1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 70 #include <sys/param.h> 71 #include <sys/eventhandler.h> 72 #include <sys/errno.h> 73 #include <sys/jail.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/time.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/rmlock.h> 85 #include <sys/syslog.h> 86 87 #include <net/if.h> 88 #include <net/if_var.h> 89 #include <net/if_types.h> 90 #include <net/route.h> 91 #include <net/if_dl.h> 92 #include <net/vnet.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_var.h> 96 #include <net/if_llatbl.h> 97 #include <netinet/if_ether.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/ip.h> 100 #include <netinet/in_pcb.h> 101 #include <netinet/ip_carp.h> 102 103 #include <netinet/ip6.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet6/nd6.h> 106 #include <netinet6/mld6_var.h> 107 #include <netinet6/ip6_mroute.h> 108 #include <netinet6/in6_ifattach.h> 109 #include <netinet6/scope6_var.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/in6_pcb.h> 112 113 VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); 114 #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) 115 116 /* 117 * Definitions of some costant IP6 addresses. 118 */ 119 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 120 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 121 const struct in6_addr in6addr_nodelocal_allnodes = 122 IN6ADDR_NODELOCAL_ALLNODES_INIT; 123 const struct in6_addr in6addr_linklocal_allnodes = 124 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 125 const struct in6_addr in6addr_linklocal_allrouters = 126 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 127 const struct in6_addr in6addr_linklocal_allv2routers = 128 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 129 130 const struct in6_addr in6mask0 = IN6MASK0; 131 const struct in6_addr in6mask32 = IN6MASK32; 132 const struct in6_addr in6mask64 = IN6MASK64; 133 const struct in6_addr in6mask96 = IN6MASK96; 134 const struct in6_addr in6mask128 = IN6MASK128; 135 136 const struct sockaddr_in6 sa6_any = 137 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 138 139 static int in6_notify_ifa(struct ifnet *, struct in6_ifaddr *, 140 struct in6_aliasreq *, int); 141 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 142 143 static int in6_validate_ifra(struct ifnet *, struct in6_aliasreq *, 144 struct in6_ifaddr *, int); 145 static struct in6_ifaddr *in6_alloc_ifa(struct ifnet *, 146 struct in6_aliasreq *, int flags); 147 static int in6_update_ifa_internal(struct ifnet *, struct in6_aliasreq *, 148 struct in6_ifaddr *, int, int); 149 static int in6_broadcast_ifa(struct ifnet *, struct in6_aliasreq *, 150 struct in6_ifaddr *, int); 151 152 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 153 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 154 155 156 void 157 in6_newaddrmsg(struct in6_ifaddr *ia, int cmd) 158 { 159 struct sockaddr_dl gateway; 160 struct sockaddr_in6 mask, addr; 161 struct rtentry rt; 162 int fibnum; 163 164 /* 165 * initialize for rtmsg generation 166 */ 167 bzero(&gateway, sizeof(gateway)); 168 gateway.sdl_len = sizeof(gateway); 169 gateway.sdl_family = AF_LINK; 170 171 bzero(&rt, sizeof(rt)); 172 rt.rt_gateway = (struct sockaddr *)&gateway; 173 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 174 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 175 rt_mask(&rt) = (struct sockaddr *)&mask; 176 rt_key(&rt) = (struct sockaddr *)&addr; 177 rt.rt_flags = RTF_HOST | RTF_STATIC; 178 if (cmd == RTM_ADD) 179 rt.rt_flags |= RTF_UP; 180 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ia62ifa(ia)->ifa_ifp->if_fib; 181 /* Announce arrival of local address to this FIB. */ 182 rt_newaddrmsg_fib(cmd, &ia->ia_ifa, 0, &rt, fibnum); 183 } 184 185 int 186 in6_mask2len(struct in6_addr *mask, u_char *lim0) 187 { 188 int x = 0, y; 189 u_char *lim = lim0, *p; 190 191 /* ignore the scope_id part */ 192 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 193 lim = (u_char *)mask + sizeof(*mask); 194 for (p = (u_char *)mask; p < lim; x++, p++) { 195 if (*p != 0xff) 196 break; 197 } 198 y = 0; 199 if (p < lim) { 200 for (y = 0; y < 8; y++) { 201 if ((*p & (0x80 >> y)) == 0) 202 break; 203 } 204 } 205 206 /* 207 * when the limit pointer is given, do a stricter check on the 208 * remaining bits. 209 */ 210 if (p < lim) { 211 if (y != 0 && (*p & (0x00ff >> y)) != 0) 212 return (-1); 213 for (p = p + 1; p < lim; p++) 214 if (*p != 0) 215 return (-1); 216 } 217 218 return x * 8 + y; 219 } 220 221 #ifdef COMPAT_FREEBSD32 222 struct in6_ndifreq32 { 223 char ifname[IFNAMSIZ]; 224 uint32_t ifindex; 225 }; 226 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 227 #endif 228 229 int 230 in6_control(struct socket *so, u_long cmd, caddr_t data, 231 struct ifnet *ifp, struct thread *td) 232 { 233 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 234 struct in6_ifaddr *ia = NULL; 235 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 236 struct sockaddr_in6 *sa6; 237 int carp_attached = 0; 238 int error; 239 u_long ocmd = cmd; 240 241 /* 242 * Compat to make pre-10.x ifconfig(8) operable. 243 */ 244 if (cmd == OSIOCAIFADDR_IN6) 245 cmd = SIOCAIFADDR_IN6; 246 247 switch (cmd) { 248 case SIOCGETSGCNT_IN6: 249 case SIOCGETMIFCNT_IN6: 250 /* 251 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 252 * We cannot see how that would be needed, so do not adjust the 253 * KPI blindly; more likely should clean up the IPv4 variant. 254 */ 255 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 256 } 257 258 switch (cmd) { 259 case SIOCAADDRCTL_POLICY: 260 case SIOCDADDRCTL_POLICY: 261 if (td != NULL) { 262 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 263 if (error) 264 return (error); 265 } 266 return (in6_src_ioctl(cmd, data)); 267 } 268 269 if (ifp == NULL) 270 return (EOPNOTSUPP); 271 272 switch (cmd) { 273 case SIOCSNDFLUSH_IN6: 274 case SIOCSPFXFLUSH_IN6: 275 case SIOCSRTRFLUSH_IN6: 276 case SIOCSDEFIFACE_IN6: 277 case SIOCSIFINFO_FLAGS: 278 case SIOCSIFINFO_IN6: 279 if (td != NULL) { 280 error = priv_check(td, PRIV_NETINET_ND6); 281 if (error) 282 return (error); 283 } 284 /* FALLTHROUGH */ 285 case OSIOCGIFINFO_IN6: 286 case SIOCGIFINFO_IN6: 287 case SIOCGNBRINFO_IN6: 288 case SIOCGDEFIFACE_IN6: 289 return (nd6_ioctl(cmd, data, ifp)); 290 291 #ifdef COMPAT_FREEBSD32 292 case SIOCGDEFIFACE32_IN6: 293 { 294 struct in6_ndifreq ndif; 295 struct in6_ndifreq32 *ndif32; 296 297 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 298 ifp); 299 if (error) 300 return (error); 301 ndif32 = (struct in6_ndifreq32 *)data; 302 ndif32->ifindex = ndif.ifindex; 303 return (0); 304 } 305 #endif 306 } 307 308 switch (cmd) { 309 case SIOCSIFPREFIX_IN6: 310 case SIOCDIFPREFIX_IN6: 311 case SIOCAIFPREFIX_IN6: 312 case SIOCCIFPREFIX_IN6: 313 case SIOCSGIFPREFIX_IN6: 314 case SIOCGIFPREFIX_IN6: 315 log(LOG_NOTICE, 316 "prefix ioctls are now invalidated. " 317 "please use ifconfig.\n"); 318 return (EOPNOTSUPP); 319 } 320 321 switch (cmd) { 322 case SIOCSSCOPE6: 323 if (td != NULL) { 324 error = priv_check(td, PRIV_NETINET_SCOPE6); 325 if (error) 326 return (error); 327 } 328 /* FALLTHROUGH */ 329 case SIOCGSCOPE6: 330 case SIOCGSCOPE6DEF: 331 return (scope6_ioctl(cmd, data, ifp)); 332 } 333 334 /* 335 * Find address for this interface, if it exists. 336 * 337 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 338 * only, and used the first interface address as the target of other 339 * operations (without checking ifra_addr). This was because netinet 340 * code/API assumed at most 1 interface address per interface. 341 * Since IPv6 allows a node to assign multiple addresses 342 * on a single interface, we almost always look and check the 343 * presence of ifra_addr, and reject invalid ones here. 344 * It also decreases duplicated code among SIOC*_IN6 operations. 345 */ 346 switch (cmd) { 347 case SIOCAIFADDR_IN6: 348 case SIOCSIFPHYADDR_IN6: 349 sa6 = &ifra->ifra_addr; 350 break; 351 case SIOCSIFADDR_IN6: 352 case SIOCGIFADDR_IN6: 353 case SIOCSIFDSTADDR_IN6: 354 case SIOCSIFNETMASK_IN6: 355 case SIOCGIFDSTADDR_IN6: 356 case SIOCGIFNETMASK_IN6: 357 case SIOCDIFADDR_IN6: 358 case SIOCGIFPSRCADDR_IN6: 359 case SIOCGIFPDSTADDR_IN6: 360 case SIOCGIFAFLAG_IN6: 361 case SIOCSNDFLUSH_IN6: 362 case SIOCSPFXFLUSH_IN6: 363 case SIOCSRTRFLUSH_IN6: 364 case SIOCGIFALIFETIME_IN6: 365 case SIOCGIFSTAT_IN6: 366 case SIOCGIFSTAT_ICMP6: 367 sa6 = &ifr->ifr_addr; 368 break; 369 case SIOCSIFADDR: 370 case SIOCSIFBRDADDR: 371 case SIOCSIFDSTADDR: 372 case SIOCSIFNETMASK: 373 /* 374 * Although we should pass any non-INET6 ioctl requests 375 * down to driver, we filter some legacy INET requests. 376 * Drivers trust SIOCSIFADDR et al to come from an already 377 * privileged layer, and do not perform any credentials 378 * checks or input validation. 379 */ 380 return (EINVAL); 381 default: 382 sa6 = NULL; 383 break; 384 } 385 if (sa6 && sa6->sin6_family == AF_INET6) { 386 if (sa6->sin6_scope_id != 0) 387 error = sa6_embedscope(sa6, 0); 388 else 389 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 390 if (error != 0) 391 return (error); 392 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 393 &sa6->sin6_addr)) != 0) 394 return (error); 395 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 396 } else 397 ia = NULL; 398 399 switch (cmd) { 400 case SIOCSIFADDR_IN6: 401 case SIOCSIFDSTADDR_IN6: 402 case SIOCSIFNETMASK_IN6: 403 /* 404 * Since IPv6 allows a node to assign multiple addresses 405 * on a single interface, SIOCSIFxxx ioctls are deprecated. 406 */ 407 /* we decided to obsolete this command (20000704) */ 408 error = EINVAL; 409 goto out; 410 411 case SIOCDIFADDR_IN6: 412 /* 413 * for IPv4, we look for existing in_ifaddr here to allow 414 * "ifconfig if0 delete" to remove the first IPv4 address on 415 * the interface. For IPv6, as the spec allows multiple 416 * interface address from the day one, we consider "remove the 417 * first one" semantics to be not preferable. 418 */ 419 if (ia == NULL) { 420 error = EADDRNOTAVAIL; 421 goto out; 422 } 423 /* FALLTHROUGH */ 424 case SIOCAIFADDR_IN6: 425 /* 426 * We always require users to specify a valid IPv6 address for 427 * the corresponding operation. 428 */ 429 if (ifra->ifra_addr.sin6_family != AF_INET6 || 430 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 431 error = EAFNOSUPPORT; 432 goto out; 433 } 434 435 if (td != NULL) { 436 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 437 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 438 if (error) 439 goto out; 440 } 441 /* FALLTHROUGH */ 442 case SIOCGIFSTAT_IN6: 443 case SIOCGIFSTAT_ICMP6: 444 if (ifp->if_afdata[AF_INET6] == NULL) { 445 error = EPFNOSUPPORT; 446 goto out; 447 } 448 break; 449 450 case SIOCGIFADDR_IN6: 451 /* This interface is basically deprecated. use SIOCGIFCONF. */ 452 /* FALLTHROUGH */ 453 case SIOCGIFAFLAG_IN6: 454 case SIOCGIFNETMASK_IN6: 455 case SIOCGIFDSTADDR_IN6: 456 case SIOCGIFALIFETIME_IN6: 457 /* must think again about its semantics */ 458 if (ia == NULL) { 459 error = EADDRNOTAVAIL; 460 goto out; 461 } 462 break; 463 } 464 465 switch (cmd) { 466 case SIOCGIFADDR_IN6: 467 ifr->ifr_addr = ia->ia_addr; 468 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 469 goto out; 470 break; 471 472 case SIOCGIFDSTADDR_IN6: 473 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 474 error = EINVAL; 475 goto out; 476 } 477 /* 478 * XXX: should we check if ifa_dstaddr is NULL and return 479 * an error? 480 */ 481 ifr->ifr_dstaddr = ia->ia_dstaddr; 482 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 483 goto out; 484 break; 485 486 case SIOCGIFNETMASK_IN6: 487 ifr->ifr_addr = ia->ia_prefixmask; 488 break; 489 490 case SIOCGIFAFLAG_IN6: 491 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 492 break; 493 494 case SIOCGIFSTAT_IN6: 495 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 496 ifp->if_afdata[AF_INET6])->in6_ifstat, 497 &ifr->ifr_ifru.ifru_stat, 498 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 499 break; 500 501 case SIOCGIFSTAT_ICMP6: 502 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 503 ifp->if_afdata[AF_INET6])->icmp6_ifstat, 504 &ifr->ifr_ifru.ifru_icmp6stat, 505 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 506 break; 507 508 case SIOCGIFALIFETIME_IN6: 509 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 510 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 511 time_t maxexpire; 512 struct in6_addrlifetime *retlt = 513 &ifr->ifr_ifru.ifru_lifetime; 514 515 /* 516 * XXX: adjust expiration time assuming time_t is 517 * signed. 518 */ 519 maxexpire = (-1) & 520 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 521 if (ia->ia6_lifetime.ia6t_vltime < 522 maxexpire - ia->ia6_updatetime) { 523 retlt->ia6t_expire = ia->ia6_updatetime + 524 ia->ia6_lifetime.ia6t_vltime; 525 } else 526 retlt->ia6t_expire = maxexpire; 527 } 528 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 529 time_t maxexpire; 530 struct in6_addrlifetime *retlt = 531 &ifr->ifr_ifru.ifru_lifetime; 532 533 /* 534 * XXX: adjust expiration time assuming time_t is 535 * signed. 536 */ 537 maxexpire = (-1) & 538 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 539 if (ia->ia6_lifetime.ia6t_pltime < 540 maxexpire - ia->ia6_updatetime) { 541 retlt->ia6t_preferred = ia->ia6_updatetime + 542 ia->ia6_lifetime.ia6t_pltime; 543 } else 544 retlt->ia6t_preferred = maxexpire; 545 } 546 break; 547 548 case SIOCAIFADDR_IN6: 549 { 550 struct nd_prefixctl pr0; 551 struct nd_prefix *pr; 552 553 /* 554 * first, make or update the interface address structure, 555 * and link it to the list. 556 */ 557 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 558 goto out; 559 if (ia != NULL) { 560 if (ia->ia_ifa.ifa_carp) 561 (*carp_detach_p)(&ia->ia_ifa, true); 562 ifa_free(&ia->ia_ifa); 563 } 564 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 565 == NULL) { 566 /* 567 * this can happen when the user specify the 0 valid 568 * lifetime. 569 */ 570 break; 571 } 572 573 if (cmd == ocmd && ifra->ifra_vhid > 0) { 574 if (carp_attach_p != NULL) 575 error = (*carp_attach_p)(&ia->ia_ifa, 576 ifra->ifra_vhid); 577 else 578 error = EPROTONOSUPPORT; 579 if (error) 580 goto out; 581 else 582 carp_attached = 1; 583 } 584 585 /* 586 * then, make the prefix on-link on the interface. 587 * XXX: we'd rather create the prefix before the address, but 588 * we need at least one address to install the corresponding 589 * interface route, so we configure the address first. 590 */ 591 592 /* 593 * convert mask to prefix length (prefixmask has already 594 * been validated in in6_update_ifa(). 595 */ 596 bzero(&pr0, sizeof(pr0)); 597 pr0.ndpr_ifp = ifp; 598 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 599 NULL); 600 if (pr0.ndpr_plen == 128) { 601 /* we don't need to install a host route. */ 602 goto aifaddr_out; 603 } 604 pr0.ndpr_prefix = ifra->ifra_addr; 605 /* apply the mask for safety. */ 606 IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, 607 &ifra->ifra_prefixmask.sin6_addr); 608 609 /* 610 * XXX: since we don't have an API to set prefix (not address) 611 * lifetimes, we just use the same lifetimes as addresses. 612 * The (temporarily) installed lifetimes can be overridden by 613 * later advertised RAs (when accept_rtadv is non 0), which is 614 * an intended behavior. 615 */ 616 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 617 pr0.ndpr_raf_auto = 618 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 619 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 620 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 621 622 /* add the prefix if not yet. */ 623 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 624 /* 625 * nd6_prelist_add will install the corresponding 626 * interface route. 627 */ 628 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 629 if (carp_attached) 630 (*carp_detach_p)(&ia->ia_ifa, false); 631 goto out; 632 } 633 } 634 635 /* relate the address to the prefix */ 636 if (ia->ia6_ndpr == NULL) { 637 ia->ia6_ndpr = pr; 638 pr->ndpr_addrcnt++; 639 640 /* 641 * If this is the first autoconf address from the 642 * prefix, create a temporary address as well 643 * (when required). 644 */ 645 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 646 V_ip6_use_tempaddr && pr->ndpr_addrcnt == 1) { 647 int e; 648 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 649 log(LOG_NOTICE, "in6_control: failed " 650 "to create a temporary address, " 651 "errno=%d\n", e); 652 } 653 } 654 } 655 nd6_prefix_rele(pr); 656 657 /* 658 * this might affect the status of autoconfigured addresses, 659 * that is, this address might make other addresses detached. 660 */ 661 pfxlist_onlink_check(); 662 663 aifaddr_out: 664 /* 665 * Try to clear the flag when a new IPv6 address is added 666 * onto an IFDISABLED interface and it succeeds. 667 */ 668 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 669 struct in6_ndireq nd; 670 671 memset(&nd, 0, sizeof(nd)); 672 nd.ndi.flags = ND_IFINFO(ifp)->flags; 673 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 674 if (nd6_ioctl(SIOCSIFINFO_FLAGS, (caddr_t)&nd, ifp) < 0) 675 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 676 "SIOCSIFINFO_FLAGS for -ifdisabled " 677 "failed."); 678 /* 679 * Ignore failure of clearing the flag intentionally. 680 * The failure means address duplication was detected. 681 */ 682 } 683 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 684 break; 685 } 686 687 case SIOCDIFADDR_IN6: 688 { 689 struct nd_prefix *pr; 690 691 /* 692 * If the address being deleted is the only one that owns 693 * the corresponding prefix, expire the prefix as well. 694 * XXX: theoretically, we don't have to worry about such 695 * relationship, since we separate the address management 696 * and the prefix management. We do this, however, to provide 697 * as much backward compatibility as possible in terms of 698 * the ioctl operation. 699 * Note that in6_purgeaddr() will decrement ndpr_addrcnt. 700 */ 701 pr = ia->ia6_ndpr; 702 in6_purgeaddr(&ia->ia_ifa); 703 if (pr != NULL && pr->ndpr_addrcnt == 0) { 704 ND6_WLOCK(); 705 nd6_prefix_unlink(pr, NULL); 706 ND6_WUNLOCK(); 707 nd6_prefix_del(pr); 708 } 709 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 710 break; 711 } 712 713 default: 714 if (ifp->if_ioctl == NULL) { 715 error = EOPNOTSUPP; 716 goto out; 717 } 718 error = (*ifp->if_ioctl)(ifp, cmd, data); 719 goto out; 720 } 721 722 error = 0; 723 out: 724 if (ia != NULL) 725 ifa_free(&ia->ia_ifa); 726 return (error); 727 } 728 729 730 /* 731 * Join necessary multicast groups. Factored out from in6_update_ifa(). 732 * This entire work should only be done once, for the default FIB. 733 */ 734 static int 735 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 736 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 737 { 738 char ip6buf[INET6_ADDRSTRLEN]; 739 struct in6_addr mltaddr; 740 struct in6_multi_mship *imm; 741 int delay, error; 742 743 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 744 745 /* Join solicited multicast addr for new host id. */ 746 bzero(&mltaddr, sizeof(struct in6_addr)); 747 mltaddr.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 748 mltaddr.s6_addr32[2] = htonl(1); 749 mltaddr.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 750 mltaddr.s6_addr8[12] = 0xff; 751 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) { 752 /* XXX: should not happen */ 753 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 754 goto cleanup; 755 } 756 delay = error = 0; 757 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 758 /* 759 * We need a random delay for DAD on the address being 760 * configured. It also means delaying transmission of the 761 * corresponding MLD report to avoid report collision. 762 * [RFC 4861, Section 6.3.7] 763 */ 764 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 765 } 766 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 767 if (imm == NULL) { 768 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 769 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 770 if_name(ifp), error)); 771 goto cleanup; 772 } 773 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 774 *in6m_sol = imm->i6mm_maddr; 775 776 /* 777 * Join link-local all-nodes address. 778 */ 779 mltaddr = in6addr_linklocal_allnodes; 780 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 781 goto cleanup; /* XXX: should not fail */ 782 783 imm = in6_joingroup(ifp, &mltaddr, &error, 0); 784 if (imm == NULL) { 785 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 786 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 787 if_name(ifp), error)); 788 goto cleanup; 789 } 790 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 791 792 /* 793 * Join node information group address. 794 */ 795 delay = 0; 796 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 797 /* 798 * The spec does not say anything about delay for this group, 799 * but the same logic should apply. 800 */ 801 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 802 } 803 if (in6_nigroup(ifp, NULL, -1, &mltaddr) == 0) { 804 /* XXX jinmei */ 805 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 806 if (imm == NULL) 807 nd6log((LOG_WARNING, 808 "%s: in6_joingroup failed for %s on %s " 809 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 810 &mltaddr), if_name(ifp), error)); 811 /* XXX not very fatal, go on... */ 812 else 813 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 814 } 815 if (V_icmp6_nodeinfo_oldmcprefix && 816 in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr) == 0) { 817 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 818 if (imm == NULL) 819 nd6log((LOG_WARNING, 820 "%s: in6_joingroup failed for %s on %s " 821 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 822 &mltaddr), if_name(ifp), error)); 823 /* XXX not very fatal, go on... */ 824 else 825 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 826 } 827 828 /* 829 * Join interface-local all-nodes address. 830 * (ff01::1%ifN, and ff01::%ifN/32) 831 */ 832 mltaddr = in6addr_nodelocal_allnodes; 833 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 834 goto cleanup; /* XXX: should not fail */ 835 836 imm = in6_joingroup(ifp, &mltaddr, &error, 0); 837 if (imm == NULL) { 838 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 839 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 840 &mltaddr), if_name(ifp), error)); 841 goto cleanup; 842 } 843 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 844 845 cleanup: 846 return (error); 847 } 848 849 /* 850 * Update parameters of an IPv6 interface address. 851 * If necessary, a new entry is created and linked into address chains. 852 * This function is separated from in6_control(). 853 */ 854 int 855 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 856 struct in6_ifaddr *ia, int flags) 857 { 858 int error, hostIsNew = 0; 859 860 if ((error = in6_validate_ifra(ifp, ifra, ia, flags)) != 0) 861 return (error); 862 863 if (ia == NULL) { 864 hostIsNew = 1; 865 if ((ia = in6_alloc_ifa(ifp, ifra, flags)) == NULL) 866 return (ENOBUFS); 867 } 868 869 error = in6_update_ifa_internal(ifp, ifra, ia, hostIsNew, flags); 870 if (error != 0) { 871 if (hostIsNew != 0) { 872 in6_unlink_ifa(ia, ifp); 873 ifa_free(&ia->ia_ifa); 874 } 875 return (error); 876 } 877 878 if (hostIsNew) 879 error = in6_broadcast_ifa(ifp, ifra, ia, flags); 880 881 return (error); 882 } 883 884 /* 885 * Fill in basic IPv6 address request info. 886 */ 887 void 888 in6_prepare_ifra(struct in6_aliasreq *ifra, const struct in6_addr *addr, 889 const struct in6_addr *mask) 890 { 891 892 memset(ifra, 0, sizeof(struct in6_aliasreq)); 893 894 ifra->ifra_addr.sin6_family = AF_INET6; 895 ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); 896 if (addr != NULL) 897 ifra->ifra_addr.sin6_addr = *addr; 898 899 ifra->ifra_prefixmask.sin6_family = AF_INET6; 900 ifra->ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 901 if (mask != NULL) 902 ifra->ifra_prefixmask.sin6_addr = *mask; 903 } 904 905 static int 906 in6_validate_ifra(struct ifnet *ifp, struct in6_aliasreq *ifra, 907 struct in6_ifaddr *ia, int flags) 908 { 909 int plen = -1; 910 struct sockaddr_in6 dst6; 911 struct in6_addrlifetime *lt; 912 char ip6buf[INET6_ADDRSTRLEN]; 913 914 /* Validate parameters */ 915 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 916 return (EINVAL); 917 918 /* 919 * The destination address for a p2p link must have a family 920 * of AF_UNSPEC or AF_INET6. 921 */ 922 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 923 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 924 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 925 return (EAFNOSUPPORT); 926 927 /* 928 * Validate address 929 */ 930 if (ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6) || 931 ifra->ifra_addr.sin6_family != AF_INET6) 932 return (EINVAL); 933 934 /* 935 * validate ifra_prefixmask. don't check sin6_family, netmask 936 * does not carry fields other than sin6_len. 937 */ 938 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 939 return (EINVAL); 940 /* 941 * Because the IPv6 address architecture is classless, we require 942 * users to specify a (non 0) prefix length (mask) for a new address. 943 * We also require the prefix (when specified) mask is valid, and thus 944 * reject a non-consecutive mask. 945 */ 946 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 947 return (EINVAL); 948 if (ifra->ifra_prefixmask.sin6_len != 0) { 949 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 950 (u_char *)&ifra->ifra_prefixmask + 951 ifra->ifra_prefixmask.sin6_len); 952 if (plen <= 0) 953 return (EINVAL); 954 } else { 955 /* 956 * In this case, ia must not be NULL. We just use its prefix 957 * length. 958 */ 959 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 960 } 961 /* 962 * If the destination address on a p2p interface is specified, 963 * and the address is a scoped one, validate/set the scope 964 * zone identifier. 965 */ 966 dst6 = ifra->ifra_dstaddr; 967 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 968 (dst6.sin6_family == AF_INET6)) { 969 struct in6_addr in6_tmp; 970 u_int32_t zoneid; 971 972 in6_tmp = dst6.sin6_addr; 973 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 974 return (EINVAL); /* XXX: should be impossible */ 975 976 if (dst6.sin6_scope_id != 0) { 977 if (dst6.sin6_scope_id != zoneid) 978 return (EINVAL); 979 } else /* user omit to specify the ID. */ 980 dst6.sin6_scope_id = zoneid; 981 982 /* convert into the internal form */ 983 if (sa6_embedscope(&dst6, 0)) 984 return (EINVAL); /* XXX: should be impossible */ 985 } 986 /* Modify original ifra_dstaddr to reflect changes */ 987 ifra->ifra_dstaddr = dst6; 988 989 /* 990 * The destination address can be specified only for a p2p or a 991 * loopback interface. If specified, the corresponding prefix length 992 * must be 128. 993 */ 994 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 995 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 996 /* XXX: noisy message */ 997 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 998 "be specified for a p2p or a loopback IF only\n")); 999 return (EINVAL); 1000 } 1001 if (plen != 128) { 1002 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1003 "be 128 when dstaddr is specified\n")); 1004 return (EINVAL); 1005 } 1006 } 1007 /* lifetime consistency check */ 1008 lt = &ifra->ifra_lifetime; 1009 if (lt->ia6t_pltime > lt->ia6t_vltime) 1010 return (EINVAL); 1011 if (lt->ia6t_vltime == 0) { 1012 /* 1013 * the following log might be noisy, but this is a typical 1014 * configuration mistake or a tool's bug. 1015 */ 1016 nd6log((LOG_INFO, 1017 "in6_update_ifa: valid lifetime is 0 for %s\n", 1018 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1019 1020 if (ia == NULL) 1021 return (0); /* there's nothing to do */ 1022 } 1023 1024 /* Check prefix mask */ 1025 if (ia != NULL && ifra->ifra_prefixmask.sin6_len != 0) { 1026 /* 1027 * We prohibit changing the prefix length of an existing 1028 * address, because 1029 * + such an operation should be rare in IPv6, and 1030 * + the operation would confuse prefix management. 1031 */ 1032 if (ia->ia_prefixmask.sin6_len != 0 && 1033 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1034 nd6log((LOG_INFO, "in6_validate_ifa: the prefix length " 1035 "of an existing %s address should not be changed\n", 1036 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1037 1038 return (EINVAL); 1039 } 1040 } 1041 1042 return (0); 1043 } 1044 1045 1046 /* 1047 * Allocate a new ifaddr and link it into chains. 1048 */ 1049 static struct in6_ifaddr * 1050 in6_alloc_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int flags) 1051 { 1052 struct in6_ifaddr *ia; 1053 1054 /* 1055 * When in6_alloc_ifa() is called in a process of a received 1056 * RA, it is called under an interrupt context. So, we should 1057 * call malloc with M_NOWAIT. 1058 */ 1059 ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); 1060 if (ia == NULL) 1061 return (NULL); 1062 LIST_INIT(&ia->ia6_memberships); 1063 /* Initialize the address and masks, and put time stamp */ 1064 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1065 ia->ia_addr.sin6_family = AF_INET6; 1066 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1067 /* XXX: Can we assign ,sin6_addr and skip the rest? */ 1068 ia->ia_addr = ifra->ifra_addr; 1069 ia->ia6_createtime = time_uptime; 1070 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1071 /* 1072 * Some functions expect that ifa_dstaddr is not 1073 * NULL for p2p interfaces. 1074 */ 1075 ia->ia_ifa.ifa_dstaddr = 1076 (struct sockaddr *)&ia->ia_dstaddr; 1077 } else { 1078 ia->ia_ifa.ifa_dstaddr = NULL; 1079 } 1080 1081 /* set prefix mask if any */ 1082 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1083 if (ifra->ifra_prefixmask.sin6_len != 0) { 1084 ia->ia_prefixmask.sin6_family = AF_INET6; 1085 ia->ia_prefixmask.sin6_len = ifra->ifra_prefixmask.sin6_len; 1086 ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; 1087 } 1088 1089 ia->ia_ifp = ifp; 1090 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1091 IF_ADDR_WLOCK(ifp); 1092 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1093 IF_ADDR_WUNLOCK(ifp); 1094 1095 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1096 IN6_IFADDR_WLOCK(); 1097 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1098 LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); 1099 IN6_IFADDR_WUNLOCK(); 1100 1101 return (ia); 1102 } 1103 1104 /* 1105 * Update/configure interface address parameters: 1106 * 1107 * 1) Update lifetime 1108 * 2) Update interface metric ad flags 1109 * 3) Notify other subsystems 1110 */ 1111 static int 1112 in6_update_ifa_internal(struct ifnet *ifp, struct in6_aliasreq *ifra, 1113 struct in6_ifaddr *ia, int hostIsNew, int flags) 1114 { 1115 int error; 1116 1117 /* update timestamp */ 1118 ia->ia6_updatetime = time_uptime; 1119 1120 /* 1121 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1122 * to see if the address is deprecated or invalidated, but initialize 1123 * these members for applications. 1124 */ 1125 ia->ia6_lifetime = ifra->ifra_lifetime; 1126 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1127 ia->ia6_lifetime.ia6t_expire = 1128 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1129 } else 1130 ia->ia6_lifetime.ia6t_expire = 0; 1131 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1132 ia->ia6_lifetime.ia6t_preferred = 1133 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1134 } else 1135 ia->ia6_lifetime.ia6t_preferred = 0; 1136 1137 /* 1138 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1139 * userland, make it deprecated. 1140 */ 1141 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1142 ia->ia6_lifetime.ia6t_pltime = 0; 1143 ia->ia6_lifetime.ia6t_preferred = time_uptime; 1144 } 1145 1146 /* 1147 * configure address flags. 1148 */ 1149 ia->ia6_flags = ifra->ifra_flags; 1150 1151 /* 1152 * Make the address tentative before joining multicast addresses, 1153 * so that corresponding MLD responses would not have a tentative 1154 * source address. 1155 */ 1156 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1157 1158 /* 1159 * DAD should be performed for an new address or addresses on 1160 * an interface with ND6_IFF_IFDISABLED. 1161 */ 1162 if (in6if_do_dad(ifp) && 1163 (hostIsNew || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED))) 1164 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1165 1166 /* notify other subsystems */ 1167 error = in6_notify_ifa(ifp, ia, ifra, hostIsNew); 1168 1169 return (error); 1170 } 1171 1172 /* 1173 * Do link-level ifa job: 1174 * 1) Add lle entry for added address 1175 * 2) Notifies routing socket users about new address 1176 * 3) join appropriate multicast group 1177 * 4) start DAD if enabled 1178 */ 1179 static int 1180 in6_broadcast_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1181 struct in6_ifaddr *ia, int flags) 1182 { 1183 struct in6_multi *in6m_sol; 1184 int error = 0; 1185 1186 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1187 if ((error = nd6_add_ifa_lle(ia)) != 0) { 1188 in6_purgeaddr(&ia->ia_ifa); 1189 ifa_free(&ia->ia_ifa); 1190 return (error); 1191 } 1192 1193 /* Join necessary multicast groups. */ 1194 in6m_sol = NULL; 1195 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1196 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1197 if (error != 0) { 1198 in6_purgeaddr(&ia->ia_ifa); 1199 ifa_free(&ia->ia_ifa); 1200 return (error); 1201 } 1202 } 1203 1204 /* Perform DAD, if the address is TENTATIVE. */ 1205 if ((ia->ia6_flags & IN6_IFF_TENTATIVE)) { 1206 int delay, mindelay, maxdelay; 1207 1208 delay = 0; 1209 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1210 /* 1211 * We need to impose a delay before sending an NS 1212 * for DAD. Check if we also needed a delay for the 1213 * corresponding MLD message. If we did, the delay 1214 * should be larger than the MLD delay (this could be 1215 * relaxed a bit, but this simple logic is at least 1216 * safe). 1217 * XXX: Break data hiding guidelines and look at 1218 * state for the solicited multicast group. 1219 */ 1220 mindelay = 0; 1221 if (in6m_sol != NULL && 1222 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1223 mindelay = in6m_sol->in6m_timer; 1224 } 1225 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1226 if (maxdelay - mindelay == 0) 1227 delay = 0; 1228 else { 1229 delay = 1230 (arc4random() % (maxdelay - mindelay)) + 1231 mindelay; 1232 } 1233 } 1234 nd6_dad_start((struct ifaddr *)ia, delay); 1235 } 1236 1237 in6_newaddrmsg(ia, RTM_ADD); 1238 ifa_free(&ia->ia_ifa); 1239 return (error); 1240 } 1241 1242 void 1243 in6_purgeaddr(struct ifaddr *ifa) 1244 { 1245 struct ifnet *ifp = ifa->ifa_ifp; 1246 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1247 struct in6_multi_mship *imm; 1248 int plen, error; 1249 1250 if (ifa->ifa_carp) 1251 (*carp_detach_p)(ifa, false); 1252 1253 /* 1254 * Remove the loopback route to the interface address. 1255 * The check for the current setting of "nd6_useloopback" 1256 * is not needed. 1257 */ 1258 if (ia->ia_flags & IFA_RTSELF) { 1259 error = ifa_del_loopback_route((struct ifaddr *)ia, 1260 (struct sockaddr *)&ia->ia_addr); 1261 if (error == 0) 1262 ia->ia_flags &= ~IFA_RTSELF; 1263 } 1264 1265 /* stop DAD processing */ 1266 nd6_dad_stop(ifa); 1267 1268 /* Leave multicast groups. */ 1269 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1270 LIST_REMOVE(imm, i6mm_chain); 1271 in6_leavegroup(imm); 1272 } 1273 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1274 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1275 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1276 (ia->ia_dstaddr.sin6_family == AF_INET6 ? RTF_HOST : 0)); 1277 if (error != 0) 1278 log(LOG_INFO, "%s: err=%d, destination address delete " 1279 "failed\n", __func__, error); 1280 ia->ia_flags &= ~IFA_ROUTE; 1281 } 1282 1283 in6_newaddrmsg(ia, RTM_DELETE); 1284 in6_unlink_ifa(ia, ifp); 1285 } 1286 1287 static void 1288 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1289 { 1290 char ip6buf[INET6_ADDRSTRLEN]; 1291 int remove_lle; 1292 1293 IF_ADDR_WLOCK(ifp); 1294 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1295 IF_ADDR_WUNLOCK(ifp); 1296 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1297 1298 /* 1299 * Defer the release of what might be the last reference to the 1300 * in6_ifaddr so that it can't be freed before the remainder of the 1301 * cleanup. 1302 */ 1303 IN6_IFADDR_WLOCK(); 1304 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link); 1305 LIST_REMOVE(ia, ia6_hash); 1306 IN6_IFADDR_WUNLOCK(); 1307 1308 /* 1309 * Release the reference to the base prefix. There should be a 1310 * positive reference. 1311 */ 1312 remove_lle = 0; 1313 if (ia->ia6_ndpr == NULL) { 1314 nd6log((LOG_NOTICE, 1315 "in6_unlink_ifa: autoconf'ed address " 1316 "%s has no prefix\n", ip6_sprintf(ip6buf, IA6_IN6(ia)))); 1317 } else { 1318 ia->ia6_ndpr->ndpr_addrcnt--; 1319 /* Do not delete lles within prefix if refcont != 0 */ 1320 if (ia->ia6_ndpr->ndpr_addrcnt == 0) 1321 remove_lle = 1; 1322 ia->ia6_ndpr = NULL; 1323 } 1324 1325 nd6_rem_ifa_lle(ia, remove_lle); 1326 1327 /* 1328 * Also, if the address being removed is autoconf'ed, call 1329 * pfxlist_onlink_check() since the release might affect the status of 1330 * other (detached) addresses. 1331 */ 1332 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1333 pfxlist_onlink_check(); 1334 } 1335 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1336 } 1337 1338 /* 1339 * Notifies other subsystems about address change/arrival: 1340 * 1) Notifies device handler on the first IPv6 address assignment 1341 * 2) Handle routing table changes for P2P links and route 1342 * 3) Handle routing table changes for address host route 1343 */ 1344 static int 1345 in6_notify_ifa(struct ifnet *ifp, struct in6_ifaddr *ia, 1346 struct in6_aliasreq *ifra, int hostIsNew) 1347 { 1348 int error = 0, plen, ifacount = 0; 1349 struct ifaddr *ifa; 1350 struct sockaddr_in6 *pdst; 1351 char ip6buf[INET6_ADDRSTRLEN]; 1352 1353 /* 1354 * Give the interface a chance to initialize 1355 * if this is its first address, 1356 */ 1357 if (hostIsNew != 0) { 1358 IF_ADDR_RLOCK(ifp); 1359 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1360 if (ifa->ifa_addr->sa_family != AF_INET6) 1361 continue; 1362 ifacount++; 1363 } 1364 IF_ADDR_RUNLOCK(ifp); 1365 } 1366 1367 if (ifacount <= 1 && ifp->if_ioctl) { 1368 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1369 if (error) 1370 return (error); 1371 } 1372 1373 /* 1374 * If a new destination address is specified, scrub the old one and 1375 * install the new destination. Note that the interface must be 1376 * p2p or loopback. 1377 */ 1378 pdst = &ifra->ifra_dstaddr; 1379 if (pdst->sin6_family == AF_INET6 && 1380 !IN6_ARE_ADDR_EQUAL(&pdst->sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1381 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1382 (rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0)) { 1383 nd6log((LOG_ERR, "in6_update_ifa_internal: failed to " 1384 "remove a route to the old destination: %s\n", 1385 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1386 /* proceed anyway... */ 1387 } else 1388 ia->ia_flags &= ~IFA_ROUTE; 1389 ia->ia_dstaddr = *pdst; 1390 } 1391 1392 /* 1393 * If a new destination address is specified for a point-to-point 1394 * interface, install a route to the destination as an interface 1395 * direct route. 1396 * XXX: the logic below rejects assigning multiple addresses on a p2p 1397 * interface that share the same destination. 1398 */ 1399 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1400 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1401 ia->ia_dstaddr.sin6_family == AF_INET6) { 1402 int rtflags = RTF_UP | RTF_HOST; 1403 /* 1404 * Handle the case for ::1 . 1405 */ 1406 if (ifp->if_flags & IFF_LOOPBACK) 1407 ia->ia_flags |= IFA_RTSELF; 1408 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1409 if (error) 1410 return (error); 1411 ia->ia_flags |= IFA_ROUTE; 1412 } 1413 1414 /* 1415 * add a loopback route to self if not exists 1416 */ 1417 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1418 error = ifa_add_loopback_route((struct ifaddr *)ia, 1419 (struct sockaddr *)&ia->ia_addr); 1420 if (error == 0) 1421 ia->ia_flags |= IFA_RTSELF; 1422 } 1423 1424 return (error); 1425 } 1426 1427 /* 1428 * Find an IPv6 interface link-local address specific to an interface. 1429 * ifaddr is returned referenced. 1430 */ 1431 struct in6_ifaddr * 1432 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1433 { 1434 struct ifaddr *ifa; 1435 1436 IF_ADDR_RLOCK(ifp); 1437 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1438 if (ifa->ifa_addr->sa_family != AF_INET6) 1439 continue; 1440 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1441 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1442 ignoreflags) != 0) 1443 continue; 1444 ifa_ref(ifa); 1445 break; 1446 } 1447 } 1448 IF_ADDR_RUNLOCK(ifp); 1449 1450 return ((struct in6_ifaddr *)ifa); 1451 } 1452 1453 1454 /* 1455 * find the internet address corresponding to a given address. 1456 * ifaddr is returned referenced. 1457 */ 1458 struct in6_ifaddr * 1459 in6ifa_ifwithaddr(const struct in6_addr *addr, uint32_t zoneid) 1460 { 1461 struct rm_priotracker in6_ifa_tracker; 1462 struct in6_ifaddr *ia; 1463 1464 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1465 LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { 1466 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), addr)) { 1467 if (zoneid != 0 && 1468 zoneid != ia->ia_addr.sin6_scope_id) 1469 continue; 1470 ifa_ref(&ia->ia_ifa); 1471 break; 1472 } 1473 } 1474 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1475 return (ia); 1476 } 1477 1478 /* 1479 * find the internet address corresponding to a given interface and address. 1480 * ifaddr is returned referenced. 1481 */ 1482 struct in6_ifaddr * 1483 in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr) 1484 { 1485 struct ifaddr *ifa; 1486 1487 IF_ADDR_RLOCK(ifp); 1488 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1489 if (ifa->ifa_addr->sa_family != AF_INET6) 1490 continue; 1491 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1492 ifa_ref(ifa); 1493 break; 1494 } 1495 } 1496 IF_ADDR_RUNLOCK(ifp); 1497 1498 return ((struct in6_ifaddr *)ifa); 1499 } 1500 1501 /* 1502 * Find a link-local scoped address on ifp and return it if any. 1503 */ 1504 struct in6_ifaddr * 1505 in6ifa_llaonifp(struct ifnet *ifp) 1506 { 1507 struct sockaddr_in6 *sin6; 1508 struct ifaddr *ifa; 1509 1510 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1511 return (NULL); 1512 IF_ADDR_RLOCK(ifp); 1513 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1514 if (ifa->ifa_addr->sa_family != AF_INET6) 1515 continue; 1516 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 1517 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1518 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1519 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1520 break; 1521 } 1522 IF_ADDR_RUNLOCK(ifp); 1523 1524 return ((struct in6_ifaddr *)ifa); 1525 } 1526 1527 /* 1528 * Convert IP6 address to printable (loggable) representation. Caller 1529 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1530 */ 1531 static char digits[] = "0123456789abcdef"; 1532 char * 1533 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1534 { 1535 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1536 char *cp; 1537 const u_int16_t *a = (const u_int16_t *)addr; 1538 const u_int8_t *d; 1539 int dcolon = 0, zero = 0; 1540 1541 cp = ip6buf; 1542 1543 for (i = 0; i < 8; i++) { 1544 if (*(a + i) == 0) { 1545 cnt++; 1546 if (cnt == 1) 1547 idx = i; 1548 } 1549 else if (maxcnt < cnt) { 1550 maxcnt = cnt; 1551 index = idx; 1552 cnt = 0; 1553 } 1554 } 1555 if (maxcnt < cnt) { 1556 maxcnt = cnt; 1557 index = idx; 1558 } 1559 1560 for (i = 0; i < 8; i++) { 1561 if (dcolon == 1) { 1562 if (*a == 0) { 1563 if (i == 7) 1564 *cp++ = ':'; 1565 a++; 1566 continue; 1567 } else 1568 dcolon = 2; 1569 } 1570 if (*a == 0) { 1571 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 1572 if (i == 0) 1573 *cp++ = ':'; 1574 *cp++ = ':'; 1575 dcolon = 1; 1576 } else { 1577 *cp++ = '0'; 1578 *cp++ = ':'; 1579 } 1580 a++; 1581 continue; 1582 } 1583 d = (const u_char *)a; 1584 /* Try to eliminate leading zeros in printout like in :0001. */ 1585 zero = 1; 1586 *cp = digits[*d >> 4]; 1587 if (*cp != '0') { 1588 zero = 0; 1589 cp++; 1590 } 1591 *cp = digits[*d++ & 0xf]; 1592 if (zero == 0 || (*cp != '0')) { 1593 zero = 0; 1594 cp++; 1595 } 1596 *cp = digits[*d >> 4]; 1597 if (zero == 0 || (*cp != '0')) { 1598 zero = 0; 1599 cp++; 1600 } 1601 *cp++ = digits[*d & 0xf]; 1602 *cp++ = ':'; 1603 a++; 1604 } 1605 *--cp = '\0'; 1606 return (ip6buf); 1607 } 1608 1609 int 1610 in6_localaddr(struct in6_addr *in6) 1611 { 1612 struct rm_priotracker in6_ifa_tracker; 1613 struct in6_ifaddr *ia; 1614 1615 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1616 return 1; 1617 1618 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1619 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1620 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1621 &ia->ia_prefixmask.sin6_addr)) { 1622 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1623 return 1; 1624 } 1625 } 1626 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1627 1628 return (0); 1629 } 1630 1631 /* 1632 * Return 1 if an internet address is for the local host and configured 1633 * on one of its interfaces. 1634 */ 1635 int 1636 in6_localip(struct in6_addr *in6) 1637 { 1638 struct rm_priotracker in6_ifa_tracker; 1639 struct in6_ifaddr *ia; 1640 1641 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1642 LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { 1643 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 1644 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1645 return (1); 1646 } 1647 } 1648 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1649 return (0); 1650 } 1651 1652 /* 1653 * Return 1 if an internet address is configured on an interface. 1654 */ 1655 int 1656 in6_ifhasaddr(struct ifnet *ifp, struct in6_addr *addr) 1657 { 1658 struct in6_addr in6; 1659 struct ifaddr *ifa; 1660 struct in6_ifaddr *ia6; 1661 1662 in6 = *addr; 1663 if (in6_clearscope(&in6)) 1664 return (0); 1665 in6_setscope(&in6, ifp, NULL); 1666 1667 IF_ADDR_RLOCK(ifp); 1668 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1669 if (ifa->ifa_addr->sa_family != AF_INET6) 1670 continue; 1671 ia6 = (struct in6_ifaddr *)ifa; 1672 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &in6)) { 1673 IF_ADDR_RUNLOCK(ifp); 1674 return (1); 1675 } 1676 } 1677 IF_ADDR_RUNLOCK(ifp); 1678 1679 return (0); 1680 } 1681 1682 int 1683 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1684 { 1685 struct rm_priotracker in6_ifa_tracker; 1686 struct in6_ifaddr *ia; 1687 1688 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1689 LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { 1690 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { 1691 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 1692 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1693 return (1); /* true */ 1694 } 1695 break; 1696 } 1697 } 1698 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1699 1700 return (0); /* false */ 1701 } 1702 1703 /* 1704 * return length of part which dst and src are equal 1705 * hard coding... 1706 */ 1707 int 1708 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1709 { 1710 int match = 0; 1711 u_char *s = (u_char *)src, *d = (u_char *)dst; 1712 u_char *lim = s + 16, r; 1713 1714 while (s < lim) 1715 if ((r = (*d++ ^ *s++)) != 0) { 1716 while (r < 128) { 1717 match++; 1718 r <<= 1; 1719 } 1720 break; 1721 } else 1722 match += 8; 1723 return match; 1724 } 1725 1726 /* XXX: to be scope conscious */ 1727 int 1728 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1729 { 1730 int bytelen, bitlen; 1731 1732 /* sanity check */ 1733 if (0 > len || len > 128) { 1734 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1735 len); 1736 return (0); 1737 } 1738 1739 bytelen = len / 8; 1740 bitlen = len % 8; 1741 1742 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1743 return (0); 1744 if (bitlen != 0 && 1745 p1->s6_addr[bytelen] >> (8 - bitlen) != 1746 p2->s6_addr[bytelen] >> (8 - bitlen)) 1747 return (0); 1748 1749 return (1); 1750 } 1751 1752 void 1753 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1754 { 1755 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1756 int bytelen, bitlen, i; 1757 1758 /* sanity check */ 1759 if (0 > len || len > 128) { 1760 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1761 len); 1762 return; 1763 } 1764 1765 bzero(maskp, sizeof(*maskp)); 1766 bytelen = len / 8; 1767 bitlen = len % 8; 1768 for (i = 0; i < bytelen; i++) 1769 maskp->s6_addr[i] = 0xff; 1770 if (bitlen) 1771 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1772 } 1773 1774 /* 1775 * return the best address out of the same scope. if no address was 1776 * found, return the first valid address from designated IF. 1777 */ 1778 struct in6_ifaddr * 1779 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1780 { 1781 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1782 struct ifaddr *ifa; 1783 struct in6_ifaddr *besta = NULL; 1784 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1785 1786 dep[0] = dep[1] = NULL; 1787 1788 /* 1789 * We first look for addresses in the same scope. 1790 * If there is one, return it. 1791 * If two or more, return one which matches the dst longest. 1792 * If none, return one of global addresses assigned other ifs. 1793 */ 1794 IF_ADDR_RLOCK(ifp); 1795 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1796 if (ifa->ifa_addr->sa_family != AF_INET6) 1797 continue; 1798 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1799 continue; /* XXX: is there any case to allow anycast? */ 1800 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1801 continue; /* don't use this interface */ 1802 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1803 continue; 1804 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1805 if (V_ip6_use_deprecated) 1806 dep[0] = (struct in6_ifaddr *)ifa; 1807 continue; 1808 } 1809 1810 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1811 /* 1812 * call in6_matchlen() as few as possible 1813 */ 1814 if (besta) { 1815 if (blen == -1) 1816 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1817 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1818 if (tlen > blen) { 1819 blen = tlen; 1820 besta = (struct in6_ifaddr *)ifa; 1821 } 1822 } else 1823 besta = (struct in6_ifaddr *)ifa; 1824 } 1825 } 1826 if (besta) { 1827 ifa_ref(&besta->ia_ifa); 1828 IF_ADDR_RUNLOCK(ifp); 1829 return (besta); 1830 } 1831 1832 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1833 if (ifa->ifa_addr->sa_family != AF_INET6) 1834 continue; 1835 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1836 continue; /* XXX: is there any case to allow anycast? */ 1837 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1838 continue; /* don't use this interface */ 1839 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1840 continue; 1841 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1842 if (V_ip6_use_deprecated) 1843 dep[1] = (struct in6_ifaddr *)ifa; 1844 continue; 1845 } 1846 1847 if (ifa != NULL) 1848 ifa_ref(ifa); 1849 IF_ADDR_RUNLOCK(ifp); 1850 return (struct in6_ifaddr *)ifa; 1851 } 1852 1853 /* use the last-resort values, that are, deprecated addresses */ 1854 if (dep[0]) { 1855 ifa_ref((struct ifaddr *)dep[0]); 1856 IF_ADDR_RUNLOCK(ifp); 1857 return dep[0]; 1858 } 1859 if (dep[1]) { 1860 ifa_ref((struct ifaddr *)dep[1]); 1861 IF_ADDR_RUNLOCK(ifp); 1862 return dep[1]; 1863 } 1864 1865 IF_ADDR_RUNLOCK(ifp); 1866 return NULL; 1867 } 1868 1869 /* 1870 * perform DAD when interface becomes IFF_UP. 1871 */ 1872 void 1873 in6_if_up(struct ifnet *ifp) 1874 { 1875 struct ifaddr *ifa; 1876 struct in6_ifaddr *ia; 1877 1878 IF_ADDR_RLOCK(ifp); 1879 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1880 if (ifa->ifa_addr->sa_family != AF_INET6) 1881 continue; 1882 ia = (struct in6_ifaddr *)ifa; 1883 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 1884 /* 1885 * The TENTATIVE flag was likely set by hand 1886 * beforehand, implicitly indicating the need for DAD. 1887 * We may be able to skip the random delay in this 1888 * case, but we impose delays just in case. 1889 */ 1890 nd6_dad_start(ifa, 1891 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 1892 } 1893 } 1894 IF_ADDR_RUNLOCK(ifp); 1895 1896 /* 1897 * special cases, like 6to4, are handled in in6_ifattach 1898 */ 1899 in6_ifattach(ifp, NULL); 1900 } 1901 1902 int 1903 in6if_do_dad(struct ifnet *ifp) 1904 { 1905 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1906 return (0); 1907 1908 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) || 1909 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD)) 1910 return (0); 1911 1912 /* 1913 * Our DAD routine requires the interface up and running. 1914 * However, some interfaces can be up before the RUNNING 1915 * status. Additionally, users may try to assign addresses 1916 * before the interface becomes up (or running). 1917 * This function returns EAGAIN in that case. 1918 * The caller should mark "tentative" on the address instead of 1919 * performing DAD immediately. 1920 */ 1921 if (!((ifp->if_flags & IFF_UP) && 1922 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 1923 return (EAGAIN); 1924 1925 return (1); 1926 } 1927 1928 /* 1929 * Calculate max IPv6 MTU through all the interfaces and store it 1930 * to in6_maxmtu. 1931 */ 1932 void 1933 in6_setmaxmtu(void) 1934 { 1935 unsigned long maxmtu = 0; 1936 struct ifnet *ifp; 1937 1938 IFNET_RLOCK_NOSLEEP(); 1939 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1940 /* this function can be called during ifnet initialization */ 1941 if (!ifp->if_afdata[AF_INET6]) 1942 continue; 1943 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 1944 IN6_LINKMTU(ifp) > maxmtu) 1945 maxmtu = IN6_LINKMTU(ifp); 1946 } 1947 IFNET_RUNLOCK_NOSLEEP(); 1948 if (maxmtu) /* update only when maxmtu is positive */ 1949 V_in6_maxmtu = maxmtu; 1950 } 1951 1952 /* 1953 * Provide the length of interface identifiers to be used for the link attached 1954 * to the given interface. The length should be defined in "IPv6 over 1955 * xxx-link" document. Note that address architecture might also define 1956 * the length for a particular set of address prefixes, regardless of the 1957 * link type. As clarified in rfc2462bis, those two definitions should be 1958 * consistent, and those really are as of August 2004. 1959 */ 1960 int 1961 in6_if2idlen(struct ifnet *ifp) 1962 { 1963 switch (ifp->if_type) { 1964 case IFT_ETHER: /* RFC2464 */ 1965 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 1966 case IFT_L2VLAN: /* ditto */ 1967 case IFT_BRIDGE: /* bridge(4) only does Ethernet-like links */ 1968 case IFT_INFINIBAND: 1969 return (64); 1970 case IFT_FDDI: /* RFC2467 */ 1971 return (64); 1972 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 1973 return (64); 1974 case IFT_PPP: /* RFC2472 */ 1975 return (64); 1976 case IFT_ARCNET: /* RFC2497 */ 1977 return (64); 1978 case IFT_FRELAY: /* RFC2590 */ 1979 return (64); 1980 case IFT_IEEE1394: /* RFC3146 */ 1981 return (64); 1982 case IFT_GIF: 1983 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 1984 case IFT_LOOP: 1985 return (64); /* XXX: is this really correct? */ 1986 default: 1987 /* 1988 * Unknown link type: 1989 * It might be controversial to use the today's common constant 1990 * of 64 for these cases unconditionally. For full compliance, 1991 * we should return an error in this case. On the other hand, 1992 * if we simply miss the standard for the link type or a new 1993 * standard is defined for a new link type, the IFID length 1994 * is very likely to be the common constant. As a compromise, 1995 * we always use the constant, but make an explicit notice 1996 * indicating the "unknown" case. 1997 */ 1998 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 1999 return (64); 2000 } 2001 } 2002 2003 #include <sys/sysctl.h> 2004 2005 struct in6_llentry { 2006 struct llentry base; 2007 }; 2008 2009 #define IN6_LLTBL_DEFAULT_HSIZE 32 2010 #define IN6_LLTBL_HASH(k, h) \ 2011 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) 2012 2013 /* 2014 * Do actual deallocation of @lle. 2015 */ 2016 static void 2017 in6_lltable_destroy_lle_unlocked(struct llentry *lle) 2018 { 2019 2020 LLE_LOCK_DESTROY(lle); 2021 LLE_REQ_DESTROY(lle); 2022 free(lle, M_LLTABLE); 2023 } 2024 2025 /* 2026 * Called by LLE_FREE_LOCKED when number of references 2027 * drops to zero. 2028 */ 2029 static void 2030 in6_lltable_destroy_lle(struct llentry *lle) 2031 { 2032 2033 LLE_WUNLOCK(lle); 2034 in6_lltable_destroy_lle_unlocked(lle); 2035 } 2036 2037 static struct llentry * 2038 in6_lltable_new(const struct in6_addr *addr6, u_int flags) 2039 { 2040 struct in6_llentry *lle; 2041 2042 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2043 if (lle == NULL) /* NB: caller generates msg */ 2044 return NULL; 2045 2046 lle->base.r_l3addr.addr6 = *addr6; 2047 lle->base.lle_refcnt = 1; 2048 lle->base.lle_free = in6_lltable_destroy_lle; 2049 LLE_LOCK_INIT(&lle->base); 2050 LLE_REQ_INIT(&lle->base); 2051 callout_init(&lle->base.lle_timer, 1); 2052 2053 return (&lle->base); 2054 } 2055 2056 static int 2057 in6_lltable_match_prefix(const struct sockaddr *saddr, 2058 const struct sockaddr *smask, u_int flags, struct llentry *lle) 2059 { 2060 const struct in6_addr *addr, *mask, *lle_addr; 2061 2062 addr = &((const struct sockaddr_in6 *)saddr)->sin6_addr; 2063 mask = &((const struct sockaddr_in6 *)smask)->sin6_addr; 2064 lle_addr = &lle->r_l3addr.addr6; 2065 2066 if (IN6_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) 2067 return (0); 2068 2069 if (lle->la_flags & LLE_IFADDR) { 2070 2071 /* 2072 * Delete LLE_IFADDR records IFF address & flag matches. 2073 * Note that addr is the interface address within prefix 2074 * being matched. 2075 */ 2076 if (IN6_ARE_ADDR_EQUAL(addr, lle_addr) && 2077 (flags & LLE_STATIC) != 0) 2078 return (1); 2079 return (0); 2080 } 2081 2082 /* flags & LLE_STATIC means deleting both dynamic and static entries */ 2083 if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) 2084 return (1); 2085 2086 return (0); 2087 } 2088 2089 static void 2090 in6_lltable_free_entry(struct lltable *llt, struct llentry *lle) 2091 { 2092 struct ifnet *ifp; 2093 2094 LLE_WLOCK_ASSERT(lle); 2095 KASSERT(llt != NULL, ("lltable is NULL")); 2096 2097 /* Unlink entry from table */ 2098 if ((lle->la_flags & LLE_LINKED) != 0) { 2099 2100 ifp = llt->llt_ifp; 2101 IF_AFDATA_WLOCK_ASSERT(ifp); 2102 lltable_unlink_entry(llt, lle); 2103 } 2104 2105 if (callout_stop(&lle->lle_timer) > 0) 2106 LLE_REMREF(lle); 2107 2108 llentry_free(lle); 2109 } 2110 2111 static int 2112 in6_lltable_rtcheck(struct ifnet *ifp, 2113 u_int flags, 2114 const struct sockaddr *l3addr) 2115 { 2116 const struct sockaddr_in6 *sin6; 2117 struct nhop6_basic nh6; 2118 struct in6_addr dst; 2119 uint32_t scopeid; 2120 int error; 2121 char ip6buf[INET6_ADDRSTRLEN]; 2122 int fibnum; 2123 2124 KASSERT(l3addr->sa_family == AF_INET6, 2125 ("sin_family %d", l3addr->sa_family)); 2126 2127 sin6 = (const struct sockaddr_in6 *)l3addr; 2128 in6_splitscope(&sin6->sin6_addr, &dst, &scopeid); 2129 fibnum = V_rt_add_addr_allfibs ? RT_DEFAULT_FIB : ifp->if_fib; 2130 error = fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6); 2131 if (error != 0 || (nh6.nh_flags & NHF_GATEWAY) || nh6.nh_ifp != ifp) { 2132 struct ifaddr *ifa; 2133 /* 2134 * Create an ND6 cache for an IPv6 neighbor 2135 * that is not covered by our own prefix. 2136 */ 2137 ifa = ifaof_ifpforaddr(l3addr, ifp); 2138 if (ifa != NULL) { 2139 ifa_free(ifa); 2140 return 0; 2141 } 2142 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2143 ip6_sprintf(ip6buf, &sin6->sin6_addr)); 2144 return EINVAL; 2145 } 2146 return 0; 2147 } 2148 2149 static inline uint32_t 2150 in6_lltable_hash_dst(const struct in6_addr *dst, uint32_t hsize) 2151 { 2152 2153 return (IN6_LLTBL_HASH(dst->s6_addr32[3], hsize)); 2154 } 2155 2156 static uint32_t 2157 in6_lltable_hash(const struct llentry *lle, uint32_t hsize) 2158 { 2159 2160 return (in6_lltable_hash_dst(&lle->r_l3addr.addr6, hsize)); 2161 } 2162 2163 static void 2164 in6_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) 2165 { 2166 struct sockaddr_in6 *sin6; 2167 2168 sin6 = (struct sockaddr_in6 *)sa; 2169 bzero(sin6, sizeof(*sin6)); 2170 sin6->sin6_family = AF_INET6; 2171 sin6->sin6_len = sizeof(*sin6); 2172 sin6->sin6_addr = lle->r_l3addr.addr6; 2173 } 2174 2175 static inline struct llentry * 2176 in6_lltable_find_dst(struct lltable *llt, const struct in6_addr *dst) 2177 { 2178 struct llentry *lle; 2179 struct llentries *lleh; 2180 u_int hashidx; 2181 2182 hashidx = in6_lltable_hash_dst(dst, llt->llt_hsize); 2183 lleh = &llt->lle_head[hashidx]; 2184 LIST_FOREACH(lle, lleh, lle_next) { 2185 if (lle->la_flags & LLE_DELETED) 2186 continue; 2187 if (IN6_ARE_ADDR_EQUAL(&lle->r_l3addr.addr6, dst)) 2188 break; 2189 } 2190 2191 return (lle); 2192 } 2193 2194 static void 2195 in6_lltable_delete_entry(struct lltable *llt, struct llentry *lle) 2196 { 2197 2198 lle->la_flags |= LLE_DELETED; 2199 EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); 2200 #ifdef DIAGNOSTIC 2201 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2202 #endif 2203 llentry_free(lle); 2204 } 2205 2206 static struct llentry * 2207 in6_lltable_alloc(struct lltable *llt, u_int flags, 2208 const struct sockaddr *l3addr) 2209 { 2210 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2211 struct ifnet *ifp = llt->llt_ifp; 2212 struct llentry *lle; 2213 char linkhdr[LLE_MAX_LINKHDR]; 2214 size_t linkhdrsize; 2215 int lladdr_off; 2216 2217 KASSERT(l3addr->sa_family == AF_INET6, 2218 ("sin_family %d", l3addr->sa_family)); 2219 2220 /* 2221 * A route that covers the given address must have 2222 * been installed 1st because we are doing a resolution, 2223 * verify this. 2224 */ 2225 if (!(flags & LLE_IFADDR) && 2226 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2227 return (NULL); 2228 2229 lle = in6_lltable_new(&sin6->sin6_addr, flags); 2230 if (lle == NULL) { 2231 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2232 return (NULL); 2233 } 2234 lle->la_flags = flags; 2235 if ((flags & LLE_IFADDR) == LLE_IFADDR) { 2236 linkhdrsize = LLE_MAX_LINKHDR; 2237 if (lltable_calc_llheader(ifp, AF_INET6, IF_LLADDR(ifp), 2238 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 2239 in6_lltable_destroy_lle_unlocked(lle); 2240 return (NULL); 2241 } 2242 lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, 2243 lladdr_off); 2244 lle->la_flags |= LLE_STATIC; 2245 } 2246 2247 if ((lle->la_flags & LLE_STATIC) != 0) 2248 lle->ln_state = ND6_LLINFO_REACHABLE; 2249 2250 return (lle); 2251 } 2252 2253 static struct llentry * 2254 in6_lltable_lookup(struct lltable *llt, u_int flags, 2255 const struct sockaddr *l3addr) 2256 { 2257 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2258 struct llentry *lle; 2259 2260 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); 2261 KASSERT(l3addr->sa_family == AF_INET6, 2262 ("sin_family %d", l3addr->sa_family)); 2263 2264 lle = in6_lltable_find_dst(llt, &sin6->sin6_addr); 2265 2266 if (lle == NULL) 2267 return (NULL); 2268 2269 KASSERT((flags & (LLE_UNLOCKED|LLE_EXCLUSIVE)) != 2270 (LLE_UNLOCKED|LLE_EXCLUSIVE),("wrong lle request flags: 0x%X", 2271 flags)); 2272 2273 if (flags & LLE_UNLOCKED) 2274 return (lle); 2275 2276 if (flags & LLE_EXCLUSIVE) 2277 LLE_WLOCK(lle); 2278 else 2279 LLE_RLOCK(lle); 2280 return (lle); 2281 } 2282 2283 static int 2284 in6_lltable_dump_entry(struct lltable *llt, struct llentry *lle, 2285 struct sysctl_req *wr) 2286 { 2287 struct ifnet *ifp = llt->llt_ifp; 2288 /* XXX stack use */ 2289 struct { 2290 struct rt_msghdr rtm; 2291 struct sockaddr_in6 sin6; 2292 /* 2293 * ndp.c assumes that sdl is word aligned 2294 */ 2295 #ifdef __LP64__ 2296 uint32_t pad; 2297 #endif 2298 struct sockaddr_dl sdl; 2299 } ndpc; 2300 struct sockaddr_dl *sdl; 2301 int error; 2302 2303 bzero(&ndpc, sizeof(ndpc)); 2304 /* skip deleted entries */ 2305 if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) 2306 return (0); 2307 /* Skip if jailed and not a valid IP of the prison. */ 2308 lltable_fill_sa_entry(lle, 2309 (struct sockaddr *)&ndpc.sin6); 2310 if (prison_if(wr->td->td_ucred, 2311 (struct sockaddr *)&ndpc.sin6) != 0) 2312 return (0); 2313 /* 2314 * produce a msg made of: 2315 * struct rt_msghdr; 2316 * struct sockaddr_in6 (IPv6) 2317 * struct sockaddr_dl; 2318 */ 2319 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2320 ndpc.rtm.rtm_version = RTM_VERSION; 2321 ndpc.rtm.rtm_type = RTM_GET; 2322 ndpc.rtm.rtm_flags = RTF_UP; 2323 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2324 if (V_deembed_scopeid) 2325 sa6_recoverscope(&ndpc.sin6); 2326 2327 /* publish */ 2328 if (lle->la_flags & LLE_PUB) 2329 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2330 2331 sdl = &ndpc.sdl; 2332 sdl->sdl_family = AF_LINK; 2333 sdl->sdl_len = sizeof(*sdl); 2334 sdl->sdl_index = ifp->if_index; 2335 sdl->sdl_type = ifp->if_type; 2336 if ((lle->la_flags & LLE_VALID) == LLE_VALID) { 2337 sdl->sdl_alen = ifp->if_addrlen; 2338 bcopy(lle->ll_addr, LLADDR(sdl), 2339 ifp->if_addrlen); 2340 } else { 2341 sdl->sdl_alen = 0; 2342 bzero(LLADDR(sdl), ifp->if_addrlen); 2343 } 2344 if (lle->la_expire != 0) 2345 ndpc.rtm.rtm_rmx.rmx_expire = lle->la_expire + 2346 lle->lle_remtime / hz + 2347 time_second - time_uptime; 2348 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2349 if (lle->la_flags & LLE_STATIC) 2350 ndpc.rtm.rtm_flags |= RTF_STATIC; 2351 if (lle->la_flags & LLE_IFADDR) 2352 ndpc.rtm.rtm_flags |= RTF_PINNED; 2353 if (lle->ln_router != 0) 2354 ndpc.rtm.rtm_flags |= RTF_GATEWAY; 2355 ndpc.rtm.rtm_rmx.rmx_pksent = lle->la_asked; 2356 /* Store state in rmx_weight value */ 2357 ndpc.rtm.rtm_rmx.rmx_state = lle->ln_state; 2358 ndpc.rtm.rtm_index = ifp->if_index; 2359 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2360 2361 return (error); 2362 } 2363 2364 static struct lltable * 2365 in6_lltattach(struct ifnet *ifp) 2366 { 2367 struct lltable *llt; 2368 2369 llt = lltable_allocate_htbl(IN6_LLTBL_DEFAULT_HSIZE); 2370 llt->llt_af = AF_INET6; 2371 llt->llt_ifp = ifp; 2372 2373 llt->llt_lookup = in6_lltable_lookup; 2374 llt->llt_alloc_entry = in6_lltable_alloc; 2375 llt->llt_delete_entry = in6_lltable_delete_entry; 2376 llt->llt_dump_entry = in6_lltable_dump_entry; 2377 llt->llt_hash = in6_lltable_hash; 2378 llt->llt_fill_sa_entry = in6_lltable_fill_sa_entry; 2379 llt->llt_free_entry = in6_lltable_free_entry; 2380 llt->llt_match_prefix = in6_lltable_match_prefix; 2381 lltable_link(llt); 2382 2383 return (llt); 2384 } 2385 2386 void * 2387 in6_domifattach(struct ifnet *ifp) 2388 { 2389 struct in6_ifextra *ext; 2390 2391 /* There are not IPv6-capable interfaces. */ 2392 switch (ifp->if_type) { 2393 case IFT_PFLOG: 2394 case IFT_PFSYNC: 2395 case IFT_USB: 2396 return (NULL); 2397 } 2398 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2399 bzero(ext, sizeof(*ext)); 2400 2401 ext->in6_ifstat = malloc(sizeof(counter_u64_t) * 2402 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); 2403 COUNTER_ARRAY_ALLOC(ext->in6_ifstat, 2404 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); 2405 2406 ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * 2407 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, 2408 M_WAITOK); 2409 COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, 2410 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); 2411 2412 ext->nd_ifinfo = nd6_ifattach(ifp); 2413 ext->scope6_id = scope6_ifattach(ifp); 2414 ext->lltable = in6_lltattach(ifp); 2415 2416 ext->mld_ifinfo = mld_domifattach(ifp); 2417 2418 return ext; 2419 } 2420 2421 int 2422 in6_domifmtu(struct ifnet *ifp) 2423 { 2424 if (ifp->if_afdata[AF_INET6] == NULL) 2425 return ifp->if_mtu; 2426 2427 return (IN6_LINKMTU(ifp)); 2428 } 2429 2430 void 2431 in6_domifdetach(struct ifnet *ifp, void *aux) 2432 { 2433 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2434 2435 mld_domifdetach(ifp); 2436 scope6_ifdetach(ext->scope6_id); 2437 nd6_ifdetach(ifp, ext->nd_ifinfo); 2438 lltable_free(ext->lltable); 2439 COUNTER_ARRAY_FREE(ext->in6_ifstat, 2440 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 2441 free(ext->in6_ifstat, M_IFADDR); 2442 COUNTER_ARRAY_FREE(ext->icmp6_ifstat, 2443 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 2444 free(ext->icmp6_ifstat, M_IFADDR); 2445 free(ext, M_IFADDR); 2446 } 2447 2448 /* 2449 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2450 * v4 mapped addr or v4 compat addr 2451 */ 2452 void 2453 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2454 { 2455 2456 bzero(sin, sizeof(*sin)); 2457 sin->sin_len = sizeof(struct sockaddr_in); 2458 sin->sin_family = AF_INET; 2459 sin->sin_port = sin6->sin6_port; 2460 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2461 } 2462 2463 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2464 void 2465 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2466 { 2467 bzero(sin6, sizeof(*sin6)); 2468 sin6->sin6_len = sizeof(struct sockaddr_in6); 2469 sin6->sin6_family = AF_INET6; 2470 sin6->sin6_port = sin->sin_port; 2471 sin6->sin6_addr.s6_addr32[0] = 0; 2472 sin6->sin6_addr.s6_addr32[1] = 0; 2473 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2474 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2475 } 2476 2477 /* Convert sockaddr_in6 into sockaddr_in. */ 2478 void 2479 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2480 { 2481 struct sockaddr_in *sin_p; 2482 struct sockaddr_in6 sin6; 2483 2484 /* 2485 * Save original sockaddr_in6 addr and convert it 2486 * to sockaddr_in. 2487 */ 2488 sin6 = *(struct sockaddr_in6 *)nam; 2489 sin_p = (struct sockaddr_in *)nam; 2490 in6_sin6_2_sin(sin_p, &sin6); 2491 } 2492 2493 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2494 void 2495 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2496 { 2497 struct sockaddr_in *sin_p; 2498 struct sockaddr_in6 *sin6_p; 2499 2500 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2501 sin_p = (struct sockaddr_in *)*nam; 2502 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2503 free(*nam, M_SONAME); 2504 *nam = (struct sockaddr *)sin6_p; 2505 } 2506