1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 69 #include <sys/param.h> 70 #include <sys/errno.h> 71 #include <sys/malloc.h> 72 #include <sys/socket.h> 73 #include <sys/socketvar.h> 74 #include <sys/sockio.h> 75 #include <sys/systm.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/time.h> 79 #include <sys/kernel.h> 80 #include <sys/syslog.h> 81 #include <sys/vimage.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 #include <net/vnet.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/if_ether.h> 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/in_pcb.h> 95 96 #include <netinet/ip6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/nd6.h> 99 #include <netinet6/mld6_var.h> 100 #include <netinet6/ip6_mroute.h> 101 #include <netinet6/in6_ifattach.h> 102 #include <netinet6/scope6_var.h> 103 #include <netinet6/in6_pcb.h> 104 #include <netinet6/vinet6.h> 105 106 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 107 108 /* 109 * Definitions of some costant IP6 addresses. 110 */ 111 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 112 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 113 const struct in6_addr in6addr_nodelocal_allnodes = 114 IN6ADDR_NODELOCAL_ALLNODES_INIT; 115 const struct in6_addr in6addr_linklocal_allnodes = 116 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 117 const struct in6_addr in6addr_linklocal_allrouters = 118 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 119 120 const struct in6_addr in6mask0 = IN6MASK0; 121 const struct in6_addr in6mask32 = IN6MASK32; 122 const struct in6_addr in6mask64 = IN6MASK64; 123 const struct in6_addr in6mask96 = IN6MASK96; 124 const struct in6_addr in6mask128 = IN6MASK128; 125 126 const struct sockaddr_in6 sa6_any = 127 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 128 129 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 130 struct ifnet *, struct thread *)); 131 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 132 struct sockaddr_in6 *, int)); 133 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 134 135 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 136 int (*faithprefix_p)(struct in6_addr *); 137 138 /* 139 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 140 * This routine does actual work. 141 */ 142 static void 143 in6_ifloop_request(int cmd, struct ifaddr *ifa) 144 { 145 struct sockaddr_in6 all1_sa; 146 struct rtentry *nrt = NULL; 147 int e; 148 char ip6buf[INET6_ADDRSTRLEN]; 149 150 bzero(&all1_sa, sizeof(all1_sa)); 151 all1_sa.sin6_family = AF_INET6; 152 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 153 all1_sa.sin6_addr = in6mask128; 154 155 /* 156 * We specify the address itself as the gateway, and set the 157 * RTF_LLINFO flag, so that the corresponding host route would have 158 * the flag, and thus applications that assume traditional behavior 159 * would be happy. Note that we assume the caller of the function 160 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 161 * which changes the outgoing interface to the loopback interface. 162 */ 163 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 164 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 165 if (e != 0) { 166 /* XXX need more descriptive message */ 167 168 log(LOG_ERR, "in6_ifloop_request: " 169 "%s operation failed for %s (errno=%d)\n", 170 cmd == RTM_ADD ? "ADD" : "DELETE", 171 ip6_sprintf(ip6buf, 172 &((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); 173 } 174 175 /* 176 * Report the addition/removal of the address to the routing socket. 177 * XXX: since we called rtinit for a p2p interface with a destination, 178 * we end up reporting twice in such a case. Should we rather 179 * omit the second report? 180 */ 181 if (nrt) { 182 RT_LOCK(nrt); 183 /* 184 * Make sure rt_ifa be equal to IFA, the second argument of 185 * the function. We need this because when we refer to 186 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa 187 * points to the address instead of the loopback address. 188 */ 189 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { 190 IFAFREE(nrt->rt_ifa); 191 IFAREF(ifa); 192 nrt->rt_ifa = ifa; 193 } 194 195 rt_newaddrmsg(cmd, ifa, e, nrt); 196 if (cmd == RTM_DELETE) 197 RTFREE_LOCKED(nrt); 198 else { 199 /* the cmd must be RTM_ADD here */ 200 RT_REMREF(nrt); 201 RT_UNLOCK(nrt); 202 } 203 } 204 } 205 206 /* 207 * Add ownaddr as loopback rtentry. We previously add the route only if 208 * necessary (ex. on a p2p link). However, since we now manage addresses 209 * separately from prefixes, we should always add the route. We can't 210 * rely on the cloning mechanism from the corresponding interface route 211 * any more. 212 */ 213 void 214 in6_ifaddloop(struct ifaddr *ifa) 215 { 216 struct rtentry *rt; 217 int need_loop; 218 219 /* If there is no loopback entry, allocate one. */ 220 rt = rtalloc1(ifa->ifa_addr, 0, 0); 221 need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 222 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); 223 if (rt) 224 RTFREE_LOCKED(rt); 225 if (need_loop) 226 in6_ifloop_request(RTM_ADD, ifa); 227 } 228 229 /* 230 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 231 * if it exists. 232 */ 233 void 234 in6_ifremloop(struct ifaddr *ifa) 235 { 236 INIT_VNET_INET6(curvnet); 237 struct in6_ifaddr *ia; 238 struct rtentry *rt; 239 int ia_count = 0; 240 241 /* 242 * Some of BSD variants do not remove cloned routes 243 * from an interface direct route, when removing the direct route 244 * (see comments in net/net_osdep.h). Even for variants that do remove 245 * cloned routes, they could fail to remove the cloned routes when 246 * we handle multple addresses that share a common prefix. 247 * So, we should remove the route corresponding to the deleted address. 248 */ 249 250 /* 251 * Delete the entry only if exact one ifa exists. More than one ifa 252 * can exist if we assign a same single address to multiple 253 * (probably p2p) interfaces. 254 * XXX: we should avoid such a configuration in IPv6... 255 */ 256 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 257 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 258 ia_count++; 259 if (ia_count > 1) 260 break; 261 } 262 } 263 264 if (ia_count == 1) { 265 /* 266 * Before deleting, check if a corresponding loopbacked host 267 * route surely exists. With this check, we can avoid to 268 * delete an interface direct route whose destination is same 269 * as the address being removed. This can happen when removing 270 * a subnet-router anycast address on an interface attahced 271 * to a shared medium. 272 */ 273 rt = rtalloc1(ifa->ifa_addr, 0, 0); 274 if (rt != NULL) { 275 if ((rt->rt_flags & RTF_HOST) != 0 && 276 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 277 RTFREE_LOCKED(rt); 278 in6_ifloop_request(RTM_DELETE, ifa); 279 } else 280 RT_UNLOCK(rt); 281 } 282 } 283 } 284 285 int 286 in6_mask2len(struct in6_addr *mask, u_char *lim0) 287 { 288 int x = 0, y; 289 u_char *lim = lim0, *p; 290 291 /* ignore the scope_id part */ 292 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 293 lim = (u_char *)mask + sizeof(*mask); 294 for (p = (u_char *)mask; p < lim; x++, p++) { 295 if (*p != 0xff) 296 break; 297 } 298 y = 0; 299 if (p < lim) { 300 for (y = 0; y < 8; y++) { 301 if ((*p & (0x80 >> y)) == 0) 302 break; 303 } 304 } 305 306 /* 307 * when the limit pointer is given, do a stricter check on the 308 * remaining bits. 309 */ 310 if (p < lim) { 311 if (y != 0 && (*p & (0x00ff >> y)) != 0) 312 return (-1); 313 for (p = p + 1; p < lim; p++) 314 if (*p != 0) 315 return (-1); 316 } 317 318 return x * 8 + y; 319 } 320 321 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 322 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 323 324 int 325 in6_control(struct socket *so, u_long cmd, caddr_t data, 326 struct ifnet *ifp, struct thread *td) 327 { 328 INIT_VNET_INET6(curvnet); 329 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 330 struct in6_ifaddr *ia = NULL; 331 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 332 struct sockaddr_in6 *sa6; 333 int error; 334 335 switch (cmd) { 336 case SIOCGETSGCNT_IN6: 337 case SIOCGETMIFCNT_IN6: 338 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 339 } 340 341 switch(cmd) { 342 case SIOCAADDRCTL_POLICY: 343 case SIOCDADDRCTL_POLICY: 344 if (td != NULL) { 345 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 346 if (error) 347 return (error); 348 } 349 return (in6_src_ioctl(cmd, data)); 350 } 351 352 if (ifp == NULL) 353 return (EOPNOTSUPP); 354 355 switch (cmd) { 356 case SIOCSNDFLUSH_IN6: 357 case SIOCSPFXFLUSH_IN6: 358 case SIOCSRTRFLUSH_IN6: 359 case SIOCSDEFIFACE_IN6: 360 case SIOCSIFINFO_FLAGS: 361 if (td != NULL) { 362 error = priv_check(td, PRIV_NETINET_ND6); 363 if (error) 364 return (error); 365 } 366 /* FALLTHROUGH */ 367 case OSIOCGIFINFO_IN6: 368 case SIOCGIFINFO_IN6: 369 case SIOCSIFINFO_IN6: 370 case SIOCGDRLST_IN6: 371 case SIOCGPRLST_IN6: 372 case SIOCGNBRINFO_IN6: 373 case SIOCGDEFIFACE_IN6: 374 return (nd6_ioctl(cmd, data, ifp)); 375 } 376 377 switch (cmd) { 378 case SIOCSIFPREFIX_IN6: 379 case SIOCDIFPREFIX_IN6: 380 case SIOCAIFPREFIX_IN6: 381 case SIOCCIFPREFIX_IN6: 382 case SIOCSGIFPREFIX_IN6: 383 case SIOCGIFPREFIX_IN6: 384 log(LOG_NOTICE, 385 "prefix ioctls are now invalidated. " 386 "please use ifconfig.\n"); 387 return (EOPNOTSUPP); 388 } 389 390 switch (cmd) { 391 case SIOCSSCOPE6: 392 if (td != NULL) { 393 error = priv_check(td, PRIV_NETINET_SCOPE6); 394 if (error) 395 return (error); 396 } 397 return (scope6_set(ifp, 398 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 399 case SIOCGSCOPE6: 400 return (scope6_get(ifp, 401 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 402 case SIOCGSCOPE6DEF: 403 return (scope6_get_default((struct scope6_id *) 404 ifr->ifr_ifru.ifru_scope_id)); 405 } 406 407 switch (cmd) { 408 case SIOCALIFADDR: 409 if (td != NULL) { 410 error = priv_check(td, PRIV_NET_ADDIFADDR); 411 if (error) 412 return (error); 413 } 414 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 415 416 case SIOCDLIFADDR: 417 if (td != NULL) { 418 error = priv_check(td, PRIV_NET_DELIFADDR); 419 if (error) 420 return (error); 421 } 422 /* FALLTHROUGH */ 423 case SIOCGLIFADDR: 424 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 425 } 426 427 /* 428 * Find address for this interface, if it exists. 429 * 430 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 431 * only, and used the first interface address as the target of other 432 * operations (without checking ifra_addr). This was because netinet 433 * code/API assumed at most 1 interface address per interface. 434 * Since IPv6 allows a node to assign multiple addresses 435 * on a single interface, we almost always look and check the 436 * presence of ifra_addr, and reject invalid ones here. 437 * It also decreases duplicated code among SIOC*_IN6 operations. 438 */ 439 switch (cmd) { 440 case SIOCAIFADDR_IN6: 441 case SIOCSIFPHYADDR_IN6: 442 sa6 = &ifra->ifra_addr; 443 break; 444 case SIOCSIFADDR_IN6: 445 case SIOCGIFADDR_IN6: 446 case SIOCSIFDSTADDR_IN6: 447 case SIOCSIFNETMASK_IN6: 448 case SIOCGIFDSTADDR_IN6: 449 case SIOCGIFNETMASK_IN6: 450 case SIOCDIFADDR_IN6: 451 case SIOCGIFPSRCADDR_IN6: 452 case SIOCGIFPDSTADDR_IN6: 453 case SIOCGIFAFLAG_IN6: 454 case SIOCSNDFLUSH_IN6: 455 case SIOCSPFXFLUSH_IN6: 456 case SIOCSRTRFLUSH_IN6: 457 case SIOCGIFALIFETIME_IN6: 458 case SIOCSIFALIFETIME_IN6: 459 case SIOCGIFSTAT_IN6: 460 case SIOCGIFSTAT_ICMP6: 461 sa6 = &ifr->ifr_addr; 462 break; 463 default: 464 sa6 = NULL; 465 break; 466 } 467 if (sa6 && sa6->sin6_family == AF_INET6) { 468 int error = 0; 469 470 if (sa6->sin6_scope_id != 0) 471 error = sa6_embedscope(sa6, 0); 472 else 473 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 474 if (error != 0) 475 return (error); 476 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 477 } else 478 ia = NULL; 479 480 switch (cmd) { 481 case SIOCSIFADDR_IN6: 482 case SIOCSIFDSTADDR_IN6: 483 case SIOCSIFNETMASK_IN6: 484 /* 485 * Since IPv6 allows a node to assign multiple addresses 486 * on a single interface, SIOCSIFxxx ioctls are deprecated. 487 */ 488 /* we decided to obsolete this command (20000704) */ 489 return (EINVAL); 490 491 case SIOCDIFADDR_IN6: 492 /* 493 * for IPv4, we look for existing in_ifaddr here to allow 494 * "ifconfig if0 delete" to remove the first IPv4 address on 495 * the interface. For IPv6, as the spec allows multiple 496 * interface address from the day one, we consider "remove the 497 * first one" semantics to be not preferable. 498 */ 499 if (ia == NULL) 500 return (EADDRNOTAVAIL); 501 /* FALLTHROUGH */ 502 case SIOCAIFADDR_IN6: 503 /* 504 * We always require users to specify a valid IPv6 address for 505 * the corresponding operation. 506 */ 507 if (ifra->ifra_addr.sin6_family != AF_INET6 || 508 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 509 return (EAFNOSUPPORT); 510 511 if (td != NULL) { 512 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 513 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 514 if (error) 515 return (error); 516 } 517 518 break; 519 520 case SIOCGIFADDR_IN6: 521 /* This interface is basically deprecated. use SIOCGIFCONF. */ 522 /* FALLTHROUGH */ 523 case SIOCGIFAFLAG_IN6: 524 case SIOCGIFNETMASK_IN6: 525 case SIOCGIFDSTADDR_IN6: 526 case SIOCGIFALIFETIME_IN6: 527 /* must think again about its semantics */ 528 if (ia == NULL) 529 return (EADDRNOTAVAIL); 530 break; 531 case SIOCSIFALIFETIME_IN6: 532 { 533 struct in6_addrlifetime *lt; 534 535 if (td != NULL) { 536 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 537 if (error) 538 return (error); 539 } 540 if (ia == NULL) 541 return (EADDRNOTAVAIL); 542 /* sanity for overflow - beware unsigned */ 543 lt = &ifr->ifr_ifru.ifru_lifetime; 544 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 545 lt->ia6t_vltime + time_second < time_second) { 546 return EINVAL; 547 } 548 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 549 lt->ia6t_pltime + time_second < time_second) { 550 return EINVAL; 551 } 552 break; 553 } 554 } 555 556 switch (cmd) { 557 558 case SIOCGIFADDR_IN6: 559 ifr->ifr_addr = ia->ia_addr; 560 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 561 return (error); 562 break; 563 564 case SIOCGIFDSTADDR_IN6: 565 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 566 return (EINVAL); 567 /* 568 * XXX: should we check if ifa_dstaddr is NULL and return 569 * an error? 570 */ 571 ifr->ifr_dstaddr = ia->ia_dstaddr; 572 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 573 return (error); 574 break; 575 576 case SIOCGIFNETMASK_IN6: 577 ifr->ifr_addr = ia->ia_prefixmask; 578 break; 579 580 case SIOCGIFAFLAG_IN6: 581 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 582 break; 583 584 case SIOCGIFSTAT_IN6: 585 if (ifp == NULL) 586 return EINVAL; 587 bzero(&ifr->ifr_ifru.ifru_stat, 588 sizeof(ifr->ifr_ifru.ifru_stat)); 589 ifr->ifr_ifru.ifru_stat = 590 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 591 break; 592 593 case SIOCGIFSTAT_ICMP6: 594 if (ifp == NULL) 595 return EINVAL; 596 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 597 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 598 ifr->ifr_ifru.ifru_icmp6stat = 599 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 600 break; 601 602 case SIOCGIFALIFETIME_IN6: 603 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 604 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 605 time_t maxexpire; 606 struct in6_addrlifetime *retlt = 607 &ifr->ifr_ifru.ifru_lifetime; 608 609 /* 610 * XXX: adjust expiration time assuming time_t is 611 * signed. 612 */ 613 maxexpire = (-1) & 614 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 615 if (ia->ia6_lifetime.ia6t_vltime < 616 maxexpire - ia->ia6_updatetime) { 617 retlt->ia6t_expire = ia->ia6_updatetime + 618 ia->ia6_lifetime.ia6t_vltime; 619 } else 620 retlt->ia6t_expire = maxexpire; 621 } 622 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 623 time_t maxexpire; 624 struct in6_addrlifetime *retlt = 625 &ifr->ifr_ifru.ifru_lifetime; 626 627 /* 628 * XXX: adjust expiration time assuming time_t is 629 * signed. 630 */ 631 maxexpire = (-1) & 632 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 633 if (ia->ia6_lifetime.ia6t_pltime < 634 maxexpire - ia->ia6_updatetime) { 635 retlt->ia6t_preferred = ia->ia6_updatetime + 636 ia->ia6_lifetime.ia6t_pltime; 637 } else 638 retlt->ia6t_preferred = maxexpire; 639 } 640 break; 641 642 case SIOCSIFALIFETIME_IN6: 643 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 644 /* for sanity */ 645 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 646 ia->ia6_lifetime.ia6t_expire = 647 time_second + ia->ia6_lifetime.ia6t_vltime; 648 } else 649 ia->ia6_lifetime.ia6t_expire = 0; 650 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 651 ia->ia6_lifetime.ia6t_preferred = 652 time_second + ia->ia6_lifetime.ia6t_pltime; 653 } else 654 ia->ia6_lifetime.ia6t_preferred = 0; 655 break; 656 657 case SIOCAIFADDR_IN6: 658 { 659 int i, error = 0; 660 struct nd_prefixctl pr0; 661 struct nd_prefix *pr; 662 663 /* 664 * first, make or update the interface address structure, 665 * and link it to the list. 666 */ 667 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 668 return (error); 669 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 670 == NULL) { 671 /* 672 * this can happen when the user specify the 0 valid 673 * lifetime. 674 */ 675 break; 676 } 677 678 /* 679 * then, make the prefix on-link on the interface. 680 * XXX: we'd rather create the prefix before the address, but 681 * we need at least one address to install the corresponding 682 * interface route, so we configure the address first. 683 */ 684 685 /* 686 * convert mask to prefix length (prefixmask has already 687 * been validated in in6_update_ifa(). 688 */ 689 bzero(&pr0, sizeof(pr0)); 690 pr0.ndpr_ifp = ifp; 691 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 692 NULL); 693 if (pr0.ndpr_plen == 128) { 694 break; /* we don't need to install a host route. */ 695 } 696 pr0.ndpr_prefix = ifra->ifra_addr; 697 /* apply the mask for safety. */ 698 for (i = 0; i < 4; i++) { 699 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 700 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 701 } 702 /* 703 * XXX: since we don't have an API to set prefix (not address) 704 * lifetimes, we just use the same lifetimes as addresses. 705 * The (temporarily) installed lifetimes can be overridden by 706 * later advertised RAs (when accept_rtadv is non 0), which is 707 * an intended behavior. 708 */ 709 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 710 pr0.ndpr_raf_auto = 711 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 712 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 713 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 714 715 /* add the prefix if not yet. */ 716 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 717 /* 718 * nd6_prelist_add will install the corresponding 719 * interface route. 720 */ 721 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 722 return (error); 723 if (pr == NULL) { 724 log(LOG_ERR, "nd6_prelist_add succeeded but " 725 "no prefix\n"); 726 return (EINVAL); /* XXX panic here? */ 727 } 728 } 729 730 /* relate the address to the prefix */ 731 if (ia->ia6_ndpr == NULL) { 732 ia->ia6_ndpr = pr; 733 pr->ndpr_refcnt++; 734 735 /* 736 * If this is the first autoconf address from the 737 * prefix, create a temporary address as well 738 * (when required). 739 */ 740 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 741 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 742 int e; 743 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 744 log(LOG_NOTICE, "in6_control: failed " 745 "to create a temporary address, " 746 "errno=%d\n", e); 747 } 748 } 749 } 750 751 /* 752 * this might affect the status of autoconfigured addresses, 753 * that is, this address might make other addresses detached. 754 */ 755 pfxlist_onlink_check(); 756 if (error == 0 && ia) 757 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 758 break; 759 } 760 761 case SIOCDIFADDR_IN6: 762 { 763 struct nd_prefix *pr; 764 765 /* 766 * If the address being deleted is the only one that owns 767 * the corresponding prefix, expire the prefix as well. 768 * XXX: theoretically, we don't have to worry about such 769 * relationship, since we separate the address management 770 * and the prefix management. We do this, however, to provide 771 * as much backward compatibility as possible in terms of 772 * the ioctl operation. 773 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 774 */ 775 pr = ia->ia6_ndpr; 776 in6_purgeaddr(&ia->ia_ifa); 777 if (pr && pr->ndpr_refcnt == 0) 778 prelist_remove(pr); 779 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 780 break; 781 } 782 783 default: 784 if (ifp == NULL || ifp->if_ioctl == 0) 785 return (EOPNOTSUPP); 786 return ((*ifp->if_ioctl)(ifp, cmd, data)); 787 } 788 789 return (0); 790 } 791 792 /* 793 * Update parameters of an IPv6 interface address. 794 * If necessary, a new entry is created and linked into address chains. 795 * This function is separated from in6_control(). 796 * XXX: should this be performed under splnet()? 797 */ 798 int 799 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 800 struct in6_ifaddr *ia, int flags) 801 { 802 INIT_VNET_INET6(ifp->if_vnet); 803 INIT_VPROCG(TD_TO_VPROCG(curthread)); /* XXX V_hostname needs this */ 804 int error = 0, hostIsNew = 0, plen = -1; 805 struct in6_ifaddr *oia; 806 struct sockaddr_in6 dst6; 807 struct in6_addrlifetime *lt; 808 struct in6_multi_mship *imm; 809 struct in6_multi *in6m_sol; 810 struct rtentry *rt; 811 int delay; 812 char ip6buf[INET6_ADDRSTRLEN]; 813 814 /* Validate parameters */ 815 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 816 return (EINVAL); 817 818 /* 819 * The destination address for a p2p link must have a family 820 * of AF_UNSPEC or AF_INET6. 821 */ 822 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 823 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 824 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 825 return (EAFNOSUPPORT); 826 /* 827 * validate ifra_prefixmask. don't check sin6_family, netmask 828 * does not carry fields other than sin6_len. 829 */ 830 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 831 return (EINVAL); 832 /* 833 * Because the IPv6 address architecture is classless, we require 834 * users to specify a (non 0) prefix length (mask) for a new address. 835 * We also require the prefix (when specified) mask is valid, and thus 836 * reject a non-consecutive mask. 837 */ 838 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 839 return (EINVAL); 840 if (ifra->ifra_prefixmask.sin6_len != 0) { 841 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 842 (u_char *)&ifra->ifra_prefixmask + 843 ifra->ifra_prefixmask.sin6_len); 844 if (plen <= 0) 845 return (EINVAL); 846 } else { 847 /* 848 * In this case, ia must not be NULL. We just use its prefix 849 * length. 850 */ 851 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 852 } 853 /* 854 * If the destination address on a p2p interface is specified, 855 * and the address is a scoped one, validate/set the scope 856 * zone identifier. 857 */ 858 dst6 = ifra->ifra_dstaddr; 859 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 860 (dst6.sin6_family == AF_INET6)) { 861 struct in6_addr in6_tmp; 862 u_int32_t zoneid; 863 864 in6_tmp = dst6.sin6_addr; 865 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 866 return (EINVAL); /* XXX: should be impossible */ 867 868 if (dst6.sin6_scope_id != 0) { 869 if (dst6.sin6_scope_id != zoneid) 870 return (EINVAL); 871 } else /* user omit to specify the ID. */ 872 dst6.sin6_scope_id = zoneid; 873 874 /* convert into the internal form */ 875 if (sa6_embedscope(&dst6, 0)) 876 return (EINVAL); /* XXX: should be impossible */ 877 } 878 /* 879 * The destination address can be specified only for a p2p or a 880 * loopback interface. If specified, the corresponding prefix length 881 * must be 128. 882 */ 883 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 884 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 885 /* XXX: noisy message */ 886 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 887 "be specified for a p2p or a loopback IF only\n")); 888 return (EINVAL); 889 } 890 if (plen != 128) { 891 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 892 "be 128 when dstaddr is specified\n")); 893 return (EINVAL); 894 } 895 } 896 /* lifetime consistency check */ 897 lt = &ifra->ifra_lifetime; 898 if (lt->ia6t_pltime > lt->ia6t_vltime) 899 return (EINVAL); 900 if (lt->ia6t_vltime == 0) { 901 /* 902 * the following log might be noisy, but this is a typical 903 * configuration mistake or a tool's bug. 904 */ 905 nd6log((LOG_INFO, 906 "in6_update_ifa: valid lifetime is 0 for %s\n", 907 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 908 909 if (ia == NULL) 910 return (0); /* there's nothing to do */ 911 } 912 913 /* 914 * If this is a new address, allocate a new ifaddr and link it 915 * into chains. 916 */ 917 if (ia == NULL) { 918 hostIsNew = 1; 919 /* 920 * When in6_update_ifa() is called in a process of a received 921 * RA, it is called under an interrupt context. So, we should 922 * call malloc with M_NOWAIT. 923 */ 924 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 925 M_NOWAIT); 926 if (ia == NULL) 927 return (ENOBUFS); 928 bzero((caddr_t)ia, sizeof(*ia)); 929 LIST_INIT(&ia->ia6_memberships); 930 /* Initialize the address and masks, and put time stamp */ 931 IFA_LOCK_INIT(&ia->ia_ifa); 932 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 933 ia->ia_addr.sin6_family = AF_INET6; 934 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 935 ia->ia6_createtime = time_second; 936 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 937 /* 938 * XXX: some functions expect that ifa_dstaddr is not 939 * NULL for p2p interfaces. 940 */ 941 ia->ia_ifa.ifa_dstaddr = 942 (struct sockaddr *)&ia->ia_dstaddr; 943 } else { 944 ia->ia_ifa.ifa_dstaddr = NULL; 945 } 946 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 947 948 ia->ia_ifp = ifp; 949 if ((oia = V_in6_ifaddr) != NULL) { 950 for ( ; oia->ia_next; oia = oia->ia_next) 951 continue; 952 oia->ia_next = ia; 953 } else 954 V_in6_ifaddr = ia; 955 956 ia->ia_ifa.ifa_refcnt = 1; 957 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 958 } 959 960 /* update timestamp */ 961 ia->ia6_updatetime = time_second; 962 963 /* set prefix mask */ 964 if (ifra->ifra_prefixmask.sin6_len) { 965 /* 966 * We prohibit changing the prefix length of an existing 967 * address, because 968 * + such an operation should be rare in IPv6, and 969 * + the operation would confuse prefix management. 970 */ 971 if (ia->ia_prefixmask.sin6_len && 972 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 973 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 974 " existing (%s) address should not be changed\n", 975 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 976 error = EINVAL; 977 goto unlink; 978 } 979 ia->ia_prefixmask = ifra->ifra_prefixmask; 980 } 981 982 /* 983 * If a new destination address is specified, scrub the old one and 984 * install the new destination. Note that the interface must be 985 * p2p or loopback (see the check above.) 986 */ 987 if (dst6.sin6_family == AF_INET6 && 988 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 989 int e; 990 991 if ((ia->ia_flags & IFA_ROUTE) != 0 && 992 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 993 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 994 "a route to the old destination: %s\n", 995 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 996 /* proceed anyway... */ 997 } else 998 ia->ia_flags &= ~IFA_ROUTE; 999 ia->ia_dstaddr = dst6; 1000 } 1001 1002 /* 1003 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1004 * to see if the address is deprecated or invalidated, but initialize 1005 * these members for applications. 1006 */ 1007 ia->ia6_lifetime = ifra->ifra_lifetime; 1008 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1009 ia->ia6_lifetime.ia6t_expire = 1010 time_second + ia->ia6_lifetime.ia6t_vltime; 1011 } else 1012 ia->ia6_lifetime.ia6t_expire = 0; 1013 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1014 ia->ia6_lifetime.ia6t_preferred = 1015 time_second + ia->ia6_lifetime.ia6t_pltime; 1016 } else 1017 ia->ia6_lifetime.ia6t_preferred = 0; 1018 1019 /* reset the interface and routing table appropriately. */ 1020 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1021 goto unlink; 1022 1023 /* 1024 * configure address flags. 1025 */ 1026 ia->ia6_flags = ifra->ifra_flags; 1027 /* 1028 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1029 * userland, make it deprecated. 1030 */ 1031 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1032 ia->ia6_lifetime.ia6t_pltime = 0; 1033 ia->ia6_lifetime.ia6t_preferred = time_second; 1034 } 1035 /* 1036 * Make the address tentative before joining multicast addresses, 1037 * so that corresponding MLD responses would not have a tentative 1038 * source address. 1039 */ 1040 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1041 if (hostIsNew && in6if_do_dad(ifp)) 1042 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1043 1044 /* 1045 * We are done if we have simply modified an existing address. 1046 */ 1047 if (!hostIsNew) 1048 return (error); 1049 1050 /* 1051 * Beyond this point, we should call in6_purgeaddr upon an error, 1052 * not just go to unlink. 1053 */ 1054 1055 /* Join necessary multicast groups */ 1056 in6m_sol = NULL; 1057 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1058 struct sockaddr_in6 mltaddr, mltmask; 1059 struct in6_addr llsol; 1060 1061 /* join solicited multicast addr for new host id */ 1062 bzero(&llsol, sizeof(struct in6_addr)); 1063 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1064 llsol.s6_addr32[1] = 0; 1065 llsol.s6_addr32[2] = htonl(1); 1066 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1067 llsol.s6_addr8[12] = 0xff; 1068 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1069 /* XXX: should not happen */ 1070 log(LOG_ERR, "in6_update_ifa: " 1071 "in6_setscope failed\n"); 1072 goto cleanup; 1073 } 1074 delay = 0; 1075 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1076 /* 1077 * We need a random delay for DAD on the address 1078 * being configured. It also means delaying 1079 * transmission of the corresponding MLD report to 1080 * avoid report collision. 1081 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1082 */ 1083 delay = arc4random() % 1084 (MAX_RTR_SOLICITATION_DELAY * hz); 1085 } 1086 imm = in6_joingroup(ifp, &llsol, &error, delay); 1087 if (imm == NULL) { 1088 nd6log((LOG_WARNING, 1089 "in6_update_ifa: addmulti failed for " 1090 "%s on %s (errno=%d)\n", 1091 ip6_sprintf(ip6buf, &llsol), if_name(ifp), 1092 error)); 1093 in6_purgeaddr((struct ifaddr *)ia); 1094 return (error); 1095 } 1096 LIST_INSERT_HEAD(&ia->ia6_memberships, 1097 imm, i6mm_chain); 1098 in6m_sol = imm->i6mm_maddr; 1099 1100 bzero(&mltmask, sizeof(mltmask)); 1101 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1102 mltmask.sin6_family = AF_INET6; 1103 mltmask.sin6_addr = in6mask32; 1104 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1105 1106 /* 1107 * join link-local all-nodes address 1108 */ 1109 bzero(&mltaddr, sizeof(mltaddr)); 1110 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1111 mltaddr.sin6_family = AF_INET6; 1112 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1113 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1114 0) 1115 goto cleanup; /* XXX: should not fail */ 1116 1117 /* 1118 * XXX: do we really need this automatic routes? 1119 * We should probably reconsider this stuff. Most applications 1120 * actually do not need the routes, since they usually specify 1121 * the outgoing interface. 1122 */ 1123 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1124 if (rt) { 1125 /* XXX: only works in !SCOPEDROUTING case. */ 1126 if (memcmp(&mltaddr.sin6_addr, 1127 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1128 MLTMASK_LEN)) { 1129 RTFREE_LOCKED(rt); 1130 rt = NULL; 1131 } 1132 } 1133 if (!rt) { 1134 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1135 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1136 (struct sockaddr *)&ia->ia_addr, 1137 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1138 (struct rtentry **)0); 1139 if (error) 1140 goto cleanup; 1141 } else { 1142 RTFREE_LOCKED(rt); 1143 } 1144 1145 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1146 if (!imm) { 1147 nd6log((LOG_WARNING, 1148 "in6_update_ifa: addmulti failed for " 1149 "%s on %s (errno=%d)\n", 1150 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1151 if_name(ifp), error)); 1152 goto cleanup; 1153 } 1154 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1155 1156 /* 1157 * join node information group address 1158 */ 1159 #define hostnamelen strlen(V_hostname) 1160 delay = 0; 1161 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1162 /* 1163 * The spec doesn't say anything about delay for this 1164 * group, but the same logic should apply. 1165 */ 1166 delay = arc4random() % 1167 (MAX_RTR_SOLICITATION_DELAY * hz); 1168 } 1169 mtx_lock(&hostname_mtx); 1170 if (in6_nigroup(ifp, V_hostname, hostnamelen, 1171 &mltaddr.sin6_addr) == 0) { 1172 mtx_unlock(&hostname_mtx); 1173 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1174 delay); /* XXX jinmei */ 1175 if (!imm) { 1176 nd6log((LOG_WARNING, "in6_update_ifa: " 1177 "addmulti failed for %s on %s " 1178 "(errno=%d)\n", 1179 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1180 if_name(ifp), error)); 1181 /* XXX not very fatal, go on... */ 1182 } else { 1183 LIST_INSERT_HEAD(&ia->ia6_memberships, 1184 imm, i6mm_chain); 1185 } 1186 } else 1187 mtx_unlock(&hostname_mtx); 1188 #undef hostnamelen 1189 1190 /* 1191 * join interface-local all-nodes address. 1192 * (ff01::1%ifN, and ff01::%ifN/32) 1193 */ 1194 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1195 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1196 != 0) 1197 goto cleanup; /* XXX: should not fail */ 1198 /* XXX: again, do we really need the route? */ 1199 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1200 if (rt) { 1201 if (memcmp(&mltaddr.sin6_addr, 1202 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1203 MLTMASK_LEN)) { 1204 RTFREE_LOCKED(rt); 1205 rt = NULL; 1206 } 1207 } 1208 if (!rt) { 1209 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1210 (struct sockaddr *)&ia->ia_addr, 1211 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1212 (struct rtentry **)0); 1213 if (error) 1214 goto cleanup; 1215 } else 1216 RTFREE_LOCKED(rt); 1217 1218 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1219 if (!imm) { 1220 nd6log((LOG_WARNING, "in6_update_ifa: " 1221 "addmulti failed for %s on %s " 1222 "(errno=%d)\n", 1223 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1224 if_name(ifp), error)); 1225 goto cleanup; 1226 } 1227 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1228 #undef MLTMASK_LEN 1229 } 1230 1231 /* 1232 * Perform DAD, if needed. 1233 * XXX It may be of use, if we can administratively 1234 * disable DAD. 1235 */ 1236 if (hostIsNew && in6if_do_dad(ifp) && 1237 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1238 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1239 { 1240 int mindelay, maxdelay; 1241 1242 delay = 0; 1243 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1244 /* 1245 * We need to impose a delay before sending an NS 1246 * for DAD. Check if we also needed a delay for the 1247 * corresponding MLD message. If we did, the delay 1248 * should be larger than the MLD delay (this could be 1249 * relaxed a bit, but this simple logic is at least 1250 * safe). 1251 */ 1252 mindelay = 0; 1253 if (in6m_sol != NULL && 1254 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1255 mindelay = in6m_sol->in6m_timer; 1256 } 1257 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1258 if (maxdelay - mindelay == 0) 1259 delay = 0; 1260 else { 1261 delay = 1262 (arc4random() % (maxdelay - mindelay)) + 1263 mindelay; 1264 } 1265 } 1266 nd6_dad_start((struct ifaddr *)ia, delay); 1267 } 1268 1269 return (error); 1270 1271 unlink: 1272 /* 1273 * XXX: if a change of an existing address failed, keep the entry 1274 * anyway. 1275 */ 1276 if (hostIsNew) 1277 in6_unlink_ifa(ia, ifp); 1278 return (error); 1279 1280 cleanup: 1281 in6_purgeaddr(&ia->ia_ifa); 1282 return error; 1283 } 1284 1285 void 1286 in6_purgeaddr(struct ifaddr *ifa) 1287 { 1288 struct ifnet *ifp = ifa->ifa_ifp; 1289 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1290 char ip6buf[INET6_ADDRSTRLEN]; 1291 struct in6_multi_mship *imm; 1292 1293 /* stop DAD processing */ 1294 nd6_dad_stop(ifa); 1295 1296 /* 1297 * delete route to the destination of the address being purged. 1298 * The interface must be p2p or loopback in this case. 1299 */ 1300 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1301 int e; 1302 1303 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1304 != 0) { 1305 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1306 "a route to the p2p destination: %s on %s, " 1307 "errno=%d\n", 1308 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), 1309 if_name(ifp), e); 1310 /* proceed anyway... */ 1311 } else 1312 ia->ia_flags &= ~IFA_ROUTE; 1313 } 1314 1315 /* Remove ownaddr's loopback rtentry, if it exists. */ 1316 in6_ifremloop(&(ia->ia_ifa)); 1317 1318 /* 1319 * leave from multicast groups we have joined for the interface 1320 */ 1321 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1322 LIST_REMOVE(imm, i6mm_chain); 1323 in6_leavegroup(imm); 1324 } 1325 1326 in6_unlink_ifa(ia, ifp); 1327 } 1328 1329 static void 1330 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1331 { 1332 INIT_VNET_INET6(ifp->if_vnet); 1333 struct in6_ifaddr *oia; 1334 int s = splnet(); 1335 1336 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1337 1338 oia = ia; 1339 if (oia == (ia = V_in6_ifaddr)) 1340 V_in6_ifaddr = ia->ia_next; 1341 else { 1342 while (ia->ia_next && (ia->ia_next != oia)) 1343 ia = ia->ia_next; 1344 if (ia->ia_next) 1345 ia->ia_next = oia->ia_next; 1346 else { 1347 /* search failed */ 1348 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1349 } 1350 } 1351 1352 /* 1353 * Release the reference to the base prefix. There should be a 1354 * positive reference. 1355 */ 1356 if (oia->ia6_ndpr == NULL) { 1357 nd6log((LOG_NOTICE, 1358 "in6_unlink_ifa: autoconf'ed address " 1359 "%p has no prefix\n", oia)); 1360 } else { 1361 oia->ia6_ndpr->ndpr_refcnt--; 1362 oia->ia6_ndpr = NULL; 1363 } 1364 1365 /* 1366 * Also, if the address being removed is autoconf'ed, call 1367 * pfxlist_onlink_check() since the release might affect the status of 1368 * other (detached) addresses. 1369 */ 1370 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1371 pfxlist_onlink_check(); 1372 } 1373 1374 /* 1375 * release another refcnt for the link from in6_ifaddr. 1376 * Note that we should decrement the refcnt at least once for all *BSD. 1377 */ 1378 IFAFREE(&oia->ia_ifa); 1379 1380 splx(s); 1381 } 1382 1383 void 1384 in6_purgeif(struct ifnet *ifp) 1385 { 1386 struct ifaddr *ifa, *nifa; 1387 1388 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1389 nifa = TAILQ_NEXT(ifa, ifa_list); 1390 if (ifa->ifa_addr->sa_family != AF_INET6) 1391 continue; 1392 in6_purgeaddr(ifa); 1393 } 1394 1395 in6_ifdetach(ifp); 1396 } 1397 1398 /* 1399 * SIOC[GAD]LIFADDR. 1400 * SIOCGLIFADDR: get first address. (?) 1401 * SIOCGLIFADDR with IFLR_PREFIX: 1402 * get first address that matches the specified prefix. 1403 * SIOCALIFADDR: add the specified address. 1404 * SIOCALIFADDR with IFLR_PREFIX: 1405 * add the specified prefix, filling hostid part from 1406 * the first link-local address. prefixlen must be <= 64. 1407 * SIOCDLIFADDR: delete the specified address. 1408 * SIOCDLIFADDR with IFLR_PREFIX: 1409 * delete the first address that matches the specified prefix. 1410 * return values: 1411 * EINVAL on invalid parameters 1412 * EADDRNOTAVAIL on prefix match failed/specified address not found 1413 * other values may be returned from in6_ioctl() 1414 * 1415 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1416 * this is to accomodate address naming scheme other than RFC2374, 1417 * in the future. 1418 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1419 * address encoding scheme. (see figure on page 8) 1420 */ 1421 static int 1422 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1423 struct ifnet *ifp, struct thread *td) 1424 { 1425 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1426 struct ifaddr *ifa; 1427 struct sockaddr *sa; 1428 1429 /* sanity checks */ 1430 if (!data || !ifp) { 1431 panic("invalid argument to in6_lifaddr_ioctl"); 1432 /* NOTREACHED */ 1433 } 1434 1435 switch (cmd) { 1436 case SIOCGLIFADDR: 1437 /* address must be specified on GET with IFLR_PREFIX */ 1438 if ((iflr->flags & IFLR_PREFIX) == 0) 1439 break; 1440 /* FALLTHROUGH */ 1441 case SIOCALIFADDR: 1442 case SIOCDLIFADDR: 1443 /* address must be specified on ADD and DELETE */ 1444 sa = (struct sockaddr *)&iflr->addr; 1445 if (sa->sa_family != AF_INET6) 1446 return EINVAL; 1447 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1448 return EINVAL; 1449 /* XXX need improvement */ 1450 sa = (struct sockaddr *)&iflr->dstaddr; 1451 if (sa->sa_family && sa->sa_family != AF_INET6) 1452 return EINVAL; 1453 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1454 return EINVAL; 1455 break; 1456 default: /* shouldn't happen */ 1457 #if 0 1458 panic("invalid cmd to in6_lifaddr_ioctl"); 1459 /* NOTREACHED */ 1460 #else 1461 return EOPNOTSUPP; 1462 #endif 1463 } 1464 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1465 return EINVAL; 1466 1467 switch (cmd) { 1468 case SIOCALIFADDR: 1469 { 1470 struct in6_aliasreq ifra; 1471 struct in6_addr *hostid = NULL; 1472 int prefixlen; 1473 1474 if ((iflr->flags & IFLR_PREFIX) != 0) { 1475 struct sockaddr_in6 *sin6; 1476 1477 /* 1478 * hostid is to fill in the hostid part of the 1479 * address. hostid points to the first link-local 1480 * address attached to the interface. 1481 */ 1482 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1483 if (!ifa) 1484 return EADDRNOTAVAIL; 1485 hostid = IFA_IN6(ifa); 1486 1487 /* prefixlen must be <= 64. */ 1488 if (64 < iflr->prefixlen) 1489 return EINVAL; 1490 prefixlen = iflr->prefixlen; 1491 1492 /* hostid part must be zero. */ 1493 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1494 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1495 sin6->sin6_addr.s6_addr32[3] != 0) { 1496 return EINVAL; 1497 } 1498 } else 1499 prefixlen = iflr->prefixlen; 1500 1501 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1502 bzero(&ifra, sizeof(ifra)); 1503 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1504 1505 bcopy(&iflr->addr, &ifra.ifra_addr, 1506 ((struct sockaddr *)&iflr->addr)->sa_len); 1507 if (hostid) { 1508 /* fill in hostid part */ 1509 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1510 hostid->s6_addr32[2]; 1511 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1512 hostid->s6_addr32[3]; 1513 } 1514 1515 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1516 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1517 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1518 if (hostid) { 1519 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1520 hostid->s6_addr32[2]; 1521 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1522 hostid->s6_addr32[3]; 1523 } 1524 } 1525 1526 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1527 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1528 1529 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1530 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1531 } 1532 case SIOCGLIFADDR: 1533 case SIOCDLIFADDR: 1534 { 1535 struct in6_ifaddr *ia; 1536 struct in6_addr mask, candidate, match; 1537 struct sockaddr_in6 *sin6; 1538 int cmp; 1539 1540 bzero(&mask, sizeof(mask)); 1541 if (iflr->flags & IFLR_PREFIX) { 1542 /* lookup a prefix rather than address. */ 1543 in6_prefixlen2mask(&mask, iflr->prefixlen); 1544 1545 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1546 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1547 match.s6_addr32[0] &= mask.s6_addr32[0]; 1548 match.s6_addr32[1] &= mask.s6_addr32[1]; 1549 match.s6_addr32[2] &= mask.s6_addr32[2]; 1550 match.s6_addr32[3] &= mask.s6_addr32[3]; 1551 1552 /* if you set extra bits, that's wrong */ 1553 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1554 return EINVAL; 1555 1556 cmp = 1; 1557 } else { 1558 if (cmd == SIOCGLIFADDR) { 1559 /* on getting an address, take the 1st match */ 1560 cmp = 0; /* XXX */ 1561 } else { 1562 /* on deleting an address, do exact match */ 1563 in6_prefixlen2mask(&mask, 128); 1564 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1565 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1566 1567 cmp = 1; 1568 } 1569 } 1570 1571 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1572 if (ifa->ifa_addr->sa_family != AF_INET6) 1573 continue; 1574 if (!cmp) 1575 break; 1576 1577 /* 1578 * XXX: this is adhoc, but is necessary to allow 1579 * a user to specify fe80::/64 (not /10) for a 1580 * link-local address. 1581 */ 1582 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1583 in6_clearscope(&candidate); 1584 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1585 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1586 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1587 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1588 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1589 break; 1590 } 1591 if (!ifa) 1592 return EADDRNOTAVAIL; 1593 ia = ifa2ia6(ifa); 1594 1595 if (cmd == SIOCGLIFADDR) { 1596 int error; 1597 1598 /* fill in the if_laddrreq structure */ 1599 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1600 error = sa6_recoverscope( 1601 (struct sockaddr_in6 *)&iflr->addr); 1602 if (error != 0) 1603 return (error); 1604 1605 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1606 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1607 ia->ia_dstaddr.sin6_len); 1608 error = sa6_recoverscope( 1609 (struct sockaddr_in6 *)&iflr->dstaddr); 1610 if (error != 0) 1611 return (error); 1612 } else 1613 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1614 1615 iflr->prefixlen = 1616 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1617 1618 iflr->flags = ia->ia6_flags; /* XXX */ 1619 1620 return 0; 1621 } else { 1622 struct in6_aliasreq ifra; 1623 1624 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1625 bzero(&ifra, sizeof(ifra)); 1626 bcopy(iflr->iflr_name, ifra.ifra_name, 1627 sizeof(ifra.ifra_name)); 1628 1629 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1630 ia->ia_addr.sin6_len); 1631 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1632 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1633 ia->ia_dstaddr.sin6_len); 1634 } else { 1635 bzero(&ifra.ifra_dstaddr, 1636 sizeof(ifra.ifra_dstaddr)); 1637 } 1638 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1639 ia->ia_prefixmask.sin6_len); 1640 1641 ifra.ifra_flags = ia->ia6_flags; 1642 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1643 ifp, td); 1644 } 1645 } 1646 } 1647 1648 return EOPNOTSUPP; /* just for safety */ 1649 } 1650 1651 /* 1652 * Initialize an interface's intetnet6 address 1653 * and routing table entry. 1654 */ 1655 static int 1656 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1657 struct sockaddr_in6 *sin6, int newhost) 1658 { 1659 int error = 0, plen, ifacount = 0; 1660 int s = splimp(); 1661 struct ifaddr *ifa; 1662 1663 /* 1664 * Give the interface a chance to initialize 1665 * if this is its first address, 1666 * and to validate the address if necessary. 1667 */ 1668 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1669 if (ifa->ifa_addr->sa_family != AF_INET6) 1670 continue; 1671 ifacount++; 1672 } 1673 1674 ia->ia_addr = *sin6; 1675 1676 if (ifacount <= 1 && ifp->if_ioctl) { 1677 IFF_LOCKGIANT(ifp); 1678 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1679 IFF_UNLOCKGIANT(ifp); 1680 if (error) { 1681 splx(s); 1682 return (error); 1683 } 1684 } 1685 splx(s); 1686 1687 ia->ia_ifa.ifa_metric = ifp->if_metric; 1688 1689 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1690 1691 if (newhost) { 1692 /* 1693 * set the rtrequest function to create llinfo. It also 1694 * adjust outgoing interface of the route for the local 1695 * address when called via in6_ifaddloop() below. 1696 */ 1697 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1698 } 1699 1700 /* 1701 * Special case: 1702 * If a new destination address is specified for a point-to-point 1703 * interface, install a route to the destination as an interface 1704 * direct route. In addition, if the link is expected to have neighbor 1705 * cache entries, specify RTF_LLINFO so that a cache entry for the 1706 * destination address will be created. 1707 * created 1708 * XXX: the logic below rejects assigning multiple addresses on a p2p 1709 * interface that share the same destination. 1710 */ 1711 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1712 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1713 ia->ia_dstaddr.sin6_family == AF_INET6) { 1714 int rtflags = RTF_UP | RTF_HOST; 1715 struct rtentry *rt = NULL, **rtp = NULL; 1716 1717 if (nd6_need_cache(ifp) != 0) { 1718 rtflags |= RTF_LLINFO; 1719 rtp = &rt; 1720 } 1721 1722 error = rtrequest(RTM_ADD, 1723 (struct sockaddr *)&ia->ia_dstaddr, 1724 (struct sockaddr *)&ia->ia_addr, 1725 (struct sockaddr *)&ia->ia_prefixmask, 1726 ia->ia_flags | rtflags, rtp); 1727 if (error != 0) 1728 return (error); 1729 if (rt != NULL) { 1730 struct llinfo_nd6 *ln; 1731 1732 RT_LOCK(rt); 1733 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1734 if (ln != NULL) { 1735 /* 1736 * Set the state to STALE because we don't 1737 * have to perform address resolution on this 1738 * link. 1739 */ 1740 ln->ln_state = ND6_LLINFO_STALE; 1741 } 1742 RT_REMREF(rt); 1743 RT_UNLOCK(rt); 1744 } 1745 ia->ia_flags |= IFA_ROUTE; 1746 } 1747 if (plen < 128) { 1748 /* 1749 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1750 */ 1751 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1752 } 1753 1754 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1755 if (newhost) 1756 in6_ifaddloop(&(ia->ia_ifa)); 1757 1758 return (error); 1759 } 1760 1761 struct in6_multi_mship * 1762 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, 1763 int *errorp, int delay) 1764 { 1765 struct in6_multi_mship *imm; 1766 1767 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1768 if (!imm) { 1769 *errorp = ENOBUFS; 1770 return NULL; 1771 } 1772 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1773 if (!imm->i6mm_maddr) { 1774 /* *errorp is alrady set */ 1775 free(imm, M_IP6MADDR); 1776 return NULL; 1777 } 1778 return imm; 1779 } 1780 1781 int 1782 in6_leavegroup(struct in6_multi_mship *imm) 1783 { 1784 1785 if (imm->i6mm_maddr) 1786 in6_delmulti(imm->i6mm_maddr); 1787 free(imm, M_IP6MADDR); 1788 return 0; 1789 } 1790 1791 /* 1792 * Find an IPv6 interface link-local address specific to an interface. 1793 */ 1794 struct in6_ifaddr * 1795 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1796 { 1797 struct ifaddr *ifa; 1798 1799 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1800 if (ifa->ifa_addr->sa_family != AF_INET6) 1801 continue; 1802 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1803 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1804 ignoreflags) != 0) 1805 continue; 1806 break; 1807 } 1808 } 1809 1810 return ((struct in6_ifaddr *)ifa); 1811 } 1812 1813 1814 /* 1815 * find the internet address corresponding to a given interface and address. 1816 */ 1817 struct in6_ifaddr * 1818 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1819 { 1820 struct ifaddr *ifa; 1821 1822 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1823 if (ifa->ifa_addr->sa_family != AF_INET6) 1824 continue; 1825 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1826 break; 1827 } 1828 1829 return ((struct in6_ifaddr *)ifa); 1830 } 1831 1832 /* 1833 * Convert IP6 address to printable (loggable) representation. Caller 1834 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1835 */ 1836 static char digits[] = "0123456789abcdef"; 1837 char * 1838 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1839 { 1840 int i; 1841 char *cp; 1842 const u_int16_t *a = (const u_int16_t *)addr; 1843 const u_int8_t *d; 1844 int dcolon = 0, zero = 0; 1845 1846 cp = ip6buf; 1847 1848 for (i = 0; i < 8; i++) { 1849 if (dcolon == 1) { 1850 if (*a == 0) { 1851 if (i == 7) 1852 *cp++ = ':'; 1853 a++; 1854 continue; 1855 } else 1856 dcolon = 2; 1857 } 1858 if (*a == 0) { 1859 if (dcolon == 0 && *(a + 1) == 0) { 1860 if (i == 0) 1861 *cp++ = ':'; 1862 *cp++ = ':'; 1863 dcolon = 1; 1864 } else { 1865 *cp++ = '0'; 1866 *cp++ = ':'; 1867 } 1868 a++; 1869 continue; 1870 } 1871 d = (const u_char *)a; 1872 /* Try to eliminate leading zeros in printout like in :0001. */ 1873 zero = 1; 1874 *cp = digits[*d >> 4]; 1875 if (*cp != '0') { 1876 zero = 0; 1877 cp++; 1878 } 1879 *cp = digits[*d++ & 0xf]; 1880 if (zero == 0 || (*cp != '0')) { 1881 zero = 0; 1882 cp++; 1883 } 1884 *cp = digits[*d >> 4]; 1885 if (zero == 0 || (*cp != '0')) { 1886 zero = 0; 1887 cp++; 1888 } 1889 *cp++ = digits[*d & 0xf]; 1890 *cp++ = ':'; 1891 a++; 1892 } 1893 *--cp = '\0'; 1894 return (ip6buf); 1895 } 1896 1897 int 1898 in6_localaddr(struct in6_addr *in6) 1899 { 1900 INIT_VNET_INET6(curvnet); 1901 struct in6_ifaddr *ia; 1902 1903 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1904 return 1; 1905 1906 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1907 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1908 &ia->ia_prefixmask.sin6_addr)) { 1909 return 1; 1910 } 1911 } 1912 1913 return (0); 1914 } 1915 1916 int 1917 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1918 { 1919 INIT_VNET_INET6(curvnet); 1920 struct in6_ifaddr *ia; 1921 1922 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1923 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1924 &sa6->sin6_addr) && 1925 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1926 return (1); /* true */ 1927 1928 /* XXX: do we still have to go thru the rest of the list? */ 1929 } 1930 1931 return (0); /* false */ 1932 } 1933 1934 /* 1935 * return length of part which dst and src are equal 1936 * hard coding... 1937 */ 1938 int 1939 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1940 { 1941 int match = 0; 1942 u_char *s = (u_char *)src, *d = (u_char *)dst; 1943 u_char *lim = s + 16, r; 1944 1945 while (s < lim) 1946 if ((r = (*d++ ^ *s++)) != 0) { 1947 while (r < 128) { 1948 match++; 1949 r <<= 1; 1950 } 1951 break; 1952 } else 1953 match += 8; 1954 return match; 1955 } 1956 1957 /* XXX: to be scope conscious */ 1958 int 1959 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1960 { 1961 int bytelen, bitlen; 1962 1963 /* sanity check */ 1964 if (0 > len || len > 128) { 1965 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1966 len); 1967 return (0); 1968 } 1969 1970 bytelen = len / 8; 1971 bitlen = len % 8; 1972 1973 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1974 return (0); 1975 if (bitlen != 0 && 1976 p1->s6_addr[bytelen] >> (8 - bitlen) != 1977 p2->s6_addr[bytelen] >> (8 - bitlen)) 1978 return (0); 1979 1980 return (1); 1981 } 1982 1983 void 1984 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1985 { 1986 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1987 int bytelen, bitlen, i; 1988 1989 /* sanity check */ 1990 if (0 > len || len > 128) { 1991 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1992 len); 1993 return; 1994 } 1995 1996 bzero(maskp, sizeof(*maskp)); 1997 bytelen = len / 8; 1998 bitlen = len % 8; 1999 for (i = 0; i < bytelen; i++) 2000 maskp->s6_addr[i] = 0xff; 2001 if (bitlen) 2002 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2003 } 2004 2005 /* 2006 * return the best address out of the same scope. if no address was 2007 * found, return the first valid address from designated IF. 2008 */ 2009 struct in6_ifaddr * 2010 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2011 { 2012 INIT_VNET_INET6(curvnet); 2013 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2014 struct ifaddr *ifa; 2015 struct in6_ifaddr *besta = 0; 2016 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2017 2018 dep[0] = dep[1] = NULL; 2019 2020 /* 2021 * We first look for addresses in the same scope. 2022 * If there is one, return it. 2023 * If two or more, return one which matches the dst longest. 2024 * If none, return one of global addresses assigned other ifs. 2025 */ 2026 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2027 if (ifa->ifa_addr->sa_family != AF_INET6) 2028 continue; 2029 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2030 continue; /* XXX: is there any case to allow anycast? */ 2031 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2032 continue; /* don't use this interface */ 2033 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2034 continue; 2035 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2036 if (V_ip6_use_deprecated) 2037 dep[0] = (struct in6_ifaddr *)ifa; 2038 continue; 2039 } 2040 2041 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2042 /* 2043 * call in6_matchlen() as few as possible 2044 */ 2045 if (besta) { 2046 if (blen == -1) 2047 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2048 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2049 if (tlen > blen) { 2050 blen = tlen; 2051 besta = (struct in6_ifaddr *)ifa; 2052 } 2053 } else 2054 besta = (struct in6_ifaddr *)ifa; 2055 } 2056 } 2057 if (besta) 2058 return (besta); 2059 2060 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2061 if (ifa->ifa_addr->sa_family != AF_INET6) 2062 continue; 2063 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2064 continue; /* XXX: is there any case to allow anycast? */ 2065 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2066 continue; /* don't use this interface */ 2067 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2068 continue; 2069 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2070 if (V_ip6_use_deprecated) 2071 dep[1] = (struct in6_ifaddr *)ifa; 2072 continue; 2073 } 2074 2075 return (struct in6_ifaddr *)ifa; 2076 } 2077 2078 /* use the last-resort values, that are, deprecated addresses */ 2079 if (dep[0]) 2080 return dep[0]; 2081 if (dep[1]) 2082 return dep[1]; 2083 2084 return NULL; 2085 } 2086 2087 /* 2088 * perform DAD when interface becomes IFF_UP. 2089 */ 2090 void 2091 in6_if_up(struct ifnet *ifp) 2092 { 2093 struct ifaddr *ifa; 2094 struct in6_ifaddr *ia; 2095 2096 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2097 if (ifa->ifa_addr->sa_family != AF_INET6) 2098 continue; 2099 ia = (struct in6_ifaddr *)ifa; 2100 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2101 /* 2102 * The TENTATIVE flag was likely set by hand 2103 * beforehand, implicitly indicating the need for DAD. 2104 * We may be able to skip the random delay in this 2105 * case, but we impose delays just in case. 2106 */ 2107 nd6_dad_start(ifa, 2108 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2109 } 2110 } 2111 2112 /* 2113 * special cases, like 6to4, are handled in in6_ifattach 2114 */ 2115 in6_ifattach(ifp, NULL); 2116 } 2117 2118 int 2119 in6if_do_dad(struct ifnet *ifp) 2120 { 2121 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2122 return (0); 2123 2124 switch (ifp->if_type) { 2125 #ifdef IFT_DUMMY 2126 case IFT_DUMMY: 2127 #endif 2128 case IFT_FAITH: 2129 /* 2130 * These interfaces do not have the IFF_LOOPBACK flag, 2131 * but loop packets back. We do not have to do DAD on such 2132 * interfaces. We should even omit it, because loop-backed 2133 * NS would confuse the DAD procedure. 2134 */ 2135 return (0); 2136 default: 2137 /* 2138 * Our DAD routine requires the interface up and running. 2139 * However, some interfaces can be up before the RUNNING 2140 * status. Additionaly, users may try to assign addresses 2141 * before the interface becomes up (or running). 2142 * We simply skip DAD in such a case as a work around. 2143 * XXX: we should rather mark "tentative" on such addresses, 2144 * and do DAD after the interface becomes ready. 2145 */ 2146 if (!((ifp->if_flags & IFF_UP) && 2147 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2148 return (0); 2149 2150 return (1); 2151 } 2152 } 2153 2154 /* 2155 * Calculate max IPv6 MTU through all the interfaces and store it 2156 * to in6_maxmtu. 2157 */ 2158 void 2159 in6_setmaxmtu(void) 2160 { 2161 INIT_VNET_NET(curvnet); 2162 INIT_VNET_INET6(curvnet); 2163 unsigned long maxmtu = 0; 2164 struct ifnet *ifp; 2165 2166 IFNET_RLOCK(); 2167 for (ifp = TAILQ_FIRST(&V_ifnet); ifp; 2168 ifp = TAILQ_NEXT(ifp, if_list)) { 2169 /* this function can be called during ifnet initialization */ 2170 if (!ifp->if_afdata[AF_INET6]) 2171 continue; 2172 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2173 IN6_LINKMTU(ifp) > maxmtu) 2174 maxmtu = IN6_LINKMTU(ifp); 2175 } 2176 IFNET_RUNLOCK(); 2177 if (maxmtu) /* update only when maxmtu is positive */ 2178 V_in6_maxmtu = maxmtu; 2179 } 2180 2181 /* 2182 * Provide the length of interface identifiers to be used for the link attached 2183 * to the given interface. The length should be defined in "IPv6 over 2184 * xxx-link" document. Note that address architecture might also define 2185 * the length for a particular set of address prefixes, regardless of the 2186 * link type. As clarified in rfc2462bis, those two definitions should be 2187 * consistent, and those really are as of August 2004. 2188 */ 2189 int 2190 in6_if2idlen(struct ifnet *ifp) 2191 { 2192 switch (ifp->if_type) { 2193 case IFT_ETHER: /* RFC2464 */ 2194 #ifdef IFT_PROPVIRTUAL 2195 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2196 #endif 2197 #ifdef IFT_L2VLAN 2198 case IFT_L2VLAN: /* ditto */ 2199 #endif 2200 #ifdef IFT_IEEE80211 2201 case IFT_IEEE80211: /* ditto */ 2202 #endif 2203 #ifdef IFT_MIP 2204 case IFT_MIP: /* ditto */ 2205 #endif 2206 return (64); 2207 case IFT_FDDI: /* RFC2467 */ 2208 return (64); 2209 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2210 return (64); 2211 case IFT_PPP: /* RFC2472 */ 2212 return (64); 2213 case IFT_ARCNET: /* RFC2497 */ 2214 return (64); 2215 case IFT_FRELAY: /* RFC2590 */ 2216 return (64); 2217 case IFT_IEEE1394: /* RFC3146 */ 2218 return (64); 2219 case IFT_GIF: 2220 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2221 case IFT_LOOP: 2222 return (64); /* XXX: is this really correct? */ 2223 default: 2224 /* 2225 * Unknown link type: 2226 * It might be controversial to use the today's common constant 2227 * of 64 for these cases unconditionally. For full compliance, 2228 * we should return an error in this case. On the other hand, 2229 * if we simply miss the standard for the link type or a new 2230 * standard is defined for a new link type, the IFID length 2231 * is very likely to be the common constant. As a compromise, 2232 * we always use the constant, but make an explicit notice 2233 * indicating the "unknown" case. 2234 */ 2235 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2236 return (64); 2237 } 2238 } 2239 2240 void * 2241 in6_domifattach(struct ifnet *ifp) 2242 { 2243 struct in6_ifextra *ext; 2244 2245 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2246 bzero(ext, sizeof(*ext)); 2247 2248 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2249 M_IFADDR, M_WAITOK); 2250 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2251 2252 ext->icmp6_ifstat = 2253 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2254 M_IFADDR, M_WAITOK); 2255 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2256 2257 ext->nd_ifinfo = nd6_ifattach(ifp); 2258 ext->scope6_id = scope6_ifattach(ifp); 2259 return ext; 2260 } 2261 2262 void 2263 in6_domifdetach(struct ifnet *ifp, void *aux) 2264 { 2265 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2266 2267 scope6_ifdetach(ext->scope6_id); 2268 nd6_ifdetach(ext->nd_ifinfo); 2269 free(ext->in6_ifstat, M_IFADDR); 2270 free(ext->icmp6_ifstat, M_IFADDR); 2271 free(ext, M_IFADDR); 2272 } 2273 2274 /* 2275 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2276 * v4 mapped addr or v4 compat addr 2277 */ 2278 void 2279 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2280 { 2281 2282 bzero(sin, sizeof(*sin)); 2283 sin->sin_len = sizeof(struct sockaddr_in); 2284 sin->sin_family = AF_INET; 2285 sin->sin_port = sin6->sin6_port; 2286 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2287 } 2288 2289 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2290 void 2291 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2292 { 2293 bzero(sin6, sizeof(*sin6)); 2294 sin6->sin6_len = sizeof(struct sockaddr_in6); 2295 sin6->sin6_family = AF_INET6; 2296 sin6->sin6_port = sin->sin_port; 2297 sin6->sin6_addr.s6_addr32[0] = 0; 2298 sin6->sin6_addr.s6_addr32[1] = 0; 2299 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2300 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2301 } 2302 2303 /* Convert sockaddr_in6 into sockaddr_in. */ 2304 void 2305 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2306 { 2307 struct sockaddr_in *sin_p; 2308 struct sockaddr_in6 sin6; 2309 2310 /* 2311 * Save original sockaddr_in6 addr and convert it 2312 * to sockaddr_in. 2313 */ 2314 sin6 = *(struct sockaddr_in6 *)nam; 2315 sin_p = (struct sockaddr_in *)nam; 2316 in6_sin6_2_sin(sin_p, &sin6); 2317 } 2318 2319 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2320 void 2321 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2322 { 2323 struct sockaddr_in *sin_p; 2324 struct sockaddr_in6 *sin6_p; 2325 2326 sin6_p = malloc(sizeof *sin6_p, M_SONAME, 2327 M_WAITOK); 2328 sin_p = (struct sockaddr_in *)*nam; 2329 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2330 free(*nam, M_SONAME); 2331 *nam = (struct sockaddr *)sin6_p; 2332 } 2333