1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 69 #include <sys/param.h> 70 #include <sys/errno.h> 71 #include <sys/malloc.h> 72 #include <sys/socket.h> 73 #include <sys/socketvar.h> 74 #include <sys/sockio.h> 75 #include <sys/systm.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/time.h> 79 #include <sys/kernel.h> 80 #include <sys/syslog.h> 81 #include <sys/vimage.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #include <netinet/in_systm.h> 92 #include <netinet/ip.h> 93 #include <netinet/in_pcb.h> 94 95 #include <netinet/ip6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/nd6.h> 98 #include <netinet6/mld6_var.h> 99 #include <netinet6/ip6_mroute.h> 100 #include <netinet6/in6_ifattach.h> 101 #include <netinet6/scope6_var.h> 102 #include <netinet6/in6_pcb.h> 103 104 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 105 106 /* 107 * Definitions of some costant IP6 addresses. 108 */ 109 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 110 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 111 const struct in6_addr in6addr_nodelocal_allnodes = 112 IN6ADDR_NODELOCAL_ALLNODES_INIT; 113 const struct in6_addr in6addr_linklocal_allnodes = 114 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 115 const struct in6_addr in6addr_linklocal_allrouters = 116 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 117 118 const struct in6_addr in6mask0 = IN6MASK0; 119 const struct in6_addr in6mask32 = IN6MASK32; 120 const struct in6_addr in6mask64 = IN6MASK64; 121 const struct in6_addr in6mask96 = IN6MASK96; 122 const struct in6_addr in6mask128 = IN6MASK128; 123 124 const struct sockaddr_in6 sa6_any = 125 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 126 127 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 128 struct ifnet *, struct thread *)); 129 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 130 struct sockaddr_in6 *, int)); 131 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 132 133 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 134 int (*faithprefix_p)(struct in6_addr *); 135 136 /* 137 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 138 * This routine does actual work. 139 */ 140 static void 141 in6_ifloop_request(int cmd, struct ifaddr *ifa) 142 { 143 struct sockaddr_in6 all1_sa; 144 struct rtentry *nrt = NULL; 145 int e; 146 char ip6buf[INET6_ADDRSTRLEN]; 147 148 bzero(&all1_sa, sizeof(all1_sa)); 149 all1_sa.sin6_family = AF_INET6; 150 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 151 all1_sa.sin6_addr = in6mask128; 152 153 /* 154 * We specify the address itself as the gateway, and set the 155 * RTF_LLINFO flag, so that the corresponding host route would have 156 * the flag, and thus applications that assume traditional behavior 157 * would be happy. Note that we assume the caller of the function 158 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 159 * which changes the outgoing interface to the loopback interface. 160 */ 161 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 162 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 163 if (e != 0) { 164 /* XXX need more descriptive message */ 165 166 log(LOG_ERR, "in6_ifloop_request: " 167 "%s operation failed for %s (errno=%d)\n", 168 cmd == RTM_ADD ? "ADD" : "DELETE", 169 ip6_sprintf(ip6buf, 170 &((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); 171 } 172 173 /* 174 * Report the addition/removal of the address to the routing socket. 175 * XXX: since we called rtinit for a p2p interface with a destination, 176 * we end up reporting twice in such a case. Should we rather 177 * omit the second report? 178 */ 179 if (nrt) { 180 RT_LOCK(nrt); 181 /* 182 * Make sure rt_ifa be equal to IFA, the second argument of 183 * the function. We need this because when we refer to 184 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa 185 * points to the address instead of the loopback address. 186 */ 187 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { 188 IFAFREE(nrt->rt_ifa); 189 IFAREF(ifa); 190 nrt->rt_ifa = ifa; 191 } 192 193 rt_newaddrmsg(cmd, ifa, e, nrt); 194 if (cmd == RTM_DELETE) 195 RTFREE_LOCKED(nrt); 196 else { 197 /* the cmd must be RTM_ADD here */ 198 RT_REMREF(nrt); 199 RT_UNLOCK(nrt); 200 } 201 } 202 } 203 204 /* 205 * Add ownaddr as loopback rtentry. We previously add the route only if 206 * necessary (ex. on a p2p link). However, since we now manage addresses 207 * separately from prefixes, we should always add the route. We can't 208 * rely on the cloning mechanism from the corresponding interface route 209 * any more. 210 */ 211 void 212 in6_ifaddloop(struct ifaddr *ifa) 213 { 214 struct rtentry *rt; 215 int need_loop; 216 217 /* If there is no loopback entry, allocate one. */ 218 rt = rtalloc1(ifa->ifa_addr, 0, 0); 219 need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 220 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); 221 if (rt) 222 RTFREE_LOCKED(rt); 223 if (need_loop) 224 in6_ifloop_request(RTM_ADD, ifa); 225 } 226 227 /* 228 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 229 * if it exists. 230 */ 231 void 232 in6_ifremloop(struct ifaddr *ifa) 233 { 234 struct in6_ifaddr *ia; 235 struct rtentry *rt; 236 int ia_count = 0; 237 238 /* 239 * Some of BSD variants do not remove cloned routes 240 * from an interface direct route, when removing the direct route 241 * (see comments in net/net_osdep.h). Even for variants that do remove 242 * cloned routes, they could fail to remove the cloned routes when 243 * we handle multple addresses that share a common prefix. 244 * So, we should remove the route corresponding to the deleted address. 245 */ 246 247 /* 248 * Delete the entry only if exact one ifa exists. More than one ifa 249 * can exist if we assign a same single address to multiple 250 * (probably p2p) interfaces. 251 * XXX: we should avoid such a configuration in IPv6... 252 */ 253 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 254 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 255 ia_count++; 256 if (ia_count > 1) 257 break; 258 } 259 } 260 261 if (ia_count == 1) { 262 /* 263 * Before deleting, check if a corresponding loopbacked host 264 * route surely exists. With this check, we can avoid to 265 * delete an interface direct route whose destination is same 266 * as the address being removed. This can happen when removing 267 * a subnet-router anycast address on an interface attahced 268 * to a shared medium. 269 */ 270 rt = rtalloc1(ifa->ifa_addr, 0, 0); 271 if (rt != NULL) { 272 if ((rt->rt_flags & RTF_HOST) != 0 && 273 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 274 RTFREE_LOCKED(rt); 275 in6_ifloop_request(RTM_DELETE, ifa); 276 } else 277 RT_UNLOCK(rt); 278 } 279 } 280 } 281 282 int 283 in6_mask2len(struct in6_addr *mask, u_char *lim0) 284 { 285 int x = 0, y; 286 u_char *lim = lim0, *p; 287 288 /* ignore the scope_id part */ 289 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 290 lim = (u_char *)mask + sizeof(*mask); 291 for (p = (u_char *)mask; p < lim; x++, p++) { 292 if (*p != 0xff) 293 break; 294 } 295 y = 0; 296 if (p < lim) { 297 for (y = 0; y < 8; y++) { 298 if ((*p & (0x80 >> y)) == 0) 299 break; 300 } 301 } 302 303 /* 304 * when the limit pointer is given, do a stricter check on the 305 * remaining bits. 306 */ 307 if (p < lim) { 308 if (y != 0 && (*p & (0x00ff >> y)) != 0) 309 return (-1); 310 for (p = p + 1; p < lim; p++) 311 if (*p != 0) 312 return (-1); 313 } 314 315 return x * 8 + y; 316 } 317 318 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 319 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 320 321 int 322 in6_control(struct socket *so, u_long cmd, caddr_t data, 323 struct ifnet *ifp, struct thread *td) 324 { 325 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 326 struct in6_ifaddr *ia = NULL; 327 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 328 struct sockaddr_in6 *sa6; 329 int error; 330 331 switch (cmd) { 332 case SIOCGETSGCNT_IN6: 333 case SIOCGETMIFCNT_IN6: 334 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 335 } 336 337 switch(cmd) { 338 case SIOCAADDRCTL_POLICY: 339 case SIOCDADDRCTL_POLICY: 340 if (td != NULL) { 341 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 342 if (error) 343 return (error); 344 } 345 return (in6_src_ioctl(cmd, data)); 346 } 347 348 if (ifp == NULL) 349 return (EOPNOTSUPP); 350 351 switch (cmd) { 352 case SIOCSNDFLUSH_IN6: 353 case SIOCSPFXFLUSH_IN6: 354 case SIOCSRTRFLUSH_IN6: 355 case SIOCSDEFIFACE_IN6: 356 case SIOCSIFINFO_FLAGS: 357 if (td != NULL) { 358 error = priv_check(td, PRIV_NETINET_ND6); 359 if (error) 360 return (error); 361 } 362 /* FALLTHROUGH */ 363 case OSIOCGIFINFO_IN6: 364 case SIOCGIFINFO_IN6: 365 case SIOCSIFINFO_IN6: 366 case SIOCGDRLST_IN6: 367 case SIOCGPRLST_IN6: 368 case SIOCGNBRINFO_IN6: 369 case SIOCGDEFIFACE_IN6: 370 return (nd6_ioctl(cmd, data, ifp)); 371 } 372 373 switch (cmd) { 374 case SIOCSIFPREFIX_IN6: 375 case SIOCDIFPREFIX_IN6: 376 case SIOCAIFPREFIX_IN6: 377 case SIOCCIFPREFIX_IN6: 378 case SIOCSGIFPREFIX_IN6: 379 case SIOCGIFPREFIX_IN6: 380 log(LOG_NOTICE, 381 "prefix ioctls are now invalidated. " 382 "please use ifconfig.\n"); 383 return (EOPNOTSUPP); 384 } 385 386 switch (cmd) { 387 case SIOCSSCOPE6: 388 if (td != NULL) { 389 error = priv_check(td, PRIV_NETINET_SCOPE6); 390 if (error) 391 return (error); 392 } 393 return (scope6_set(ifp, 394 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 395 case SIOCGSCOPE6: 396 return (scope6_get(ifp, 397 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 398 case SIOCGSCOPE6DEF: 399 return (scope6_get_default((struct scope6_id *) 400 ifr->ifr_ifru.ifru_scope_id)); 401 } 402 403 switch (cmd) { 404 case SIOCALIFADDR: 405 if (td != NULL) { 406 error = priv_check(td, PRIV_NET_ADDIFADDR); 407 if (error) 408 return (error); 409 } 410 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 411 412 case SIOCDLIFADDR: 413 if (td != NULL) { 414 error = priv_check(td, PRIV_NET_DELIFADDR); 415 if (error) 416 return (error); 417 } 418 /* FALLTHROUGH */ 419 case SIOCGLIFADDR: 420 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 421 } 422 423 /* 424 * Find address for this interface, if it exists. 425 * 426 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 427 * only, and used the first interface address as the target of other 428 * operations (without checking ifra_addr). This was because netinet 429 * code/API assumed at most 1 interface address per interface. 430 * Since IPv6 allows a node to assign multiple addresses 431 * on a single interface, we almost always look and check the 432 * presence of ifra_addr, and reject invalid ones here. 433 * It also decreases duplicated code among SIOC*_IN6 operations. 434 */ 435 switch (cmd) { 436 case SIOCAIFADDR_IN6: 437 case SIOCSIFPHYADDR_IN6: 438 sa6 = &ifra->ifra_addr; 439 break; 440 case SIOCSIFADDR_IN6: 441 case SIOCGIFADDR_IN6: 442 case SIOCSIFDSTADDR_IN6: 443 case SIOCSIFNETMASK_IN6: 444 case SIOCGIFDSTADDR_IN6: 445 case SIOCGIFNETMASK_IN6: 446 case SIOCDIFADDR_IN6: 447 case SIOCGIFPSRCADDR_IN6: 448 case SIOCGIFPDSTADDR_IN6: 449 case SIOCGIFAFLAG_IN6: 450 case SIOCSNDFLUSH_IN6: 451 case SIOCSPFXFLUSH_IN6: 452 case SIOCSRTRFLUSH_IN6: 453 case SIOCGIFALIFETIME_IN6: 454 case SIOCSIFALIFETIME_IN6: 455 case SIOCGIFSTAT_IN6: 456 case SIOCGIFSTAT_ICMP6: 457 sa6 = &ifr->ifr_addr; 458 break; 459 default: 460 sa6 = NULL; 461 break; 462 } 463 if (sa6 && sa6->sin6_family == AF_INET6) { 464 int error = 0; 465 466 if (sa6->sin6_scope_id != 0) 467 error = sa6_embedscope(sa6, 0); 468 else 469 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 470 if (error != 0) 471 return (error); 472 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 473 } else 474 ia = NULL; 475 476 switch (cmd) { 477 case SIOCSIFADDR_IN6: 478 case SIOCSIFDSTADDR_IN6: 479 case SIOCSIFNETMASK_IN6: 480 /* 481 * Since IPv6 allows a node to assign multiple addresses 482 * on a single interface, SIOCSIFxxx ioctls are deprecated. 483 */ 484 /* we decided to obsolete this command (20000704) */ 485 return (EINVAL); 486 487 case SIOCDIFADDR_IN6: 488 /* 489 * for IPv4, we look for existing in_ifaddr here to allow 490 * "ifconfig if0 delete" to remove the first IPv4 address on 491 * the interface. For IPv6, as the spec allows multiple 492 * interface address from the day one, we consider "remove the 493 * first one" semantics to be not preferable. 494 */ 495 if (ia == NULL) 496 return (EADDRNOTAVAIL); 497 /* FALLTHROUGH */ 498 case SIOCAIFADDR_IN6: 499 /* 500 * We always require users to specify a valid IPv6 address for 501 * the corresponding operation. 502 */ 503 if (ifra->ifra_addr.sin6_family != AF_INET6 || 504 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 505 return (EAFNOSUPPORT); 506 507 if (td != NULL) { 508 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 509 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 510 if (error) 511 return (error); 512 } 513 514 break; 515 516 case SIOCGIFADDR_IN6: 517 /* This interface is basically deprecated. use SIOCGIFCONF. */ 518 /* FALLTHROUGH */ 519 case SIOCGIFAFLAG_IN6: 520 case SIOCGIFNETMASK_IN6: 521 case SIOCGIFDSTADDR_IN6: 522 case SIOCGIFALIFETIME_IN6: 523 /* must think again about its semantics */ 524 if (ia == NULL) 525 return (EADDRNOTAVAIL); 526 break; 527 case SIOCSIFALIFETIME_IN6: 528 { 529 struct in6_addrlifetime *lt; 530 531 if (td != NULL) { 532 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 533 if (error) 534 return (error); 535 } 536 if (ia == NULL) 537 return (EADDRNOTAVAIL); 538 /* sanity for overflow - beware unsigned */ 539 lt = &ifr->ifr_ifru.ifru_lifetime; 540 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 541 lt->ia6t_vltime + time_second < time_second) { 542 return EINVAL; 543 } 544 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 545 lt->ia6t_pltime + time_second < time_second) { 546 return EINVAL; 547 } 548 break; 549 } 550 } 551 552 switch (cmd) { 553 554 case SIOCGIFADDR_IN6: 555 ifr->ifr_addr = ia->ia_addr; 556 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 557 return (error); 558 break; 559 560 case SIOCGIFDSTADDR_IN6: 561 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 562 return (EINVAL); 563 /* 564 * XXX: should we check if ifa_dstaddr is NULL and return 565 * an error? 566 */ 567 ifr->ifr_dstaddr = ia->ia_dstaddr; 568 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 569 return (error); 570 break; 571 572 case SIOCGIFNETMASK_IN6: 573 ifr->ifr_addr = ia->ia_prefixmask; 574 break; 575 576 case SIOCGIFAFLAG_IN6: 577 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 578 break; 579 580 case SIOCGIFSTAT_IN6: 581 if (ifp == NULL) 582 return EINVAL; 583 bzero(&ifr->ifr_ifru.ifru_stat, 584 sizeof(ifr->ifr_ifru.ifru_stat)); 585 ifr->ifr_ifru.ifru_stat = 586 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 587 break; 588 589 case SIOCGIFSTAT_ICMP6: 590 if (ifp == NULL) 591 return EINVAL; 592 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 593 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 594 ifr->ifr_ifru.ifru_icmp6stat = 595 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 596 break; 597 598 case SIOCGIFALIFETIME_IN6: 599 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 600 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 601 time_t maxexpire; 602 struct in6_addrlifetime *retlt = 603 &ifr->ifr_ifru.ifru_lifetime; 604 605 /* 606 * XXX: adjust expiration time assuming time_t is 607 * signed. 608 */ 609 maxexpire = (-1) & 610 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 611 if (ia->ia6_lifetime.ia6t_vltime < 612 maxexpire - ia->ia6_updatetime) { 613 retlt->ia6t_expire = ia->ia6_updatetime + 614 ia->ia6_lifetime.ia6t_vltime; 615 } else 616 retlt->ia6t_expire = maxexpire; 617 } 618 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 619 time_t maxexpire; 620 struct in6_addrlifetime *retlt = 621 &ifr->ifr_ifru.ifru_lifetime; 622 623 /* 624 * XXX: adjust expiration time assuming time_t is 625 * signed. 626 */ 627 maxexpire = (-1) & 628 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 629 if (ia->ia6_lifetime.ia6t_pltime < 630 maxexpire - ia->ia6_updatetime) { 631 retlt->ia6t_preferred = ia->ia6_updatetime + 632 ia->ia6_lifetime.ia6t_pltime; 633 } else 634 retlt->ia6t_preferred = maxexpire; 635 } 636 break; 637 638 case SIOCSIFALIFETIME_IN6: 639 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 640 /* for sanity */ 641 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 642 ia->ia6_lifetime.ia6t_expire = 643 time_second + ia->ia6_lifetime.ia6t_vltime; 644 } else 645 ia->ia6_lifetime.ia6t_expire = 0; 646 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 647 ia->ia6_lifetime.ia6t_preferred = 648 time_second + ia->ia6_lifetime.ia6t_pltime; 649 } else 650 ia->ia6_lifetime.ia6t_preferred = 0; 651 break; 652 653 case SIOCAIFADDR_IN6: 654 { 655 int i, error = 0; 656 struct nd_prefixctl pr0; 657 struct nd_prefix *pr; 658 659 /* 660 * first, make or update the interface address structure, 661 * and link it to the list. 662 */ 663 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 664 return (error); 665 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 666 == NULL) { 667 /* 668 * this can happen when the user specify the 0 valid 669 * lifetime. 670 */ 671 break; 672 } 673 674 /* 675 * then, make the prefix on-link on the interface. 676 * XXX: we'd rather create the prefix before the address, but 677 * we need at least one address to install the corresponding 678 * interface route, so we configure the address first. 679 */ 680 681 /* 682 * convert mask to prefix length (prefixmask has already 683 * been validated in in6_update_ifa(). 684 */ 685 bzero(&pr0, sizeof(pr0)); 686 pr0.ndpr_ifp = ifp; 687 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 688 NULL); 689 if (pr0.ndpr_plen == 128) { 690 break; /* we don't need to install a host route. */ 691 } 692 pr0.ndpr_prefix = ifra->ifra_addr; 693 /* apply the mask for safety. */ 694 for (i = 0; i < 4; i++) { 695 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 696 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 697 } 698 /* 699 * XXX: since we don't have an API to set prefix (not address) 700 * lifetimes, we just use the same lifetimes as addresses. 701 * The (temporarily) installed lifetimes can be overridden by 702 * later advertised RAs (when accept_rtadv is non 0), which is 703 * an intended behavior. 704 */ 705 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 706 pr0.ndpr_raf_auto = 707 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 708 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 709 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 710 711 /* add the prefix if not yet. */ 712 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 713 /* 714 * nd6_prelist_add will install the corresponding 715 * interface route. 716 */ 717 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 718 return (error); 719 if (pr == NULL) { 720 log(LOG_ERR, "nd6_prelist_add succeeded but " 721 "no prefix\n"); 722 return (EINVAL); /* XXX panic here? */ 723 } 724 } 725 726 /* relate the address to the prefix */ 727 if (ia->ia6_ndpr == NULL) { 728 ia->ia6_ndpr = pr; 729 pr->ndpr_refcnt++; 730 731 /* 732 * If this is the first autoconf address from the 733 * prefix, create a temporary address as well 734 * (when required). 735 */ 736 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 737 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 738 int e; 739 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 740 log(LOG_NOTICE, "in6_control: failed " 741 "to create a temporary address, " 742 "errno=%d\n", e); 743 } 744 } 745 } 746 747 /* 748 * this might affect the status of autoconfigured addresses, 749 * that is, this address might make other addresses detached. 750 */ 751 pfxlist_onlink_check(); 752 if (error == 0 && ia) 753 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 754 break; 755 } 756 757 case SIOCDIFADDR_IN6: 758 { 759 struct nd_prefix *pr; 760 761 /* 762 * If the address being deleted is the only one that owns 763 * the corresponding prefix, expire the prefix as well. 764 * XXX: theoretically, we don't have to worry about such 765 * relationship, since we separate the address management 766 * and the prefix management. We do this, however, to provide 767 * as much backward compatibility as possible in terms of 768 * the ioctl operation. 769 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 770 */ 771 pr = ia->ia6_ndpr; 772 in6_purgeaddr(&ia->ia_ifa); 773 if (pr && pr->ndpr_refcnt == 0) 774 prelist_remove(pr); 775 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 776 break; 777 } 778 779 default: 780 if (ifp == NULL || ifp->if_ioctl == 0) 781 return (EOPNOTSUPP); 782 return ((*ifp->if_ioctl)(ifp, cmd, data)); 783 } 784 785 return (0); 786 } 787 788 /* 789 * Update parameters of an IPv6 interface address. 790 * If necessary, a new entry is created and linked into address chains. 791 * This function is separated from in6_control(). 792 * XXX: should this be performed under splnet()? 793 */ 794 int 795 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 796 struct in6_ifaddr *ia, int flags) 797 { 798 int error = 0, hostIsNew = 0, plen = -1; 799 struct in6_ifaddr *oia; 800 struct sockaddr_in6 dst6; 801 struct in6_addrlifetime *lt; 802 struct in6_multi_mship *imm; 803 struct in6_multi *in6m_sol; 804 struct rtentry *rt; 805 int delay; 806 char ip6buf[INET6_ADDRSTRLEN]; 807 808 /* Validate parameters */ 809 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 810 return (EINVAL); 811 812 /* 813 * The destination address for a p2p link must have a family 814 * of AF_UNSPEC or AF_INET6. 815 */ 816 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 817 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 818 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 819 return (EAFNOSUPPORT); 820 /* 821 * validate ifra_prefixmask. don't check sin6_family, netmask 822 * does not carry fields other than sin6_len. 823 */ 824 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 825 return (EINVAL); 826 /* 827 * Because the IPv6 address architecture is classless, we require 828 * users to specify a (non 0) prefix length (mask) for a new address. 829 * We also require the prefix (when specified) mask is valid, and thus 830 * reject a non-consecutive mask. 831 */ 832 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 833 return (EINVAL); 834 if (ifra->ifra_prefixmask.sin6_len != 0) { 835 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 836 (u_char *)&ifra->ifra_prefixmask + 837 ifra->ifra_prefixmask.sin6_len); 838 if (plen <= 0) 839 return (EINVAL); 840 } else { 841 /* 842 * In this case, ia must not be NULL. We just use its prefix 843 * length. 844 */ 845 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 846 } 847 /* 848 * If the destination address on a p2p interface is specified, 849 * and the address is a scoped one, validate/set the scope 850 * zone identifier. 851 */ 852 dst6 = ifra->ifra_dstaddr; 853 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 854 (dst6.sin6_family == AF_INET6)) { 855 struct in6_addr in6_tmp; 856 u_int32_t zoneid; 857 858 in6_tmp = dst6.sin6_addr; 859 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 860 return (EINVAL); /* XXX: should be impossible */ 861 862 if (dst6.sin6_scope_id != 0) { 863 if (dst6.sin6_scope_id != zoneid) 864 return (EINVAL); 865 } else /* user omit to specify the ID. */ 866 dst6.sin6_scope_id = zoneid; 867 868 /* convert into the internal form */ 869 if (sa6_embedscope(&dst6, 0)) 870 return (EINVAL); /* XXX: should be impossible */ 871 } 872 /* 873 * The destination address can be specified only for a p2p or a 874 * loopback interface. If specified, the corresponding prefix length 875 * must be 128. 876 */ 877 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 878 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 879 /* XXX: noisy message */ 880 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 881 "be specified for a p2p or a loopback IF only\n")); 882 return (EINVAL); 883 } 884 if (plen != 128) { 885 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 886 "be 128 when dstaddr is specified\n")); 887 return (EINVAL); 888 } 889 } 890 /* lifetime consistency check */ 891 lt = &ifra->ifra_lifetime; 892 if (lt->ia6t_pltime > lt->ia6t_vltime) 893 return (EINVAL); 894 if (lt->ia6t_vltime == 0) { 895 /* 896 * the following log might be noisy, but this is a typical 897 * configuration mistake or a tool's bug. 898 */ 899 nd6log((LOG_INFO, 900 "in6_update_ifa: valid lifetime is 0 for %s\n", 901 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 902 903 if (ia == NULL) 904 return (0); /* there's nothing to do */ 905 } 906 907 /* 908 * If this is a new address, allocate a new ifaddr and link it 909 * into chains. 910 */ 911 if (ia == NULL) { 912 hostIsNew = 1; 913 /* 914 * When in6_update_ifa() is called in a process of a received 915 * RA, it is called under an interrupt context. So, we should 916 * call malloc with M_NOWAIT. 917 */ 918 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 919 M_NOWAIT); 920 if (ia == NULL) 921 return (ENOBUFS); 922 bzero((caddr_t)ia, sizeof(*ia)); 923 LIST_INIT(&ia->ia6_memberships); 924 /* Initialize the address and masks, and put time stamp */ 925 IFA_LOCK_INIT(&ia->ia_ifa); 926 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 927 ia->ia_addr.sin6_family = AF_INET6; 928 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 929 ia->ia6_createtime = time_second; 930 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 931 /* 932 * XXX: some functions expect that ifa_dstaddr is not 933 * NULL for p2p interfaces. 934 */ 935 ia->ia_ifa.ifa_dstaddr = 936 (struct sockaddr *)&ia->ia_dstaddr; 937 } else { 938 ia->ia_ifa.ifa_dstaddr = NULL; 939 } 940 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 941 942 ia->ia_ifp = ifp; 943 if ((oia = V_in6_ifaddr) != NULL) { 944 for ( ; oia->ia_next; oia = oia->ia_next) 945 continue; 946 oia->ia_next = ia; 947 } else 948 V_in6_ifaddr = ia; 949 950 ia->ia_ifa.ifa_refcnt = 1; 951 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 952 } 953 954 /* update timestamp */ 955 ia->ia6_updatetime = time_second; 956 957 /* set prefix mask */ 958 if (ifra->ifra_prefixmask.sin6_len) { 959 /* 960 * We prohibit changing the prefix length of an existing 961 * address, because 962 * + such an operation should be rare in IPv6, and 963 * + the operation would confuse prefix management. 964 */ 965 if (ia->ia_prefixmask.sin6_len && 966 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 967 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 968 " existing (%s) address should not be changed\n", 969 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 970 error = EINVAL; 971 goto unlink; 972 } 973 ia->ia_prefixmask = ifra->ifra_prefixmask; 974 } 975 976 /* 977 * If a new destination address is specified, scrub the old one and 978 * install the new destination. Note that the interface must be 979 * p2p or loopback (see the check above.) 980 */ 981 if (dst6.sin6_family == AF_INET6 && 982 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 983 int e; 984 985 if ((ia->ia_flags & IFA_ROUTE) != 0 && 986 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 987 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 988 "a route to the old destination: %s\n", 989 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 990 /* proceed anyway... */ 991 } else 992 ia->ia_flags &= ~IFA_ROUTE; 993 ia->ia_dstaddr = dst6; 994 } 995 996 /* 997 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 998 * to see if the address is deprecated or invalidated, but initialize 999 * these members for applications. 1000 */ 1001 ia->ia6_lifetime = ifra->ifra_lifetime; 1002 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1003 ia->ia6_lifetime.ia6t_expire = 1004 time_second + ia->ia6_lifetime.ia6t_vltime; 1005 } else 1006 ia->ia6_lifetime.ia6t_expire = 0; 1007 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1008 ia->ia6_lifetime.ia6t_preferred = 1009 time_second + ia->ia6_lifetime.ia6t_pltime; 1010 } else 1011 ia->ia6_lifetime.ia6t_preferred = 0; 1012 1013 /* reset the interface and routing table appropriately. */ 1014 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1015 goto unlink; 1016 1017 /* 1018 * configure address flags. 1019 */ 1020 ia->ia6_flags = ifra->ifra_flags; 1021 /* 1022 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1023 * userland, make it deprecated. 1024 */ 1025 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1026 ia->ia6_lifetime.ia6t_pltime = 0; 1027 ia->ia6_lifetime.ia6t_preferred = time_second; 1028 } 1029 /* 1030 * Make the address tentative before joining multicast addresses, 1031 * so that corresponding MLD responses would not have a tentative 1032 * source address. 1033 */ 1034 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1035 if (hostIsNew && in6if_do_dad(ifp)) 1036 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1037 1038 /* 1039 * We are done if we have simply modified an existing address. 1040 */ 1041 if (!hostIsNew) 1042 return (error); 1043 1044 /* 1045 * Beyond this point, we should call in6_purgeaddr upon an error, 1046 * not just go to unlink. 1047 */ 1048 1049 /* Join necessary multicast groups */ 1050 in6m_sol = NULL; 1051 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1052 struct sockaddr_in6 mltaddr, mltmask; 1053 struct in6_addr llsol; 1054 1055 /* join solicited multicast addr for new host id */ 1056 bzero(&llsol, sizeof(struct in6_addr)); 1057 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1058 llsol.s6_addr32[1] = 0; 1059 llsol.s6_addr32[2] = htonl(1); 1060 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1061 llsol.s6_addr8[12] = 0xff; 1062 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1063 /* XXX: should not happen */ 1064 log(LOG_ERR, "in6_update_ifa: " 1065 "in6_setscope failed\n"); 1066 goto cleanup; 1067 } 1068 delay = 0; 1069 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1070 /* 1071 * We need a random delay for DAD on the address 1072 * being configured. It also means delaying 1073 * transmission of the corresponding MLD report to 1074 * avoid report collision. 1075 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1076 */ 1077 delay = arc4random() % 1078 (MAX_RTR_SOLICITATION_DELAY * hz); 1079 } 1080 imm = in6_joingroup(ifp, &llsol, &error, delay); 1081 if (imm == NULL) { 1082 nd6log((LOG_WARNING, 1083 "in6_update_ifa: addmulti failed for " 1084 "%s on %s (errno=%d)\n", 1085 ip6_sprintf(ip6buf, &llsol), if_name(ifp), 1086 error)); 1087 in6_purgeaddr((struct ifaddr *)ia); 1088 return (error); 1089 } 1090 LIST_INSERT_HEAD(&ia->ia6_memberships, 1091 imm, i6mm_chain); 1092 in6m_sol = imm->i6mm_maddr; 1093 1094 bzero(&mltmask, sizeof(mltmask)); 1095 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1096 mltmask.sin6_family = AF_INET6; 1097 mltmask.sin6_addr = in6mask32; 1098 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1099 1100 /* 1101 * join link-local all-nodes address 1102 */ 1103 bzero(&mltaddr, sizeof(mltaddr)); 1104 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1105 mltaddr.sin6_family = AF_INET6; 1106 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1107 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1108 0) 1109 goto cleanup; /* XXX: should not fail */ 1110 1111 /* 1112 * XXX: do we really need this automatic routes? 1113 * We should probably reconsider this stuff. Most applications 1114 * actually do not need the routes, since they usually specify 1115 * the outgoing interface. 1116 */ 1117 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1118 if (rt) { 1119 /* XXX: only works in !SCOPEDROUTING case. */ 1120 if (memcmp(&mltaddr.sin6_addr, 1121 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1122 MLTMASK_LEN)) { 1123 RTFREE_LOCKED(rt); 1124 rt = NULL; 1125 } 1126 } 1127 if (!rt) { 1128 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1129 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1130 (struct sockaddr *)&ia->ia_addr, 1131 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1132 (struct rtentry **)0); 1133 if (error) 1134 goto cleanup; 1135 } else { 1136 RTFREE_LOCKED(rt); 1137 } 1138 1139 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1140 if (!imm) { 1141 nd6log((LOG_WARNING, 1142 "in6_update_ifa: addmulti failed for " 1143 "%s on %s (errno=%d)\n", 1144 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1145 if_name(ifp), error)); 1146 goto cleanup; 1147 } 1148 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1149 1150 /* 1151 * join node information group address 1152 */ 1153 #define hostnamelen strlen(V_hostname) 1154 delay = 0; 1155 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1156 /* 1157 * The spec doesn't say anything about delay for this 1158 * group, but the same logic should apply. 1159 */ 1160 delay = arc4random() % 1161 (MAX_RTR_SOLICITATION_DELAY * hz); 1162 } 1163 mtx_lock(&hostname_mtx); 1164 if (in6_nigroup(ifp, V_hostname, hostnamelen, 1165 &mltaddr.sin6_addr) == 0) { 1166 mtx_unlock(&hostname_mtx); 1167 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1168 delay); /* XXX jinmei */ 1169 if (!imm) { 1170 nd6log((LOG_WARNING, "in6_update_ifa: " 1171 "addmulti failed for %s on %s " 1172 "(errno=%d)\n", 1173 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1174 if_name(ifp), error)); 1175 /* XXX not very fatal, go on... */ 1176 } else { 1177 LIST_INSERT_HEAD(&ia->ia6_memberships, 1178 imm, i6mm_chain); 1179 } 1180 } else 1181 mtx_unlock(&hostname_mtx); 1182 #undef hostnamelen 1183 1184 /* 1185 * join interface-local all-nodes address. 1186 * (ff01::1%ifN, and ff01::%ifN/32) 1187 */ 1188 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1189 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1190 != 0) 1191 goto cleanup; /* XXX: should not fail */ 1192 /* XXX: again, do we really need the route? */ 1193 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1194 if (rt) { 1195 if (memcmp(&mltaddr.sin6_addr, 1196 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1197 MLTMASK_LEN)) { 1198 RTFREE_LOCKED(rt); 1199 rt = NULL; 1200 } 1201 } 1202 if (!rt) { 1203 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1204 (struct sockaddr *)&ia->ia_addr, 1205 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1206 (struct rtentry **)0); 1207 if (error) 1208 goto cleanup; 1209 } else 1210 RTFREE_LOCKED(rt); 1211 1212 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1213 if (!imm) { 1214 nd6log((LOG_WARNING, "in6_update_ifa: " 1215 "addmulti failed for %s on %s " 1216 "(errno=%d)\n", 1217 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1218 if_name(ifp), error)); 1219 goto cleanup; 1220 } 1221 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1222 #undef MLTMASK_LEN 1223 } 1224 1225 /* 1226 * Perform DAD, if needed. 1227 * XXX It may be of use, if we can administratively 1228 * disable DAD. 1229 */ 1230 if (hostIsNew && in6if_do_dad(ifp) && 1231 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1232 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1233 { 1234 int mindelay, maxdelay; 1235 1236 delay = 0; 1237 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1238 /* 1239 * We need to impose a delay before sending an NS 1240 * for DAD. Check if we also needed a delay for the 1241 * corresponding MLD message. If we did, the delay 1242 * should be larger than the MLD delay (this could be 1243 * relaxed a bit, but this simple logic is at least 1244 * safe). 1245 */ 1246 mindelay = 0; 1247 if (in6m_sol != NULL && 1248 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1249 mindelay = in6m_sol->in6m_timer; 1250 } 1251 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1252 if (maxdelay - mindelay == 0) 1253 delay = 0; 1254 else { 1255 delay = 1256 (arc4random() % (maxdelay - mindelay)) + 1257 mindelay; 1258 } 1259 } 1260 nd6_dad_start((struct ifaddr *)ia, delay); 1261 } 1262 1263 return (error); 1264 1265 unlink: 1266 /* 1267 * XXX: if a change of an existing address failed, keep the entry 1268 * anyway. 1269 */ 1270 if (hostIsNew) 1271 in6_unlink_ifa(ia, ifp); 1272 return (error); 1273 1274 cleanup: 1275 in6_purgeaddr(&ia->ia_ifa); 1276 return error; 1277 } 1278 1279 void 1280 in6_purgeaddr(struct ifaddr *ifa) 1281 { 1282 struct ifnet *ifp = ifa->ifa_ifp; 1283 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1284 char ip6buf[INET6_ADDRSTRLEN]; 1285 struct in6_multi_mship *imm; 1286 1287 /* stop DAD processing */ 1288 nd6_dad_stop(ifa); 1289 1290 /* 1291 * delete route to the destination of the address being purged. 1292 * The interface must be p2p or loopback in this case. 1293 */ 1294 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1295 int e; 1296 1297 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1298 != 0) { 1299 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1300 "a route to the p2p destination: %s on %s, " 1301 "errno=%d\n", 1302 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), 1303 if_name(ifp), e); 1304 /* proceed anyway... */ 1305 } else 1306 ia->ia_flags &= ~IFA_ROUTE; 1307 } 1308 1309 /* Remove ownaddr's loopback rtentry, if it exists. */ 1310 in6_ifremloop(&(ia->ia_ifa)); 1311 1312 /* 1313 * leave from multicast groups we have joined for the interface 1314 */ 1315 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1316 LIST_REMOVE(imm, i6mm_chain); 1317 in6_leavegroup(imm); 1318 } 1319 1320 in6_unlink_ifa(ia, ifp); 1321 } 1322 1323 static void 1324 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1325 { 1326 struct in6_ifaddr *oia; 1327 int s = splnet(); 1328 1329 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1330 1331 oia = ia; 1332 if (oia == (ia = V_in6_ifaddr)) 1333 V_in6_ifaddr = ia->ia_next; 1334 else { 1335 while (ia->ia_next && (ia->ia_next != oia)) 1336 ia = ia->ia_next; 1337 if (ia->ia_next) 1338 ia->ia_next = oia->ia_next; 1339 else { 1340 /* search failed */ 1341 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1342 } 1343 } 1344 1345 /* 1346 * Release the reference to the base prefix. There should be a 1347 * positive reference. 1348 */ 1349 if (oia->ia6_ndpr == NULL) { 1350 nd6log((LOG_NOTICE, 1351 "in6_unlink_ifa: autoconf'ed address " 1352 "%p has no prefix\n", oia)); 1353 } else { 1354 oia->ia6_ndpr->ndpr_refcnt--; 1355 oia->ia6_ndpr = NULL; 1356 } 1357 1358 /* 1359 * Also, if the address being removed is autoconf'ed, call 1360 * pfxlist_onlink_check() since the release might affect the status of 1361 * other (detached) addresses. 1362 */ 1363 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1364 pfxlist_onlink_check(); 1365 } 1366 1367 /* 1368 * release another refcnt for the link from in6_ifaddr. 1369 * Note that we should decrement the refcnt at least once for all *BSD. 1370 */ 1371 IFAFREE(&oia->ia_ifa); 1372 1373 splx(s); 1374 } 1375 1376 void 1377 in6_purgeif(struct ifnet *ifp) 1378 { 1379 struct ifaddr *ifa, *nifa; 1380 1381 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1382 nifa = TAILQ_NEXT(ifa, ifa_list); 1383 if (ifa->ifa_addr->sa_family != AF_INET6) 1384 continue; 1385 in6_purgeaddr(ifa); 1386 } 1387 1388 in6_ifdetach(ifp); 1389 } 1390 1391 /* 1392 * SIOC[GAD]LIFADDR. 1393 * SIOCGLIFADDR: get first address. (?) 1394 * SIOCGLIFADDR with IFLR_PREFIX: 1395 * get first address that matches the specified prefix. 1396 * SIOCALIFADDR: add the specified address. 1397 * SIOCALIFADDR with IFLR_PREFIX: 1398 * add the specified prefix, filling hostid part from 1399 * the first link-local address. prefixlen must be <= 64. 1400 * SIOCDLIFADDR: delete the specified address. 1401 * SIOCDLIFADDR with IFLR_PREFIX: 1402 * delete the first address that matches the specified prefix. 1403 * return values: 1404 * EINVAL on invalid parameters 1405 * EADDRNOTAVAIL on prefix match failed/specified address not found 1406 * other values may be returned from in6_ioctl() 1407 * 1408 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1409 * this is to accomodate address naming scheme other than RFC2374, 1410 * in the future. 1411 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1412 * address encoding scheme. (see figure on page 8) 1413 */ 1414 static int 1415 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1416 struct ifnet *ifp, struct thread *td) 1417 { 1418 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1419 struct ifaddr *ifa; 1420 struct sockaddr *sa; 1421 1422 /* sanity checks */ 1423 if (!data || !ifp) { 1424 panic("invalid argument to in6_lifaddr_ioctl"); 1425 /* NOTREACHED */ 1426 } 1427 1428 switch (cmd) { 1429 case SIOCGLIFADDR: 1430 /* address must be specified on GET with IFLR_PREFIX */ 1431 if ((iflr->flags & IFLR_PREFIX) == 0) 1432 break; 1433 /* FALLTHROUGH */ 1434 case SIOCALIFADDR: 1435 case SIOCDLIFADDR: 1436 /* address must be specified on ADD and DELETE */ 1437 sa = (struct sockaddr *)&iflr->addr; 1438 if (sa->sa_family != AF_INET6) 1439 return EINVAL; 1440 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1441 return EINVAL; 1442 /* XXX need improvement */ 1443 sa = (struct sockaddr *)&iflr->dstaddr; 1444 if (sa->sa_family && sa->sa_family != AF_INET6) 1445 return EINVAL; 1446 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1447 return EINVAL; 1448 break; 1449 default: /* shouldn't happen */ 1450 #if 0 1451 panic("invalid cmd to in6_lifaddr_ioctl"); 1452 /* NOTREACHED */ 1453 #else 1454 return EOPNOTSUPP; 1455 #endif 1456 } 1457 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1458 return EINVAL; 1459 1460 switch (cmd) { 1461 case SIOCALIFADDR: 1462 { 1463 struct in6_aliasreq ifra; 1464 struct in6_addr *hostid = NULL; 1465 int prefixlen; 1466 1467 if ((iflr->flags & IFLR_PREFIX) != 0) { 1468 struct sockaddr_in6 *sin6; 1469 1470 /* 1471 * hostid is to fill in the hostid part of the 1472 * address. hostid points to the first link-local 1473 * address attached to the interface. 1474 */ 1475 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1476 if (!ifa) 1477 return EADDRNOTAVAIL; 1478 hostid = IFA_IN6(ifa); 1479 1480 /* prefixlen must be <= 64. */ 1481 if (64 < iflr->prefixlen) 1482 return EINVAL; 1483 prefixlen = iflr->prefixlen; 1484 1485 /* hostid part must be zero. */ 1486 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1487 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1488 sin6->sin6_addr.s6_addr32[3] != 0) { 1489 return EINVAL; 1490 } 1491 } else 1492 prefixlen = iflr->prefixlen; 1493 1494 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1495 bzero(&ifra, sizeof(ifra)); 1496 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1497 1498 bcopy(&iflr->addr, &ifra.ifra_addr, 1499 ((struct sockaddr *)&iflr->addr)->sa_len); 1500 if (hostid) { 1501 /* fill in hostid part */ 1502 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1503 hostid->s6_addr32[2]; 1504 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1505 hostid->s6_addr32[3]; 1506 } 1507 1508 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1509 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1510 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1511 if (hostid) { 1512 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1513 hostid->s6_addr32[2]; 1514 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1515 hostid->s6_addr32[3]; 1516 } 1517 } 1518 1519 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1520 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1521 1522 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1523 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1524 } 1525 case SIOCGLIFADDR: 1526 case SIOCDLIFADDR: 1527 { 1528 struct in6_ifaddr *ia; 1529 struct in6_addr mask, candidate, match; 1530 struct sockaddr_in6 *sin6; 1531 int cmp; 1532 1533 bzero(&mask, sizeof(mask)); 1534 if (iflr->flags & IFLR_PREFIX) { 1535 /* lookup a prefix rather than address. */ 1536 in6_prefixlen2mask(&mask, iflr->prefixlen); 1537 1538 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1539 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1540 match.s6_addr32[0] &= mask.s6_addr32[0]; 1541 match.s6_addr32[1] &= mask.s6_addr32[1]; 1542 match.s6_addr32[2] &= mask.s6_addr32[2]; 1543 match.s6_addr32[3] &= mask.s6_addr32[3]; 1544 1545 /* if you set extra bits, that's wrong */ 1546 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1547 return EINVAL; 1548 1549 cmp = 1; 1550 } else { 1551 if (cmd == SIOCGLIFADDR) { 1552 /* on getting an address, take the 1st match */ 1553 cmp = 0; /* XXX */ 1554 } else { 1555 /* on deleting an address, do exact match */ 1556 in6_prefixlen2mask(&mask, 128); 1557 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1558 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1559 1560 cmp = 1; 1561 } 1562 } 1563 1564 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1565 if (ifa->ifa_addr->sa_family != AF_INET6) 1566 continue; 1567 if (!cmp) 1568 break; 1569 1570 /* 1571 * XXX: this is adhoc, but is necessary to allow 1572 * a user to specify fe80::/64 (not /10) for a 1573 * link-local address. 1574 */ 1575 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1576 in6_clearscope(&candidate); 1577 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1578 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1579 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1580 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1581 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1582 break; 1583 } 1584 if (!ifa) 1585 return EADDRNOTAVAIL; 1586 ia = ifa2ia6(ifa); 1587 1588 if (cmd == SIOCGLIFADDR) { 1589 int error; 1590 1591 /* fill in the if_laddrreq structure */ 1592 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1593 error = sa6_recoverscope( 1594 (struct sockaddr_in6 *)&iflr->addr); 1595 if (error != 0) 1596 return (error); 1597 1598 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1599 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1600 ia->ia_dstaddr.sin6_len); 1601 error = sa6_recoverscope( 1602 (struct sockaddr_in6 *)&iflr->dstaddr); 1603 if (error != 0) 1604 return (error); 1605 } else 1606 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1607 1608 iflr->prefixlen = 1609 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1610 1611 iflr->flags = ia->ia6_flags; /* XXX */ 1612 1613 return 0; 1614 } else { 1615 struct in6_aliasreq ifra; 1616 1617 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1618 bzero(&ifra, sizeof(ifra)); 1619 bcopy(iflr->iflr_name, ifra.ifra_name, 1620 sizeof(ifra.ifra_name)); 1621 1622 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1623 ia->ia_addr.sin6_len); 1624 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1625 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1626 ia->ia_dstaddr.sin6_len); 1627 } else { 1628 bzero(&ifra.ifra_dstaddr, 1629 sizeof(ifra.ifra_dstaddr)); 1630 } 1631 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1632 ia->ia_prefixmask.sin6_len); 1633 1634 ifra.ifra_flags = ia->ia6_flags; 1635 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1636 ifp, td); 1637 } 1638 } 1639 } 1640 1641 return EOPNOTSUPP; /* just for safety */ 1642 } 1643 1644 /* 1645 * Initialize an interface's intetnet6 address 1646 * and routing table entry. 1647 */ 1648 static int 1649 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1650 struct sockaddr_in6 *sin6, int newhost) 1651 { 1652 int error = 0, plen, ifacount = 0; 1653 int s = splimp(); 1654 struct ifaddr *ifa; 1655 1656 /* 1657 * Give the interface a chance to initialize 1658 * if this is its first address, 1659 * and to validate the address if necessary. 1660 */ 1661 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1662 if (ifa->ifa_addr->sa_family != AF_INET6) 1663 continue; 1664 ifacount++; 1665 } 1666 1667 ia->ia_addr = *sin6; 1668 1669 if (ifacount <= 1 && ifp->if_ioctl) { 1670 IFF_LOCKGIANT(ifp); 1671 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1672 IFF_UNLOCKGIANT(ifp); 1673 if (error) { 1674 splx(s); 1675 return (error); 1676 } 1677 } 1678 splx(s); 1679 1680 ia->ia_ifa.ifa_metric = ifp->if_metric; 1681 1682 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1683 1684 if (newhost) { 1685 /* 1686 * set the rtrequest function to create llinfo. It also 1687 * adjust outgoing interface of the route for the local 1688 * address when called via in6_ifaddloop() below. 1689 */ 1690 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1691 } 1692 1693 /* 1694 * Special case: 1695 * If a new destination address is specified for a point-to-point 1696 * interface, install a route to the destination as an interface 1697 * direct route. In addition, if the link is expected to have neighbor 1698 * cache entries, specify RTF_LLINFO so that a cache entry for the 1699 * destination address will be created. 1700 * created 1701 * XXX: the logic below rejects assigning multiple addresses on a p2p 1702 * interface that share the same destination. 1703 */ 1704 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1705 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1706 ia->ia_dstaddr.sin6_family == AF_INET6) { 1707 int rtflags = RTF_UP | RTF_HOST; 1708 struct rtentry *rt = NULL, **rtp = NULL; 1709 1710 if (nd6_need_cache(ifp) != 0) { 1711 rtflags |= RTF_LLINFO; 1712 rtp = &rt; 1713 } 1714 1715 error = rtrequest(RTM_ADD, 1716 (struct sockaddr *)&ia->ia_dstaddr, 1717 (struct sockaddr *)&ia->ia_addr, 1718 (struct sockaddr *)&ia->ia_prefixmask, 1719 ia->ia_flags | rtflags, rtp); 1720 if (error != 0) 1721 return (error); 1722 if (rt != NULL) { 1723 struct llinfo_nd6 *ln; 1724 1725 RT_LOCK(rt); 1726 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1727 if (ln != NULL) { 1728 /* 1729 * Set the state to STALE because we don't 1730 * have to perform address resolution on this 1731 * link. 1732 */ 1733 ln->ln_state = ND6_LLINFO_STALE; 1734 } 1735 RT_REMREF(rt); 1736 RT_UNLOCK(rt); 1737 } 1738 ia->ia_flags |= IFA_ROUTE; 1739 } 1740 if (plen < 128) { 1741 /* 1742 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1743 */ 1744 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1745 } 1746 1747 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1748 if (newhost) 1749 in6_ifaddloop(&(ia->ia_ifa)); 1750 1751 return (error); 1752 } 1753 1754 struct in6_multi_mship * 1755 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, 1756 int *errorp, int delay) 1757 { 1758 struct in6_multi_mship *imm; 1759 1760 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1761 if (!imm) { 1762 *errorp = ENOBUFS; 1763 return NULL; 1764 } 1765 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1766 if (!imm->i6mm_maddr) { 1767 /* *errorp is alrady set */ 1768 free(imm, M_IP6MADDR); 1769 return NULL; 1770 } 1771 return imm; 1772 } 1773 1774 int 1775 in6_leavegroup(struct in6_multi_mship *imm) 1776 { 1777 1778 if (imm->i6mm_maddr) 1779 in6_delmulti(imm->i6mm_maddr); 1780 free(imm, M_IP6MADDR); 1781 return 0; 1782 } 1783 1784 /* 1785 * Find an IPv6 interface link-local address specific to an interface. 1786 */ 1787 struct in6_ifaddr * 1788 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1789 { 1790 struct ifaddr *ifa; 1791 1792 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1793 if (ifa->ifa_addr->sa_family != AF_INET6) 1794 continue; 1795 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1796 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1797 ignoreflags) != 0) 1798 continue; 1799 break; 1800 } 1801 } 1802 1803 return ((struct in6_ifaddr *)ifa); 1804 } 1805 1806 1807 /* 1808 * find the internet address corresponding to a given interface and address. 1809 */ 1810 struct in6_ifaddr * 1811 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1812 { 1813 struct ifaddr *ifa; 1814 1815 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1816 if (ifa->ifa_addr->sa_family != AF_INET6) 1817 continue; 1818 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1819 break; 1820 } 1821 1822 return ((struct in6_ifaddr *)ifa); 1823 } 1824 1825 /* 1826 * Convert IP6 address to printable (loggable) representation. Caller 1827 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1828 */ 1829 static char digits[] = "0123456789abcdef"; 1830 char * 1831 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1832 { 1833 int i; 1834 char *cp; 1835 const u_int16_t *a = (const u_int16_t *)addr; 1836 const u_int8_t *d; 1837 int dcolon = 0, zero = 0; 1838 1839 cp = ip6buf; 1840 1841 for (i = 0; i < 8; i++) { 1842 if (dcolon == 1) { 1843 if (*a == 0) { 1844 if (i == 7) 1845 *cp++ = ':'; 1846 a++; 1847 continue; 1848 } else 1849 dcolon = 2; 1850 } 1851 if (*a == 0) { 1852 if (dcolon == 0 && *(a + 1) == 0) { 1853 if (i == 0) 1854 *cp++ = ':'; 1855 *cp++ = ':'; 1856 dcolon = 1; 1857 } else { 1858 *cp++ = '0'; 1859 *cp++ = ':'; 1860 } 1861 a++; 1862 continue; 1863 } 1864 d = (const u_char *)a; 1865 /* Try to eliminate leading zeros in printout like in :0001. */ 1866 zero = 1; 1867 *cp = digits[*d >> 4]; 1868 if (*cp != '0') { 1869 zero = 0; 1870 cp++; 1871 } 1872 *cp = digits[*d++ & 0xf]; 1873 if (zero == 0 || (*cp != '0')) { 1874 zero = 0; 1875 cp++; 1876 } 1877 *cp = digits[*d >> 4]; 1878 if (zero == 0 || (*cp != '0')) { 1879 zero = 0; 1880 cp++; 1881 } 1882 *cp++ = digits[*d & 0xf]; 1883 *cp++ = ':'; 1884 a++; 1885 } 1886 *--cp = '\0'; 1887 return (ip6buf); 1888 } 1889 1890 int 1891 in6_localaddr(struct in6_addr *in6) 1892 { 1893 struct in6_ifaddr *ia; 1894 1895 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1896 return 1; 1897 1898 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1899 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1900 &ia->ia_prefixmask.sin6_addr)) { 1901 return 1; 1902 } 1903 } 1904 1905 return (0); 1906 } 1907 1908 int 1909 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1910 { 1911 struct in6_ifaddr *ia; 1912 1913 for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) { 1914 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1915 &sa6->sin6_addr) && 1916 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1917 return (1); /* true */ 1918 1919 /* XXX: do we still have to go thru the rest of the list? */ 1920 } 1921 1922 return (0); /* false */ 1923 } 1924 1925 /* 1926 * return length of part which dst and src are equal 1927 * hard coding... 1928 */ 1929 int 1930 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1931 { 1932 int match = 0; 1933 u_char *s = (u_char *)src, *d = (u_char *)dst; 1934 u_char *lim = s + 16, r; 1935 1936 while (s < lim) 1937 if ((r = (*d++ ^ *s++)) != 0) { 1938 while (r < 128) { 1939 match++; 1940 r <<= 1; 1941 } 1942 break; 1943 } else 1944 match += 8; 1945 return match; 1946 } 1947 1948 /* XXX: to be scope conscious */ 1949 int 1950 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1951 { 1952 int bytelen, bitlen; 1953 1954 /* sanity check */ 1955 if (0 > len || len > 128) { 1956 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1957 len); 1958 return (0); 1959 } 1960 1961 bytelen = len / 8; 1962 bitlen = len % 8; 1963 1964 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1965 return (0); 1966 if (bitlen != 0 && 1967 p1->s6_addr[bytelen] >> (8 - bitlen) != 1968 p2->s6_addr[bytelen] >> (8 - bitlen)) 1969 return (0); 1970 1971 return (1); 1972 } 1973 1974 void 1975 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1976 { 1977 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1978 int bytelen, bitlen, i; 1979 1980 /* sanity check */ 1981 if (0 > len || len > 128) { 1982 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1983 len); 1984 return; 1985 } 1986 1987 bzero(maskp, sizeof(*maskp)); 1988 bytelen = len / 8; 1989 bitlen = len % 8; 1990 for (i = 0; i < bytelen; i++) 1991 maskp->s6_addr[i] = 0xff; 1992 if (bitlen) 1993 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1994 } 1995 1996 /* 1997 * return the best address out of the same scope. if no address was 1998 * found, return the first valid address from designated IF. 1999 */ 2000 struct in6_ifaddr * 2001 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2002 { 2003 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2004 struct ifaddr *ifa; 2005 struct in6_ifaddr *besta = 0; 2006 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2007 2008 dep[0] = dep[1] = NULL; 2009 2010 /* 2011 * We first look for addresses in the same scope. 2012 * If there is one, return it. 2013 * If two or more, return one which matches the dst longest. 2014 * If none, return one of global addresses assigned other ifs. 2015 */ 2016 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2017 if (ifa->ifa_addr->sa_family != AF_INET6) 2018 continue; 2019 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2020 continue; /* XXX: is there any case to allow anycast? */ 2021 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2022 continue; /* don't use this interface */ 2023 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2024 continue; 2025 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2026 if (V_ip6_use_deprecated) 2027 dep[0] = (struct in6_ifaddr *)ifa; 2028 continue; 2029 } 2030 2031 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2032 /* 2033 * call in6_matchlen() as few as possible 2034 */ 2035 if (besta) { 2036 if (blen == -1) 2037 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2038 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2039 if (tlen > blen) { 2040 blen = tlen; 2041 besta = (struct in6_ifaddr *)ifa; 2042 } 2043 } else 2044 besta = (struct in6_ifaddr *)ifa; 2045 } 2046 } 2047 if (besta) 2048 return (besta); 2049 2050 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2051 if (ifa->ifa_addr->sa_family != AF_INET6) 2052 continue; 2053 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2054 continue; /* XXX: is there any case to allow anycast? */ 2055 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2056 continue; /* don't use this interface */ 2057 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2058 continue; 2059 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2060 if (V_ip6_use_deprecated) 2061 dep[1] = (struct in6_ifaddr *)ifa; 2062 continue; 2063 } 2064 2065 return (struct in6_ifaddr *)ifa; 2066 } 2067 2068 /* use the last-resort values, that are, deprecated addresses */ 2069 if (dep[0]) 2070 return dep[0]; 2071 if (dep[1]) 2072 return dep[1]; 2073 2074 return NULL; 2075 } 2076 2077 /* 2078 * perform DAD when interface becomes IFF_UP. 2079 */ 2080 void 2081 in6_if_up(struct ifnet *ifp) 2082 { 2083 struct ifaddr *ifa; 2084 struct in6_ifaddr *ia; 2085 2086 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2087 if (ifa->ifa_addr->sa_family != AF_INET6) 2088 continue; 2089 ia = (struct in6_ifaddr *)ifa; 2090 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2091 /* 2092 * The TENTATIVE flag was likely set by hand 2093 * beforehand, implicitly indicating the need for DAD. 2094 * We may be able to skip the random delay in this 2095 * case, but we impose delays just in case. 2096 */ 2097 nd6_dad_start(ifa, 2098 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2099 } 2100 } 2101 2102 /* 2103 * special cases, like 6to4, are handled in in6_ifattach 2104 */ 2105 in6_ifattach(ifp, NULL); 2106 } 2107 2108 int 2109 in6if_do_dad(struct ifnet *ifp) 2110 { 2111 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2112 return (0); 2113 2114 switch (ifp->if_type) { 2115 #ifdef IFT_DUMMY 2116 case IFT_DUMMY: 2117 #endif 2118 case IFT_FAITH: 2119 /* 2120 * These interfaces do not have the IFF_LOOPBACK flag, 2121 * but loop packets back. We do not have to do DAD on such 2122 * interfaces. We should even omit it, because loop-backed 2123 * NS would confuse the DAD procedure. 2124 */ 2125 return (0); 2126 default: 2127 /* 2128 * Our DAD routine requires the interface up and running. 2129 * However, some interfaces can be up before the RUNNING 2130 * status. Additionaly, users may try to assign addresses 2131 * before the interface becomes up (or running). 2132 * We simply skip DAD in such a case as a work around. 2133 * XXX: we should rather mark "tentative" on such addresses, 2134 * and do DAD after the interface becomes ready. 2135 */ 2136 if (!((ifp->if_flags & IFF_UP) && 2137 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2138 return (0); 2139 2140 return (1); 2141 } 2142 } 2143 2144 /* 2145 * Calculate max IPv6 MTU through all the interfaces and store it 2146 * to in6_maxmtu. 2147 */ 2148 void 2149 in6_setmaxmtu(void) 2150 { 2151 unsigned long maxmtu = 0; 2152 struct ifnet *ifp; 2153 2154 IFNET_RLOCK(); 2155 for (ifp = TAILQ_FIRST(&V_ifnet); ifp; 2156 ifp = TAILQ_NEXT(ifp, if_list)) { 2157 /* this function can be called during ifnet initialization */ 2158 if (!ifp->if_afdata[AF_INET6]) 2159 continue; 2160 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2161 IN6_LINKMTU(ifp) > maxmtu) 2162 maxmtu = IN6_LINKMTU(ifp); 2163 } 2164 IFNET_RUNLOCK(); 2165 if (maxmtu) /* update only when maxmtu is positive */ 2166 V_in6_maxmtu = maxmtu; 2167 } 2168 2169 /* 2170 * Provide the length of interface identifiers to be used for the link attached 2171 * to the given interface. The length should be defined in "IPv6 over 2172 * xxx-link" document. Note that address architecture might also define 2173 * the length for a particular set of address prefixes, regardless of the 2174 * link type. As clarified in rfc2462bis, those two definitions should be 2175 * consistent, and those really are as of August 2004. 2176 */ 2177 int 2178 in6_if2idlen(struct ifnet *ifp) 2179 { 2180 switch (ifp->if_type) { 2181 case IFT_ETHER: /* RFC2464 */ 2182 #ifdef IFT_PROPVIRTUAL 2183 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2184 #endif 2185 #ifdef IFT_L2VLAN 2186 case IFT_L2VLAN: /* ditto */ 2187 #endif 2188 #ifdef IFT_IEEE80211 2189 case IFT_IEEE80211: /* ditto */ 2190 #endif 2191 #ifdef IFT_MIP 2192 case IFT_MIP: /* ditto */ 2193 #endif 2194 return (64); 2195 case IFT_FDDI: /* RFC2467 */ 2196 return (64); 2197 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2198 return (64); 2199 case IFT_PPP: /* RFC2472 */ 2200 return (64); 2201 case IFT_ARCNET: /* RFC2497 */ 2202 return (64); 2203 case IFT_FRELAY: /* RFC2590 */ 2204 return (64); 2205 case IFT_IEEE1394: /* RFC3146 */ 2206 return (64); 2207 case IFT_GIF: 2208 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2209 case IFT_LOOP: 2210 return (64); /* XXX: is this really correct? */ 2211 default: 2212 /* 2213 * Unknown link type: 2214 * It might be controversial to use the today's common constant 2215 * of 64 for these cases unconditionally. For full compliance, 2216 * we should return an error in this case. On the other hand, 2217 * if we simply miss the standard for the link type or a new 2218 * standard is defined for a new link type, the IFID length 2219 * is very likely to be the common constant. As a compromise, 2220 * we always use the constant, but make an explicit notice 2221 * indicating the "unknown" case. 2222 */ 2223 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2224 return (64); 2225 } 2226 } 2227 2228 void * 2229 in6_domifattach(struct ifnet *ifp) 2230 { 2231 struct in6_ifextra *ext; 2232 2233 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2234 bzero(ext, sizeof(*ext)); 2235 2236 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2237 M_IFADDR, M_WAITOK); 2238 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2239 2240 ext->icmp6_ifstat = 2241 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2242 M_IFADDR, M_WAITOK); 2243 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2244 2245 ext->nd_ifinfo = nd6_ifattach(ifp); 2246 ext->scope6_id = scope6_ifattach(ifp); 2247 return ext; 2248 } 2249 2250 void 2251 in6_domifdetach(struct ifnet *ifp, void *aux) 2252 { 2253 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2254 2255 scope6_ifdetach(ext->scope6_id); 2256 nd6_ifdetach(ext->nd_ifinfo); 2257 free(ext->in6_ifstat, M_IFADDR); 2258 free(ext->icmp6_ifstat, M_IFADDR); 2259 free(ext, M_IFADDR); 2260 } 2261 2262 /* 2263 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2264 * v4 mapped addr or v4 compat addr 2265 */ 2266 void 2267 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2268 { 2269 2270 bzero(sin, sizeof(*sin)); 2271 sin->sin_len = sizeof(struct sockaddr_in); 2272 sin->sin_family = AF_INET; 2273 sin->sin_port = sin6->sin6_port; 2274 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2275 } 2276 2277 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2278 void 2279 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2280 { 2281 bzero(sin6, sizeof(*sin6)); 2282 sin6->sin6_len = sizeof(struct sockaddr_in6); 2283 sin6->sin6_family = AF_INET6; 2284 sin6->sin6_port = sin->sin_port; 2285 sin6->sin6_addr.s6_addr32[0] = 0; 2286 sin6->sin6_addr.s6_addr32[1] = 0; 2287 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2288 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2289 } 2290 2291 /* Convert sockaddr_in6 into sockaddr_in. */ 2292 void 2293 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2294 { 2295 struct sockaddr_in *sin_p; 2296 struct sockaddr_in6 sin6; 2297 2298 /* 2299 * Save original sockaddr_in6 addr and convert it 2300 * to sockaddr_in. 2301 */ 2302 sin6 = *(struct sockaddr_in6 *)nam; 2303 sin_p = (struct sockaddr_in *)nam; 2304 in6_sin6_2_sin(sin_p, &sin6); 2305 } 2306 2307 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2308 void 2309 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2310 { 2311 struct sockaddr_in *sin_p; 2312 struct sockaddr_in6 *sin6_p; 2313 2314 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2315 M_WAITOK); 2316 sin_p = (struct sockaddr_in *)*nam; 2317 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2318 FREE(*nam, M_SONAME); 2319 *nam = (struct sockaddr *)sin6_p; 2320 } 2321