then if_addmulti() created 1668 * a new record. Otherwise, we are done. 1669 */ 1670 if (ifma->ifma_protospec != 0) 1671 return ifma->ifma_protospec; 1672 1673 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1674 at interrupt time? If so, need to fix if_addmulti. XXX */ 1675 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1676 if (in6m == NULL) { 1677 splx(s); 1678 return (NULL); 1679 } 1680 1681 bzero(in6m, sizeof *in6m); 1682 in6m->in6m_addr = *maddr6; 1683 in6m->in6m_ifp = ifp; 1684 in6m->in6m_ifma = ifma; 1685 ifma->ifma_protospec = in6m; 1686 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1687 1688 /* 1689 * Let MLD6 know that we have joined a new IP6 multicast 1690 * group. 1691 */ 1692 mld6_start_listening(in6m); 1693 splx(s); 1694 return(in6m); 1695 } 1696 1697 /* 1698 * Delete a multicast address record. 1699 */ 1700 void 1701 in6_delmulti(in6m) 1702 struct in6_multi *in6m; 1703 { 1704 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1705 int s = splnet(); 1706 1707 if (ifma->ifma_refcount == 1) { 1708 /* 1709 * No remaining claims to this record; let MLD6 know 1710 * that we are leaving the multicast group. 1711 */ 1712 mld6_stop_listening(in6m); 1713 ifma->ifma_protospec = 0; 1714 LIST_REMOVE(in6m, in6m_entry); 1715 free(in6m, M_IPMADDR); 1716 } 1717 /* XXX - should be separate API for when we have an ifma? */ 1718 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1719 splx(s); 1720 } 1721 1722 /* 1723 * Find an IPv6 interface link-local address specific to an interface. 1724 */ 1725 struct in6_ifaddr * 1726 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1727 struct ifnet *ifp; 1728 int ignoreflags; 1729 { 1730 struct ifaddr *ifa; 1731 1732 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1733 { 1734 if (ifa->ifa_addr == NULL) 1735 continue; /* just for safety */ 1736 if (ifa->ifa_addr->sa_family != AF_INET6) 1737 continue; 1738 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1739 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1740 ignoreflags) != 0) 1741 continue; 1742 break; 1743 } 1744 } 1745 1746 return((struct in6_ifaddr *)ifa); 1747 } 1748 1749 1750 /* 1751 * find the internet address corresponding to a given interface and address. 1752 */ 1753 struct in6_ifaddr * 1754 in6ifa_ifpwithaddr(ifp, addr) 1755 struct ifnet *ifp; 1756 struct in6_addr *addr; 1757 { 1758 struct ifaddr *ifa; 1759 1760 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1761 { 1762 if (ifa->ifa_addr == NULL) 1763 continue; /* just for safety */ 1764 if (ifa->ifa_addr->sa_family != AF_INET6) 1765 continue; 1766 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1767 break; 1768 } 1769 1770 return((struct in6_ifaddr *)ifa); 1771 } 1772 1773 /* 1774 * Convert IP6 address to printable (loggable) representation. 1775 */ 1776 static char digits[] = "0123456789abcdef"; 1777 static int ip6round = 0; 1778 char * 1779 ip6_sprintf(addr) 1780 const struct in6_addr *addr; 1781 { 1782 static char ip6buf[8][48]; 1783 int i; 1784 char *cp; 1785 u_short *a = (u_short *)addr; 1786 u_char *d; 1787 int dcolon = 0; 1788 1789 ip6round = (ip6round + 1) & 7; 1790 cp = ip6buf[ip6round]; 1791 1792 for (i = 0; i < 8; i++) { 1793 if (dcolon == 1) { 1794 if (*a == 0) { 1795 if (i == 7) 1796 *cp++ = ':'; 1797 a++; 1798 continue; 1799 } else 1800 dcolon = 2; 1801 } 1802 if (*a == 0) { 1803 if (dcolon == 0 && *(a + 1) == 0) { 1804 if (i == 0) 1805 *cp++ = ':'; 1806 *cp++ = ':'; 1807 dcolon = 1; 1808 } else { 1809 *cp++ = '0'; 1810 *cp++ = ':'; 1811 } 1812 a++; 1813 continue; 1814 } 1815 d = (u_char *)a; 1816 *cp++ = digits[*d >> 4]; 1817 *cp++ = digits[*d++ & 0xf]; 1818 *cp++ = digits[*d >> 4]; 1819 *cp++ = digits[*d & 0xf]; 1820 *cp++ = ':'; 1821 a++; 1822 } 1823 *--cp = 0; 1824 return(ip6buf[ip6round]); 1825 } 1826 1827 int 1828 in6_localaddr(in6) 1829 struct in6_addr *in6; 1830 { 1831 struct in6_ifaddr *ia; 1832 1833 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1834 return 1; 1835 1836 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1837 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1838 &ia->ia_prefixmask.sin6_addr)) 1839 return 1; 1840 1841 return (0); 1842 } 1843 1844 int 1845 in6_is_addr_deprecated(sa6) 1846 struct sockaddr_in6 *sa6; 1847 { 1848 struct in6_ifaddr *ia; 1849 1850 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1851 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1852 &sa6->sin6_addr) && 1853 #ifdef SCOPEDROUTING 1854 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 1855 #endif 1856 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1857 return(1); /* true */ 1858 1859 /* XXX: do we still have to go thru the rest of the list? */ 1860 } 1861 1862 return(0); /* false */ 1863 } 1864 1865 /* 1866 * return length of part which dst and src are equal 1867 * hard coding... 1868 */ 1869 int 1870 in6_matchlen(src, dst) 1871 struct in6_addr *src, *dst; 1872 { 1873 int match = 0; 1874 u_char *s = (u_char *)src, *d = (u_char *)dst; 1875 u_char *lim = s + 16, r; 1876 1877 while (s < lim) 1878 if ((r = (*d++ ^ *s++)) != 0) { 1879 while (r < 128) { 1880 match++; 1881 r <<= 1; 1882 } 1883 break; 1884 } else 1885 match += 8; 1886 return match; 1887 } 1888 1889 /* XXX: to be scope conscious */ 1890 int 1891 in6_are_prefix_equal(p1, p2, len) 1892 struct in6_addr *p1, *p2; 1893 int len; 1894 { 1895 int bytelen, bitlen; 1896 1897 /* sanity check */ 1898 if (0 > len || len > 128) { 1899 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1900 len); 1901 return(0); 1902 } 1903 1904 bytelen = len / 8; 1905 bitlen = len % 8; 1906 1907 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1908 return(0); 1909 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1910 p2->s6_addr[bytelen] >> (8 - bitlen)) 1911 return(0); 1912 1913 return(1); 1914 } 1915 1916 void 1917 in6_prefixlen2mask(maskp, len) 1918 struct in6_addr *maskp; 1919 int len; 1920 { 1921 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1922 int bytelen, bitlen, i; 1923 1924 /* sanity check */ 1925 if (0 > len || len > 128) { 1926 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1927 len); 1928 return; 1929 } 1930 1931 bzero(maskp, sizeof(*maskp)); 1932 bytelen = len / 8; 1933 bitlen = len % 8; 1934 for (i = 0; i < bytelen; i++) 1935 maskp->s6_addr[i] = 0xff; 1936 if (bitlen) 1937 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1938 } 1939 1940 /* 1941 * return the best address out of the same scope 1942 */ 1943 struct in6_ifaddr * 1944 in6_ifawithscope(oifp, dst) 1945 struct ifnet *oifp; 1946 struct in6_addr *dst; 1947 { 1948 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1949 int blen = -1; 1950 struct ifaddr *ifa; 1951 struct ifnet *ifp; 1952 struct in6_ifaddr *ifa_best = NULL; 1953 1954 if (oifp == NULL) { 1955 #if 0 1956 printf("in6_ifawithscope: output interface is not specified\n"); 1957 #endif 1958 return(NULL); 1959 } 1960 1961 /* 1962 * We search for all addresses on all interfaces from the beginning. 1963 * Comparing an interface with the outgoing interface will be done 1964 * only at the final stage of tiebreaking. 1965 */ 1966 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1967 { 1968 /* 1969 * We can never take an address that breaks the scope zone 1970 * of the destination. 1971 */ 1972 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1973 continue; 1974 1975 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1976 { 1977 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1978 1979 if (ifa->ifa_addr->sa_family != AF_INET6) 1980 continue; 1981 1982 src_scope = in6_addrscope(IFA_IN6(ifa)); 1983 1984 /* 1985 * Don't use an address before completing DAD 1986 * nor a duplicated address. 1987 */ 1988 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1989 IN6_IFF_NOTREADY) 1990 continue; 1991 1992 /* XXX: is there any case to allow anycasts? */ 1993 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1994 IN6_IFF_ANYCAST) 1995 continue; 1996 1997 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1998 IN6_IFF_DETACHED) 1999 continue; 2000 2001 /* 2002 * If this is the first address we find, 2003 * keep it anyway. 2004 */ 2005 if (ifa_best == NULL) 2006 goto replace; 2007 2008 /* 2009 * ifa_best is never NULL beyond this line except 2010 * within the block labeled "replace". 2011 */ 2012 2013 /* 2014 * If ifa_best has a smaller scope than dst and 2015 * the current address has a larger one than 2016 * (or equal to) dst, always replace ifa_best. 2017 * Also, if the current address has a smaller scope 2018 * than dst, ignore it unless ifa_best also has a 2019 * smaller scope. 2020 * Consequently, after the two if-clause below, 2021 * the followings must be satisfied: 2022 * (scope(src) < scope(dst) && 2023 * scope(best) < scope(dst)) 2024 * OR 2025 * (scope(best) >= scope(dst) && 2026 * scope(src) >= scope(dst)) 2027 */ 2028 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2029 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2030 goto replace; /* (A) */ 2031 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2032 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2033 continue; /* (B) */ 2034 2035 /* 2036 * A deprecated address SHOULD NOT be used in new 2037 * communications if an alternate (non-deprecated) 2038 * address is available and has sufficient scope. 2039 * RFC 2462, Section 5.5.4. 2040 */ 2041 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2042 IN6_IFF_DEPRECATED) { 2043 /* 2044 * Ignore any deprecated addresses if 2045 * specified by configuration. 2046 */ 2047 if (!ip6_use_deprecated) 2048 continue; 2049 2050 /* 2051 * If we have already found a non-deprecated 2052 * candidate, just ignore deprecated addresses. 2053 */ 2054 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2055 == 0) 2056 continue; 2057 } 2058 2059 /* 2060 * A non-deprecated address is always preferred 2061 * to a deprecated one regardless of scopes and 2062 * address matching (Note invariants ensured by the 2063 * conditions (A) and (B) above.) 2064 */ 2065 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2066 (((struct in6_ifaddr *)ifa)->ia6_flags & 2067 IN6_IFF_DEPRECATED) == 0) 2068 goto replace; 2069 2070 /* 2071 * When we use temporary addresses described in 2072 * RFC 3041, we prefer temporary addresses to 2073 * public autoconf addresses. Again, note the 2074 * invariants from (A) and (B). Also note that we 2075 * don't have any preference between static addresses 2076 * and autoconf addresses (despite of whether or not 2077 * the latter is temporary or public.) 2078 */ 2079 if (ip6_use_tempaddr) { 2080 struct in6_ifaddr *ifat; 2081 2082 ifat = (struct in6_ifaddr *)ifa; 2083 if ((ifa_best->ia6_flags & 2084 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2085 == IN6_IFF_AUTOCONF && 2086 (ifat->ia6_flags & 2087 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2088 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2089 goto replace; 2090 } 2091 if ((ifa_best->ia6_flags & 2092 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2093 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2094 (ifat->ia6_flags & 2095 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2096 == IN6_IFF_AUTOCONF) { 2097 continue; 2098 } 2099 } 2100 2101 /* 2102 * At this point, we have two cases: 2103 * 1. we are looking at a non-deprecated address, 2104 * and ifa_best is also non-deprecated. 2105 * 2. we are looking at a deprecated address, 2106 * and ifa_best is also deprecated. 2107 * Also, we do not have to consider a case where 2108 * the scope of if_best is larger(smaller) than dst and 2109 * the scope of the current address is smaller(larger) 2110 * than dst. Such a case has already been covered. 2111 * Tiebreaking is done according to the following 2112 * items: 2113 * - the scope comparison between the address and 2114 * dst (dscopecmp) 2115 * - the scope comparison between the address and 2116 * ifa_best (bscopecmp) 2117 * - if the address match dst longer than ifa_best 2118 * (matchcmp) 2119 * - if the address is on the outgoing I/F (outI/F) 2120 * 2121 * Roughly speaking, the selection policy is 2122 * - the most important item is scope. The same scope 2123 * is best. Then search for a larger scope. 2124 * Smaller scopes are the last resort. 2125 * - A deprecated address is chosen only when we have 2126 * no address that has an enough scope, but is 2127 * prefered to any addresses of smaller scopes 2128 * (this must be already done above.) 2129 * - addresses on the outgoing I/F are preferred to 2130 * ones on other interfaces if none of above 2131 * tiebreaks. In the table below, the column "bI" 2132 * means if the best_ifa is on the outgoing 2133 * interface, and the column "sI" means if the ifa 2134 * is on the outgoing interface. 2135 * - If there is no other reasons to choose one, 2136 * longest address match against dst is considered. 2137 * 2138 * The precise decision table is as follows: 2139 * dscopecmp bscopecmp match bI oI | replace? 2140 * N/A equal N/A Y N | No (1) 2141 * N/A equal N/A N Y | Yes (2) 2142 * N/A equal larger N/A | Yes (3) 2143 * N/A equal !larger N/A | No (4) 2144 * larger larger N/A N/A | No (5) 2145 * larger smaller N/A N/A | Yes (6) 2146 * smaller larger N/A N/A | Yes (7) 2147 * smaller smaller N/A N/A | No (8) 2148 * equal smaller N/A N/A | Yes (9) 2149 * equal larger (already done at A above) 2150 */ 2151 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2152 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2153 2154 if (bscopecmp == 0) { 2155 struct ifnet *bifp = ifa_best->ia_ifp; 2156 2157 if (bifp == oifp && ifp != oifp) /* (1) */ 2158 continue; 2159 if (bifp != oifp && ifp == oifp) /* (2) */ 2160 goto replace; 2161 2162 /* 2163 * Both bifp and ifp are on the outgoing 2164 * interface, or both two are on a different 2165 * interface from the outgoing I/F. 2166 * now we need address matching against dst 2167 * for tiebreaking. 2168 */ 2169 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2170 matchcmp = tlen - blen; 2171 if (matchcmp > 0) /* (3) */ 2172 goto replace; 2173 continue; /* (4) */ 2174 } 2175 if (dscopecmp > 0) { 2176 if (bscopecmp > 0) /* (5) */ 2177 continue; 2178 goto replace; /* (6) */ 2179 } 2180 if (dscopecmp < 0) { 2181 if (bscopecmp > 0) /* (7) */ 2182 goto replace; 2183 continue; /* (8) */ 2184 } 2185 2186 /* now dscopecmp must be 0 */ 2187 if (bscopecmp < 0) 2188 goto replace; /* (9) */ 2189 2190 replace: 2191 ifa_best = (struct in6_ifaddr *)ifa; 2192 blen = tlen >= 0 ? tlen : 2193 in6_matchlen(IFA_IN6(ifa), dst); 2194 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2195 } 2196 } 2197 2198 /* count statistics for future improvements */ 2199 if (ifa_best == NULL) 2200 ip6stat.ip6s_sources_none++; 2201 else { 2202 if (oifp == ifa_best->ia_ifp) 2203 ip6stat.ip6s_sources_sameif[best_scope]++; 2204 else 2205 ip6stat.ip6s_sources_otherif[best_scope]++; 2206 2207 if (best_scope == dst_scope) 2208 ip6stat.ip6s_sources_samescope[best_scope]++; 2209 else 2210 ip6stat.ip6s_sources_otherscope[best_scope]++; 2211 2212 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2213 ip6stat.ip6s_sources_deprecated[best_scope]++; 2214 } 2215 2216 return(ifa_best); 2217 } 2218 2219 /* 2220 * return the best address out of the same scope. if no address was 2221 * found, return the first valid address from designated IF. 2222 */ 2223 struct in6_ifaddr * 2224 in6_ifawithifp(ifp, dst) 2225 struct ifnet *ifp; 2226 struct in6_addr *dst; 2227 { 2228 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2229 struct ifaddr *ifa; 2230 struct in6_ifaddr *besta = 0; 2231 struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/ 2232 2233 dep[0] = dep[1] = NULL; 2234 2235 /* 2236 * We first look for addresses in the same scope. 2237 * If there is one, return it. 2238 * If two or more, return one which matches the dst longest. 2239 * If none, return one of global addresses assigned other ifs. 2240 */ 2241 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2242 { 2243 if (ifa->ifa_addr->sa_family != AF_INET6) 2244 continue; 2245 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2246 continue; /* XXX: is there any case to allow anycast? */ 2247 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2248 continue; /* don't use this interface */ 2249 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2250 continue; 2251 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2252 if (ip6_use_deprecated) 2253 dep[0] = (struct in6_ifaddr *)ifa; 2254 continue; 2255 } 2256 2257 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2258 /* 2259 * call in6_matchlen() as few as possible 2260 */ 2261 if (besta) { 2262 if (blen == -1) 2263 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2264 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2265 if (tlen > blen) { 2266 blen = tlen; 2267 besta = (struct in6_ifaddr *)ifa; 2268 } 2269 } else 2270 besta = (struct in6_ifaddr *)ifa; 2271 } 2272 } 2273 if (besta) 2274 return(besta); 2275 2276 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2277 { 2278 if (ifa->ifa_addr->sa_family != AF_INET6) 2279 continue; 2280 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2281 continue; /* XXX: is there any case to allow anycast? */ 2282 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2283 continue; /* don't use this interface */ 2284 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2285 continue; 2286 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2287 if (ip6_use_deprecated) 2288 dep[1] = (struct in6_ifaddr *)ifa; 2289 continue; 2290 } 2291 2292 return (struct in6_ifaddr *)ifa; 2293 } 2294 2295 /* use the last-resort values, that are, deprecated addresses */ 2296 if (dep[0]) 2297 return dep[0]; 2298 if (dep[1]) 2299 return dep[1]; 2300 2301 return NULL; 2302 } 2303 2304 /* 2305 * perform DAD when interface becomes IFF_UP. 2306 */ 2307 void 2308 in6_if_up(ifp) 2309 struct ifnet *ifp; 2310 { 2311 struct ifaddr *ifa; 2312 struct in6_ifaddr *ia; 2313 int dad_delay; /* delay ticks before DAD output */ 2314 2315 /* 2316 * special cases, like 6to4, are handled in in6_ifattach 2317 */ 2318 in6_ifattach(ifp, NULL); 2319 2320 dad_delay = 0; 2321 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2322 { 2323 if (ifa->ifa_addr->sa_family != AF_INET6) 2324 continue; 2325 ia = (struct in6_ifaddr *)ifa; 2326 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2327 nd6_dad_start(ifa, &dad_delay); 2328 } 2329 } 2330 2331 int 2332 in6if_do_dad(ifp) 2333 struct ifnet *ifp; 2334 { 2335 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2336 return(0); 2337 2338 switch (ifp->if_type) { 2339 #ifdef IFT_DUMMY 2340 case IFT_DUMMY: 2341 #endif 2342 case IFT_FAITH: 2343 /* 2344 * These interfaces do not have the IFF_LOOPBACK flag, 2345 * but loop packets back. We do not have to do DAD on such 2346 * interfaces. We should even omit it, because loop-backed 2347 * NS would confuse the DAD procedure. 2348 */ 2349 return(0); 2350 default: 2351 /* 2352 * Our DAD routine requires the interface up and running. 2353 * However, some interfaces can be up before the RUNNING 2354 * status. Additionaly, users may try to assign addresses 2355 * before the interface becomes up (or running). 2356 * We simply skip DAD in such a case as a work around. 2357 * XXX: we should rather mark "tentative" on such addresses, 2358 * and do DAD after the interface becomes ready. 2359 */ 2360 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2361 (IFF_UP|IFF_RUNNING)) 2362 return(0); 2363 2364 return(1); 2365 } 2366 } 2367 2368 /* 2369 * Calculate max IPv6 MTU through all the interfaces and store it 2370 * to in6_maxmtu. 2371 */ 2372 void 2373 in6_setmaxmtu() 2374 { 2375 unsigned long maxmtu = 0; 2376 struct ifnet *ifp; 2377 2378 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2379 { 2380 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2381 nd_ifinfo[ifp->if_index].linkmtu > maxmtu) 2382 maxmtu = nd_ifinfo[ifp->if_index].linkmtu; 2383 } 2384 if (maxmtu) /* update only when maxmtu is positive */ 2385 in6_maxmtu = maxmtu; 2386 } 2387 2388 /* 2389 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2390 * v4 mapped addr or v4 compat addr 2391 */ 2392 void 2393 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2394 { 2395 bzero(sin, sizeof(*sin)); 2396 sin->sin_len = sizeof(struct sockaddr_in); 2397 sin->sin_family = AF_INET; 2398 sin->sin_port = sin6->sin6_port; 2399 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2400 } 2401 2402 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2403 void 2404 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2405 { 2406 bzero(sin6, sizeof(*sin6)); 2407 sin6->sin6_len = sizeof(struct sockaddr_in6); 2408 sin6->sin6_family = AF_INET6; 2409 sin6->sin6_port = sin->sin_port; 2410 sin6->sin6_addr.s6_addr32[0] = 0; 2411 sin6->sin6_addr.s6_addr32[1] = 0; 2412 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2413 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2414 } 2415 2416 /* Convert sockaddr_in6 into sockaddr_in. */ 2417 void 2418 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2419 { 2420 struct sockaddr_in *sin_p; 2421 struct sockaddr_in6 sin6; 2422 2423 /* 2424 * Save original sockaddr_in6 addr and convert it 2425 * to sockaddr_in. 2426 */ 2427 sin6 = *(struct sockaddr_in6 *)nam; 2428 sin_p = (struct sockaddr_in *)nam; 2429 in6_sin6_2_sin(sin_p, &sin6); 2430 } 2431 2432 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2433 void 2434 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2435 { 2436 struct sockaddr_in *sin_p; 2437 struct sockaddr_in6 *sin6_p; 2438 2439 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2440 M_WAITOK); 2441 sin_p = (struct sockaddr_in *)*nam; 2442 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2443 FREE(*nam, M_SONAME); 2444 *nam = (struct sockaddr *)sin6_p; 2445 } 2446