1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 70 #include <sys/param.h> 71 #include <sys/eventhandler.h> 72 #include <sys/errno.h> 73 #include <sys/jail.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/time.h> 82 #include <sys/kernel.h> 83 #include <sys/syslog.h> 84 85 #include <net/if.h> 86 #include <net/if_var.h> 87 #include <net/if_types.h> 88 #include <net/route.h> 89 #include <net/if_dl.h> 90 #include <net/vnet.h> 91 92 #include <netinet/in.h> 93 #include <netinet/in_var.h> 94 #include <net/if_llatbl.h> 95 #include <netinet/if_ether.h> 96 #include <netinet/in_systm.h> 97 #include <netinet/ip.h> 98 #include <netinet/in_pcb.h> 99 #include <netinet/ip_carp.h> 100 101 #include <netinet/ip6.h> 102 #include <netinet6/ip6_var.h> 103 #include <netinet6/nd6.h> 104 #include <netinet6/mld6_var.h> 105 #include <netinet6/ip6_mroute.h> 106 #include <netinet6/in6_ifattach.h> 107 #include <netinet6/scope6_var.h> 108 #include <netinet6/in6_pcb.h> 109 110 VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); 111 #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) 112 113 /* 114 * Definitions of some costant IP6 addresses. 115 */ 116 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 117 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 118 const struct in6_addr in6addr_nodelocal_allnodes = 119 IN6ADDR_NODELOCAL_ALLNODES_INIT; 120 const struct in6_addr in6addr_linklocal_allnodes = 121 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 122 const struct in6_addr in6addr_linklocal_allrouters = 123 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 124 const struct in6_addr in6addr_linklocal_allv2routers = 125 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 126 127 const struct in6_addr in6mask0 = IN6MASK0; 128 const struct in6_addr in6mask32 = IN6MASK32; 129 const struct in6_addr in6mask64 = IN6MASK64; 130 const struct in6_addr in6mask96 = IN6MASK96; 131 const struct in6_addr in6mask128 = IN6MASK128; 132 133 const struct sockaddr_in6 sa6_any = 134 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 135 136 static int in6_ifinit(struct ifnet *, struct in6_ifaddr *, 137 struct sockaddr_in6 *, int); 138 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 139 140 int (*faithprefix_p)(struct in6_addr *); 141 142 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 143 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 144 145 void 146 in6_ifaddloop(struct ifaddr *ifa) 147 { 148 struct sockaddr_dl gateway; 149 struct sockaddr_in6 mask, addr; 150 struct rtentry rt; 151 struct in6_ifaddr *ia; 152 struct ifnet *ifp; 153 struct llentry *ln; 154 155 ia = ifa2ia6(ifa); 156 ifp = ifa->ifa_ifp; 157 IF_AFDATA_LOCK(ifp); 158 ifa->ifa_rtrequest = nd6_rtrequest; 159 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | 160 LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); 161 IF_AFDATA_UNLOCK(ifp); 162 if (ln != NULL) { 163 ln->la_expire = 0; /* for IPv6 this means permanent */ 164 ln->ln_state = ND6_LLINFO_REACHABLE; 165 /* 166 * initialize for rtmsg generation 167 */ 168 bzero(&gateway, sizeof(gateway)); 169 gateway.sdl_len = sizeof(gateway); 170 gateway.sdl_family = AF_LINK; 171 gateway.sdl_nlen = 0; 172 gateway.sdl_alen = 6; 173 memcpy(gateway.sdl_data, &ln->ll_addr.mac_aligned, 174 sizeof(ln->ll_addr)); 175 LLE_WUNLOCK(ln); 176 } 177 178 bzero(&rt, sizeof(rt)); 179 rt.rt_gateway = (struct sockaddr *)&gateway; 180 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 181 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 182 rt_mask(&rt) = (struct sockaddr *)&mask; 183 rt_key(&rt) = (struct sockaddr *)&addr; 184 rt.rt_flags = RTF_UP | RTF_HOST | RTF_STATIC; 185 /* Announce arrival of local address to all FIBs. */ 186 rt_newaddrmsg(RTM_ADD, ifa, 0, &rt); 187 } 188 189 void 190 in6_ifremloop(struct ifaddr *ifa) 191 { 192 struct sockaddr_dl gateway; 193 struct sockaddr_in6 mask, addr; 194 struct rtentry rt0; 195 struct in6_ifaddr *ia; 196 struct ifnet *ifp; 197 198 ia = ifa2ia6(ifa); 199 ifp = ifa->ifa_ifp; 200 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 201 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 202 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, 203 (struct sockaddr *)&mask, LLE_STATIC); 204 205 /* 206 * initialize for rtmsg generation 207 */ 208 bzero(&gateway, sizeof(gateway)); 209 gateway.sdl_len = sizeof(gateway); 210 gateway.sdl_family = AF_LINK; 211 gateway.sdl_nlen = 0; 212 gateway.sdl_alen = ifp->if_addrlen; 213 bzero(&rt0, sizeof(rt0)); 214 rt0.rt_gateway = (struct sockaddr *)&gateway; 215 rt_mask(&rt0) = (struct sockaddr *)&mask; 216 rt_key(&rt0) = (struct sockaddr *)&addr; 217 rt0.rt_flags = RTF_HOST | RTF_STATIC; 218 /* Announce removal of local address to all FIBs. */ 219 rt_newaddrmsg(RTM_DELETE, ifa, 0, &rt0); 220 } 221 222 int 223 in6_mask2len(struct in6_addr *mask, u_char *lim0) 224 { 225 int x = 0, y; 226 u_char *lim = lim0, *p; 227 228 /* ignore the scope_id part */ 229 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 230 lim = (u_char *)mask + sizeof(*mask); 231 for (p = (u_char *)mask; p < lim; x++, p++) { 232 if (*p != 0xff) 233 break; 234 } 235 y = 0; 236 if (p < lim) { 237 for (y = 0; y < 8; y++) { 238 if ((*p & (0x80 >> y)) == 0) 239 break; 240 } 241 } 242 243 /* 244 * when the limit pointer is given, do a stricter check on the 245 * remaining bits. 246 */ 247 if (p < lim) { 248 if (y != 0 && (*p & (0x00ff >> y)) != 0) 249 return (-1); 250 for (p = p + 1; p < lim; p++) 251 if (*p != 0) 252 return (-1); 253 } 254 255 return x * 8 + y; 256 } 257 258 #ifdef COMPAT_FREEBSD32 259 struct in6_ndifreq32 { 260 char ifname[IFNAMSIZ]; 261 uint32_t ifindex; 262 }; 263 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 264 #endif 265 266 int 267 in6_control(struct socket *so, u_long cmd, caddr_t data, 268 struct ifnet *ifp, struct thread *td) 269 { 270 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 271 struct in6_ifaddr *ia = NULL; 272 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 273 struct sockaddr_in6 *sa6; 274 int carp_attached = 0; 275 int error; 276 u_long ocmd = cmd; 277 278 /* 279 * Compat to make pre-10.x ifconfig(8) operable. 280 */ 281 if (cmd == OSIOCAIFADDR_IN6) 282 cmd = SIOCAIFADDR_IN6; 283 284 switch (cmd) { 285 case SIOCGETSGCNT_IN6: 286 case SIOCGETMIFCNT_IN6: 287 /* 288 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 289 * We cannot see how that would be needed, so do not adjust the 290 * KPI blindly; more likely should clean up the IPv4 variant. 291 */ 292 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 293 } 294 295 switch(cmd) { 296 case SIOCAADDRCTL_POLICY: 297 case SIOCDADDRCTL_POLICY: 298 if (td != NULL) { 299 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 300 if (error) 301 return (error); 302 } 303 return (in6_src_ioctl(cmd, data)); 304 } 305 306 if (ifp == NULL) 307 return (EOPNOTSUPP); 308 309 switch (cmd) { 310 case SIOCSNDFLUSH_IN6: 311 case SIOCSPFXFLUSH_IN6: 312 case SIOCSRTRFLUSH_IN6: 313 case SIOCSDEFIFACE_IN6: 314 case SIOCSIFINFO_FLAGS: 315 case SIOCSIFINFO_IN6: 316 if (td != NULL) { 317 error = priv_check(td, PRIV_NETINET_ND6); 318 if (error) 319 return (error); 320 } 321 /* FALLTHROUGH */ 322 case OSIOCGIFINFO_IN6: 323 case SIOCGIFINFO_IN6: 324 case SIOCGDRLST_IN6: 325 case SIOCGPRLST_IN6: 326 case SIOCGNBRINFO_IN6: 327 case SIOCGDEFIFACE_IN6: 328 return (nd6_ioctl(cmd, data, ifp)); 329 330 #ifdef COMPAT_FREEBSD32 331 case SIOCGDEFIFACE32_IN6: 332 { 333 struct in6_ndifreq ndif; 334 struct in6_ndifreq32 *ndif32; 335 336 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 337 ifp); 338 if (error) 339 return (error); 340 ndif32 = (struct in6_ndifreq32 *)data; 341 ndif32->ifindex = ndif.ifindex; 342 return (0); 343 } 344 #endif 345 } 346 347 switch (cmd) { 348 case SIOCSIFPREFIX_IN6: 349 case SIOCDIFPREFIX_IN6: 350 case SIOCAIFPREFIX_IN6: 351 case SIOCCIFPREFIX_IN6: 352 case SIOCSGIFPREFIX_IN6: 353 case SIOCGIFPREFIX_IN6: 354 log(LOG_NOTICE, 355 "prefix ioctls are now invalidated. " 356 "please use ifconfig.\n"); 357 return (EOPNOTSUPP); 358 } 359 360 switch (cmd) { 361 case SIOCSSCOPE6: 362 if (td != NULL) { 363 error = priv_check(td, PRIV_NETINET_SCOPE6); 364 if (error) 365 return (error); 366 } 367 return (scope6_set(ifp, 368 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 369 case SIOCGSCOPE6: 370 return (scope6_get(ifp, 371 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 372 case SIOCGSCOPE6DEF: 373 return (scope6_get_default((struct scope6_id *) 374 ifr->ifr_ifru.ifru_scope_id)); 375 } 376 377 /* 378 * Find address for this interface, if it exists. 379 * 380 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 381 * only, and used the first interface address as the target of other 382 * operations (without checking ifra_addr). This was because netinet 383 * code/API assumed at most 1 interface address per interface. 384 * Since IPv6 allows a node to assign multiple addresses 385 * on a single interface, we almost always look and check the 386 * presence of ifra_addr, and reject invalid ones here. 387 * It also decreases duplicated code among SIOC*_IN6 operations. 388 */ 389 switch (cmd) { 390 case SIOCAIFADDR_IN6: 391 case SIOCSIFPHYADDR_IN6: 392 sa6 = &ifra->ifra_addr; 393 break; 394 case SIOCSIFADDR_IN6: 395 case SIOCGIFADDR_IN6: 396 case SIOCSIFDSTADDR_IN6: 397 case SIOCSIFNETMASK_IN6: 398 case SIOCGIFDSTADDR_IN6: 399 case SIOCGIFNETMASK_IN6: 400 case SIOCDIFADDR_IN6: 401 case SIOCGIFPSRCADDR_IN6: 402 case SIOCGIFPDSTADDR_IN6: 403 case SIOCGIFAFLAG_IN6: 404 case SIOCSNDFLUSH_IN6: 405 case SIOCSPFXFLUSH_IN6: 406 case SIOCSRTRFLUSH_IN6: 407 case SIOCGIFALIFETIME_IN6: 408 case SIOCSIFALIFETIME_IN6: 409 case SIOCGIFSTAT_IN6: 410 case SIOCGIFSTAT_ICMP6: 411 sa6 = &ifr->ifr_addr; 412 break; 413 case SIOCSIFADDR: 414 case SIOCSIFBRDADDR: 415 case SIOCSIFDSTADDR: 416 case SIOCSIFNETMASK: 417 /* 418 * Although we should pass any non-INET6 ioctl requests 419 * down to driver, we filter some legacy INET requests. 420 * Drivers trust SIOCSIFADDR et al to come from an already 421 * privileged layer, and do not perform any credentials 422 * checks or input validation. 423 */ 424 return (EINVAL); 425 default: 426 sa6 = NULL; 427 break; 428 } 429 if (sa6 && sa6->sin6_family == AF_INET6) { 430 if (sa6->sin6_scope_id != 0) 431 error = sa6_embedscope(sa6, 0); 432 else 433 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 434 if (error != 0) 435 return (error); 436 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 437 &sa6->sin6_addr)) != 0) 438 return (error); 439 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 440 } else 441 ia = NULL; 442 443 switch (cmd) { 444 case SIOCSIFADDR_IN6: 445 case SIOCSIFDSTADDR_IN6: 446 case SIOCSIFNETMASK_IN6: 447 /* 448 * Since IPv6 allows a node to assign multiple addresses 449 * on a single interface, SIOCSIFxxx ioctls are deprecated. 450 */ 451 /* we decided to obsolete this command (20000704) */ 452 error = EINVAL; 453 goto out; 454 455 case SIOCDIFADDR_IN6: 456 /* 457 * for IPv4, we look for existing in_ifaddr here to allow 458 * "ifconfig if0 delete" to remove the first IPv4 address on 459 * the interface. For IPv6, as the spec allows multiple 460 * interface address from the day one, we consider "remove the 461 * first one" semantics to be not preferable. 462 */ 463 if (ia == NULL) { 464 error = EADDRNOTAVAIL; 465 goto out; 466 } 467 /* FALLTHROUGH */ 468 case SIOCAIFADDR_IN6: 469 /* 470 * We always require users to specify a valid IPv6 address for 471 * the corresponding operation. 472 */ 473 if (ifra->ifra_addr.sin6_family != AF_INET6 || 474 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 475 error = EAFNOSUPPORT; 476 goto out; 477 } 478 479 if (td != NULL) { 480 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 481 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 482 if (error) 483 goto out; 484 } 485 break; 486 487 case SIOCGIFADDR_IN6: 488 /* This interface is basically deprecated. use SIOCGIFCONF. */ 489 /* FALLTHROUGH */ 490 case SIOCGIFAFLAG_IN6: 491 case SIOCGIFNETMASK_IN6: 492 case SIOCGIFDSTADDR_IN6: 493 case SIOCGIFALIFETIME_IN6: 494 /* must think again about its semantics */ 495 if (ia == NULL) { 496 error = EADDRNOTAVAIL; 497 goto out; 498 } 499 break; 500 501 case SIOCSIFALIFETIME_IN6: 502 { 503 struct in6_addrlifetime *lt; 504 505 if (td != NULL) { 506 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 507 if (error) 508 goto out; 509 } 510 if (ia == NULL) { 511 error = EADDRNOTAVAIL; 512 goto out; 513 } 514 /* sanity for overflow - beware unsigned */ 515 lt = &ifr->ifr_ifru.ifru_lifetime; 516 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 517 lt->ia6t_vltime + time_uptime < time_uptime) { 518 error = EINVAL; 519 goto out; 520 } 521 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 522 lt->ia6t_pltime + time_uptime < time_uptime) { 523 error = EINVAL; 524 goto out; 525 } 526 break; 527 } 528 } 529 530 switch (cmd) { 531 case SIOCGIFADDR_IN6: 532 ifr->ifr_addr = ia->ia_addr; 533 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 534 goto out; 535 break; 536 537 case SIOCGIFDSTADDR_IN6: 538 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 539 error = EINVAL; 540 goto out; 541 } 542 /* 543 * XXX: should we check if ifa_dstaddr is NULL and return 544 * an error? 545 */ 546 ifr->ifr_dstaddr = ia->ia_dstaddr; 547 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 548 goto out; 549 break; 550 551 case SIOCGIFNETMASK_IN6: 552 ifr->ifr_addr = ia->ia_prefixmask; 553 break; 554 555 case SIOCGIFAFLAG_IN6: 556 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 557 break; 558 559 case SIOCGIFSTAT_IN6: 560 if (ifp == NULL) { 561 error = EINVAL; 562 goto out; 563 } 564 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 565 ifp->if_afdata[AF_INET6])->in6_ifstat, 566 &ifr->ifr_ifru.ifru_stat, 567 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 568 break; 569 570 case SIOCGIFSTAT_ICMP6: 571 if (ifp == NULL) { 572 error = EINVAL; 573 goto out; 574 } 575 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 576 ifp->if_afdata[AF_INET6])->icmp6_ifstat, 577 &ifr->ifr_ifru.ifru_icmp6stat, 578 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 579 break; 580 581 case SIOCGIFALIFETIME_IN6: 582 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 583 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 584 time_t maxexpire; 585 struct in6_addrlifetime *retlt = 586 &ifr->ifr_ifru.ifru_lifetime; 587 588 /* 589 * XXX: adjust expiration time assuming time_t is 590 * signed. 591 */ 592 maxexpire = (-1) & 593 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 594 if (ia->ia6_lifetime.ia6t_vltime < 595 maxexpire - ia->ia6_updatetime) { 596 retlt->ia6t_expire = ia->ia6_updatetime + 597 ia->ia6_lifetime.ia6t_vltime; 598 } else 599 retlt->ia6t_expire = maxexpire; 600 } 601 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 602 time_t maxexpire; 603 struct in6_addrlifetime *retlt = 604 &ifr->ifr_ifru.ifru_lifetime; 605 606 /* 607 * XXX: adjust expiration time assuming time_t is 608 * signed. 609 */ 610 maxexpire = (-1) & 611 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 612 if (ia->ia6_lifetime.ia6t_pltime < 613 maxexpire - ia->ia6_updatetime) { 614 retlt->ia6t_preferred = ia->ia6_updatetime + 615 ia->ia6_lifetime.ia6t_pltime; 616 } else 617 retlt->ia6t_preferred = maxexpire; 618 } 619 break; 620 621 case SIOCSIFALIFETIME_IN6: 622 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 623 /* for sanity */ 624 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 625 ia->ia6_lifetime.ia6t_expire = 626 time_uptime + ia->ia6_lifetime.ia6t_vltime; 627 } else 628 ia->ia6_lifetime.ia6t_expire = 0; 629 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 630 ia->ia6_lifetime.ia6t_preferred = 631 time_uptime + ia->ia6_lifetime.ia6t_pltime; 632 } else 633 ia->ia6_lifetime.ia6t_preferred = 0; 634 break; 635 636 case SIOCAIFADDR_IN6: 637 { 638 struct nd_prefixctl pr0; 639 struct nd_prefix *pr; 640 641 /* 642 * first, make or update the interface address structure, 643 * and link it to the list. 644 */ 645 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 646 goto out; 647 if (ia != NULL) 648 ifa_free(&ia->ia_ifa); 649 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 650 == NULL) { 651 /* 652 * this can happen when the user specify the 0 valid 653 * lifetime. 654 */ 655 break; 656 } 657 658 if (cmd == ocmd && ifra->ifra_vhid > 0) { 659 if (carp_attach_p != NULL) 660 error = (*carp_attach_p)(&ia->ia_ifa, 661 ifra->ifra_vhid); 662 else 663 error = EPROTONOSUPPORT; 664 if (error) 665 goto out; 666 else 667 carp_attached = 1; 668 } 669 670 /* 671 * then, make the prefix on-link on the interface. 672 * XXX: we'd rather create the prefix before the address, but 673 * we need at least one address to install the corresponding 674 * interface route, so we configure the address first. 675 */ 676 677 /* 678 * convert mask to prefix length (prefixmask has already 679 * been validated in in6_update_ifa(). 680 */ 681 bzero(&pr0, sizeof(pr0)); 682 pr0.ndpr_ifp = ifp; 683 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 684 NULL); 685 if (pr0.ndpr_plen == 128) { 686 break; /* we don't need to install a host route. */ 687 } 688 pr0.ndpr_prefix = ifra->ifra_addr; 689 /* apply the mask for safety. */ 690 IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, 691 &ifra->ifra_prefixmask.sin6_addr); 692 693 /* 694 * XXX: since we don't have an API to set prefix (not address) 695 * lifetimes, we just use the same lifetimes as addresses. 696 * The (temporarily) installed lifetimes can be overridden by 697 * later advertised RAs (when accept_rtadv is non 0), which is 698 * an intended behavior. 699 */ 700 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 701 pr0.ndpr_raf_auto = 702 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 703 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 704 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 705 706 /* add the prefix if not yet. */ 707 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 708 /* 709 * nd6_prelist_add will install the corresponding 710 * interface route. 711 */ 712 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 713 if (carp_attached) 714 (*carp_detach_p)(&ia->ia_ifa); 715 goto out; 716 } 717 if (pr == NULL) { 718 if (carp_attached) 719 (*carp_detach_p)(&ia->ia_ifa); 720 log(LOG_ERR, "nd6_prelist_add succeeded but " 721 "no prefix\n"); 722 error = EINVAL; 723 goto out; 724 } 725 } 726 727 /* relate the address to the prefix */ 728 if (ia->ia6_ndpr == NULL) { 729 ia->ia6_ndpr = pr; 730 pr->ndpr_refcnt++; 731 732 /* 733 * If this is the first autoconf address from the 734 * prefix, create a temporary address as well 735 * (when required). 736 */ 737 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 738 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 739 int e; 740 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 741 log(LOG_NOTICE, "in6_control: failed " 742 "to create a temporary address, " 743 "errno=%d\n", e); 744 } 745 } 746 } 747 748 /* 749 * this might affect the status of autoconfigured addresses, 750 * that is, this address might make other addresses detached. 751 */ 752 pfxlist_onlink_check(); 753 if (error == 0 && ia) { 754 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 755 /* 756 * Try to clear the flag when a new 757 * IPv6 address is added onto an 758 * IFDISABLED interface and it 759 * succeeds. 760 */ 761 struct in6_ndireq nd; 762 763 memset(&nd, 0, sizeof(nd)); 764 nd.ndi.flags = ND_IFINFO(ifp)->flags; 765 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 766 if (nd6_ioctl(SIOCSIFINFO_FLAGS, 767 (caddr_t)&nd, ifp) < 0) 768 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 769 "SIOCSIFINFO_FLAGS for -ifdisabled " 770 "failed."); 771 /* 772 * Ignore failure of clearing the flag 773 * intentionally. The failure means 774 * address duplication was detected. 775 */ 776 } 777 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 778 } 779 break; 780 } 781 782 case SIOCDIFADDR_IN6: 783 { 784 struct nd_prefix *pr; 785 786 /* 787 * If the address being deleted is the only one that owns 788 * the corresponding prefix, expire the prefix as well. 789 * XXX: theoretically, we don't have to worry about such 790 * relationship, since we separate the address management 791 * and the prefix management. We do this, however, to provide 792 * as much backward compatibility as possible in terms of 793 * the ioctl operation. 794 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 795 */ 796 pr = ia->ia6_ndpr; 797 in6_purgeaddr(&ia->ia_ifa); 798 if (pr && pr->ndpr_refcnt == 0) 799 prelist_remove(pr); 800 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 801 break; 802 } 803 804 default: 805 if (ifp == NULL || ifp->if_ioctl == 0) { 806 error = EOPNOTSUPP; 807 goto out; 808 } 809 error = (*ifp->if_ioctl)(ifp, cmd, data); 810 goto out; 811 } 812 813 error = 0; 814 out: 815 if (ia != NULL) 816 ifa_free(&ia->ia_ifa); 817 return (error); 818 } 819 820 821 /* 822 * Join necessary multicast groups. Factored out from in6_update_ifa(). 823 * This entire work should only be done once, for the default FIB. 824 */ 825 static int 826 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 827 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 828 { 829 char ip6buf[INET6_ADDRSTRLEN]; 830 struct sockaddr_in6 mltaddr, mltmask; 831 struct in6_addr llsol; 832 struct in6_multi_mship *imm; 833 struct rtentry *rt; 834 int delay, error; 835 836 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 837 838 /* Join solicited multicast addr for new host id. */ 839 bzero(&llsol, sizeof(struct in6_addr)); 840 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 841 llsol.s6_addr32[1] = 0; 842 llsol.s6_addr32[2] = htonl(1); 843 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 844 llsol.s6_addr8[12] = 0xff; 845 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 846 /* XXX: should not happen */ 847 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 848 goto cleanup; 849 } 850 delay = 0; 851 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 852 /* 853 * We need a random delay for DAD on the address being 854 * configured. It also means delaying transmission of the 855 * corresponding MLD report to avoid report collision. 856 * [RFC 4861, Section 6.3.7] 857 */ 858 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 859 } 860 imm = in6_joingroup(ifp, &llsol, &error, delay); 861 if (imm == NULL) { 862 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 863 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &llsol), 864 if_name(ifp), error)); 865 goto cleanup; 866 } 867 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 868 *in6m_sol = imm->i6mm_maddr; 869 870 bzero(&mltmask, sizeof(mltmask)); 871 mltmask.sin6_len = sizeof(struct sockaddr_in6); 872 mltmask.sin6_family = AF_INET6; 873 mltmask.sin6_addr = in6mask32; 874 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 875 876 /* 877 * Join link-local all-nodes address. 878 */ 879 bzero(&mltaddr, sizeof(mltaddr)); 880 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 881 mltaddr.sin6_family = AF_INET6; 882 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 883 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 884 goto cleanup; /* XXX: should not fail */ 885 886 /* 887 * XXX: do we really need this automatic routes? We should probably 888 * reconsider this stuff. Most applications actually do not need the 889 * routes, since they usually specify the outgoing interface. 890 */ 891 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 892 if (rt != NULL) { 893 /* XXX: only works in !SCOPEDROUTING case. */ 894 if (memcmp(&mltaddr.sin6_addr, 895 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 896 MLTMASK_LEN)) { 897 RTFREE_LOCKED(rt); 898 rt = NULL; 899 } 900 } 901 if (rt == NULL) { 902 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 903 (struct sockaddr *)&ia->ia_addr, 904 (struct sockaddr *)&mltmask, RTF_UP, 905 (struct rtentry **)0, RT_DEFAULT_FIB); 906 if (error) 907 goto cleanup; 908 } else 909 RTFREE_LOCKED(rt); 910 911 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 912 if (imm == NULL) { 913 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 914 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 915 &mltaddr.sin6_addr), if_name(ifp), error)); 916 goto cleanup; 917 } 918 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 919 920 /* 921 * Join node information group address. 922 */ 923 delay = 0; 924 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 925 /* 926 * The spec does not say anything about delay for this group, 927 * but the same logic should apply. 928 */ 929 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 930 } 931 if (in6_nigroup(ifp, NULL, -1, &mltaddr.sin6_addr) == 0) { 932 /* XXX jinmei */ 933 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay); 934 if (imm == NULL) 935 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 936 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 937 &mltaddr.sin6_addr), if_name(ifp), error)); 938 /* XXX not very fatal, go on... */ 939 else 940 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 941 } 942 if (V_icmp6_nodeinfo_oldmcprefix && 943 in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr.sin6_addr) == 0) { 944 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay); 945 if (imm == NULL) 946 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 947 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 948 &mltaddr.sin6_addr), if_name(ifp), error)); 949 /* XXX not very fatal, go on... */ 950 else 951 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 952 } 953 954 /* 955 * Join interface-local all-nodes address. 956 * (ff01::1%ifN, and ff01::%ifN/32) 957 */ 958 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 959 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 960 goto cleanup; /* XXX: should not fail */ 961 /* XXX: again, do we really need the route? */ 962 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 963 if (rt != NULL) { 964 if (memcmp(&mltaddr.sin6_addr, 965 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 966 MLTMASK_LEN)) { 967 RTFREE_LOCKED(rt); 968 rt = NULL; 969 } 970 } 971 if (rt == NULL) { 972 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 973 (struct sockaddr *)&ia->ia_addr, 974 (struct sockaddr *)&mltmask, RTF_UP, 975 (struct rtentry **)0, RT_DEFAULT_FIB); 976 if (error) 977 goto cleanup; 978 } else 979 RTFREE_LOCKED(rt); 980 981 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 982 if (imm == NULL) { 983 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s " 984 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 985 &mltaddr.sin6_addr), if_name(ifp), error)); 986 goto cleanup; 987 } 988 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 989 #undef MLTMASK_LEN 990 991 cleanup: 992 return (error); 993 } 994 995 /* 996 * Update parameters of an IPv6 interface address. 997 * If necessary, a new entry is created and linked into address chains. 998 * This function is separated from in6_control(). 999 */ 1000 int 1001 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1002 struct in6_ifaddr *ia, int flags) 1003 { 1004 int error = 0, hostIsNew = 0, plen = -1; 1005 struct sockaddr_in6 dst6; 1006 struct in6_addrlifetime *lt; 1007 struct in6_multi *in6m_sol; 1008 int delay; 1009 char ip6buf[INET6_ADDRSTRLEN]; 1010 1011 /* Validate parameters */ 1012 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 1013 return (EINVAL); 1014 1015 /* 1016 * The destination address for a p2p link must have a family 1017 * of AF_UNSPEC or AF_INET6. 1018 */ 1019 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1020 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 1021 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 1022 return (EAFNOSUPPORT); 1023 /* 1024 * validate ifra_prefixmask. don't check sin6_family, netmask 1025 * does not carry fields other than sin6_len. 1026 */ 1027 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 1028 return (EINVAL); 1029 /* 1030 * Because the IPv6 address architecture is classless, we require 1031 * users to specify a (non 0) prefix length (mask) for a new address. 1032 * We also require the prefix (when specified) mask is valid, and thus 1033 * reject a non-consecutive mask. 1034 */ 1035 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 1036 return (EINVAL); 1037 if (ifra->ifra_prefixmask.sin6_len != 0) { 1038 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 1039 (u_char *)&ifra->ifra_prefixmask + 1040 ifra->ifra_prefixmask.sin6_len); 1041 if (plen <= 0) 1042 return (EINVAL); 1043 } else { 1044 /* 1045 * In this case, ia must not be NULL. We just use its prefix 1046 * length. 1047 */ 1048 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1049 } 1050 /* 1051 * If the destination address on a p2p interface is specified, 1052 * and the address is a scoped one, validate/set the scope 1053 * zone identifier. 1054 */ 1055 dst6 = ifra->ifra_dstaddr; 1056 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 1057 (dst6.sin6_family == AF_INET6)) { 1058 struct in6_addr in6_tmp; 1059 u_int32_t zoneid; 1060 1061 in6_tmp = dst6.sin6_addr; 1062 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 1063 return (EINVAL); /* XXX: should be impossible */ 1064 1065 if (dst6.sin6_scope_id != 0) { 1066 if (dst6.sin6_scope_id != zoneid) 1067 return (EINVAL); 1068 } else /* user omit to specify the ID. */ 1069 dst6.sin6_scope_id = zoneid; 1070 1071 /* convert into the internal form */ 1072 if (sa6_embedscope(&dst6, 0)) 1073 return (EINVAL); /* XXX: should be impossible */ 1074 } 1075 /* 1076 * The destination address can be specified only for a p2p or a 1077 * loopback interface. If specified, the corresponding prefix length 1078 * must be 128. 1079 */ 1080 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 1081 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 1082 /* XXX: noisy message */ 1083 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 1084 "be specified for a p2p or a loopback IF only\n")); 1085 return (EINVAL); 1086 } 1087 if (plen != 128) { 1088 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1089 "be 128 when dstaddr is specified\n")); 1090 return (EINVAL); 1091 } 1092 } 1093 /* lifetime consistency check */ 1094 lt = &ifra->ifra_lifetime; 1095 if (lt->ia6t_pltime > lt->ia6t_vltime) 1096 return (EINVAL); 1097 if (lt->ia6t_vltime == 0) { 1098 /* 1099 * the following log might be noisy, but this is a typical 1100 * configuration mistake or a tool's bug. 1101 */ 1102 nd6log((LOG_INFO, 1103 "in6_update_ifa: valid lifetime is 0 for %s\n", 1104 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1105 1106 if (ia == NULL) 1107 return (0); /* there's nothing to do */ 1108 } 1109 1110 /* 1111 * If this is a new address, allocate a new ifaddr and link it 1112 * into chains. 1113 */ 1114 if (ia == NULL) { 1115 hostIsNew = 1; 1116 /* 1117 * When in6_update_ifa() is called in a process of a received 1118 * RA, it is called under an interrupt context. So, we should 1119 * call malloc with M_NOWAIT. 1120 */ 1121 ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); 1122 if (ia == NULL) 1123 return (ENOBUFS); 1124 LIST_INIT(&ia->ia6_memberships); 1125 /* Initialize the address and masks, and put time stamp */ 1126 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1127 ia->ia_addr.sin6_family = AF_INET6; 1128 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1129 ia->ia6_createtime = time_uptime; 1130 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1131 /* 1132 * XXX: some functions expect that ifa_dstaddr is not 1133 * NULL for p2p interfaces. 1134 */ 1135 ia->ia_ifa.ifa_dstaddr = 1136 (struct sockaddr *)&ia->ia_dstaddr; 1137 } else { 1138 ia->ia_ifa.ifa_dstaddr = NULL; 1139 } 1140 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1141 ia->ia_ifp = ifp; 1142 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1143 IF_ADDR_WLOCK(ifp); 1144 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1145 IF_ADDR_WUNLOCK(ifp); 1146 1147 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1148 IN6_IFADDR_WLOCK(); 1149 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1150 LIST_INSERT_HEAD(IN6ADDR_HASH(&ifra->ifra_addr.sin6_addr), 1151 ia, ia6_hash); 1152 IN6_IFADDR_WUNLOCK(); 1153 } 1154 1155 /* update timestamp */ 1156 ia->ia6_updatetime = time_uptime; 1157 1158 /* set prefix mask */ 1159 if (ifra->ifra_prefixmask.sin6_len) { 1160 /* 1161 * We prohibit changing the prefix length of an existing 1162 * address, because 1163 * + such an operation should be rare in IPv6, and 1164 * + the operation would confuse prefix management. 1165 */ 1166 if (ia->ia_prefixmask.sin6_len && 1167 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1168 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 1169 " existing (%s) address should not be changed\n", 1170 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1171 error = EINVAL; 1172 goto unlink; 1173 } 1174 ia->ia_prefixmask = ifra->ifra_prefixmask; 1175 ia->ia_prefixmask.sin6_family = AF_INET6; 1176 } 1177 1178 /* 1179 * If a new destination address is specified, scrub the old one and 1180 * install the new destination. Note that the interface must be 1181 * p2p or loopback (see the check above.) 1182 */ 1183 if (dst6.sin6_family == AF_INET6 && 1184 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1185 int e; 1186 1187 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1188 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 1189 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 1190 "a route to the old destination: %s\n", 1191 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1192 /* proceed anyway... */ 1193 } else 1194 ia->ia_flags &= ~IFA_ROUTE; 1195 ia->ia_dstaddr = dst6; 1196 } 1197 1198 /* 1199 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1200 * to see if the address is deprecated or invalidated, but initialize 1201 * these members for applications. 1202 */ 1203 ia->ia6_lifetime = ifra->ifra_lifetime; 1204 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1205 ia->ia6_lifetime.ia6t_expire = 1206 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1207 } else 1208 ia->ia6_lifetime.ia6t_expire = 0; 1209 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1210 ia->ia6_lifetime.ia6t_preferred = 1211 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1212 } else 1213 ia->ia6_lifetime.ia6t_preferred = 0; 1214 1215 /* reset the interface and routing table appropriately. */ 1216 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1217 goto unlink; 1218 1219 /* 1220 * configure address flags. 1221 */ 1222 ia->ia6_flags = ifra->ifra_flags; 1223 /* 1224 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1225 * userland, make it deprecated. 1226 */ 1227 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1228 ia->ia6_lifetime.ia6t_pltime = 0; 1229 ia->ia6_lifetime.ia6t_preferred = time_uptime; 1230 } 1231 /* 1232 * Make the address tentative before joining multicast addresses, 1233 * so that corresponding MLD responses would not have a tentative 1234 * source address. 1235 */ 1236 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1237 if (hostIsNew && in6if_do_dad(ifp)) 1238 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1239 1240 /* DAD should be performed after ND6_IFF_IFDISABLED is cleared. */ 1241 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1242 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1243 1244 /* 1245 * We are done if we have simply modified an existing address. 1246 */ 1247 if (!hostIsNew) 1248 return (error); 1249 1250 /* 1251 * Beyond this point, we should call in6_purgeaddr upon an error, 1252 * not just go to unlink. 1253 */ 1254 1255 /* Join necessary multicast groups. */ 1256 in6m_sol = NULL; 1257 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1258 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1259 if (error) 1260 goto cleanup; 1261 } 1262 1263 /* 1264 * Perform DAD, if needed. 1265 * XXX It may be of use, if we can administratively disable DAD. 1266 */ 1267 if (in6if_do_dad(ifp) && ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1268 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1269 { 1270 int mindelay, maxdelay; 1271 1272 delay = 0; 1273 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1274 /* 1275 * We need to impose a delay before sending an NS 1276 * for DAD. Check if we also needed a delay for the 1277 * corresponding MLD message. If we did, the delay 1278 * should be larger than the MLD delay (this could be 1279 * relaxed a bit, but this simple logic is at least 1280 * safe). 1281 * XXX: Break data hiding guidelines and look at 1282 * state for the solicited multicast group. 1283 */ 1284 mindelay = 0; 1285 if (in6m_sol != NULL && 1286 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1287 mindelay = in6m_sol->in6m_timer; 1288 } 1289 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1290 if (maxdelay - mindelay == 0) 1291 delay = 0; 1292 else { 1293 delay = 1294 (arc4random() % (maxdelay - mindelay)) + 1295 mindelay; 1296 } 1297 } 1298 nd6_dad_start((struct ifaddr *)ia, delay); 1299 } 1300 1301 KASSERT(hostIsNew, ("in6_update_ifa: !hostIsNew")); 1302 ifa_free(&ia->ia_ifa); 1303 return (error); 1304 1305 unlink: 1306 /* 1307 * XXX: if a change of an existing address failed, keep the entry 1308 * anyway. 1309 */ 1310 if (hostIsNew) { 1311 in6_unlink_ifa(ia, ifp); 1312 ifa_free(&ia->ia_ifa); 1313 } 1314 return (error); 1315 1316 cleanup: 1317 KASSERT(hostIsNew, ("in6_update_ifa: cleanup: !hostIsNew")); 1318 ifa_free(&ia->ia_ifa); 1319 in6_purgeaddr(&ia->ia_ifa); 1320 return error; 1321 } 1322 1323 /* 1324 * Leave multicast groups. Factored out from in6_purgeaddr(). 1325 * This entire work should only be done once, for the default FIB. 1326 */ 1327 static int 1328 in6_purgeaddr_mc(struct ifnet *ifp, struct in6_ifaddr *ia, struct ifaddr *ifa0) 1329 { 1330 struct sockaddr_in6 mltaddr, mltmask; 1331 struct in6_multi_mship *imm; 1332 struct rtentry *rt; 1333 struct sockaddr_in6 sin6; 1334 int error; 1335 1336 /* 1337 * Leave from multicast groups we have joined for the interface. 1338 */ 1339 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1340 LIST_REMOVE(imm, i6mm_chain); 1341 in6_leavegroup(imm); 1342 } 1343 1344 /* 1345 * Remove the link-local all-nodes address. 1346 */ 1347 bzero(&mltmask, sizeof(mltmask)); 1348 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1349 mltmask.sin6_family = AF_INET6; 1350 mltmask.sin6_addr = in6mask32; 1351 1352 bzero(&mltaddr, sizeof(mltaddr)); 1353 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1354 mltaddr.sin6_family = AF_INET6; 1355 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1356 1357 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1358 return (error); 1359 1360 /* 1361 * As for the mltaddr above, proactively prepare the sin6 to avoid 1362 * rtentry un- and re-locking. 1363 */ 1364 if (ifa0 != NULL) { 1365 bzero(&sin6, sizeof(sin6)); 1366 sin6.sin6_len = sizeof(sin6); 1367 sin6.sin6_family = AF_INET6; 1368 memcpy(&sin6.sin6_addr, &satosin6(ifa0->ifa_addr)->sin6_addr, 1369 sizeof(sin6.sin6_addr)); 1370 error = in6_setscope(&sin6.sin6_addr, ifa0->ifa_ifp, NULL); 1371 if (error != 0) 1372 return (error); 1373 } 1374 1375 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 1376 if (rt != NULL && rt->rt_gateway != NULL && 1377 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1378 &ia->ia_addr.sin6_addr, 1379 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1380 /* 1381 * If no more IPv6 address exists on this interface then 1382 * remove the multicast address route. 1383 */ 1384 if (ifa0 == NULL) { 1385 memcpy(&mltaddr.sin6_addr, 1386 &satosin6(rt_key(rt))->sin6_addr, 1387 sizeof(mltaddr.sin6_addr)); 1388 RTFREE_LOCKED(rt); 1389 error = in6_rtrequest(RTM_DELETE, 1390 (struct sockaddr *)&mltaddr, 1391 (struct sockaddr *)&ia->ia_addr, 1392 (struct sockaddr *)&mltmask, RTF_UP, 1393 (struct rtentry **)0, RT_DEFAULT_FIB); 1394 if (error) 1395 log(LOG_INFO, "%s: link-local all-nodes " 1396 "multicast address deletion error\n", 1397 __func__); 1398 } else { 1399 /* 1400 * Replace the gateway of the route. 1401 */ 1402 memcpy(rt->rt_gateway, &sin6, sizeof(sin6)); 1403 RTFREE_LOCKED(rt); 1404 } 1405 } else { 1406 if (rt != NULL) 1407 RTFREE_LOCKED(rt); 1408 } 1409 1410 /* 1411 * Remove the node-local all-nodes address. 1412 */ 1413 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1414 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1415 return (error); 1416 1417 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB); 1418 if (rt != NULL && rt->rt_gateway != NULL && 1419 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr, 1420 &ia->ia_addr.sin6_addr, 1421 sizeof(ia->ia_addr.sin6_addr)) == 0)) { 1422 /* 1423 * If no more IPv6 address exists on this interface then 1424 * remove the multicast address route. 1425 */ 1426 if (ifa0 == NULL) { 1427 memcpy(&mltaddr.sin6_addr, 1428 &satosin6(rt_key(rt))->sin6_addr, 1429 sizeof(mltaddr.sin6_addr)); 1430 1431 RTFREE_LOCKED(rt); 1432 error = in6_rtrequest(RTM_DELETE, 1433 (struct sockaddr *)&mltaddr, 1434 (struct sockaddr *)&ia->ia_addr, 1435 (struct sockaddr *)&mltmask, RTF_UP, 1436 (struct rtentry **)0, RT_DEFAULT_FIB); 1437 if (error) 1438 log(LOG_INFO, "%s: node-local all-nodes" 1439 "multicast address deletion error\n", 1440 __func__); 1441 } else { 1442 /* 1443 * Replace the gateway of the route. 1444 */ 1445 memcpy(rt->rt_gateway, &sin6, sizeof(sin6)); 1446 RTFREE_LOCKED(rt); 1447 } 1448 } else { 1449 if (rt != NULL) 1450 RTFREE_LOCKED(rt); 1451 } 1452 1453 return (0); 1454 } 1455 1456 void 1457 in6_purgeaddr(struct ifaddr *ifa) 1458 { 1459 struct ifnet *ifp = ifa->ifa_ifp; 1460 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1461 int plen, error; 1462 struct ifaddr *ifa0; 1463 1464 if (ifa->ifa_carp) 1465 (*carp_detach_p)(ifa); 1466 1467 /* 1468 * find another IPv6 address as the gateway for the 1469 * link-local and node-local all-nodes multicast 1470 * address routes 1471 */ 1472 IF_ADDR_RLOCK(ifp); 1473 TAILQ_FOREACH(ifa0, &ifp->if_addrhead, ifa_link) { 1474 if ((ifa0->ifa_addr->sa_family != AF_INET6) || 1475 memcmp(&satosin6(ifa0->ifa_addr)->sin6_addr, 1476 &ia->ia_addr.sin6_addr, sizeof(struct in6_addr)) == 0) 1477 continue; 1478 else 1479 break; 1480 } 1481 if (ifa0 != NULL) 1482 ifa_ref(ifa0); 1483 IF_ADDR_RUNLOCK(ifp); 1484 1485 /* 1486 * Remove the loopback route to the interface address. 1487 * The check for the current setting of "nd6_useloopback" 1488 * is not needed. 1489 */ 1490 if (ia->ia_flags & IFA_RTSELF) { 1491 error = ifa_del_loopback_route((struct ifaddr *)ia, 1492 (struct sockaddr *)&ia->ia_addr); 1493 if (error == 0) 1494 ia->ia_flags &= ~IFA_RTSELF; 1495 } 1496 1497 /* stop DAD processing */ 1498 nd6_dad_stop(ifa); 1499 1500 /* Remove local address entry from lltable. */ 1501 in6_ifremloop(ifa); 1502 1503 /* Leave multicast groups. */ 1504 error = in6_purgeaddr_mc(ifp, ia, ifa0); 1505 1506 if (ifa0 != NULL) 1507 ifa_free(ifa0); 1508 1509 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1510 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1511 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1512 (ia->ia_dstaddr.sin6_family == AF_INET6) ? RTF_HOST : 0); 1513 if (error != 0) 1514 log(LOG_INFO, "%s: err=%d, destination address delete " 1515 "failed\n", __func__, error); 1516 ia->ia_flags &= ~IFA_ROUTE; 1517 } 1518 1519 in6_unlink_ifa(ia, ifp); 1520 } 1521 1522 static void 1523 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1524 { 1525 1526 IF_ADDR_WLOCK(ifp); 1527 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1528 IF_ADDR_WUNLOCK(ifp); 1529 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1530 1531 /* 1532 * Defer the release of what might be the last reference to the 1533 * in6_ifaddr so that it can't be freed before the remainder of the 1534 * cleanup. 1535 */ 1536 IN6_IFADDR_WLOCK(); 1537 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link); 1538 LIST_REMOVE(ia, ia6_hash); 1539 IN6_IFADDR_WUNLOCK(); 1540 1541 /* 1542 * Release the reference to the base prefix. There should be a 1543 * positive reference. 1544 */ 1545 if (ia->ia6_ndpr == NULL) { 1546 nd6log((LOG_NOTICE, 1547 "in6_unlink_ifa: autoconf'ed address " 1548 "%p has no prefix\n", ia)); 1549 } else { 1550 ia->ia6_ndpr->ndpr_refcnt--; 1551 ia->ia6_ndpr = NULL; 1552 } 1553 1554 /* 1555 * Also, if the address being removed is autoconf'ed, call 1556 * pfxlist_onlink_check() since the release might affect the status of 1557 * other (detached) addresses. 1558 */ 1559 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1560 pfxlist_onlink_check(); 1561 } 1562 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1563 } 1564 1565 void 1566 in6_purgeif(struct ifnet *ifp) 1567 { 1568 struct ifaddr *ifa, *nifa; 1569 1570 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { 1571 if (ifa->ifa_addr->sa_family != AF_INET6) 1572 continue; 1573 in6_purgeaddr(ifa); 1574 } 1575 1576 in6_ifdetach(ifp); 1577 } 1578 1579 /* 1580 * Initialize an interface's IPv6 address and routing table entry. 1581 */ 1582 static int 1583 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1584 struct sockaddr_in6 *sin6, int newhost) 1585 { 1586 int error = 0, plen, ifacount = 0; 1587 struct ifaddr *ifa; 1588 1589 /* 1590 * Give the interface a chance to initialize 1591 * if this is its first address, 1592 * and to validate the address if necessary. 1593 */ 1594 IF_ADDR_RLOCK(ifp); 1595 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1596 if (ifa->ifa_addr->sa_family != AF_INET6) 1597 continue; 1598 ifacount++; 1599 } 1600 IF_ADDR_RUNLOCK(ifp); 1601 1602 ia->ia_addr = *sin6; 1603 1604 if (ifacount <= 1 && ifp->if_ioctl) { 1605 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1606 if (error) 1607 return (error); 1608 } 1609 1610 ia->ia_ifa.ifa_metric = ifp->if_metric; 1611 1612 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1613 1614 /* 1615 * Special case: 1616 * If a new destination address is specified for a point-to-point 1617 * interface, install a route to the destination as an interface 1618 * direct route. 1619 * XXX: the logic below rejects assigning multiple addresses on a p2p 1620 * interface that share the same destination. 1621 */ 1622 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1623 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1624 ia->ia_dstaddr.sin6_family == AF_INET6) { 1625 int rtflags = RTF_UP | RTF_HOST; 1626 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1627 if (error) 1628 return (error); 1629 ia->ia_flags |= IFA_ROUTE; 1630 /* 1631 * Handle the case for ::1 . 1632 */ 1633 if (ifp->if_flags & IFF_LOOPBACK) 1634 ia->ia_flags |= IFA_RTSELF; 1635 } 1636 1637 /* 1638 * add a loopback route to self 1639 */ 1640 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1641 error = ifa_add_loopback_route((struct ifaddr *)ia, 1642 (struct sockaddr *)&ia->ia_addr); 1643 if (error == 0) 1644 ia->ia_flags |= IFA_RTSELF; 1645 } 1646 1647 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1648 if (newhost) 1649 in6_ifaddloop(&(ia->ia_ifa)); 1650 1651 return (error); 1652 } 1653 1654 /* 1655 * Find an IPv6 interface link-local address specific to an interface. 1656 * ifaddr is returned referenced. 1657 */ 1658 struct in6_ifaddr * 1659 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1660 { 1661 struct ifaddr *ifa; 1662 1663 IF_ADDR_RLOCK(ifp); 1664 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1665 if (ifa->ifa_addr->sa_family != AF_INET6) 1666 continue; 1667 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1668 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1669 ignoreflags) != 0) 1670 continue; 1671 ifa_ref(ifa); 1672 break; 1673 } 1674 } 1675 IF_ADDR_RUNLOCK(ifp); 1676 1677 return ((struct in6_ifaddr *)ifa); 1678 } 1679 1680 1681 /* 1682 * find the internet address corresponding to a given interface and address. 1683 * ifaddr is returned referenced. 1684 */ 1685 struct in6_ifaddr * 1686 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1687 { 1688 struct ifaddr *ifa; 1689 1690 IF_ADDR_RLOCK(ifp); 1691 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1692 if (ifa->ifa_addr->sa_family != AF_INET6) 1693 continue; 1694 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1695 ifa_ref(ifa); 1696 break; 1697 } 1698 } 1699 IF_ADDR_RUNLOCK(ifp); 1700 1701 return ((struct in6_ifaddr *)ifa); 1702 } 1703 1704 /* 1705 * Find a link-local scoped address on ifp and return it if any. 1706 */ 1707 struct in6_ifaddr * 1708 in6ifa_llaonifp(struct ifnet *ifp) 1709 { 1710 struct sockaddr_in6 *sin6; 1711 struct ifaddr *ifa; 1712 1713 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1714 return (NULL); 1715 if_addr_rlock(ifp); 1716 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1717 if (ifa->ifa_addr->sa_family != AF_INET6) 1718 continue; 1719 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 1720 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1721 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1722 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1723 break; 1724 } 1725 if_addr_runlock(ifp); 1726 1727 return ((struct in6_ifaddr *)ifa); 1728 } 1729 1730 /* 1731 * Convert IP6 address to printable (loggable) representation. Caller 1732 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1733 */ 1734 static char digits[] = "0123456789abcdef"; 1735 char * 1736 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1737 { 1738 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1739 char *cp; 1740 const u_int16_t *a = (const u_int16_t *)addr; 1741 const u_int8_t *d; 1742 int dcolon = 0, zero = 0; 1743 1744 cp = ip6buf; 1745 1746 for (i = 0; i < 8; i++) { 1747 if (*(a + i) == 0) { 1748 cnt++; 1749 if (cnt == 1) 1750 idx = i; 1751 } 1752 else if (maxcnt < cnt) { 1753 maxcnt = cnt; 1754 index = idx; 1755 cnt = 0; 1756 } 1757 } 1758 if (maxcnt < cnt) { 1759 maxcnt = cnt; 1760 index = idx; 1761 } 1762 1763 for (i = 0; i < 8; i++) { 1764 if (dcolon == 1) { 1765 if (*a == 0) { 1766 if (i == 7) 1767 *cp++ = ':'; 1768 a++; 1769 continue; 1770 } else 1771 dcolon = 2; 1772 } 1773 if (*a == 0) { 1774 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 1775 if (i == 0) 1776 *cp++ = ':'; 1777 *cp++ = ':'; 1778 dcolon = 1; 1779 } else { 1780 *cp++ = '0'; 1781 *cp++ = ':'; 1782 } 1783 a++; 1784 continue; 1785 } 1786 d = (const u_char *)a; 1787 /* Try to eliminate leading zeros in printout like in :0001. */ 1788 zero = 1; 1789 *cp = digits[*d >> 4]; 1790 if (*cp != '0') { 1791 zero = 0; 1792 cp++; 1793 } 1794 *cp = digits[*d++ & 0xf]; 1795 if (zero == 0 || (*cp != '0')) { 1796 zero = 0; 1797 cp++; 1798 } 1799 *cp = digits[*d >> 4]; 1800 if (zero == 0 || (*cp != '0')) { 1801 zero = 0; 1802 cp++; 1803 } 1804 *cp++ = digits[*d & 0xf]; 1805 *cp++ = ':'; 1806 a++; 1807 } 1808 *--cp = '\0'; 1809 return (ip6buf); 1810 } 1811 1812 int 1813 in6_localaddr(struct in6_addr *in6) 1814 { 1815 struct in6_ifaddr *ia; 1816 1817 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1818 return 1; 1819 1820 IN6_IFADDR_RLOCK(); 1821 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1822 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1823 &ia->ia_prefixmask.sin6_addr)) { 1824 IN6_IFADDR_RUNLOCK(); 1825 return 1; 1826 } 1827 } 1828 IN6_IFADDR_RUNLOCK(); 1829 1830 return (0); 1831 } 1832 1833 /* 1834 * Return 1 if an internet address is for the local host and configured 1835 * on one of its interfaces. 1836 */ 1837 int 1838 in6_localip(struct in6_addr *in6) 1839 { 1840 struct in6_ifaddr *ia; 1841 1842 IN6_IFADDR_RLOCK(); 1843 LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { 1844 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 1845 IN6_IFADDR_RUNLOCK(); 1846 return (1); 1847 } 1848 } 1849 IN6_IFADDR_RUNLOCK(); 1850 return (0); 1851 } 1852 1853 int 1854 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1855 { 1856 struct in6_ifaddr *ia; 1857 1858 IN6_IFADDR_RLOCK(); 1859 LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { 1860 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { 1861 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 1862 IN6_IFADDR_RUNLOCK(); 1863 return (1); /* true */ 1864 } 1865 break; 1866 } 1867 } 1868 IN6_IFADDR_RUNLOCK(); 1869 1870 return (0); /* false */ 1871 } 1872 1873 /* 1874 * return length of part which dst and src are equal 1875 * hard coding... 1876 */ 1877 int 1878 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1879 { 1880 int match = 0; 1881 u_char *s = (u_char *)src, *d = (u_char *)dst; 1882 u_char *lim = s + 16, r; 1883 1884 while (s < lim) 1885 if ((r = (*d++ ^ *s++)) != 0) { 1886 while (r < 128) { 1887 match++; 1888 r <<= 1; 1889 } 1890 break; 1891 } else 1892 match += 8; 1893 return match; 1894 } 1895 1896 /* XXX: to be scope conscious */ 1897 int 1898 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1899 { 1900 int bytelen, bitlen; 1901 1902 /* sanity check */ 1903 if (0 > len || len > 128) { 1904 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1905 len); 1906 return (0); 1907 } 1908 1909 bytelen = len / 8; 1910 bitlen = len % 8; 1911 1912 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1913 return (0); 1914 if (bitlen != 0 && 1915 p1->s6_addr[bytelen] >> (8 - bitlen) != 1916 p2->s6_addr[bytelen] >> (8 - bitlen)) 1917 return (0); 1918 1919 return (1); 1920 } 1921 1922 void 1923 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1924 { 1925 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1926 int bytelen, bitlen, i; 1927 1928 /* sanity check */ 1929 if (0 > len || len > 128) { 1930 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1931 len); 1932 return; 1933 } 1934 1935 bzero(maskp, sizeof(*maskp)); 1936 bytelen = len / 8; 1937 bitlen = len % 8; 1938 for (i = 0; i < bytelen; i++) 1939 maskp->s6_addr[i] = 0xff; 1940 if (bitlen) 1941 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1942 } 1943 1944 /* 1945 * return the best address out of the same scope. if no address was 1946 * found, return the first valid address from designated IF. 1947 */ 1948 struct in6_ifaddr * 1949 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1950 { 1951 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1952 struct ifaddr *ifa; 1953 struct in6_ifaddr *besta = 0; 1954 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1955 1956 dep[0] = dep[1] = NULL; 1957 1958 /* 1959 * We first look for addresses in the same scope. 1960 * If there is one, return it. 1961 * If two or more, return one which matches the dst longest. 1962 * If none, return one of global addresses assigned other ifs. 1963 */ 1964 IF_ADDR_RLOCK(ifp); 1965 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1966 if (ifa->ifa_addr->sa_family != AF_INET6) 1967 continue; 1968 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1969 continue; /* XXX: is there any case to allow anycast? */ 1970 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1971 continue; /* don't use this interface */ 1972 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1973 continue; 1974 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1975 if (V_ip6_use_deprecated) 1976 dep[0] = (struct in6_ifaddr *)ifa; 1977 continue; 1978 } 1979 1980 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1981 /* 1982 * call in6_matchlen() as few as possible 1983 */ 1984 if (besta) { 1985 if (blen == -1) 1986 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1987 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1988 if (tlen > blen) { 1989 blen = tlen; 1990 besta = (struct in6_ifaddr *)ifa; 1991 } 1992 } else 1993 besta = (struct in6_ifaddr *)ifa; 1994 } 1995 } 1996 if (besta) { 1997 ifa_ref(&besta->ia_ifa); 1998 IF_ADDR_RUNLOCK(ifp); 1999 return (besta); 2000 } 2001 2002 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2003 if (ifa->ifa_addr->sa_family != AF_INET6) 2004 continue; 2005 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2006 continue; /* XXX: is there any case to allow anycast? */ 2007 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2008 continue; /* don't use this interface */ 2009 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2010 continue; 2011 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2012 if (V_ip6_use_deprecated) 2013 dep[1] = (struct in6_ifaddr *)ifa; 2014 continue; 2015 } 2016 2017 if (ifa != NULL) 2018 ifa_ref(ifa); 2019 IF_ADDR_RUNLOCK(ifp); 2020 return (struct in6_ifaddr *)ifa; 2021 } 2022 2023 /* use the last-resort values, that are, deprecated addresses */ 2024 if (dep[0]) { 2025 ifa_ref((struct ifaddr *)dep[0]); 2026 IF_ADDR_RUNLOCK(ifp); 2027 return dep[0]; 2028 } 2029 if (dep[1]) { 2030 ifa_ref((struct ifaddr *)dep[1]); 2031 IF_ADDR_RUNLOCK(ifp); 2032 return dep[1]; 2033 } 2034 2035 IF_ADDR_RUNLOCK(ifp); 2036 return NULL; 2037 } 2038 2039 /* 2040 * perform DAD when interface becomes IFF_UP. 2041 */ 2042 void 2043 in6_if_up(struct ifnet *ifp) 2044 { 2045 struct ifaddr *ifa; 2046 struct in6_ifaddr *ia; 2047 2048 IF_ADDR_RLOCK(ifp); 2049 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2050 if (ifa->ifa_addr->sa_family != AF_INET6) 2051 continue; 2052 ia = (struct in6_ifaddr *)ifa; 2053 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2054 /* 2055 * The TENTATIVE flag was likely set by hand 2056 * beforehand, implicitly indicating the need for DAD. 2057 * We may be able to skip the random delay in this 2058 * case, but we impose delays just in case. 2059 */ 2060 nd6_dad_start(ifa, 2061 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2062 } 2063 } 2064 IF_ADDR_RUNLOCK(ifp); 2065 2066 /* 2067 * special cases, like 6to4, are handled in in6_ifattach 2068 */ 2069 in6_ifattach(ifp, NULL); 2070 } 2071 2072 int 2073 in6if_do_dad(struct ifnet *ifp) 2074 { 2075 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2076 return (0); 2077 2078 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 2079 return (0); 2080 2081 switch (ifp->if_type) { 2082 #ifdef IFT_DUMMY 2083 case IFT_DUMMY: 2084 #endif 2085 case IFT_FAITH: 2086 /* 2087 * These interfaces do not have the IFF_LOOPBACK flag, 2088 * but loop packets back. We do not have to do DAD on such 2089 * interfaces. We should even omit it, because loop-backed 2090 * NS would confuse the DAD procedure. 2091 */ 2092 return (0); 2093 default: 2094 /* 2095 * Our DAD routine requires the interface up and running. 2096 * However, some interfaces can be up before the RUNNING 2097 * status. Additionaly, users may try to assign addresses 2098 * before the interface becomes up (or running). 2099 * We simply skip DAD in such a case as a work around. 2100 * XXX: we should rather mark "tentative" on such addresses, 2101 * and do DAD after the interface becomes ready. 2102 */ 2103 if (!((ifp->if_flags & IFF_UP) && 2104 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2105 return (0); 2106 2107 return (1); 2108 } 2109 } 2110 2111 /* 2112 * Calculate max IPv6 MTU through all the interfaces and store it 2113 * to in6_maxmtu. 2114 */ 2115 void 2116 in6_setmaxmtu(void) 2117 { 2118 unsigned long maxmtu = 0; 2119 struct ifnet *ifp; 2120 2121 IFNET_RLOCK_NOSLEEP(); 2122 TAILQ_FOREACH(ifp, &V_ifnet, if_list) { 2123 /* this function can be called during ifnet initialization */ 2124 if (!ifp->if_afdata[AF_INET6]) 2125 continue; 2126 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2127 IN6_LINKMTU(ifp) > maxmtu) 2128 maxmtu = IN6_LINKMTU(ifp); 2129 } 2130 IFNET_RUNLOCK_NOSLEEP(); 2131 if (maxmtu) /* update only when maxmtu is positive */ 2132 V_in6_maxmtu = maxmtu; 2133 } 2134 2135 /* 2136 * Provide the length of interface identifiers to be used for the link attached 2137 * to the given interface. The length should be defined in "IPv6 over 2138 * xxx-link" document. Note that address architecture might also define 2139 * the length for a particular set of address prefixes, regardless of the 2140 * link type. As clarified in rfc2462bis, those two definitions should be 2141 * consistent, and those really are as of August 2004. 2142 */ 2143 int 2144 in6_if2idlen(struct ifnet *ifp) 2145 { 2146 switch (ifp->if_type) { 2147 case IFT_ETHER: /* RFC2464 */ 2148 #ifdef IFT_PROPVIRTUAL 2149 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2150 #endif 2151 #ifdef IFT_L2VLAN 2152 case IFT_L2VLAN: /* ditto */ 2153 #endif 2154 #ifdef IFT_IEEE80211 2155 case IFT_IEEE80211: /* ditto */ 2156 #endif 2157 #ifdef IFT_MIP 2158 case IFT_MIP: /* ditto */ 2159 #endif 2160 case IFT_INFINIBAND: 2161 return (64); 2162 case IFT_FDDI: /* RFC2467 */ 2163 return (64); 2164 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2165 return (64); 2166 case IFT_PPP: /* RFC2472 */ 2167 return (64); 2168 case IFT_ARCNET: /* RFC2497 */ 2169 return (64); 2170 case IFT_FRELAY: /* RFC2590 */ 2171 return (64); 2172 case IFT_IEEE1394: /* RFC3146 */ 2173 return (64); 2174 case IFT_GIF: 2175 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2176 case IFT_LOOP: 2177 return (64); /* XXX: is this really correct? */ 2178 default: 2179 /* 2180 * Unknown link type: 2181 * It might be controversial to use the today's common constant 2182 * of 64 for these cases unconditionally. For full compliance, 2183 * we should return an error in this case. On the other hand, 2184 * if we simply miss the standard for the link type or a new 2185 * standard is defined for a new link type, the IFID length 2186 * is very likely to be the common constant. As a compromise, 2187 * we always use the constant, but make an explicit notice 2188 * indicating the "unknown" case. 2189 */ 2190 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2191 return (64); 2192 } 2193 } 2194 2195 #include <sys/sysctl.h> 2196 2197 struct in6_llentry { 2198 struct llentry base; 2199 struct sockaddr_in6 l3_addr6; 2200 }; 2201 2202 /* 2203 * Deletes an address from the address table. 2204 * This function is called by the timer functions 2205 * such as arptimer() and nd6_llinfo_timer(), and 2206 * the caller does the locking. 2207 */ 2208 static void 2209 in6_lltable_free(struct lltable *llt, struct llentry *lle) 2210 { 2211 LLE_WUNLOCK(lle); 2212 LLE_LOCK_DESTROY(lle); 2213 free(lle, M_LLTABLE); 2214 } 2215 2216 static struct llentry * 2217 in6_lltable_new(const struct sockaddr *l3addr, u_int flags) 2218 { 2219 struct in6_llentry *lle; 2220 2221 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2222 if (lle == NULL) /* NB: caller generates msg */ 2223 return NULL; 2224 2225 lle->l3_addr6 = *(const struct sockaddr_in6 *)l3addr; 2226 lle->base.lle_refcnt = 1; 2227 lle->base.lle_free = in6_lltable_free; 2228 LLE_LOCK_INIT(&lle->base); 2229 callout_init_rw(&lle->base.ln_timer_ch, &lle->base.lle_lock, 2230 CALLOUT_RETURNUNLOCKED); 2231 2232 return (&lle->base); 2233 } 2234 2235 static void 2236 in6_lltable_prefix_free(struct lltable *llt, const struct sockaddr *prefix, 2237 const struct sockaddr *mask, u_int flags) 2238 { 2239 const struct sockaddr_in6 *pfx = (const struct sockaddr_in6 *)prefix; 2240 const struct sockaddr_in6 *msk = (const struct sockaddr_in6 *)mask; 2241 struct llentry *lle, *next; 2242 int i; 2243 2244 /* 2245 * (flags & LLE_STATIC) means deleting all entries 2246 * including static ND6 entries. 2247 */ 2248 IF_AFDATA_WLOCK(llt->llt_ifp); 2249 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2250 LIST_FOREACH_SAFE(lle, &llt->lle_head[i], lle_next, next) { 2251 if (IN6_ARE_MASKED_ADDR_EQUAL( 2252 &satosin6(L3_ADDR(lle))->sin6_addr, 2253 &pfx->sin6_addr, &msk->sin6_addr) && 2254 ((flags & LLE_STATIC) || 2255 !(lle->la_flags & LLE_STATIC))) { 2256 LLE_WLOCK(lle); 2257 if (callout_stop(&lle->la_timer)) 2258 LLE_REMREF(lle); 2259 llentry_free(lle); 2260 } 2261 } 2262 } 2263 IF_AFDATA_WUNLOCK(llt->llt_ifp); 2264 } 2265 2266 static int 2267 in6_lltable_rtcheck(struct ifnet *ifp, 2268 u_int flags, 2269 const struct sockaddr *l3addr) 2270 { 2271 struct rtentry *rt; 2272 char ip6buf[INET6_ADDRSTRLEN]; 2273 2274 KASSERT(l3addr->sa_family == AF_INET6, 2275 ("sin_family %d", l3addr->sa_family)); 2276 2277 /* Our local addresses are always only installed on the default FIB. */ 2278 /* XXX rtalloc1 should take a const param */ 2279 rt = in6_rtalloc1(__DECONST(struct sockaddr *, l3addr), 0, 0, 2280 RT_DEFAULT_FIB); 2281 if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) || rt->rt_ifp != ifp) { 2282 struct ifaddr *ifa; 2283 /* 2284 * Create an ND6 cache for an IPv6 neighbor 2285 * that is not covered by our own prefix. 2286 */ 2287 /* XXX ifaof_ifpforaddr should take a const param */ 2288 ifa = ifaof_ifpforaddr(__DECONST(struct sockaddr *, l3addr), ifp); 2289 if (ifa != NULL) { 2290 ifa_free(ifa); 2291 if (rt != NULL) 2292 RTFREE_LOCKED(rt); 2293 return 0; 2294 } 2295 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2296 ip6_sprintf(ip6buf, &((const struct sockaddr_in6 *)l3addr)->sin6_addr)); 2297 if (rt != NULL) 2298 RTFREE_LOCKED(rt); 2299 return EINVAL; 2300 } 2301 RTFREE_LOCKED(rt); 2302 return 0; 2303 } 2304 2305 static struct llentry * 2306 in6_lltable_lookup(struct lltable *llt, u_int flags, 2307 const struct sockaddr *l3addr) 2308 { 2309 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2310 struct ifnet *ifp = llt->llt_ifp; 2311 struct llentry *lle; 2312 struct llentries *lleh; 2313 u_int hashkey; 2314 2315 IF_AFDATA_LOCK_ASSERT(ifp); 2316 KASSERT(l3addr->sa_family == AF_INET6, 2317 ("sin_family %d", l3addr->sa_family)); 2318 2319 hashkey = sin6->sin6_addr.s6_addr32[3]; 2320 lleh = &llt->lle_head[LLATBL_HASH(hashkey, LLTBL_HASHMASK)]; 2321 LIST_FOREACH(lle, lleh, lle_next) { 2322 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)L3_ADDR(lle); 2323 if (lle->la_flags & LLE_DELETED) 2324 continue; 2325 if (bcmp(&sa6->sin6_addr, &sin6->sin6_addr, 2326 sizeof(struct in6_addr)) == 0) 2327 break; 2328 } 2329 2330 if (lle == NULL) { 2331 if (!(flags & LLE_CREATE)) 2332 return (NULL); 2333 IF_AFDATA_WLOCK_ASSERT(ifp); 2334 /* 2335 * A route that covers the given address must have 2336 * been installed 1st because we are doing a resolution, 2337 * verify this. 2338 */ 2339 if (!(flags & LLE_IFADDR) && 2340 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2341 return NULL; 2342 2343 lle = in6_lltable_new(l3addr, flags); 2344 if (lle == NULL) { 2345 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2346 return NULL; 2347 } 2348 lle->la_flags = flags & ~LLE_CREATE; 2349 if ((flags & (LLE_CREATE | LLE_IFADDR)) == (LLE_CREATE | LLE_IFADDR)) { 2350 bcopy(IF_LLADDR(ifp), &lle->ll_addr, ifp->if_addrlen); 2351 lle->la_flags |= (LLE_VALID | LLE_STATIC); 2352 } 2353 2354 lle->lle_tbl = llt; 2355 lle->lle_head = lleh; 2356 lle->la_flags |= LLE_LINKED; 2357 LIST_INSERT_HEAD(lleh, lle, lle_next); 2358 } else if (flags & LLE_DELETE) { 2359 if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) { 2360 LLE_WLOCK(lle); 2361 lle->la_flags |= LLE_DELETED; 2362 #ifdef DIAGNOSTIC 2363 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2364 #endif 2365 if ((lle->la_flags & 2366 (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC) 2367 llentry_free(lle); 2368 else 2369 LLE_WUNLOCK(lle); 2370 } 2371 lle = (void *)-1; 2372 } 2373 if (LLE_IS_VALID(lle)) { 2374 if (flags & LLE_EXCLUSIVE) 2375 LLE_WLOCK(lle); 2376 else 2377 LLE_RLOCK(lle); 2378 } 2379 return (lle); 2380 } 2381 2382 static int 2383 in6_lltable_dump(struct lltable *llt, struct sysctl_req *wr) 2384 { 2385 struct ifnet *ifp = llt->llt_ifp; 2386 struct llentry *lle; 2387 /* XXX stack use */ 2388 struct { 2389 struct rt_msghdr rtm; 2390 struct sockaddr_in6 sin6; 2391 /* 2392 * ndp.c assumes that sdl is word aligned 2393 */ 2394 #ifdef __LP64__ 2395 uint32_t pad; 2396 #endif 2397 struct sockaddr_dl sdl; 2398 } ndpc; 2399 int i, error; 2400 2401 if (ifp->if_flags & IFF_LOOPBACK) 2402 return 0; 2403 2404 LLTABLE_LOCK_ASSERT(); 2405 2406 error = 0; 2407 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) { 2408 LIST_FOREACH(lle, &llt->lle_head[i], lle_next) { 2409 struct sockaddr_dl *sdl; 2410 2411 /* skip deleted or invalid entries */ 2412 if ((lle->la_flags & (LLE_DELETED|LLE_VALID)) != LLE_VALID) 2413 continue; 2414 /* Skip if jailed and not a valid IP of the prison. */ 2415 if (prison_if(wr->td->td_ucred, L3_ADDR(lle)) != 0) 2416 continue; 2417 /* 2418 * produce a msg made of: 2419 * struct rt_msghdr; 2420 * struct sockaddr_in6 (IPv6) 2421 * struct sockaddr_dl; 2422 */ 2423 bzero(&ndpc, sizeof(ndpc)); 2424 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2425 ndpc.rtm.rtm_version = RTM_VERSION; 2426 ndpc.rtm.rtm_type = RTM_GET; 2427 ndpc.rtm.rtm_flags = RTF_UP; 2428 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2429 ndpc.sin6.sin6_family = AF_INET6; 2430 ndpc.sin6.sin6_len = sizeof(ndpc.sin6); 2431 bcopy(L3_ADDR(lle), &ndpc.sin6, L3_ADDR_LEN(lle)); 2432 if (V_deembed_scopeid) 2433 sa6_recoverscope(&ndpc.sin6); 2434 2435 /* publish */ 2436 if (lle->la_flags & LLE_PUB) 2437 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2438 2439 sdl = &ndpc.sdl; 2440 sdl->sdl_family = AF_LINK; 2441 sdl->sdl_len = sizeof(*sdl); 2442 sdl->sdl_alen = ifp->if_addrlen; 2443 sdl->sdl_index = ifp->if_index; 2444 sdl->sdl_type = ifp->if_type; 2445 bcopy(&lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2446 ndpc.rtm.rtm_rmx.rmx_expire = 2447 lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; 2448 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2449 if (lle->la_flags & LLE_STATIC) 2450 ndpc.rtm.rtm_flags |= RTF_STATIC; 2451 ndpc.rtm.rtm_index = ifp->if_index; 2452 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2453 if (error) 2454 break; 2455 } 2456 } 2457 return error; 2458 } 2459 2460 void * 2461 in6_domifattach(struct ifnet *ifp) 2462 { 2463 struct in6_ifextra *ext; 2464 2465 /* There are not IPv6-capable interfaces. */ 2466 switch (ifp->if_type) { 2467 case IFT_PFLOG: 2468 case IFT_PFSYNC: 2469 case IFT_USB: 2470 return (NULL); 2471 } 2472 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2473 bzero(ext, sizeof(*ext)); 2474 2475 ext->in6_ifstat = malloc(sizeof(counter_u64_t) * 2476 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); 2477 COUNTER_ARRAY_ALLOC(ext->in6_ifstat, 2478 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); 2479 2480 ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * 2481 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, 2482 M_WAITOK); 2483 COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, 2484 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); 2485 2486 ext->nd_ifinfo = nd6_ifattach(ifp); 2487 ext->scope6_id = scope6_ifattach(ifp); 2488 ext->lltable = lltable_init(ifp, AF_INET6); 2489 if (ext->lltable != NULL) { 2490 ext->lltable->llt_prefix_free = in6_lltable_prefix_free; 2491 ext->lltable->llt_lookup = in6_lltable_lookup; 2492 ext->lltable->llt_dump = in6_lltable_dump; 2493 } 2494 2495 ext->mld_ifinfo = mld_domifattach(ifp); 2496 2497 return ext; 2498 } 2499 2500 void 2501 in6_domifdetach(struct ifnet *ifp, void *aux) 2502 { 2503 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2504 2505 mld_domifdetach(ifp); 2506 scope6_ifdetach(ext->scope6_id); 2507 nd6_ifdetach(ext->nd_ifinfo); 2508 lltable_free(ext->lltable); 2509 COUNTER_ARRAY_FREE(ext->in6_ifstat, 2510 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 2511 free(ext->in6_ifstat, M_IFADDR); 2512 COUNTER_ARRAY_FREE(ext->icmp6_ifstat, 2513 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 2514 free(ext->icmp6_ifstat, M_IFADDR); 2515 free(ext, M_IFADDR); 2516 } 2517 2518 /* 2519 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2520 * v4 mapped addr or v4 compat addr 2521 */ 2522 void 2523 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2524 { 2525 2526 bzero(sin, sizeof(*sin)); 2527 sin->sin_len = sizeof(struct sockaddr_in); 2528 sin->sin_family = AF_INET; 2529 sin->sin_port = sin6->sin6_port; 2530 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2531 } 2532 2533 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2534 void 2535 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2536 { 2537 bzero(sin6, sizeof(*sin6)); 2538 sin6->sin6_len = sizeof(struct sockaddr_in6); 2539 sin6->sin6_family = AF_INET6; 2540 sin6->sin6_port = sin->sin_port; 2541 sin6->sin6_addr.s6_addr32[0] = 0; 2542 sin6->sin6_addr.s6_addr32[1] = 0; 2543 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2544 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2545 } 2546 2547 /* Convert sockaddr_in6 into sockaddr_in. */ 2548 void 2549 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2550 { 2551 struct sockaddr_in *sin_p; 2552 struct sockaddr_in6 sin6; 2553 2554 /* 2555 * Save original sockaddr_in6 addr and convert it 2556 * to sockaddr_in. 2557 */ 2558 sin6 = *(struct sockaddr_in6 *)nam; 2559 sin_p = (struct sockaddr_in *)nam; 2560 in6_sin6_2_sin(sin_p, &sin6); 2561 } 2562 2563 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2564 void 2565 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2566 { 2567 struct sockaddr_in *sin_p; 2568 struct sockaddr_in6 *sin6_p; 2569 2570 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2571 sin_p = (struct sockaddr_in *)*nam; 2572 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2573 free(*nam, M_SONAME); 2574 *nam = (struct sockaddr *)sin6_p; 2575 } 2576