1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 69 #include <sys/param.h> 70 #include <sys/errno.h> 71 #include <sys/malloc.h> 72 #include <sys/socket.h> 73 #include <sys/socketvar.h> 74 #include <sys/sockio.h> 75 #include <sys/systm.h> 76 #include <sys/priv.h> 77 #include <sys/proc.h> 78 #include <sys/time.h> 79 #include <sys/kernel.h> 80 #include <sys/syslog.h> 81 82 #include <net/if.h> 83 #include <net/if_types.h> 84 #include <net/route.h> 85 #include <net/if_dl.h> 86 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet/if_ether.h> 90 #include <netinet/in_systm.h> 91 #include <netinet/ip.h> 92 #include <netinet/in_pcb.h> 93 94 #include <netinet/ip6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/mld6_var.h> 98 #include <netinet6/ip6_mroute.h> 99 #include <netinet6/in6_ifattach.h> 100 #include <netinet6/scope6_var.h> 101 #include <netinet6/in6_pcb.h> 102 103 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address"); 104 105 /* 106 * Definitions of some costant IP6 addresses. 107 */ 108 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 109 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 110 const struct in6_addr in6addr_nodelocal_allnodes = 111 IN6ADDR_NODELOCAL_ALLNODES_INIT; 112 const struct in6_addr in6addr_linklocal_allnodes = 113 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 114 const struct in6_addr in6addr_linklocal_allrouters = 115 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 116 117 const struct in6_addr in6mask0 = IN6MASK0; 118 const struct in6_addr in6mask32 = IN6MASK32; 119 const struct in6_addr in6mask64 = IN6MASK64; 120 const struct in6_addr in6mask96 = IN6MASK96; 121 const struct in6_addr in6mask128 = IN6MASK128; 122 123 const struct sockaddr_in6 sa6_any = 124 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 125 126 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 127 struct ifnet *, struct thread *)); 128 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 129 struct sockaddr_in6 *, int)); 130 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 131 132 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 133 int (*faithprefix_p)(struct in6_addr *); 134 135 /* 136 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 137 * This routine does actual work. 138 */ 139 static void 140 in6_ifloop_request(int cmd, struct ifaddr *ifa) 141 { 142 struct sockaddr_in6 all1_sa; 143 struct rtentry *nrt = NULL; 144 int e; 145 char ip6buf[INET6_ADDRSTRLEN]; 146 147 bzero(&all1_sa, sizeof(all1_sa)); 148 all1_sa.sin6_family = AF_INET6; 149 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 150 all1_sa.sin6_addr = in6mask128; 151 152 /* 153 * We specify the address itself as the gateway, and set the 154 * RTF_LLINFO flag, so that the corresponding host route would have 155 * the flag, and thus applications that assume traditional behavior 156 * would be happy. Note that we assume the caller of the function 157 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 158 * which changes the outgoing interface to the loopback interface. 159 */ 160 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 161 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 162 if (e != 0) { 163 /* XXX need more descriptive message */ 164 165 log(LOG_ERR, "in6_ifloop_request: " 166 "%s operation failed for %s (errno=%d)\n", 167 cmd == RTM_ADD ? "ADD" : "DELETE", 168 ip6_sprintf(ip6buf, 169 &((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); 170 } 171 172 /* 173 * Report the addition/removal of the address to the routing socket. 174 * XXX: since we called rtinit for a p2p interface with a destination, 175 * we end up reporting twice in such a case. Should we rather 176 * omit the second report? 177 */ 178 if (nrt) { 179 RT_LOCK(nrt); 180 /* 181 * Make sure rt_ifa be equal to IFA, the second argument of 182 * the function. We need this because when we refer to 183 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa 184 * points to the address instead of the loopback address. 185 */ 186 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { 187 IFAFREE(nrt->rt_ifa); 188 IFAREF(ifa); 189 nrt->rt_ifa = ifa; 190 } 191 192 rt_newaddrmsg(cmd, ifa, e, nrt); 193 if (cmd == RTM_DELETE) 194 RTFREE_LOCKED(nrt); 195 else { 196 /* the cmd must be RTM_ADD here */ 197 RT_REMREF(nrt); 198 RT_UNLOCK(nrt); 199 } 200 } 201 } 202 203 /* 204 * Add ownaddr as loopback rtentry. We previously add the route only if 205 * necessary (ex. on a p2p link). However, since we now manage addresses 206 * separately from prefixes, we should always add the route. We can't 207 * rely on the cloning mechanism from the corresponding interface route 208 * any more. 209 */ 210 void 211 in6_ifaddloop(struct ifaddr *ifa) 212 { 213 struct rtentry *rt; 214 int need_loop; 215 216 /* If there is no loopback entry, allocate one. */ 217 rt = rtalloc1(ifa->ifa_addr, 0, 0); 218 need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 219 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); 220 if (rt) 221 RTFREE_LOCKED(rt); 222 if (need_loop) 223 in6_ifloop_request(RTM_ADD, ifa); 224 } 225 226 /* 227 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 228 * if it exists. 229 */ 230 void 231 in6_ifremloop(struct ifaddr *ifa) 232 { 233 struct in6_ifaddr *ia; 234 struct rtentry *rt; 235 int ia_count = 0; 236 237 /* 238 * Some of BSD variants do not remove cloned routes 239 * from an interface direct route, when removing the direct route 240 * (see comments in net/net_osdep.h). Even for variants that do remove 241 * cloned routes, they could fail to remove the cloned routes when 242 * we handle multple addresses that share a common prefix. 243 * So, we should remove the route corresponding to the deleted address. 244 */ 245 246 /* 247 * Delete the entry only if exact one ifa exists. More than one ifa 248 * can exist if we assign a same single address to multiple 249 * (probably p2p) interfaces. 250 * XXX: we should avoid such a configuration in IPv6... 251 */ 252 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 253 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 254 ia_count++; 255 if (ia_count > 1) 256 break; 257 } 258 } 259 260 if (ia_count == 1) { 261 /* 262 * Before deleting, check if a corresponding loopbacked host 263 * route surely exists. With this check, we can avoid to 264 * delete an interface direct route whose destination is same 265 * as the address being removed. This can happen when removing 266 * a subnet-router anycast address on an interface attahced 267 * to a shared medium. 268 */ 269 rt = rtalloc1(ifa->ifa_addr, 0, 0); 270 if (rt != NULL) { 271 if ((rt->rt_flags & RTF_HOST) != 0 && 272 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 273 RTFREE_LOCKED(rt); 274 in6_ifloop_request(RTM_DELETE, ifa); 275 } else 276 RT_UNLOCK(rt); 277 } 278 } 279 } 280 281 int 282 in6_mask2len(struct in6_addr *mask, u_char *lim0) 283 { 284 int x = 0, y; 285 u_char *lim = lim0, *p; 286 287 /* ignore the scope_id part */ 288 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 289 lim = (u_char *)mask + sizeof(*mask); 290 for (p = (u_char *)mask; p < lim; x++, p++) { 291 if (*p != 0xff) 292 break; 293 } 294 y = 0; 295 if (p < lim) { 296 for (y = 0; y < 8; y++) { 297 if ((*p & (0x80 >> y)) == 0) 298 break; 299 } 300 } 301 302 /* 303 * when the limit pointer is given, do a stricter check on the 304 * remaining bits. 305 */ 306 if (p < lim) { 307 if (y != 0 && (*p & (0x00ff >> y)) != 0) 308 return (-1); 309 for (p = p + 1; p < lim; p++) 310 if (*p != 0) 311 return (-1); 312 } 313 314 return x * 8 + y; 315 } 316 317 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 318 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 319 320 int 321 in6_control(struct socket *so, u_long cmd, caddr_t data, 322 struct ifnet *ifp, struct thread *td) 323 { 324 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 325 struct in6_ifaddr *ia = NULL; 326 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 327 struct sockaddr_in6 *sa6; 328 int error; 329 330 switch (cmd) { 331 case SIOCGETSGCNT_IN6: 332 case SIOCGETMIFCNT_IN6: 333 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 334 } 335 336 switch(cmd) { 337 case SIOCAADDRCTL_POLICY: 338 case SIOCDADDRCTL_POLICY: 339 if (td != NULL) { 340 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 341 if (error) 342 return (error); 343 } 344 return (in6_src_ioctl(cmd, data)); 345 } 346 347 if (ifp == NULL) 348 return (EOPNOTSUPP); 349 350 switch (cmd) { 351 case SIOCSNDFLUSH_IN6: 352 case SIOCSPFXFLUSH_IN6: 353 case SIOCSRTRFLUSH_IN6: 354 case SIOCSDEFIFACE_IN6: 355 case SIOCSIFINFO_FLAGS: 356 if (td != NULL) { 357 error = priv_check(td, PRIV_NETINET_ND6); 358 if (error) 359 return (error); 360 } 361 /* FALLTHROUGH */ 362 case OSIOCGIFINFO_IN6: 363 case SIOCGIFINFO_IN6: 364 case SIOCSIFINFO_IN6: 365 case SIOCGDRLST_IN6: 366 case SIOCGPRLST_IN6: 367 case SIOCGNBRINFO_IN6: 368 case SIOCGDEFIFACE_IN6: 369 return (nd6_ioctl(cmd, data, ifp)); 370 } 371 372 switch (cmd) { 373 case SIOCSIFPREFIX_IN6: 374 case SIOCDIFPREFIX_IN6: 375 case SIOCAIFPREFIX_IN6: 376 case SIOCCIFPREFIX_IN6: 377 case SIOCSGIFPREFIX_IN6: 378 case SIOCGIFPREFIX_IN6: 379 log(LOG_NOTICE, 380 "prefix ioctls are now invalidated. " 381 "please use ifconfig.\n"); 382 return (EOPNOTSUPP); 383 } 384 385 switch (cmd) { 386 case SIOCSSCOPE6: 387 if (td != NULL) { 388 error = priv_check(td, PRIV_NETINET_SCOPE6); 389 if (error) 390 return (error); 391 } 392 return (scope6_set(ifp, 393 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 394 case SIOCGSCOPE6: 395 return (scope6_get(ifp, 396 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); 397 case SIOCGSCOPE6DEF: 398 return (scope6_get_default((struct scope6_id *) 399 ifr->ifr_ifru.ifru_scope_id)); 400 } 401 402 switch (cmd) { 403 case SIOCALIFADDR: 404 case SIOCDLIFADDR: 405 /* 406 * XXXRW: Is this checked at another layer? What priv to use 407 * here? 408 */ 409 if (td != NULL) { 410 error = suser(td); 411 if (error) 412 return (error); 413 } 414 /* FALLTHROUGH */ 415 case SIOCGLIFADDR: 416 return in6_lifaddr_ioctl(so, cmd, data, ifp, td); 417 } 418 419 /* 420 * Find address for this interface, if it exists. 421 * 422 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 423 * only, and used the first interface address as the target of other 424 * operations (without checking ifra_addr). This was because netinet 425 * code/API assumed at most 1 interface address per interface. 426 * Since IPv6 allows a node to assign multiple addresses 427 * on a single interface, we almost always look and check the 428 * presence of ifra_addr, and reject invalid ones here. 429 * It also decreases duplicated code among SIOC*_IN6 operations. 430 */ 431 switch (cmd) { 432 case SIOCAIFADDR_IN6: 433 case SIOCSIFPHYADDR_IN6: 434 sa6 = &ifra->ifra_addr; 435 break; 436 case SIOCSIFADDR_IN6: 437 case SIOCGIFADDR_IN6: 438 case SIOCSIFDSTADDR_IN6: 439 case SIOCSIFNETMASK_IN6: 440 case SIOCGIFDSTADDR_IN6: 441 case SIOCGIFNETMASK_IN6: 442 case SIOCDIFADDR_IN6: 443 case SIOCGIFPSRCADDR_IN6: 444 case SIOCGIFPDSTADDR_IN6: 445 case SIOCGIFAFLAG_IN6: 446 case SIOCSNDFLUSH_IN6: 447 case SIOCSPFXFLUSH_IN6: 448 case SIOCSRTRFLUSH_IN6: 449 case SIOCGIFALIFETIME_IN6: 450 case SIOCSIFALIFETIME_IN6: 451 case SIOCGIFSTAT_IN6: 452 case SIOCGIFSTAT_ICMP6: 453 sa6 = &ifr->ifr_addr; 454 break; 455 default: 456 sa6 = NULL; 457 break; 458 } 459 if (sa6 && sa6->sin6_family == AF_INET6) { 460 int error = 0; 461 462 if (sa6->sin6_scope_id != 0) 463 error = sa6_embedscope(sa6, 0); 464 else 465 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 466 if (error != 0) 467 return (error); 468 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 469 } else 470 ia = NULL; 471 472 switch (cmd) { 473 case SIOCSIFADDR_IN6: 474 case SIOCSIFDSTADDR_IN6: 475 case SIOCSIFNETMASK_IN6: 476 /* 477 * Since IPv6 allows a node to assign multiple addresses 478 * on a single interface, SIOCSIFxxx ioctls are deprecated. 479 */ 480 /* we decided to obsolete this command (20000704) */ 481 return (EINVAL); 482 483 case SIOCDIFADDR_IN6: 484 /* 485 * for IPv4, we look for existing in_ifaddr here to allow 486 * "ifconfig if0 delete" to remove the first IPv4 address on 487 * the interface. For IPv6, as the spec allows multiple 488 * interface address from the day one, we consider "remove the 489 * first one" semantics to be not preferable. 490 */ 491 if (ia == NULL) 492 return (EADDRNOTAVAIL); 493 /* FALLTHROUGH */ 494 case SIOCAIFADDR_IN6: 495 /* 496 * We always require users to specify a valid IPv6 address for 497 * the corresponding operation. 498 */ 499 if (ifra->ifra_addr.sin6_family != AF_INET6 || 500 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 501 return (EAFNOSUPPORT); 502 503 /* 504 * XXXRW: Is this checked at another layer? What priv to use 505 * here? 506 */ 507 if (td != NULL) { 508 error = suser(td); 509 if (error) 510 return (error); 511 } 512 513 break; 514 515 case SIOCGIFADDR_IN6: 516 /* This interface is basically deprecated. use SIOCGIFCONF. */ 517 /* FALLTHROUGH */ 518 case SIOCGIFAFLAG_IN6: 519 case SIOCGIFNETMASK_IN6: 520 case SIOCGIFDSTADDR_IN6: 521 case SIOCGIFALIFETIME_IN6: 522 /* must think again about its semantics */ 523 if (ia == NULL) 524 return (EADDRNOTAVAIL); 525 break; 526 case SIOCSIFALIFETIME_IN6: 527 { 528 struct in6_addrlifetime *lt; 529 530 if (td != NULL) { 531 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 532 if (error) 533 return (error); 534 } 535 if (ia == NULL) 536 return (EADDRNOTAVAIL); 537 /* sanity for overflow - beware unsigned */ 538 lt = &ifr->ifr_ifru.ifru_lifetime; 539 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 540 lt->ia6t_vltime + time_second < time_second) { 541 return EINVAL; 542 } 543 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 544 lt->ia6t_pltime + time_second < time_second) { 545 return EINVAL; 546 } 547 break; 548 } 549 } 550 551 switch (cmd) { 552 553 case SIOCGIFADDR_IN6: 554 ifr->ifr_addr = ia->ia_addr; 555 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 556 return (error); 557 break; 558 559 case SIOCGIFDSTADDR_IN6: 560 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 561 return (EINVAL); 562 /* 563 * XXX: should we check if ifa_dstaddr is NULL and return 564 * an error? 565 */ 566 ifr->ifr_dstaddr = ia->ia_dstaddr; 567 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 568 return (error); 569 break; 570 571 case SIOCGIFNETMASK_IN6: 572 ifr->ifr_addr = ia->ia_prefixmask; 573 break; 574 575 case SIOCGIFAFLAG_IN6: 576 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 577 break; 578 579 case SIOCGIFSTAT_IN6: 580 if (ifp == NULL) 581 return EINVAL; 582 bzero(&ifr->ifr_ifru.ifru_stat, 583 sizeof(ifr->ifr_ifru.ifru_stat)); 584 ifr->ifr_ifru.ifru_stat = 585 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 586 break; 587 588 case SIOCGIFSTAT_ICMP6: 589 if (ifp == NULL) 590 return EINVAL; 591 bzero(&ifr->ifr_ifru.ifru_icmp6stat, 592 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 593 ifr->ifr_ifru.ifru_icmp6stat = 594 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 595 break; 596 597 case SIOCGIFALIFETIME_IN6: 598 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 599 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 600 time_t maxexpire; 601 struct in6_addrlifetime *retlt = 602 &ifr->ifr_ifru.ifru_lifetime; 603 604 /* 605 * XXX: adjust expiration time assuming time_t is 606 * signed. 607 */ 608 maxexpire = (-1) & 609 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 610 if (ia->ia6_lifetime.ia6t_vltime < 611 maxexpire - ia->ia6_updatetime) { 612 retlt->ia6t_expire = ia->ia6_updatetime + 613 ia->ia6_lifetime.ia6t_vltime; 614 } else 615 retlt->ia6t_expire = maxexpire; 616 } 617 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 618 time_t maxexpire; 619 struct in6_addrlifetime *retlt = 620 &ifr->ifr_ifru.ifru_lifetime; 621 622 /* 623 * XXX: adjust expiration time assuming time_t is 624 * signed. 625 */ 626 maxexpire = (-1) & 627 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 628 if (ia->ia6_lifetime.ia6t_pltime < 629 maxexpire - ia->ia6_updatetime) { 630 retlt->ia6t_preferred = ia->ia6_updatetime + 631 ia->ia6_lifetime.ia6t_pltime; 632 } else 633 retlt->ia6t_preferred = maxexpire; 634 } 635 break; 636 637 case SIOCSIFALIFETIME_IN6: 638 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 639 /* for sanity */ 640 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 641 ia->ia6_lifetime.ia6t_expire = 642 time_second + ia->ia6_lifetime.ia6t_vltime; 643 } else 644 ia->ia6_lifetime.ia6t_expire = 0; 645 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 646 ia->ia6_lifetime.ia6t_preferred = 647 time_second + ia->ia6_lifetime.ia6t_pltime; 648 } else 649 ia->ia6_lifetime.ia6t_preferred = 0; 650 break; 651 652 case SIOCAIFADDR_IN6: 653 { 654 int i, error = 0; 655 struct nd_prefixctl pr0; 656 struct nd_prefix *pr; 657 658 /* 659 * first, make or update the interface address structure, 660 * and link it to the list. 661 */ 662 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 663 return (error); 664 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 665 == NULL) { 666 /* 667 * this can happen when the user specify the 0 valid 668 * lifetime. 669 */ 670 break; 671 } 672 673 /* 674 * then, make the prefix on-link on the interface. 675 * XXX: we'd rather create the prefix before the address, but 676 * we need at least one address to install the corresponding 677 * interface route, so we configure the address first. 678 */ 679 680 /* 681 * convert mask to prefix length (prefixmask has already 682 * been validated in in6_update_ifa(). 683 */ 684 bzero(&pr0, sizeof(pr0)); 685 pr0.ndpr_ifp = ifp; 686 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 687 NULL); 688 if (pr0.ndpr_plen == 128) { 689 break; /* we don't need to install a host route. */ 690 } 691 pr0.ndpr_prefix = ifra->ifra_addr; 692 /* apply the mask for safety. */ 693 for (i = 0; i < 4; i++) { 694 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 695 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 696 } 697 /* 698 * XXX: since we don't have an API to set prefix (not address) 699 * lifetimes, we just use the same lifetimes as addresses. 700 * The (temporarily) installed lifetimes can be overridden by 701 * later advertised RAs (when accept_rtadv is non 0), which is 702 * an intended behavior. 703 */ 704 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 705 pr0.ndpr_raf_auto = 706 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 707 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 708 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 709 710 /* add the prefix if not yet. */ 711 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 712 /* 713 * nd6_prelist_add will install the corresponding 714 * interface route. 715 */ 716 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 717 return (error); 718 if (pr == NULL) { 719 log(LOG_ERR, "nd6_prelist_add succeeded but " 720 "no prefix\n"); 721 return (EINVAL); /* XXX panic here? */ 722 } 723 } 724 725 /* relate the address to the prefix */ 726 if (ia->ia6_ndpr == NULL) { 727 ia->ia6_ndpr = pr; 728 pr->ndpr_refcnt++; 729 730 /* 731 * If this is the first autoconf address from the 732 * prefix, create a temporary address as well 733 * (when required). 734 */ 735 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 736 ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 737 int e; 738 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 739 log(LOG_NOTICE, "in6_control: failed " 740 "to create a temporary address, " 741 "errno=%d\n", e); 742 } 743 } 744 } 745 746 /* 747 * this might affect the status of autoconfigured addresses, 748 * that is, this address might make other addresses detached. 749 */ 750 pfxlist_onlink_check(); 751 if (error == 0 && ia) 752 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 753 break; 754 } 755 756 case SIOCDIFADDR_IN6: 757 { 758 struct nd_prefix *pr; 759 760 /* 761 * If the address being deleted is the only one that owns 762 * the corresponding prefix, expire the prefix as well. 763 * XXX: theoretically, we don't have to worry about such 764 * relationship, since we separate the address management 765 * and the prefix management. We do this, however, to provide 766 * as much backward compatibility as possible in terms of 767 * the ioctl operation. 768 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 769 */ 770 pr = ia->ia6_ndpr; 771 in6_purgeaddr(&ia->ia_ifa); 772 if (pr && pr->ndpr_refcnt == 0) 773 prelist_remove(pr); 774 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 775 break; 776 } 777 778 default: 779 if (ifp == NULL || ifp->if_ioctl == 0) 780 return (EOPNOTSUPP); 781 return ((*ifp->if_ioctl)(ifp, cmd, data)); 782 } 783 784 return (0); 785 } 786 787 /* 788 * Update parameters of an IPv6 interface address. 789 * If necessary, a new entry is created and linked into address chains. 790 * This function is separated from in6_control(). 791 * XXX: should this be performed under splnet()? 792 */ 793 int 794 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 795 struct in6_ifaddr *ia, int flags) 796 { 797 int error = 0, hostIsNew = 0, plen = -1; 798 struct in6_ifaddr *oia; 799 struct sockaddr_in6 dst6; 800 struct in6_addrlifetime *lt; 801 struct in6_multi_mship *imm; 802 struct in6_multi *in6m_sol; 803 struct rtentry *rt; 804 int delay; 805 char ip6buf[INET6_ADDRSTRLEN]; 806 807 /* Validate parameters */ 808 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 809 return (EINVAL); 810 811 /* 812 * The destination address for a p2p link must have a family 813 * of AF_UNSPEC or AF_INET6. 814 */ 815 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 816 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 817 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 818 return (EAFNOSUPPORT); 819 /* 820 * validate ifra_prefixmask. don't check sin6_family, netmask 821 * does not carry fields other than sin6_len. 822 */ 823 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 824 return (EINVAL); 825 /* 826 * Because the IPv6 address architecture is classless, we require 827 * users to specify a (non 0) prefix length (mask) for a new address. 828 * We also require the prefix (when specified) mask is valid, and thus 829 * reject a non-consecutive mask. 830 */ 831 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 832 return (EINVAL); 833 if (ifra->ifra_prefixmask.sin6_len != 0) { 834 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 835 (u_char *)&ifra->ifra_prefixmask + 836 ifra->ifra_prefixmask.sin6_len); 837 if (plen <= 0) 838 return (EINVAL); 839 } else { 840 /* 841 * In this case, ia must not be NULL. We just use its prefix 842 * length. 843 */ 844 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 845 } 846 /* 847 * If the destination address on a p2p interface is specified, 848 * and the address is a scoped one, validate/set the scope 849 * zone identifier. 850 */ 851 dst6 = ifra->ifra_dstaddr; 852 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 853 (dst6.sin6_family == AF_INET6)) { 854 struct in6_addr in6_tmp; 855 u_int32_t zoneid; 856 857 in6_tmp = dst6.sin6_addr; 858 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 859 return (EINVAL); /* XXX: should be impossible */ 860 861 if (dst6.sin6_scope_id != 0) { 862 if (dst6.sin6_scope_id != zoneid) 863 return (EINVAL); 864 } else /* user omit to specify the ID. */ 865 dst6.sin6_scope_id = zoneid; 866 867 /* convert into the internal form */ 868 if (sa6_embedscope(&dst6, 0)) 869 return (EINVAL); /* XXX: should be impossible */ 870 } 871 /* 872 * The destination address can be specified only for a p2p or a 873 * loopback interface. If specified, the corresponding prefix length 874 * must be 128. 875 */ 876 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 877 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 878 /* XXX: noisy message */ 879 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 880 "be specified for a p2p or a loopback IF only\n")); 881 return (EINVAL); 882 } 883 if (plen != 128) { 884 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 885 "be 128 when dstaddr is specified\n")); 886 return (EINVAL); 887 } 888 } 889 /* lifetime consistency check */ 890 lt = &ifra->ifra_lifetime; 891 if (lt->ia6t_pltime > lt->ia6t_vltime) 892 return (EINVAL); 893 if (lt->ia6t_vltime == 0) { 894 /* 895 * the following log might be noisy, but this is a typical 896 * configuration mistake or a tool's bug. 897 */ 898 nd6log((LOG_INFO, 899 "in6_update_ifa: valid lifetime is 0 for %s\n", 900 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 901 902 if (ia == NULL) 903 return (0); /* there's nothing to do */ 904 } 905 906 /* 907 * If this is a new address, allocate a new ifaddr and link it 908 * into chains. 909 */ 910 if (ia == NULL) { 911 hostIsNew = 1; 912 /* 913 * When in6_update_ifa() is called in a process of a received 914 * RA, it is called under an interrupt context. So, we should 915 * call malloc with M_NOWAIT. 916 */ 917 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 918 M_NOWAIT); 919 if (ia == NULL) 920 return (ENOBUFS); 921 bzero((caddr_t)ia, sizeof(*ia)); 922 LIST_INIT(&ia->ia6_memberships); 923 /* Initialize the address and masks, and put time stamp */ 924 IFA_LOCK_INIT(&ia->ia_ifa); 925 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 926 ia->ia_addr.sin6_family = AF_INET6; 927 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 928 ia->ia6_createtime = time_second; 929 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 930 /* 931 * XXX: some functions expect that ifa_dstaddr is not 932 * NULL for p2p interfaces. 933 */ 934 ia->ia_ifa.ifa_dstaddr = 935 (struct sockaddr *)&ia->ia_dstaddr; 936 } else { 937 ia->ia_ifa.ifa_dstaddr = NULL; 938 } 939 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 940 941 ia->ia_ifp = ifp; 942 if ((oia = in6_ifaddr) != NULL) { 943 for ( ; oia->ia_next; oia = oia->ia_next) 944 continue; 945 oia->ia_next = ia; 946 } else 947 in6_ifaddr = ia; 948 949 ia->ia_ifa.ifa_refcnt = 1; 950 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 951 } 952 953 /* update timestamp */ 954 ia->ia6_updatetime = time_second; 955 956 /* set prefix mask */ 957 if (ifra->ifra_prefixmask.sin6_len) { 958 /* 959 * We prohibit changing the prefix length of an existing 960 * address, because 961 * + such an operation should be rare in IPv6, and 962 * + the operation would confuse prefix management. 963 */ 964 if (ia->ia_prefixmask.sin6_len && 965 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 966 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 967 " existing (%s) address should not be changed\n", 968 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 969 error = EINVAL; 970 goto unlink; 971 } 972 ia->ia_prefixmask = ifra->ifra_prefixmask; 973 } 974 975 /* 976 * If a new destination address is specified, scrub the old one and 977 * install the new destination. Note that the interface must be 978 * p2p or loopback (see the check above.) 979 */ 980 if (dst6.sin6_family == AF_INET6 && 981 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 982 int e; 983 984 if ((ia->ia_flags & IFA_ROUTE) != 0 && 985 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 986 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 987 "a route to the old destination: %s\n", 988 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 989 /* proceed anyway... */ 990 } else 991 ia->ia_flags &= ~IFA_ROUTE; 992 ia->ia_dstaddr = dst6; 993 } 994 995 /* 996 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 997 * to see if the address is deprecated or invalidated, but initialize 998 * these members for applications. 999 */ 1000 ia->ia6_lifetime = ifra->ifra_lifetime; 1001 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1002 ia->ia6_lifetime.ia6t_expire = 1003 time_second + ia->ia6_lifetime.ia6t_vltime; 1004 } else 1005 ia->ia6_lifetime.ia6t_expire = 0; 1006 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1007 ia->ia6_lifetime.ia6t_preferred = 1008 time_second + ia->ia6_lifetime.ia6t_pltime; 1009 } else 1010 ia->ia6_lifetime.ia6t_preferred = 0; 1011 1012 /* reset the interface and routing table appropriately. */ 1013 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1014 goto unlink; 1015 1016 /* 1017 * configure address flags. 1018 */ 1019 ia->ia6_flags = ifra->ifra_flags; 1020 /* 1021 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1022 * userland, make it deprecated. 1023 */ 1024 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1025 ia->ia6_lifetime.ia6t_pltime = 0; 1026 ia->ia6_lifetime.ia6t_preferred = time_second; 1027 } 1028 /* 1029 * Make the address tentative before joining multicast addresses, 1030 * so that corresponding MLD responses would not have a tentative 1031 * source address. 1032 */ 1033 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1034 if (hostIsNew && in6if_do_dad(ifp)) 1035 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1036 1037 /* 1038 * We are done if we have simply modified an existing address. 1039 */ 1040 if (!hostIsNew) 1041 return (error); 1042 1043 /* 1044 * Beyond this point, we should call in6_purgeaddr upon an error, 1045 * not just go to unlink. 1046 */ 1047 1048 /* Join necessary multicast groups */ 1049 in6m_sol = NULL; 1050 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1051 struct sockaddr_in6 mltaddr, mltmask; 1052 struct in6_addr llsol; 1053 1054 /* join solicited multicast addr for new host id */ 1055 bzero(&llsol, sizeof(struct in6_addr)); 1056 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1057 llsol.s6_addr32[1] = 0; 1058 llsol.s6_addr32[2] = htonl(1); 1059 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1060 llsol.s6_addr8[12] = 0xff; 1061 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1062 /* XXX: should not happen */ 1063 log(LOG_ERR, "in6_update_ifa: " 1064 "in6_setscope failed\n"); 1065 goto cleanup; 1066 } 1067 delay = 0; 1068 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1069 /* 1070 * We need a random delay for DAD on the address 1071 * being configured. It also means delaying 1072 * transmission of the corresponding MLD report to 1073 * avoid report collision. 1074 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1075 */ 1076 delay = arc4random() % 1077 (MAX_RTR_SOLICITATION_DELAY * hz); 1078 } 1079 imm = in6_joingroup(ifp, &llsol, &error, delay); 1080 if (imm == NULL) { 1081 nd6log((LOG_WARNING, 1082 "in6_update_ifa: addmulti failed for " 1083 "%s on %s (errno=%d)\n", 1084 ip6_sprintf(ip6buf, &llsol), if_name(ifp), 1085 error)); 1086 in6_purgeaddr((struct ifaddr *)ia); 1087 return (error); 1088 } 1089 LIST_INSERT_HEAD(&ia->ia6_memberships, 1090 imm, i6mm_chain); 1091 in6m_sol = imm->i6mm_maddr; 1092 1093 bzero(&mltmask, sizeof(mltmask)); 1094 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1095 mltmask.sin6_family = AF_INET6; 1096 mltmask.sin6_addr = in6mask32; 1097 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1098 1099 /* 1100 * join link-local all-nodes address 1101 */ 1102 bzero(&mltaddr, sizeof(mltaddr)); 1103 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1104 mltaddr.sin6_family = AF_INET6; 1105 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1106 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 1107 0) 1108 goto cleanup; /* XXX: should not fail */ 1109 1110 /* 1111 * XXX: do we really need this automatic routes? 1112 * We should probably reconsider this stuff. Most applications 1113 * actually do not need the routes, since they usually specify 1114 * the outgoing interface. 1115 */ 1116 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1117 if (rt) { 1118 /* XXX: only works in !SCOPEDROUTING case. */ 1119 if (memcmp(&mltaddr.sin6_addr, 1120 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1121 MLTMASK_LEN)) { 1122 RTFREE_LOCKED(rt); 1123 rt = NULL; 1124 } 1125 } 1126 if (!rt) { 1127 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1128 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1129 (struct sockaddr *)&ia->ia_addr, 1130 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1131 (struct rtentry **)0); 1132 if (error) 1133 goto cleanup; 1134 } else { 1135 RTFREE_LOCKED(rt); 1136 } 1137 1138 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1139 if (!imm) { 1140 nd6log((LOG_WARNING, 1141 "in6_update_ifa: addmulti failed for " 1142 "%s on %s (errno=%d)\n", 1143 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1144 if_name(ifp), error)); 1145 goto cleanup; 1146 } 1147 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1148 1149 /* 1150 * join node information group address 1151 */ 1152 #define hostnamelen strlen(hostname) 1153 delay = 0; 1154 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1155 /* 1156 * The spec doesn't say anything about delay for this 1157 * group, but the same logic should apply. 1158 */ 1159 delay = arc4random() % 1160 (MAX_RTR_SOLICITATION_DELAY * hz); 1161 } 1162 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1163 == 0) { 1164 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1165 delay); /* XXX jinmei */ 1166 if (!imm) { 1167 nd6log((LOG_WARNING, "in6_update_ifa: " 1168 "addmulti failed for %s on %s " 1169 "(errno=%d)\n", 1170 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1171 if_name(ifp), error)); 1172 /* XXX not very fatal, go on... */ 1173 } else { 1174 LIST_INSERT_HEAD(&ia->ia6_memberships, 1175 imm, i6mm_chain); 1176 } 1177 } 1178 #undef hostnamelen 1179 1180 /* 1181 * join interface-local all-nodes address. 1182 * (ff01::1%ifN, and ff01::%ifN/32) 1183 */ 1184 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1185 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) 1186 != 0) 1187 goto cleanup; /* XXX: should not fail */ 1188 /* XXX: again, do we really need the route? */ 1189 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL); 1190 if (rt) { 1191 if (memcmp(&mltaddr.sin6_addr, 1192 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1193 MLTMASK_LEN)) { 1194 RTFREE_LOCKED(rt); 1195 rt = NULL; 1196 } 1197 } 1198 if (!rt) { 1199 error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, 1200 (struct sockaddr *)&ia->ia_addr, 1201 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, 1202 (struct rtentry **)0); 1203 if (error) 1204 goto cleanup; 1205 } else 1206 RTFREE_LOCKED(rt); 1207 1208 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1209 if (!imm) { 1210 nd6log((LOG_WARNING, "in6_update_ifa: " 1211 "addmulti failed for %s on %s " 1212 "(errno=%d)\n", 1213 ip6_sprintf(ip6buf, &mltaddr.sin6_addr), 1214 if_name(ifp), error)); 1215 goto cleanup; 1216 } 1217 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1218 #undef MLTMASK_LEN 1219 } 1220 1221 /* 1222 * Perform DAD, if needed. 1223 * XXX It may be of use, if we can administratively 1224 * disable DAD. 1225 */ 1226 if (hostIsNew && in6if_do_dad(ifp) && 1227 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1228 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1229 { 1230 int mindelay, maxdelay; 1231 1232 delay = 0; 1233 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1234 /* 1235 * We need to impose a delay before sending an NS 1236 * for DAD. Check if we also needed a delay for the 1237 * corresponding MLD message. If we did, the delay 1238 * should be larger than the MLD delay (this could be 1239 * relaxed a bit, but this simple logic is at least 1240 * safe). 1241 */ 1242 mindelay = 0; 1243 if (in6m_sol != NULL && 1244 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1245 mindelay = in6m_sol->in6m_timer; 1246 } 1247 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1248 if (maxdelay - mindelay == 0) 1249 delay = 0; 1250 else { 1251 delay = 1252 (arc4random() % (maxdelay - mindelay)) + 1253 mindelay; 1254 } 1255 } 1256 nd6_dad_start((struct ifaddr *)ia, delay); 1257 } 1258 1259 return (error); 1260 1261 unlink: 1262 /* 1263 * XXX: if a change of an existing address failed, keep the entry 1264 * anyway. 1265 */ 1266 if (hostIsNew) 1267 in6_unlink_ifa(ia, ifp); 1268 return (error); 1269 1270 cleanup: 1271 in6_purgeaddr(&ia->ia_ifa); 1272 return error; 1273 } 1274 1275 void 1276 in6_purgeaddr(struct ifaddr *ifa) 1277 { 1278 struct ifnet *ifp = ifa->ifa_ifp; 1279 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1280 char ip6buf[INET6_ADDRSTRLEN]; 1281 struct in6_multi_mship *imm; 1282 1283 /* stop DAD processing */ 1284 nd6_dad_stop(ifa); 1285 1286 /* 1287 * delete route to the destination of the address being purged. 1288 * The interface must be p2p or loopback in this case. 1289 */ 1290 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1291 int e; 1292 1293 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1294 != 0) { 1295 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1296 "a route to the p2p destination: %s on %s, " 1297 "errno=%d\n", 1298 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), 1299 if_name(ifp), e); 1300 /* proceed anyway... */ 1301 } else 1302 ia->ia_flags &= ~IFA_ROUTE; 1303 } 1304 1305 /* Remove ownaddr's loopback rtentry, if it exists. */ 1306 in6_ifremloop(&(ia->ia_ifa)); 1307 1308 /* 1309 * leave from multicast groups we have joined for the interface 1310 */ 1311 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1312 LIST_REMOVE(imm, i6mm_chain); 1313 in6_leavegroup(imm); 1314 } 1315 1316 in6_unlink_ifa(ia, ifp); 1317 } 1318 1319 static void 1320 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1321 { 1322 struct in6_ifaddr *oia; 1323 int s = splnet(); 1324 1325 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1326 1327 oia = ia; 1328 if (oia == (ia = in6_ifaddr)) 1329 in6_ifaddr = ia->ia_next; 1330 else { 1331 while (ia->ia_next && (ia->ia_next != oia)) 1332 ia = ia->ia_next; 1333 if (ia->ia_next) 1334 ia->ia_next = oia->ia_next; 1335 else { 1336 /* search failed */ 1337 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1338 } 1339 } 1340 1341 /* 1342 * Release the reference to the base prefix. There should be a 1343 * positive reference. 1344 */ 1345 if (oia->ia6_ndpr == NULL) { 1346 nd6log((LOG_NOTICE, 1347 "in6_unlink_ifa: autoconf'ed address " 1348 "%p has no prefix\n", oia)); 1349 } else { 1350 oia->ia6_ndpr->ndpr_refcnt--; 1351 oia->ia6_ndpr = NULL; 1352 } 1353 1354 /* 1355 * Also, if the address being removed is autoconf'ed, call 1356 * pfxlist_onlink_check() since the release might affect the status of 1357 * other (detached) addresses. 1358 */ 1359 if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) { 1360 pfxlist_onlink_check(); 1361 } 1362 1363 /* 1364 * release another refcnt for the link from in6_ifaddr. 1365 * Note that we should decrement the refcnt at least once for all *BSD. 1366 */ 1367 IFAFREE(&oia->ia_ifa); 1368 1369 splx(s); 1370 } 1371 1372 void 1373 in6_purgeif(struct ifnet *ifp) 1374 { 1375 struct ifaddr *ifa, *nifa; 1376 1377 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 1378 nifa = TAILQ_NEXT(ifa, ifa_list); 1379 if (ifa->ifa_addr->sa_family != AF_INET6) 1380 continue; 1381 in6_purgeaddr(ifa); 1382 } 1383 1384 in6_ifdetach(ifp); 1385 } 1386 1387 /* 1388 * SIOC[GAD]LIFADDR. 1389 * SIOCGLIFADDR: get first address. (?) 1390 * SIOCGLIFADDR with IFLR_PREFIX: 1391 * get first address that matches the specified prefix. 1392 * SIOCALIFADDR: add the specified address. 1393 * SIOCALIFADDR with IFLR_PREFIX: 1394 * add the specified prefix, filling hostid part from 1395 * the first link-local address. prefixlen must be <= 64. 1396 * SIOCDLIFADDR: delete the specified address. 1397 * SIOCDLIFADDR with IFLR_PREFIX: 1398 * delete the first address that matches the specified prefix. 1399 * return values: 1400 * EINVAL on invalid parameters 1401 * EADDRNOTAVAIL on prefix match failed/specified address not found 1402 * other values may be returned from in6_ioctl() 1403 * 1404 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1405 * this is to accomodate address naming scheme other than RFC2374, 1406 * in the future. 1407 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1408 * address encoding scheme. (see figure on page 8) 1409 */ 1410 static int 1411 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data, 1412 struct ifnet *ifp, struct thread *td) 1413 { 1414 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1415 struct ifaddr *ifa; 1416 struct sockaddr *sa; 1417 1418 /* sanity checks */ 1419 if (!data || !ifp) { 1420 panic("invalid argument to in6_lifaddr_ioctl"); 1421 /* NOTREACHED */ 1422 } 1423 1424 switch (cmd) { 1425 case SIOCGLIFADDR: 1426 /* address must be specified on GET with IFLR_PREFIX */ 1427 if ((iflr->flags & IFLR_PREFIX) == 0) 1428 break; 1429 /* FALLTHROUGH */ 1430 case SIOCALIFADDR: 1431 case SIOCDLIFADDR: 1432 /* address must be specified on ADD and DELETE */ 1433 sa = (struct sockaddr *)&iflr->addr; 1434 if (sa->sa_family != AF_INET6) 1435 return EINVAL; 1436 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1437 return EINVAL; 1438 /* XXX need improvement */ 1439 sa = (struct sockaddr *)&iflr->dstaddr; 1440 if (sa->sa_family && sa->sa_family != AF_INET6) 1441 return EINVAL; 1442 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1443 return EINVAL; 1444 break; 1445 default: /* shouldn't happen */ 1446 #if 0 1447 panic("invalid cmd to in6_lifaddr_ioctl"); 1448 /* NOTREACHED */ 1449 #else 1450 return EOPNOTSUPP; 1451 #endif 1452 } 1453 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1454 return EINVAL; 1455 1456 switch (cmd) { 1457 case SIOCALIFADDR: 1458 { 1459 struct in6_aliasreq ifra; 1460 struct in6_addr *hostid = NULL; 1461 int prefixlen; 1462 1463 if ((iflr->flags & IFLR_PREFIX) != 0) { 1464 struct sockaddr_in6 *sin6; 1465 1466 /* 1467 * hostid is to fill in the hostid part of the 1468 * address. hostid points to the first link-local 1469 * address attached to the interface. 1470 */ 1471 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1472 if (!ifa) 1473 return EADDRNOTAVAIL; 1474 hostid = IFA_IN6(ifa); 1475 1476 /* prefixlen must be <= 64. */ 1477 if (64 < iflr->prefixlen) 1478 return EINVAL; 1479 prefixlen = iflr->prefixlen; 1480 1481 /* hostid part must be zero. */ 1482 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1483 if (sin6->sin6_addr.s6_addr32[2] != 0 || 1484 sin6->sin6_addr.s6_addr32[3] != 0) { 1485 return EINVAL; 1486 } 1487 } else 1488 prefixlen = iflr->prefixlen; 1489 1490 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1491 bzero(&ifra, sizeof(ifra)); 1492 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1493 1494 bcopy(&iflr->addr, &ifra.ifra_addr, 1495 ((struct sockaddr *)&iflr->addr)->sa_len); 1496 if (hostid) { 1497 /* fill in hostid part */ 1498 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1499 hostid->s6_addr32[2]; 1500 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1501 hostid->s6_addr32[3]; 1502 } 1503 1504 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1505 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1506 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1507 if (hostid) { 1508 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1509 hostid->s6_addr32[2]; 1510 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1511 hostid->s6_addr32[3]; 1512 } 1513 } 1514 1515 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1516 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1517 1518 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1519 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); 1520 } 1521 case SIOCGLIFADDR: 1522 case SIOCDLIFADDR: 1523 { 1524 struct in6_ifaddr *ia; 1525 struct in6_addr mask, candidate, match; 1526 struct sockaddr_in6 *sin6; 1527 int cmp; 1528 1529 bzero(&mask, sizeof(mask)); 1530 if (iflr->flags & IFLR_PREFIX) { 1531 /* lookup a prefix rather than address. */ 1532 in6_prefixlen2mask(&mask, iflr->prefixlen); 1533 1534 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1535 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1536 match.s6_addr32[0] &= mask.s6_addr32[0]; 1537 match.s6_addr32[1] &= mask.s6_addr32[1]; 1538 match.s6_addr32[2] &= mask.s6_addr32[2]; 1539 match.s6_addr32[3] &= mask.s6_addr32[3]; 1540 1541 /* if you set extra bits, that's wrong */ 1542 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1543 return EINVAL; 1544 1545 cmp = 1; 1546 } else { 1547 if (cmd == SIOCGLIFADDR) { 1548 /* on getting an address, take the 1st match */ 1549 cmp = 0; /* XXX */ 1550 } else { 1551 /* on deleting an address, do exact match */ 1552 in6_prefixlen2mask(&mask, 128); 1553 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1554 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1555 1556 cmp = 1; 1557 } 1558 } 1559 1560 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1561 if (ifa->ifa_addr->sa_family != AF_INET6) 1562 continue; 1563 if (!cmp) 1564 break; 1565 1566 /* 1567 * XXX: this is adhoc, but is necessary to allow 1568 * a user to specify fe80::/64 (not /10) for a 1569 * link-local address. 1570 */ 1571 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1572 in6_clearscope(&candidate); 1573 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1574 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1575 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1576 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1577 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1578 break; 1579 } 1580 if (!ifa) 1581 return EADDRNOTAVAIL; 1582 ia = ifa2ia6(ifa); 1583 1584 if (cmd == SIOCGLIFADDR) { 1585 int error; 1586 1587 /* fill in the if_laddrreq structure */ 1588 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1589 error = sa6_recoverscope( 1590 (struct sockaddr_in6 *)&iflr->addr); 1591 if (error != 0) 1592 return (error); 1593 1594 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1595 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1596 ia->ia_dstaddr.sin6_len); 1597 error = sa6_recoverscope( 1598 (struct sockaddr_in6 *)&iflr->dstaddr); 1599 if (error != 0) 1600 return (error); 1601 } else 1602 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1603 1604 iflr->prefixlen = 1605 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1606 1607 iflr->flags = ia->ia6_flags; /* XXX */ 1608 1609 return 0; 1610 } else { 1611 struct in6_aliasreq ifra; 1612 1613 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1614 bzero(&ifra, sizeof(ifra)); 1615 bcopy(iflr->iflr_name, ifra.ifra_name, 1616 sizeof(ifra.ifra_name)); 1617 1618 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1619 ia->ia_addr.sin6_len); 1620 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1621 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1622 ia->ia_dstaddr.sin6_len); 1623 } else { 1624 bzero(&ifra.ifra_dstaddr, 1625 sizeof(ifra.ifra_dstaddr)); 1626 } 1627 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1628 ia->ia_prefixmask.sin6_len); 1629 1630 ifra.ifra_flags = ia->ia6_flags; 1631 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1632 ifp, td); 1633 } 1634 } 1635 } 1636 1637 return EOPNOTSUPP; /* just for safety */ 1638 } 1639 1640 /* 1641 * Initialize an interface's intetnet6 address 1642 * and routing table entry. 1643 */ 1644 static int 1645 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1646 struct sockaddr_in6 *sin6, int newhost) 1647 { 1648 int error = 0, plen, ifacount = 0; 1649 int s = splimp(); 1650 struct ifaddr *ifa; 1651 1652 /* 1653 * Give the interface a chance to initialize 1654 * if this is its first address, 1655 * and to validate the address if necessary. 1656 */ 1657 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1658 if (ifa->ifa_addr->sa_family != AF_INET6) 1659 continue; 1660 ifacount++; 1661 } 1662 1663 ia->ia_addr = *sin6; 1664 1665 if (ifacount <= 1 && ifp->if_ioctl) { 1666 IFF_LOCKGIANT(ifp); 1667 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1668 IFF_UNLOCKGIANT(ifp); 1669 if (error) { 1670 splx(s); 1671 return (error); 1672 } 1673 } 1674 splx(s); 1675 1676 ia->ia_ifa.ifa_metric = ifp->if_metric; 1677 1678 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1679 1680 if (newhost) { 1681 /* 1682 * set the rtrequest function to create llinfo. It also 1683 * adjust outgoing interface of the route for the local 1684 * address when called via in6_ifaddloop() below. 1685 */ 1686 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1687 } 1688 1689 /* 1690 * Special case: 1691 * If a new destination address is specified for a point-to-point 1692 * interface, install a route to the destination as an interface 1693 * direct route. In addition, if the link is expected to have neighbor 1694 * cache entries, specify RTF_LLINFO so that a cache entry for the 1695 * destination address will be created. 1696 * created 1697 * XXX: the logic below rejects assigning multiple addresses on a p2p 1698 * interface that share the same destination. 1699 */ 1700 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1701 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1702 ia->ia_dstaddr.sin6_family == AF_INET6) { 1703 int rtflags = RTF_UP | RTF_HOST; 1704 struct rtentry *rt = NULL, **rtp = NULL; 1705 1706 if (nd6_need_cache(ifp) != 0) { 1707 rtflags |= RTF_LLINFO; 1708 rtp = &rt; 1709 } 1710 1711 error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr, 1712 (struct sockaddr *)&ia->ia_addr, 1713 (struct sockaddr *)&ia->ia_prefixmask, 1714 ia->ia_flags | rtflags, rtp); 1715 if (error != 0) 1716 return (error); 1717 if (rt != NULL) { 1718 struct llinfo_nd6 *ln; 1719 1720 RT_LOCK(rt); 1721 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1722 if (ln != NULL) { 1723 /* 1724 * Set the state to STALE because we don't 1725 * have to perform address resolution on this 1726 * link. 1727 */ 1728 ln->ln_state = ND6_LLINFO_STALE; 1729 } 1730 RT_REMREF(rt); 1731 RT_UNLOCK(rt); 1732 } 1733 ia->ia_flags |= IFA_ROUTE; 1734 } 1735 if (plen < 128) { 1736 /* 1737 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1738 */ 1739 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1740 } 1741 1742 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1743 if (newhost) 1744 in6_ifaddloop(&(ia->ia_ifa)); 1745 1746 return (error); 1747 } 1748 1749 struct in6_multi_mship * 1750 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, 1751 int *errorp, int delay) 1752 { 1753 struct in6_multi_mship *imm; 1754 1755 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1756 if (!imm) { 1757 *errorp = ENOBUFS; 1758 return NULL; 1759 } 1760 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay); 1761 if (!imm->i6mm_maddr) { 1762 /* *errorp is alrady set */ 1763 free(imm, M_IP6MADDR); 1764 return NULL; 1765 } 1766 return imm; 1767 } 1768 1769 int 1770 in6_leavegroup(struct in6_multi_mship *imm) 1771 { 1772 1773 if (imm->i6mm_maddr) 1774 in6_delmulti(imm->i6mm_maddr); 1775 free(imm, M_IP6MADDR); 1776 return 0; 1777 } 1778 1779 /* 1780 * Find an IPv6 interface link-local address specific to an interface. 1781 */ 1782 struct in6_ifaddr * 1783 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1784 { 1785 struct ifaddr *ifa; 1786 1787 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1788 if (ifa->ifa_addr->sa_family != AF_INET6) 1789 continue; 1790 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1791 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1792 ignoreflags) != 0) 1793 continue; 1794 break; 1795 } 1796 } 1797 1798 return ((struct in6_ifaddr *)ifa); 1799 } 1800 1801 1802 /* 1803 * find the internet address corresponding to a given interface and address. 1804 */ 1805 struct in6_ifaddr * 1806 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr) 1807 { 1808 struct ifaddr *ifa; 1809 1810 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1811 if (ifa->ifa_addr->sa_family != AF_INET6) 1812 continue; 1813 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1814 break; 1815 } 1816 1817 return ((struct in6_ifaddr *)ifa); 1818 } 1819 1820 /* 1821 * Convert IP6 address to printable (loggable) representation. Caller 1822 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1823 */ 1824 static char digits[] = "0123456789abcdef"; 1825 char * 1826 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1827 { 1828 int i; 1829 char *cp; 1830 const u_int16_t *a = (const u_int16_t *)addr; 1831 const u_int8_t *d; 1832 int dcolon = 0, zero = 0; 1833 1834 cp = ip6buf; 1835 1836 for (i = 0; i < 8; i++) { 1837 if (dcolon == 1) { 1838 if (*a == 0) { 1839 if (i == 7) 1840 *cp++ = ':'; 1841 a++; 1842 continue; 1843 } else 1844 dcolon = 2; 1845 } 1846 if (*a == 0) { 1847 if (dcolon == 0 && *(a + 1) == 0) { 1848 if (i == 0) 1849 *cp++ = ':'; 1850 *cp++ = ':'; 1851 dcolon = 1; 1852 } else { 1853 *cp++ = '0'; 1854 *cp++ = ':'; 1855 } 1856 a++; 1857 continue; 1858 } 1859 d = (const u_char *)a; 1860 /* Try to eliminate leading zeros in printout like in :0001. */ 1861 zero = 1; 1862 *cp = digits[*d >> 4]; 1863 if (*cp != '0') { 1864 zero = 0; 1865 cp++; 1866 } 1867 *cp = digits[*d++ & 0xf]; 1868 if (zero == 0 || (*cp != '0')) { 1869 zero = 0; 1870 cp++; 1871 } 1872 *cp = digits[*d >> 4]; 1873 if (zero == 0 || (*cp != '0')) { 1874 zero = 0; 1875 cp++; 1876 } 1877 *cp++ = digits[*d & 0xf]; 1878 *cp++ = ':'; 1879 a++; 1880 } 1881 *--cp = '\0'; 1882 return (ip6buf); 1883 } 1884 1885 int 1886 in6_localaddr(struct in6_addr *in6) 1887 { 1888 struct in6_ifaddr *ia; 1889 1890 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1891 return 1; 1892 1893 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1894 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1895 &ia->ia_prefixmask.sin6_addr)) { 1896 return 1; 1897 } 1898 } 1899 1900 return (0); 1901 } 1902 1903 int 1904 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1905 { 1906 struct in6_ifaddr *ia; 1907 1908 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1909 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1910 &sa6->sin6_addr) && 1911 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1912 return (1); /* true */ 1913 1914 /* XXX: do we still have to go thru the rest of the list? */ 1915 } 1916 1917 return (0); /* false */ 1918 } 1919 1920 /* 1921 * return length of part which dst and src are equal 1922 * hard coding... 1923 */ 1924 int 1925 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1926 { 1927 int match = 0; 1928 u_char *s = (u_char *)src, *d = (u_char *)dst; 1929 u_char *lim = s + 16, r; 1930 1931 while (s < lim) 1932 if ((r = (*d++ ^ *s++)) != 0) { 1933 while (r < 128) { 1934 match++; 1935 r <<= 1; 1936 } 1937 break; 1938 } else 1939 match += 8; 1940 return match; 1941 } 1942 1943 /* XXX: to be scope conscious */ 1944 int 1945 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1946 { 1947 int bytelen, bitlen; 1948 1949 /* sanity check */ 1950 if (0 > len || len > 128) { 1951 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1952 len); 1953 return (0); 1954 } 1955 1956 bytelen = len / 8; 1957 bitlen = len % 8; 1958 1959 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1960 return (0); 1961 if (bitlen != 0 && 1962 p1->s6_addr[bytelen] >> (8 - bitlen) != 1963 p2->s6_addr[bytelen] >> (8 - bitlen)) 1964 return (0); 1965 1966 return (1); 1967 } 1968 1969 void 1970 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1971 { 1972 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1973 int bytelen, bitlen, i; 1974 1975 /* sanity check */ 1976 if (0 > len || len > 128) { 1977 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1978 len); 1979 return; 1980 } 1981 1982 bzero(maskp, sizeof(*maskp)); 1983 bytelen = len / 8; 1984 bitlen = len % 8; 1985 for (i = 0; i < bytelen; i++) 1986 maskp->s6_addr[i] = 0xff; 1987 if (bitlen) 1988 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1989 } 1990 1991 /* 1992 * return the best address out of the same scope. if no address was 1993 * found, return the first valid address from designated IF. 1994 */ 1995 struct in6_ifaddr * 1996 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1997 { 1998 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1999 struct ifaddr *ifa; 2000 struct in6_ifaddr *besta = 0; 2001 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2002 2003 dep[0] = dep[1] = NULL; 2004 2005 /* 2006 * We first look for addresses in the same scope. 2007 * If there is one, return it. 2008 * If two or more, return one which matches the dst longest. 2009 * If none, return one of global addresses assigned other ifs. 2010 */ 2011 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2012 if (ifa->ifa_addr->sa_family != AF_INET6) 2013 continue; 2014 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2015 continue; /* XXX: is there any case to allow anycast? */ 2016 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2017 continue; /* don't use this interface */ 2018 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2019 continue; 2020 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2021 if (ip6_use_deprecated) 2022 dep[0] = (struct in6_ifaddr *)ifa; 2023 continue; 2024 } 2025 2026 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2027 /* 2028 * call in6_matchlen() as few as possible 2029 */ 2030 if (besta) { 2031 if (blen == -1) 2032 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2033 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2034 if (tlen > blen) { 2035 blen = tlen; 2036 besta = (struct in6_ifaddr *)ifa; 2037 } 2038 } else 2039 besta = (struct in6_ifaddr *)ifa; 2040 } 2041 } 2042 if (besta) 2043 return (besta); 2044 2045 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2046 if (ifa->ifa_addr->sa_family != AF_INET6) 2047 continue; 2048 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2049 continue; /* XXX: is there any case to allow anycast? */ 2050 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2051 continue; /* don't use this interface */ 2052 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2053 continue; 2054 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2055 if (ip6_use_deprecated) 2056 dep[1] = (struct in6_ifaddr *)ifa; 2057 continue; 2058 } 2059 2060 return (struct in6_ifaddr *)ifa; 2061 } 2062 2063 /* use the last-resort values, that are, deprecated addresses */ 2064 if (dep[0]) 2065 return dep[0]; 2066 if (dep[1]) 2067 return dep[1]; 2068 2069 return NULL; 2070 } 2071 2072 /* 2073 * perform DAD when interface becomes IFF_UP. 2074 */ 2075 void 2076 in6_if_up(struct ifnet *ifp) 2077 { 2078 struct ifaddr *ifa; 2079 struct in6_ifaddr *ia; 2080 2081 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2082 if (ifa->ifa_addr->sa_family != AF_INET6) 2083 continue; 2084 ia = (struct in6_ifaddr *)ifa; 2085 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2086 /* 2087 * The TENTATIVE flag was likely set by hand 2088 * beforehand, implicitly indicating the need for DAD. 2089 * We may be able to skip the random delay in this 2090 * case, but we impose delays just in case. 2091 */ 2092 nd6_dad_start(ifa, 2093 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 2094 } 2095 } 2096 2097 /* 2098 * special cases, like 6to4, are handled in in6_ifattach 2099 */ 2100 in6_ifattach(ifp, NULL); 2101 } 2102 2103 int 2104 in6if_do_dad(struct ifnet *ifp) 2105 { 2106 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2107 return (0); 2108 2109 switch (ifp->if_type) { 2110 #ifdef IFT_DUMMY 2111 case IFT_DUMMY: 2112 #endif 2113 case IFT_FAITH: 2114 /* 2115 * These interfaces do not have the IFF_LOOPBACK flag, 2116 * but loop packets back. We do not have to do DAD on such 2117 * interfaces. We should even omit it, because loop-backed 2118 * NS would confuse the DAD procedure. 2119 */ 2120 return (0); 2121 default: 2122 /* 2123 * Our DAD routine requires the interface up and running. 2124 * However, some interfaces can be up before the RUNNING 2125 * status. Additionaly, users may try to assign addresses 2126 * before the interface becomes up (or running). 2127 * We simply skip DAD in such a case as a work around. 2128 * XXX: we should rather mark "tentative" on such addresses, 2129 * and do DAD after the interface becomes ready. 2130 */ 2131 if (!((ifp->if_flags & IFF_UP) && 2132 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 2133 return (0); 2134 2135 return (1); 2136 } 2137 } 2138 2139 /* 2140 * Calculate max IPv6 MTU through all the interfaces and store it 2141 * to in6_maxmtu. 2142 */ 2143 void 2144 in6_setmaxmtu(void) 2145 { 2146 unsigned long maxmtu = 0; 2147 struct ifnet *ifp; 2148 2149 IFNET_RLOCK(); 2150 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 2151 /* this function can be called during ifnet initialization */ 2152 if (!ifp->if_afdata[AF_INET6]) 2153 continue; 2154 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2155 IN6_LINKMTU(ifp) > maxmtu) 2156 maxmtu = IN6_LINKMTU(ifp); 2157 } 2158 IFNET_RUNLOCK(); 2159 if (maxmtu) /* update only when maxmtu is positive */ 2160 in6_maxmtu = maxmtu; 2161 } 2162 2163 /* 2164 * Provide the length of interface identifiers to be used for the link attached 2165 * to the given interface. The length should be defined in "IPv6 over 2166 * xxx-link" document. Note that address architecture might also define 2167 * the length for a particular set of address prefixes, regardless of the 2168 * link type. As clarified in rfc2462bis, those two definitions should be 2169 * consistent, and those really are as of August 2004. 2170 */ 2171 int 2172 in6_if2idlen(struct ifnet *ifp) 2173 { 2174 switch (ifp->if_type) { 2175 case IFT_ETHER: /* RFC2464 */ 2176 #ifdef IFT_PROPVIRTUAL 2177 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2178 #endif 2179 #ifdef IFT_L2VLAN 2180 case IFT_L2VLAN: /* ditto */ 2181 #endif 2182 #ifdef IFT_IEEE80211 2183 case IFT_IEEE80211: /* ditto */ 2184 #endif 2185 #ifdef IFT_MIP 2186 case IFT_MIP: /* ditto */ 2187 #endif 2188 return (64); 2189 case IFT_FDDI: /* RFC2467 */ 2190 return (64); 2191 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2192 return (64); 2193 case IFT_PPP: /* RFC2472 */ 2194 return (64); 2195 case IFT_ARCNET: /* RFC2497 */ 2196 return (64); 2197 case IFT_FRELAY: /* RFC2590 */ 2198 return (64); 2199 case IFT_IEEE1394: /* RFC3146 */ 2200 return (64); 2201 case IFT_GIF: 2202 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2203 case IFT_LOOP: 2204 return (64); /* XXX: is this really correct? */ 2205 default: 2206 /* 2207 * Unknown link type: 2208 * It might be controversial to use the today's common constant 2209 * of 64 for these cases unconditionally. For full compliance, 2210 * we should return an error in this case. On the other hand, 2211 * if we simply miss the standard for the link type or a new 2212 * standard is defined for a new link type, the IFID length 2213 * is very likely to be the common constant. As a compromise, 2214 * we always use the constant, but make an explicit notice 2215 * indicating the "unknown" case. 2216 */ 2217 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2218 return (64); 2219 } 2220 } 2221 2222 void * 2223 in6_domifattach(struct ifnet *ifp) 2224 { 2225 struct in6_ifextra *ext; 2226 2227 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2228 bzero(ext, sizeof(*ext)); 2229 2230 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2231 M_IFADDR, M_WAITOK); 2232 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2233 2234 ext->icmp6_ifstat = 2235 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2236 M_IFADDR, M_WAITOK); 2237 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2238 2239 ext->nd_ifinfo = nd6_ifattach(ifp); 2240 ext->scope6_id = scope6_ifattach(ifp); 2241 return ext; 2242 } 2243 2244 void 2245 in6_domifdetach(struct ifnet *ifp, void *aux) 2246 { 2247 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2248 2249 scope6_ifdetach(ext->scope6_id); 2250 nd6_ifdetach(ext->nd_ifinfo); 2251 free(ext->in6_ifstat, M_IFADDR); 2252 free(ext->icmp6_ifstat, M_IFADDR); 2253 free(ext, M_IFADDR); 2254 } 2255 2256 /* 2257 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2258 * v4 mapped addr or v4 compat addr 2259 */ 2260 void 2261 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2262 { 2263 2264 bzero(sin, sizeof(*sin)); 2265 sin->sin_len = sizeof(struct sockaddr_in); 2266 sin->sin_family = AF_INET; 2267 sin->sin_port = sin6->sin6_port; 2268 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2269 } 2270 2271 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2272 void 2273 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2274 { 2275 bzero(sin6, sizeof(*sin6)); 2276 sin6->sin6_len = sizeof(struct sockaddr_in6); 2277 sin6->sin6_family = AF_INET6; 2278 sin6->sin6_port = sin->sin_port; 2279 sin6->sin6_addr.s6_addr32[0] = 0; 2280 sin6->sin6_addr.s6_addr32[1] = 0; 2281 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2282 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2283 } 2284 2285 /* Convert sockaddr_in6 into sockaddr_in. */ 2286 void 2287 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2288 { 2289 struct sockaddr_in *sin_p; 2290 struct sockaddr_in6 sin6; 2291 2292 /* 2293 * Save original sockaddr_in6 addr and convert it 2294 * to sockaddr_in. 2295 */ 2296 sin6 = *(struct sockaddr_in6 *)nam; 2297 sin_p = (struct sockaddr_in *)nam; 2298 in6_sin6_2_sin(sin_p, &sin6); 2299 } 2300 2301 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2302 void 2303 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2304 { 2305 struct sockaddr_in *sin_p; 2306 struct sockaddr_in6 *sin6_p; 2307 2308 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2309 M_WAITOK); 2310 sin_p = (struct sockaddr_in *)*nam; 2311 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2312 FREE(*nam, M_SONAME); 2313 *nam = (struct sockaddr *)sin6_p; 2314 } 2315