xref: /freebsd/sys/netinet6/in6.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /*	$FreeBSD$	*/
2 /*	$KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)in.c	8.2 (Berkeley) 11/15/93
66  */
67 
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 
71 #include <sys/param.h>
72 #include <sys/errno.h>
73 #include <sys/malloc.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/time.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82 
83 #include <net/if.h>
84 #include <net/if_types.h>
85 #include <net/route.h>
86 #include <net/if_dl.h>
87 
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/if_ether.h>
91 #ifndef SCOPEDROUTING
92 #include <netinet/in_systm.h>
93 #include <netinet/ip.h>
94 #include <netinet/in_pcb.h>
95 #endif
96 
97 #include <netinet6/nd6.h>
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/mld6_var.h>
101 #include <netinet6/ip6_mroute.h>
102 #include <netinet6/in6_ifattach.h>
103 #include <netinet6/scope6_var.h>
104 #ifndef SCOPEDROUTING
105 #include <netinet6/in6_pcb.h>
106 #endif
107 
108 #include "gif.h"
109 #if NGIF > 0
110 #include <net/if_gif.h>
111 #endif
112 
113 #include <net/net_osdep.h>
114 
115 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address");
116 
117 /*
118  * Definitions of some costant IP6 addresses.
119  */
120 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
121 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
122 const struct in6_addr in6addr_nodelocal_allnodes =
123 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
124 const struct in6_addr in6addr_linklocal_allnodes =
125 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
126 const struct in6_addr in6addr_linklocal_allrouters =
127 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
128 
129 const struct in6_addr in6mask0 = IN6MASK0;
130 const struct in6_addr in6mask32 = IN6MASK32;
131 const struct in6_addr in6mask64 = IN6MASK64;
132 const struct in6_addr in6mask96 = IN6MASK96;
133 const struct in6_addr in6mask128 = IN6MASK128;
134 
135 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
136 				     0, 0, IN6ADDR_ANY_INIT, 0};
137 
138 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
139 	struct ifnet *, struct proc *));
140 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
141 			   struct sockaddr_in6 *, int));
142 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
143 
144 struct in6_multihead in6_multihead;	/* XXX BSS initialization */
145 
146 /*
147  * Subroutine for in6_ifaddloop() and in6_ifremloop().
148  * This routine does actual work.
149  */
150 static void
151 in6_ifloop_request(int cmd, struct ifaddr *ifa)
152 {
153 	struct sockaddr_in6 all1_sa;
154 	struct rtentry *nrt = NULL;
155 	int e;
156 
157 	bzero(&all1_sa, sizeof(all1_sa));
158 	all1_sa.sin6_family = AF_INET6;
159 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
160 	all1_sa.sin6_addr = in6mask128;
161 
162 	/*
163 	 * We specify the address itself as the gateway, and set the
164 	 * RTF_LLINFO flag, so that the corresponding host route would have
165 	 * the flag, and thus applications that assume traditional behavior
166 	 * would be happy.  Note that we assume the caller of the function
167 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
168 	 * which changes the outgoing interface to the loopback interface.
169 	 */
170 	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
171 		      (struct sockaddr *)&all1_sa,
172 		      RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
173 	if (e != 0) {
174 		log(LOG_ERR, "in6_ifloop_request: "
175 		    "%s operation failed for %s (errno=%d)\n",
176 		    cmd == RTM_ADD ? "ADD" : "DELETE",
177 		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
178 		    e);
179 	}
180 
181 	/*
182 	 * Make sure rt_ifa be equal to IFA, the second argument of the
183 	 * function.
184 	 * We need this because when we refer to rt_ifa->ia6_flags in
185 	 * ip6_input, we assume that the rt_ifa points to the address instead
186 	 * of the loopback address.
187 	 */
188 	if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
189 		IFAFREE(nrt->rt_ifa);
190 		IFAREF(ifa);
191 		nrt->rt_ifa = ifa;
192 	}
193 
194 	/*
195 	 * Report the addition/removal of the address to the routing socket.
196 	 * XXX: since we called rtinit for a p2p interface with a destination,
197 	 *      we end up reporting twice in such a case.  Should we rather
198 	 *      omit the second report?
199 	 */
200 	if (nrt) {
201 		rt_newaddrmsg(cmd, ifa, e, nrt);
202 		if (cmd == RTM_DELETE) {
203 			if (nrt->rt_refcnt <= 0) {
204 				/* XXX: we should free the entry ourselves. */
205 				nrt->rt_refcnt++;
206 				rtfree(nrt);
207 			}
208 		} else {
209 			/* the cmd must be RTM_ADD here */
210 			nrt->rt_refcnt--;
211 		}
212 	}
213 }
214 
215 /*
216  * Add ownaddr as loopback rtentry.  We previously add the route only if
217  * necessary (ex. on a p2p link).  However, since we now manage addresses
218  * separately from prefixes, we should always add the route.  We can't
219  * rely on the cloning mechanism from the corresponding interface route
220  * any more.
221  */
222 static void
223 in6_ifaddloop(struct ifaddr *ifa)
224 {
225 	struct rtentry *rt;
226 
227 	/* If there is no loopback entry, allocate one. */
228 	rt = rtalloc1(ifa->ifa_addr, 0, 0);
229 	if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
230 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
231 		in6_ifloop_request(RTM_ADD, ifa);
232 	if (rt)
233 		rt->rt_refcnt--;
234 }
235 
236 /*
237  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
238  * if it exists.
239  */
240 static void
241 in6_ifremloop(struct ifaddr *ifa)
242 {
243 	struct in6_ifaddr *ia;
244 	struct rtentry *rt;
245 	int ia_count = 0;
246 
247 	/*
248 	 * Some of BSD variants do not remove cloned routes
249 	 * from an interface direct route, when removing the direct route
250 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
251 	 * cloned routes, they could fail to remove the cloned routes when
252 	 * we handle multple addresses that share a common prefix.
253 	 * So, we should remove the route corresponding to the deleted address
254 	 * regardless of the result of in6_is_ifloop_auto().
255 	 */
256 
257 	/*
258 	 * Delete the entry only if exact one ifa exists. More than one ifa
259 	 * can exist if we assign a same single address to multiple
260 	 * (probably p2p) interfaces.
261 	 * XXX: we should avoid such a configuration in IPv6...
262 	 */
263 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
264 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
265 			ia_count++;
266 			if (ia_count > 1)
267 				break;
268 		}
269 	}
270 
271 	if (ia_count == 1) {
272 		/*
273 		 * Before deleting, check if a corresponding loopbacked host
274 		 * route surely exists. With this check, we can avoid to
275 		 * delete an interface direct route whose destination is same
276 		 * as the address being removed. This can happen when remofing
277 		 * a subnet-router anycast address on an interface attahced
278 		 * to a shared medium.
279 		 */
280 		rt = rtalloc1(ifa->ifa_addr, 0, 0);
281 		if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
282 		    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
283 			rt->rt_refcnt--;
284 			in6_ifloop_request(RTM_DELETE, ifa);
285 		}
286 	}
287 }
288 
289 int
290 in6_ifindex2scopeid(idx)
291 	int idx;
292 {
293 	struct ifnet *ifp;
294 	struct ifaddr *ifa;
295 	struct sockaddr_in6 *sin6;
296 
297 	if (idx < 0 || if_index < idx)
298 		return -1;
299 	ifp = ifindex2ifnet[idx];
300 
301 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
302 	{
303 		if (ifa->ifa_addr->sa_family != AF_INET6)
304 			continue;
305 		sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
306 		if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
307 			return sin6->sin6_scope_id & 0xffff;
308 	}
309 
310 	return -1;
311 }
312 
313 int
314 in6_mask2len(mask, lim0)
315 	struct in6_addr *mask;
316 	u_char *lim0;
317 {
318 	int x = 0, y;
319 	u_char *lim = lim0, *p;
320 
321 	if (lim0 == NULL ||
322 	    lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */
323 		lim = (u_char *)mask + sizeof(*mask);
324 	for (p = (u_char *)mask; p < lim; x++, p++) {
325 		if (*p != 0xff)
326 			break;
327 	}
328 	y = 0;
329 	if (p < lim) {
330 		for (y = 0; y < 8; y++) {
331 			if ((*p & (0x80 >> y)) == 0)
332 				break;
333 		}
334 	}
335 
336 	/*
337 	 * when the limit pointer is given, do a stricter check on the
338 	 * remaining bits.
339 	 */
340 	if (p < lim) {
341 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
342 			return(-1);
343 		for (p = p + 1; p < lim; p++)
344 			if (*p != 0)
345 				return(-1);
346 	}
347 
348 	return x * 8 + y;
349 }
350 
351 void
352 in6_len2mask(mask, len)
353 	struct in6_addr *mask;
354 	int len;
355 {
356 	int i;
357 
358 	bzero(mask, sizeof(*mask));
359 	for (i = 0; i < len / 8; i++)
360 		mask->s6_addr8[i] = 0xff;
361 	if (len % 8)
362 		mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
363 }
364 
365 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
366 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
367 
368 int
369 in6_control(so, cmd, data, ifp, p)
370 	struct	socket *so;
371 	u_long cmd;
372 	caddr_t	data;
373 	struct ifnet *ifp;
374 	struct proc *p;
375 {
376 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
377 	struct	in6_ifaddr *ia = NULL;
378 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
379 	int privileged;
380 
381 	privileged = 0;
382 	if (p == NULL || !suser(p))
383 		privileged++;
384 
385 	switch (cmd) {
386 	case SIOCGETSGCNT_IN6:
387 	case SIOCGETMIFCNT_IN6:
388 		return (mrt6_ioctl(cmd, data));
389 	}
390 
391 	if (ifp == NULL)
392 		return(EOPNOTSUPP);
393 
394 	switch (cmd) {
395 	case SIOCSNDFLUSH_IN6:
396 	case SIOCSPFXFLUSH_IN6:
397 	case SIOCSRTRFLUSH_IN6:
398 	case SIOCSDEFIFACE_IN6:
399 	case SIOCSIFINFO_FLAGS:
400 		if (!privileged)
401 			return(EPERM);
402 		/*fall through*/
403 	case OSIOCGIFINFO_IN6:
404 	case SIOCGIFINFO_IN6:
405 	case SIOCGDRLST_IN6:
406 	case SIOCGPRLST_IN6:
407 	case SIOCGNBRINFO_IN6:
408 	case SIOCGDEFIFACE_IN6:
409 		return(nd6_ioctl(cmd, data, ifp));
410 	}
411 
412 	switch (cmd) {
413 	case SIOCSIFPREFIX_IN6:
414 	case SIOCDIFPREFIX_IN6:
415 	case SIOCAIFPREFIX_IN6:
416 	case SIOCCIFPREFIX_IN6:
417 	case SIOCSGIFPREFIX_IN6:
418 	case SIOCGIFPREFIX_IN6:
419 		log(LOG_NOTICE,
420 		    "prefix ioctls are now invalidated. "
421 		    "please use ifconfig.\n");
422 		return(EOPNOTSUPP);
423 	}
424 
425 	switch(cmd) {
426 	case SIOCSSCOPE6:
427 		if (!privileged)
428 			return(EPERM);
429 		return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id));
430 		break;
431 	case SIOCGSCOPE6:
432 		return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id));
433 		break;
434 	case SIOCGSCOPE6DEF:
435 		return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id));
436 		break;
437 	}
438 
439 	switch (cmd) {
440 	case SIOCALIFADDR:
441 	case SIOCDLIFADDR:
442 		if (!privileged)
443 			return(EPERM);
444 		/*fall through*/
445 	case SIOCGLIFADDR:
446 		return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
447 	}
448 
449 	/*
450 	 * Find address for this interface, if it exists.
451 	 */
452 	if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
453 		struct sockaddr_in6 *sa6 =
454 			(struct sockaddr_in6 *)&ifra->ifra_addr;
455 
456 		if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
457 			if (sa6->sin6_addr.s6_addr16[1] == 0) {
458 				/* link ID is not embedded by the user */
459 				sa6->sin6_addr.s6_addr16[1] =
460 					htons(ifp->if_index);
461 			} else if (sa6->sin6_addr.s6_addr16[1] !=
462 				    htons(ifp->if_index)) {
463 				return(EINVAL);	/* link ID contradicts */
464 			}
465 			if (sa6->sin6_scope_id) {
466 				if (sa6->sin6_scope_id !=
467 				    (u_int32_t)ifp->if_index)
468 					return(EINVAL);
469 				sa6->sin6_scope_id = 0; /* XXX: good way? */
470 			}
471 		}
472 		ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
473 	}
474 
475 	switch (cmd) {
476 	case SIOCSIFADDR_IN6:
477 	case SIOCSIFDSTADDR_IN6:
478 	case SIOCSIFNETMASK_IN6:
479 		/*
480 		 * Since IPv6 allows a node to assign multiple addresses
481 		 * on a single interface, SIOCSIFxxx ioctls are not suitable
482 		 * and should be unused.
483 		 */
484 		/* we decided to obsolete this command (20000704) */
485 		return(EINVAL);
486 
487 	case SIOCDIFADDR_IN6:
488 		/*
489 		 * for IPv4, we look for existing in_ifaddr here to allow
490 		 * "ifconfig if0 delete" to remove first IPv4 address on the
491 		 * interface.  For IPv6, as the spec allow multiple interface
492 		 * address from the day one, we consider "remove the first one"
493 		 * semantics to be not preferable.
494 		 */
495 		if (ia == NULL)
496 			return(EADDRNOTAVAIL);
497 		/* FALLTHROUGH */
498 	case SIOCAIFADDR_IN6:
499 		/*
500 		 * We always require users to specify a valid IPv6 address for
501 		 * the corresponding operation.
502 		 */
503 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
504 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
505 			return(EAFNOSUPPORT);
506 		if (!privileged)
507 			return(EPERM);
508 
509 		break;
510 
511 	case SIOCGIFADDR_IN6:
512 		/* This interface is basically deprecated. use SIOCGIFCONF. */
513 		/* fall through */
514 	case SIOCGIFAFLAG_IN6:
515 	case SIOCGIFNETMASK_IN6:
516 	case SIOCGIFDSTADDR_IN6:
517 	case SIOCGIFALIFETIME_IN6:
518 		/* must think again about its semantics */
519 		if (ia == NULL)
520 			return(EADDRNOTAVAIL);
521 		break;
522 	case SIOCSIFALIFETIME_IN6:
523 	    {
524 		struct in6_addrlifetime *lt;
525 
526 		if (!privileged)
527 			return(EPERM);
528 		if (ia == NULL)
529 			return(EADDRNOTAVAIL);
530 		/* sanity for overflow - beware unsigned */
531 		lt = &ifr->ifr_ifru.ifru_lifetime;
532 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
533 		 && lt->ia6t_vltime + time_second < time_second) {
534 			return EINVAL;
535 		}
536 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
537 		 && lt->ia6t_pltime + time_second < time_second) {
538 			return EINVAL;
539 		}
540 		break;
541 	    }
542 	}
543 
544 	switch (cmd) {
545 
546 	case SIOCGIFADDR_IN6:
547 		ifr->ifr_addr = ia->ia_addr;
548 		break;
549 
550 	case SIOCGIFDSTADDR_IN6:
551 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
552 			return(EINVAL);
553 		/*
554 		 * XXX: should we check if ifa_dstaddr is NULL and return
555 		 * an error?
556 		 */
557 		ifr->ifr_dstaddr = ia->ia_dstaddr;
558 		break;
559 
560 	case SIOCGIFNETMASK_IN6:
561 		ifr->ifr_addr = ia->ia_prefixmask;
562 		break;
563 
564 	case SIOCGIFAFLAG_IN6:
565 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
566 		break;
567 
568 	case SIOCGIFSTAT_IN6:
569 		if (ifp == NULL)
570 			return EINVAL;
571 		if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax
572 		 || in6_ifstat[ifp->if_index] == NULL) {
573 			/* return EAFNOSUPPORT? */
574 			bzero(&ifr->ifr_ifru.ifru_stat,
575 				sizeof(ifr->ifr_ifru.ifru_stat));
576 		} else
577 			ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index];
578 		break;
579 
580 	case SIOCGIFSTAT_ICMP6:
581 		if (ifp == NULL)
582 			return EINVAL;
583 		if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax ||
584 		    icmp6_ifstat[ifp->if_index] == NULL) {
585 			/* return EAFNOSUPPORT? */
586 			bzero(&ifr->ifr_ifru.ifru_stat,
587 				sizeof(ifr->ifr_ifru.ifru_icmp6stat));
588 		} else
589 			ifr->ifr_ifru.ifru_icmp6stat =
590 				*icmp6_ifstat[ifp->if_index];
591 		break;
592 
593 	case SIOCGIFALIFETIME_IN6:
594 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
595 		break;
596 
597 	case SIOCSIFALIFETIME_IN6:
598 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
599 		/* for sanity */
600 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
601 			ia->ia6_lifetime.ia6t_expire =
602 				time_second + ia->ia6_lifetime.ia6t_vltime;
603 		} else
604 			ia->ia6_lifetime.ia6t_expire = 0;
605 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
606 			ia->ia6_lifetime.ia6t_preferred =
607 				time_second + ia->ia6_lifetime.ia6t_pltime;
608 		} else
609 			ia->ia6_lifetime.ia6t_preferred = 0;
610 		break;
611 
612 	case SIOCAIFADDR_IN6:
613 	{
614 		int i, error = 0;
615 		struct nd_prefix pr0, *pr;
616 
617 		/*
618 		 * first, make or update the interface address structure,
619 		 * and link it to the list.
620 		 */
621 		if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
622 			return(error);
623 
624 		/*
625 		 * then, make the prefix on-link on the interface.
626 		 * XXX: we'd rather create the prefix before the address, but
627 		 * we need at least one address to install the corresponding
628 		 * interface route, so we configure the address first.
629 		 */
630 
631 		/*
632 		 * convert mask to prefix length (prefixmask has already
633 		 * been validated in in6_update_ifa().
634 		 */
635 		bzero(&pr0, sizeof(pr0));
636 		pr0.ndpr_ifp = ifp;
637 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
638 					     NULL);
639 		if (pr0.ndpr_plen == 128)
640 			break;	/* we don't need to install a host route. */
641 		pr0.ndpr_prefix = ifra->ifra_addr;
642 		pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
643 		/* apply the mask for safety. */
644 		for (i = 0; i < 4; i++) {
645 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
646 				ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
647 		}
648 		/*
649 		 * XXX: since we don't have enough APIs, we just set inifinity
650 		 * to lifetimes.  They can be overridden by later advertised
651 		 * RAs (when accept_rtadv is non 0), but we'd rather intend
652 		 * such a behavior.
653 		 */
654 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
655 		pr0.ndpr_raf_auto =
656 			((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
657 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
658 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
659 
660 		/* add the prefix if there's one. */
661 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
662 			/*
663 			 * nd6_prelist_add will install the corresponding
664 			 * interface route.
665 			 */
666 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
667 				return(error);
668 			if (pr == NULL) {
669 				log(LOG_ERR, "nd6_prelist_add succedded but "
670 				    "no prefix\n");
671 				return(EINVAL); /* XXX panic here? */
672 			}
673 		}
674 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
675 		    == NULL) {
676 		    	/* XXX: this should not happen! */
677 			log(LOG_ERR, "in6_control: addition succeeded, but"
678 			    " no ifaddr\n");
679 		} else {
680 			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
681 			    ia->ia6_ndpr == NULL) { /* new autoconfed addr */
682 				ia->ia6_ndpr = pr;
683 				pr->ndpr_refcnt++;
684 
685 				/*
686 				 * If this is the first autoconf address from
687 				 * the prefix, create a temporary address
688 				 * as well (when specified).
689 				 */
690 				if (ip6_use_tempaddr &&
691 				    pr->ndpr_refcnt == 1) {
692 					int e;
693 					if ((e = in6_tmpifadd(ia, 1)) != 0) {
694 						log(LOG_NOTICE, "in6_control: "
695 						    "failed to create a "
696 						    "temporary address, "
697 						    "errno=%d\n",
698 						    e);
699 					}
700 				}
701 			}
702 
703 			/*
704 			 * this might affect the status of autoconfigured
705 			 * addresses, that is, this address might make
706 			 * other addresses detached.
707 			 */
708 			pfxlist_onlink_check();
709 		}
710 		break;
711 	}
712 
713 	case SIOCDIFADDR_IN6:
714 	{
715 		int i = 0;
716 		struct nd_prefix pr0, *pr;
717 
718 		/*
719 		 * If the address being deleted is the only one that owns
720 		 * the corresponding prefix, expire the prefix as well.
721 		 * XXX: theoretically, we don't have to warry about such
722 		 * relationship, since we separate the address management
723 		 * and the prefix management.  We do this, however, to provide
724 		 * as much backward compatibility as possible in terms of
725 		 * the ioctl operation.
726 		 */
727 		bzero(&pr0, sizeof(pr0));
728 		pr0.ndpr_ifp = ifp;
729 		pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
730 					     NULL);
731 		if (pr0.ndpr_plen == 128)
732 			goto purgeaddr;
733 		pr0.ndpr_prefix = ia->ia_addr;
734 		pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
735 		for (i = 0; i < 4; i++) {
736 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
737 				ia->ia_prefixmask.sin6_addr.s6_addr32[i];
738 		}
739 		/*
740 		 * The logic of the following condition is a bit complicated.
741 		 * We expire the prefix when
742 		 * 1. the address obeys autoconfiguration and it is the
743 		 *    only owner of the associated prefix, or
744 		 * 2. the address does not obey autoconf and there is no
745 		 *    other owner of the prefix.
746 		 */
747 		if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
748 		    (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
749 		      pr->ndpr_refcnt == 1) ||
750 		     ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 &&
751 		      pr->ndpr_refcnt == 0))) {
752 			pr->ndpr_expire = 1; /* XXX: just for expiration */
753 		}
754 
755 	  purgeaddr:
756 		in6_purgeaddr(&ia->ia_ifa);
757 		break;
758 	}
759 
760 	default:
761 		if (ifp == NULL || ifp->if_ioctl == 0)
762 			return(EOPNOTSUPP);
763 		return((*ifp->if_ioctl)(ifp, cmd, data));
764 	}
765 
766 	return(0);
767 }
768 
769 /*
770  * Update parameters of an IPv6 interface address.
771  * If necessary, a new entry is created and linked into address chains.
772  * This function is separated from in6_control().
773  * XXX: should this be performed under splnet()?
774  */
775 int
776 in6_update_ifa(ifp, ifra, ia)
777 	struct ifnet *ifp;
778 	struct in6_aliasreq *ifra;
779 	struct in6_ifaddr *ia;
780 {
781 	int error = 0, hostIsNew = 0, plen = -1;
782 	struct in6_ifaddr *oia;
783 	struct sockaddr_in6 dst6;
784 	struct in6_addrlifetime *lt;
785 
786 	/* Validate parameters */
787 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
788 		return(EINVAL);
789 
790 	/*
791 	 * The destination address for a p2p link must have a family
792 	 * of AF_UNSPEC or AF_INET6.
793 	 */
794 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
795 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
796 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
797 		return(EAFNOSUPPORT);
798 	/*
799 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
800 	 * does not carry fields other than sin6_len.
801 	 */
802 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
803 		return(EINVAL);
804 	/*
805 	 * Because the IPv6 address architecture is classless, we require
806 	 * users to specify a (non 0) prefix length (mask) for a new address.
807 	 * We also require the prefix (when specified) mask is valid, and thus
808 	 * reject a non-consecutive mask.
809 	 */
810 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
811 		return(EINVAL);
812 	if (ifra->ifra_prefixmask.sin6_len != 0) {
813 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
814 				    (u_char *)&ifra->ifra_prefixmask +
815 				    ifra->ifra_prefixmask.sin6_len);
816 		if (plen <= 0)
817 			return(EINVAL);
818 	}
819 	else {
820 		/*
821 		 * In this case, ia must not be NULL. We just use its prefix
822 		 * length.
823 		 */
824 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
825 	}
826 	/*
827 	 * If the destination address on a p2p interface is specified,
828 	 * and the address is a scoped one, validate/set the scope
829 	 * zone identifier.
830 	 */
831 	dst6 = ifra->ifra_dstaddr;
832 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) &&
833 	    (dst6.sin6_family == AF_INET6)) {
834 		int scopeid;
835 
836 #ifndef SCOPEDROUTING
837 		if ((error = in6_recoverscope(&dst6,
838 					      &ifra->ifra_dstaddr.sin6_addr,
839 					      ifp)) != 0)
840 			return(error);
841 #endif
842 		scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr);
843 		if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */
844 			dst6.sin6_scope_id = scopeid;
845 		else if (dst6.sin6_scope_id != scopeid)
846 			return(EINVAL); /* scope ID mismatch. */
847 #ifndef SCOPEDROUTING
848 		if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL))
849 		    != 0)
850 			return(error);
851 		dst6.sin6_scope_id = 0; /* XXX */
852 #endif
853 	}
854 	/*
855 	 * The destination address can be specified only for a p2p or a
856 	 * loopback interface.  If specified, the corresponding prefix length
857 	 * must be 128.
858 	 */
859 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
860 		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
861 			/* XXX: noisy message */
862 			log(LOG_INFO, "in6_update_ifa: a destination can be "
863 			    "specified for a p2p or a loopback IF only\n");
864 			return(EINVAL);
865 		}
866 		if (plen != 128) {
867 			/*
868 			 * The following message seems noisy, but we dare to
869 			 * add it for diagnosis.
870 			 */
871 			log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 "
872 			    "when dstaddr is specified\n");
873 			return(EINVAL);
874 		}
875 	}
876 	/* lifetime consistency check */
877 	lt = &ifra->ifra_lifetime;
878 	if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
879 	    && lt->ia6t_vltime + time_second < time_second) {
880 		return EINVAL;
881 	}
882 	if (lt->ia6t_vltime == 0) {
883 		/*
884 		 * the following log might be noisy, but this is a typical
885 		 * configuration mistake or a tool's bug.
886 		 */
887 		log(LOG_INFO,
888 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
889 		    ip6_sprintf(&ifra->ifra_addr.sin6_addr));
890 	}
891 	if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
892 	    && lt->ia6t_pltime + time_second < time_second) {
893 		return EINVAL;
894 	}
895 
896 	/*
897 	 * If this is a new address, allocate a new ifaddr and link it
898 	 * into chains.
899 	 */
900 	if (ia == NULL) {
901 		hostIsNew = 1;
902 		ia = (struct in6_ifaddr *)
903 			malloc(sizeof(*ia), M_IFADDR, M_WAITOK);
904 		if (ia == NULL)
905 			return (ENOBUFS);
906 		bzero((caddr_t)ia, sizeof(*ia));
907 		/* Initialize the address and masks */
908 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
909 		ia->ia_addr.sin6_family = AF_INET6;
910 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
911 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
912 			/*
913 			 * XXX: some functions expect that ifa_dstaddr is not
914 			 * NULL for p2p interfaces.
915 			 */
916 			ia->ia_ifa.ifa_dstaddr
917 				= (struct sockaddr *)&ia->ia_dstaddr;
918 		} else {
919 			ia->ia_ifa.ifa_dstaddr = NULL;
920 		}
921 		ia->ia_ifa.ifa_netmask
922 			= (struct sockaddr *)&ia->ia_prefixmask;
923 
924 		ia->ia_ifp = ifp;
925 		if ((oia = in6_ifaddr) != NULL) {
926 			for ( ; oia->ia_next; oia = oia->ia_next)
927 				continue;
928 			oia->ia_next = ia;
929 		} else
930 			in6_ifaddr = ia;
931 
932 		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
933 				  ifa_list);
934 	}
935 
936 	/* set prefix mask */
937 	if (ifra->ifra_prefixmask.sin6_len) {
938 		/*
939 		 * We prohibit changing the prefix length of an existing
940 		 * address, because
941 		 * + such an operation should be rare in IPv6, and
942 		 * + the operation would confuse prefix management.
943 		 */
944 		if (ia->ia_prefixmask.sin6_len &&
945 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
946 			log(LOG_INFO, "in6_update_ifa: the prefix length of an"
947 			    " existing (%s) address should not be changed\n",
948 			    ip6_sprintf(&ia->ia_addr.sin6_addr));
949 			error = EINVAL;
950 			goto unlink;
951 		}
952 		ia->ia_prefixmask = ifra->ifra_prefixmask;
953 	}
954 
955 	/*
956 	 * If a new destination address is specified, scrub the old one and
957 	 * install the new destination.  Note that the interface must be
958 	 * p2p or loopback (see the check above.)
959 	 */
960 	if (dst6.sin6_family == AF_INET6 &&
961 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr,
962 				&ia->ia_dstaddr.sin6_addr)) {
963 		int e;
964 
965 		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
966 		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
967 		    != 0) {
968 			log(LOG_ERR, "in6_update_ifa: failed to remove "
969 			    "a route to the old destination: %s\n",
970 			    ip6_sprintf(&ia->ia_addr.sin6_addr));
971 			/* proceed anyway... */
972 		}
973 		else
974 			ia->ia_flags &= ~IFA_ROUTE;
975 		ia->ia_dstaddr = dst6;
976 	}
977 
978 	/* reset the interface and routing table appropriately. */
979 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
980 		goto unlink;
981 
982 	/*
983 	 * Beyond this point, we should call in6_purgeaddr upon an error,
984 	 * not just go to unlink.
985 	 */
986 
987 #if 0				/* disable this mechanism for now */
988 	/* update prefix list */
989 	if (hostIsNew &&
990 	    (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */
991 		int iilen;
992 
993 		iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen;
994 		if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) {
995 			in6_purgeaddr((struct ifaddr *)ia);
996 			return(error);
997 		}
998 	}
999 #endif
1000 
1001 	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1002 		struct sockaddr_in6 mltaddr, mltmask;
1003 		struct in6_multi *in6m;
1004 
1005 		if (hostIsNew) {
1006 			/*
1007 			 * join solicited multicast addr for new host id
1008 			 */
1009 			struct in6_addr llsol;
1010 			bzero(&llsol, sizeof(struct in6_addr));
1011 			llsol.s6_addr16[0] = htons(0xff02);
1012 			llsol.s6_addr16[1] = htons(ifp->if_index);
1013 			llsol.s6_addr32[1] = 0;
1014 			llsol.s6_addr32[2] = htonl(1);
1015 			llsol.s6_addr32[3] =
1016 				ifra->ifra_addr.sin6_addr.s6_addr32[3];
1017 			llsol.s6_addr8[12] = 0xff;
1018 			(void)in6_addmulti(&llsol, ifp, &error);
1019 			if (error != 0) {
1020 				log(LOG_WARNING,
1021 				    "in6_update_ifa: addmulti failed for "
1022 				    "%s on %s (errno=%d)\n",
1023 				    ip6_sprintf(&llsol), if_name(ifp),
1024 				    error);
1025 				in6_purgeaddr((struct ifaddr *)ia);
1026 				return(error);
1027 			}
1028 		}
1029 
1030 		bzero(&mltmask, sizeof(mltmask));
1031 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1032 		mltmask.sin6_family = AF_INET6;
1033 		mltmask.sin6_addr = in6mask32;
1034 
1035 		/*
1036 		 * join link-local all-nodes address
1037 		 */
1038 		bzero(&mltaddr, sizeof(mltaddr));
1039 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1040 		mltaddr.sin6_family = AF_INET6;
1041 		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1042 		mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1043 
1044 		IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1045 		if (in6m == NULL) {
1046 			rtrequest(RTM_ADD,
1047 				  (struct sockaddr *)&mltaddr,
1048 				  (struct sockaddr *)&ia->ia_addr,
1049 				  (struct sockaddr *)&mltmask,
1050 				  RTF_UP|RTF_CLONING,  /* xxx */
1051 				  (struct rtentry **)0);
1052 			(void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1053 			if (error != 0) {
1054 				log(LOG_WARNING,
1055 				    "in6_update_ifa: addmulti failed for "
1056 				    "%s on %s (errno=%d)\n",
1057 				    ip6_sprintf(&mltaddr.sin6_addr),
1058 				    if_name(ifp), error);
1059 			}
1060 		}
1061 
1062 		/*
1063 		 * join node information group address
1064 		 */
1065 #define hostnamelen	strlen(hostname)
1066 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1067 		    == 0) {
1068 			IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1069 			if (in6m == NULL && ia != NULL) {
1070 				(void)in6_addmulti(&mltaddr.sin6_addr,
1071 				    ifp, &error);
1072 				if (error != 0) {
1073 					log(LOG_WARNING, "in6_update_ifa: "
1074 					    "addmulti failed for "
1075 					    "%s on %s (errno=%d)\n",
1076 					    ip6_sprintf(&mltaddr.sin6_addr),
1077 					    if_name(ifp), error);
1078 				}
1079 			}
1080 		}
1081 #undef hostnamelen
1082 
1083 		/*
1084 		 * join node-local all-nodes address, on loopback.
1085 		 * XXX: since "node-local" is obsoleted by interface-local,
1086 		 *      we have to join the group on every interface with
1087 		 *      some interface-boundary restriction.
1088 		 */
1089 		if (ifp->if_flags & IFF_LOOPBACK) {
1090 			struct in6_addr loop6 = in6addr_loopback;
1091 			ia = in6ifa_ifpwithaddr(ifp, &loop6);
1092 
1093 			mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1094 
1095 			IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1096 			if (in6m == NULL && ia != NULL) {
1097 				rtrequest(RTM_ADD,
1098 					  (struct sockaddr *)&mltaddr,
1099 					  (struct sockaddr *)&ia->ia_addr,
1100 					  (struct sockaddr *)&mltmask,
1101 					  RTF_UP,
1102 					  (struct rtentry **)0);
1103 				(void)in6_addmulti(&mltaddr.sin6_addr, ifp,
1104 						   &error);
1105 				if (error != 0) {
1106 					log(LOG_WARNING, "in6_update_ifa: "
1107 					    "addmulti failed for %s on %s "
1108 					    "(errno=%d)\n",
1109 					    ip6_sprintf(&mltaddr.sin6_addr),
1110 					    if_name(ifp), error);
1111 				}
1112 			}
1113 		}
1114 	}
1115 
1116 	ia->ia6_flags = ifra->ifra_flags;
1117 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/*safety*/
1118 	ia->ia6_flags &= ~IN6_IFF_NODAD;	/* Mobile IPv6 */
1119 
1120 	ia->ia6_lifetime = ifra->ifra_lifetime;
1121 	/* for sanity */
1122 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1123 		ia->ia6_lifetime.ia6t_expire =
1124 			time_second + ia->ia6_lifetime.ia6t_vltime;
1125 	} else
1126 		ia->ia6_lifetime.ia6t_expire = 0;
1127 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1128 		ia->ia6_lifetime.ia6t_preferred =
1129 			time_second + ia->ia6_lifetime.ia6t_pltime;
1130 	} else
1131 		ia->ia6_lifetime.ia6t_preferred = 0;
1132 
1133 	/*
1134 	 * make sure to initialize ND6 information.  this is to workaround
1135 	 * issues with interfaces with IPv6 addresses, which have never brought
1136 	 * up.  We are assuming that it is safe to nd6_ifattach multiple times.
1137 	 */
1138 	nd6_ifattach(ifp);
1139 
1140 	/*
1141 	 * Perform DAD, if needed.
1142 	 * XXX It may be of use, if we can administratively
1143 	 * disable DAD.
1144 	 */
1145 	if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) {
1146 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1147 		nd6_dad_start((struct ifaddr *)ia, NULL);
1148 	}
1149 
1150 	return(error);
1151 
1152   unlink:
1153 	/*
1154 	 * XXX: if a change of an existing address failed, keep the entry
1155 	 * anyway.
1156 	 */
1157 	if (hostIsNew)
1158 		in6_unlink_ifa(ia, ifp);
1159 	return(error);
1160 }
1161 
1162 void
1163 in6_purgeaddr(ifa)
1164 	struct ifaddr *ifa;
1165 {
1166 	struct ifnet *ifp = ifa->ifa_ifp;
1167 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1168 
1169 	/* stop DAD processing */
1170 	nd6_dad_stop(ifa);
1171 
1172 	/*
1173 	 * delete route to the destination of the address being purged.
1174 	 * The interface must be p2p or loopback in this case.
1175 	 */
1176 	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1177 		int e;
1178 
1179 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1180 		    != 0) {
1181 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1182 			    "a route to the p2p destination: %s on %s, "
1183 			    "errno=%d\n",
1184 			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1185 			    e);
1186 			/* proceed anyway... */
1187 		}
1188 		else
1189 			ia->ia_flags &= ~IFA_ROUTE;
1190 	}
1191 
1192 	/* Remove ownaddr's loopback rtentry, if it exists. */
1193 	in6_ifremloop(&(ia->ia_ifa));
1194 
1195 	if (ifp->if_flags & IFF_MULTICAST) {
1196 		/*
1197 		 * delete solicited multicast addr for deleting host id
1198 		 */
1199 		struct in6_multi *in6m;
1200 		struct in6_addr llsol;
1201 		bzero(&llsol, sizeof(struct in6_addr));
1202 		llsol.s6_addr16[0] = htons(0xff02);
1203 		llsol.s6_addr16[1] = htons(ifp->if_index);
1204 		llsol.s6_addr32[1] = 0;
1205 		llsol.s6_addr32[2] = htonl(1);
1206 		llsol.s6_addr32[3] =
1207 			ia->ia_addr.sin6_addr.s6_addr32[3];
1208 		llsol.s6_addr8[12] = 0xff;
1209 
1210 		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1211 		if (in6m)
1212 			in6_delmulti(in6m);
1213 	}
1214 
1215 	in6_unlink_ifa(ia, ifp);
1216 }
1217 
1218 static void
1219 in6_unlink_ifa(ia, ifp)
1220 	struct in6_ifaddr *ia;
1221 	struct ifnet *ifp;
1222 {
1223 	int plen, iilen;
1224 	struct in6_ifaddr *oia;
1225 	int	s = splnet();
1226 
1227 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1228 
1229 	oia = ia;
1230 	if (oia == (ia = in6_ifaddr))
1231 		in6_ifaddr = ia->ia_next;
1232 	else {
1233 		while (ia->ia_next && (ia->ia_next != oia))
1234 			ia = ia->ia_next;
1235 		if (ia->ia_next)
1236 			ia->ia_next = oia->ia_next;
1237 		else {
1238 			/* search failed */
1239 			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1240 		}
1241 	}
1242 
1243 	if (oia->ia6_ifpr) {	/* check for safety */
1244 		plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL);
1245 		iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen;
1246 		in6_prefix_remove_ifid(iilen, oia);
1247 	}
1248 
1249 	/*
1250 	 * When an autoconfigured address is being removed, release the
1251 	 * reference to the base prefix.  Also, since the release might
1252 	 * affect the status of other (detached) addresses, call
1253 	 * pfxlist_onlink_check().
1254 	 */
1255 	if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
1256 		if (oia->ia6_ndpr == NULL) {
1257 			log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1258 			    "%p has no prefix\n", oia);
1259 		} else {
1260 			oia->ia6_ndpr->ndpr_refcnt--;
1261 			oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1262 			oia->ia6_ndpr = NULL;
1263 		}
1264 
1265 		pfxlist_onlink_check();
1266 	}
1267 
1268 	/*
1269 	 * release another refcnt for the link from in6_ifaddr.
1270 	 * Note that we should decrement the refcnt at least once for all *BSD.
1271 	 */
1272 	IFAFREE(&oia->ia_ifa);
1273 
1274 	splx(s);
1275 }
1276 
1277 void
1278 in6_purgeif(ifp)
1279 	struct ifnet *ifp;
1280 {
1281 	struct ifaddr *ifa, *nifa;
1282 
1283 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
1284 	{
1285 		nifa = TAILQ_NEXT(ifa, ifa_list);
1286 		if (ifa->ifa_addr->sa_family != AF_INET6)
1287 			continue;
1288 		in6_purgeaddr(ifa);
1289 	}
1290 
1291 	in6_ifdetach(ifp);
1292 }
1293 
1294 /*
1295  * SIOC[GAD]LIFADDR.
1296  *	SIOCGLIFADDR: get first address. (?)
1297  *	SIOCGLIFADDR with IFLR_PREFIX:
1298  *		get first address that matches the specified prefix.
1299  *	SIOCALIFADDR: add the specified address.
1300  *	SIOCALIFADDR with IFLR_PREFIX:
1301  *		add the specified prefix, filling hostid part from
1302  *		the first link-local address.  prefixlen must be <= 64.
1303  *	SIOCDLIFADDR: delete the specified address.
1304  *	SIOCDLIFADDR with IFLR_PREFIX:
1305  *		delete the first address that matches the specified prefix.
1306  * return values:
1307  *	EINVAL on invalid parameters
1308  *	EADDRNOTAVAIL on prefix match failed/specified address not found
1309  *	other values may be returned from in6_ioctl()
1310  *
1311  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1312  * this is to accomodate address naming scheme other than RFC2374,
1313  * in the future.
1314  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1315  * address encoding scheme. (see figure on page 8)
1316  */
1317 static int
1318 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
1319 	struct socket *so;
1320 	u_long cmd;
1321 	caddr_t	data;
1322 	struct ifnet *ifp;
1323 	struct proc *p;
1324 {
1325 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1326 	struct ifaddr *ifa;
1327 	struct sockaddr *sa;
1328 
1329 	/* sanity checks */
1330 	if (!data || !ifp) {
1331 		panic("invalid argument to in6_lifaddr_ioctl");
1332 		/*NOTRECHED*/
1333 	}
1334 
1335 	switch (cmd) {
1336 	case SIOCGLIFADDR:
1337 		/* address must be specified on GET with IFLR_PREFIX */
1338 		if ((iflr->flags & IFLR_PREFIX) == 0)
1339 			break;
1340 		/*FALLTHROUGH*/
1341 	case SIOCALIFADDR:
1342 	case SIOCDLIFADDR:
1343 		/* address must be specified on ADD and DELETE */
1344 		sa = (struct sockaddr *)&iflr->addr;
1345 		if (sa->sa_family != AF_INET6)
1346 			return EINVAL;
1347 		if (sa->sa_len != sizeof(struct sockaddr_in6))
1348 			return EINVAL;
1349 		/* XXX need improvement */
1350 		sa = (struct sockaddr *)&iflr->dstaddr;
1351 		if (sa->sa_family && sa->sa_family != AF_INET6)
1352 			return EINVAL;
1353 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1354 			return EINVAL;
1355 		break;
1356 	default: /*shouldn't happen*/
1357 #if 0
1358 		panic("invalid cmd to in6_lifaddr_ioctl");
1359 		/*NOTREACHED*/
1360 #else
1361 		return EOPNOTSUPP;
1362 #endif
1363 	}
1364 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1365 		return EINVAL;
1366 
1367 	switch (cmd) {
1368 	case SIOCALIFADDR:
1369 	    {
1370 		struct in6_aliasreq ifra;
1371 		struct in6_addr *hostid = NULL;
1372 		int prefixlen;
1373 
1374 		if ((iflr->flags & IFLR_PREFIX) != 0) {
1375 			struct sockaddr_in6 *sin6;
1376 
1377 			/*
1378 			 * hostid is to fill in the hostid part of the
1379 			 * address.  hostid points to the first link-local
1380 			 * address attached to the interface.
1381 			 */
1382 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1383 			if (!ifa)
1384 				return EADDRNOTAVAIL;
1385 			hostid = IFA_IN6(ifa);
1386 
1387 		 	/* prefixlen must be <= 64. */
1388 			if (64 < iflr->prefixlen)
1389 				return EINVAL;
1390 			prefixlen = iflr->prefixlen;
1391 
1392 			/* hostid part must be zero. */
1393 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1394 			if (sin6->sin6_addr.s6_addr32[2] != 0
1395 			 || sin6->sin6_addr.s6_addr32[3] != 0) {
1396 				return EINVAL;
1397 			}
1398 		} else
1399 			prefixlen = iflr->prefixlen;
1400 
1401 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1402 		bzero(&ifra, sizeof(ifra));
1403 		bcopy(iflr->iflr_name, ifra.ifra_name,
1404 			sizeof(ifra.ifra_name));
1405 
1406 		bcopy(&iflr->addr, &ifra.ifra_addr,
1407 			((struct sockaddr *)&iflr->addr)->sa_len);
1408 		if (hostid) {
1409 			/* fill in hostid part */
1410 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1411 				hostid->s6_addr32[2];
1412 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1413 				hostid->s6_addr32[3];
1414 		}
1415 
1416 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) {	/*XXX*/
1417 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1418 				((struct sockaddr *)&iflr->dstaddr)->sa_len);
1419 			if (hostid) {
1420 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1421 					hostid->s6_addr32[2];
1422 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1423 					hostid->s6_addr32[3];
1424 			}
1425 		}
1426 
1427 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1428 		in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1429 
1430 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1431 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
1432 	    }
1433 	case SIOCGLIFADDR:
1434 	case SIOCDLIFADDR:
1435 	    {
1436 		struct in6_ifaddr *ia;
1437 		struct in6_addr mask, candidate, match;
1438 		struct sockaddr_in6 *sin6;
1439 		int cmp;
1440 
1441 		bzero(&mask, sizeof(mask));
1442 		if (iflr->flags & IFLR_PREFIX) {
1443 			/* lookup a prefix rather than address. */
1444 			in6_len2mask(&mask, iflr->prefixlen);
1445 
1446 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1447 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1448 			match.s6_addr32[0] &= mask.s6_addr32[0];
1449 			match.s6_addr32[1] &= mask.s6_addr32[1];
1450 			match.s6_addr32[2] &= mask.s6_addr32[2];
1451 			match.s6_addr32[3] &= mask.s6_addr32[3];
1452 
1453 			/* if you set extra bits, that's wrong */
1454 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1455 				return EINVAL;
1456 
1457 			cmp = 1;
1458 		} else {
1459 			if (cmd == SIOCGLIFADDR) {
1460 				/* on getting an address, take the 1st match */
1461 				cmp = 0;	/*XXX*/
1462 			} else {
1463 				/* on deleting an address, do exact match */
1464 				in6_len2mask(&mask, 128);
1465 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1466 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1467 
1468 				cmp = 1;
1469 			}
1470 		}
1471 
1472 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1473 		{
1474 			if (ifa->ifa_addr->sa_family != AF_INET6)
1475 				continue;
1476 			if (!cmp)
1477 				break;
1478 
1479 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1480 #ifndef SCOPEDROUTING
1481 			/*
1482 			 * XXX: this is adhoc, but is necessary to allow
1483 			 * a user to specify fe80::/64 (not /10) for a
1484 			 * link-local address.
1485 			 */
1486 			if (IN6_IS_ADDR_LINKLOCAL(&candidate))
1487 				candidate.s6_addr16[1] = 0;
1488 #endif
1489 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1490 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1491 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1492 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1493 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1494 				break;
1495 		}
1496 		if (!ifa)
1497 			return EADDRNOTAVAIL;
1498 		ia = ifa2ia6(ifa);
1499 
1500 		if (cmd == SIOCGLIFADDR) {
1501 #ifndef SCOPEDROUTING
1502 			struct sockaddr_in6 *s6;
1503 #endif
1504 
1505 			/* fill in the if_laddrreq structure */
1506 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1507 #ifndef SCOPEDROUTING		/* XXX see above */
1508 			s6 = (struct sockaddr_in6 *)&iflr->addr;
1509 			if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1510 				s6->sin6_addr.s6_addr16[1] = 0;
1511 				s6->sin6_scope_id =
1512 					in6_addr2scopeid(ifp, &s6->sin6_addr);
1513 			}
1514 #endif
1515 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1516 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1517 					ia->ia_dstaddr.sin6_len);
1518 #ifndef SCOPEDROUTING		/* XXX see above */
1519 				s6 = (struct sockaddr_in6 *)&iflr->dstaddr;
1520 				if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1521 					s6->sin6_addr.s6_addr16[1] = 0;
1522 					s6->sin6_scope_id =
1523 						in6_addr2scopeid(ifp,
1524 								 &s6->sin6_addr);
1525 				}
1526 #endif
1527 			} else
1528 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1529 
1530 			iflr->prefixlen =
1531 				in6_mask2len(&ia->ia_prefixmask.sin6_addr,
1532 					     NULL);
1533 
1534 			iflr->flags = ia->ia6_flags;	/*XXX*/
1535 
1536 			return 0;
1537 		} else {
1538 			struct in6_aliasreq ifra;
1539 
1540 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1541 			bzero(&ifra, sizeof(ifra));
1542 			bcopy(iflr->iflr_name, ifra.ifra_name,
1543 				sizeof(ifra.ifra_name));
1544 
1545 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1546 				ia->ia_addr.sin6_len);
1547 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1548 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1549 					ia->ia_dstaddr.sin6_len);
1550 			} else {
1551 				bzero(&ifra.ifra_dstaddr,
1552 				    sizeof(ifra.ifra_dstaddr));
1553 			}
1554 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1555 				ia->ia_prefixmask.sin6_len);
1556 
1557 			ifra.ifra_flags = ia->ia6_flags;
1558 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1559 				ifp, p);
1560 		}
1561 	    }
1562 	}
1563 
1564 	return EOPNOTSUPP;	/*just for safety*/
1565 }
1566 
1567 /*
1568  * Initialize an interface's intetnet6 address
1569  * and routing table entry.
1570  */
1571 static int
1572 in6_ifinit(ifp, ia, sin6, newhost)
1573 	struct ifnet *ifp;
1574 	struct in6_ifaddr *ia;
1575 	struct sockaddr_in6 *sin6;
1576 	int newhost;
1577 {
1578 	int	error = 0, plen, ifacount = 0;
1579 	int	s = splimp();
1580 	struct ifaddr *ifa;
1581 
1582 	/*
1583 	 * Give the interface a chance to initialize
1584 	 * if this is its first address,
1585 	 * and to validate the address if necessary.
1586 	 */
1587 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1588 	{
1589 		if (ifa->ifa_addr == NULL)
1590 			continue;	/* just for safety */
1591 		if (ifa->ifa_addr->sa_family != AF_INET6)
1592 			continue;
1593 		ifacount++;
1594 	}
1595 
1596 	ia->ia_addr = *sin6;
1597 
1598 	if (ifacount <= 1 && ifp->if_ioctl &&
1599 	    (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
1600 		splx(s);
1601 		return(error);
1602 	}
1603 	splx(s);
1604 
1605 	ia->ia_ifa.ifa_metric = ifp->if_metric;
1606 
1607 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1608 
1609 	/*
1610 	 * Special case:
1611 	 * If the destination address is specified for a point-to-point
1612 	 * interface, install a route to the destination as an interface
1613 	 * direct route.
1614 	 */
1615 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1616 	if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1617 		if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1618 				    RTF_UP | RTF_HOST)) != 0)
1619 			return(error);
1620 		ia->ia_flags |= IFA_ROUTE;
1621 	}
1622 	if (plen < 128) {
1623 		/*
1624 		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1625 		 */
1626 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1627 	}
1628 
1629 	/* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */
1630 	if (newhost) {
1631 		/* set the rtrequest function to create llinfo */
1632 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1633 		in6_ifaddloop(&(ia->ia_ifa));
1634 	}
1635 
1636 	return(error);
1637 }
1638 
1639 /*
1640  * Add an address to the list of IP6 multicast addresses for a
1641  * given interface.
1642  */
1643 struct	in6_multi *
1644 in6_addmulti(maddr6, ifp, errorp)
1645 	struct in6_addr *maddr6;
1646 	struct ifnet *ifp;
1647 	int *errorp;
1648 {
1649 	struct	in6_multi *in6m;
1650 	struct sockaddr_in6 sin6;
1651 	struct ifmultiaddr *ifma;
1652 	int	s = splnet();
1653 
1654 	*errorp = 0;
1655 
1656 	/*
1657 	 * Call generic routine to add membership or increment
1658 	 * refcount.  It wants addresses in the form of a sockaddr,
1659 	 * so we build one here (being careful to zero the unused bytes).
1660 	 */
1661 	bzero(&sin6, sizeof sin6);
1662 	sin6.sin6_family = AF_INET6;
1663 	sin6.sin6_len = sizeof sin6;
1664 	sin6.sin6_addr = *maddr6;
1665 	*errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma);
1666 	if (*errorp) {
1667 		splx(s);
1668 		return 0;
1669 	}
1670 
1671 	/*
1672 	 * If ifma->ifma_protospec is null, then if_addmulti() created
1673 	 * a new record.  Otherwise, we are done.
1674 	 */
1675 	if (ifma->ifma_protospec != 0)
1676 		return ifma->ifma_protospec;
1677 
1678 	/* XXX - if_addmulti uses M_WAITOK.  Can this really be called
1679 	   at interrupt time?  If so, need to fix if_addmulti. XXX */
1680 	in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1681 	if (in6m == NULL) {
1682 		splx(s);
1683 		return (NULL);
1684 	}
1685 
1686 	bzero(in6m, sizeof *in6m);
1687 	in6m->in6m_addr = *maddr6;
1688 	in6m->in6m_ifp = ifp;
1689 	in6m->in6m_ifma = ifma;
1690 	ifma->ifma_protospec = in6m;
1691 	LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
1692 
1693 	/*
1694 	 * Let MLD6 know that we have joined a new IP6 multicast
1695 	 * group.
1696 	 */
1697 	mld6_start_listening(in6m);
1698 	splx(s);
1699 	return(in6m);
1700 }
1701 
1702 /*
1703  * Delete a multicast address record.
1704  */
1705 void
1706 in6_delmulti(in6m)
1707 	struct in6_multi *in6m;
1708 {
1709 	struct ifmultiaddr *ifma = in6m->in6m_ifma;
1710 	int	s = splnet();
1711 
1712 	if (ifma->ifma_refcount == 1) {
1713 		/*
1714 		 * No remaining claims to this record; let MLD6 know
1715 		 * that we are leaving the multicast group.
1716 		 */
1717 		mld6_stop_listening(in6m);
1718 		ifma->ifma_protospec = 0;
1719 		LIST_REMOVE(in6m, in6m_entry);
1720 		free(in6m, M_IPMADDR);
1721 	}
1722 	/* XXX - should be separate API for when we have an ifma? */
1723 	if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
1724 	splx(s);
1725 }
1726 
1727 /*
1728  * Find an IPv6 interface link-local address specific to an interface.
1729  */
1730 struct in6_ifaddr *
1731 in6ifa_ifpforlinklocal(ifp, ignoreflags)
1732 	struct ifnet *ifp;
1733 	int ignoreflags;
1734 {
1735 	struct ifaddr *ifa;
1736 
1737 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1738 	{
1739 		if (ifa->ifa_addr == NULL)
1740 			continue;	/* just for safety */
1741 		if (ifa->ifa_addr->sa_family != AF_INET6)
1742 			continue;
1743 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1744 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1745 			     ignoreflags) != 0)
1746 				continue;
1747 			break;
1748 		}
1749 	}
1750 
1751 	return((struct in6_ifaddr *)ifa);
1752 }
1753 
1754 
1755 /*
1756  * find the internet address corresponding to a given interface and address.
1757  */
1758 struct in6_ifaddr *
1759 in6ifa_ifpwithaddr(ifp, addr)
1760 	struct ifnet *ifp;
1761 	struct in6_addr *addr;
1762 {
1763 	struct ifaddr *ifa;
1764 
1765 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1766 	{
1767 		if (ifa->ifa_addr == NULL)
1768 			continue;	/* just for safety */
1769 		if (ifa->ifa_addr->sa_family != AF_INET6)
1770 			continue;
1771 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1772 			break;
1773 	}
1774 
1775 	return((struct in6_ifaddr *)ifa);
1776 }
1777 
1778 /*
1779  * Convert IP6 address to printable (loggable) representation.
1780  */
1781 static char digits[] = "0123456789abcdef";
1782 static int ip6round = 0;
1783 char *
1784 ip6_sprintf(addr)
1785 	const struct in6_addr *addr;
1786 {
1787 	static char ip6buf[8][48];
1788 	int i;
1789 	char *cp;
1790 	u_short *a = (u_short *)addr;
1791 	u_char *d;
1792 	int dcolon = 0;
1793 
1794 	ip6round = (ip6round + 1) & 7;
1795 	cp = ip6buf[ip6round];
1796 
1797 	for (i = 0; i < 8; i++) {
1798 		if (dcolon == 1) {
1799 			if (*a == 0) {
1800 				if (i == 7)
1801 					*cp++ = ':';
1802 				a++;
1803 				continue;
1804 			} else
1805 				dcolon = 2;
1806 		}
1807 		if (*a == 0) {
1808 			if (dcolon == 0 && *(a + 1) == 0) {
1809 				if (i == 0)
1810 					*cp++ = ':';
1811 				*cp++ = ':';
1812 				dcolon = 1;
1813 			} else {
1814 				*cp++ = '0';
1815 				*cp++ = ':';
1816 			}
1817 			a++;
1818 			continue;
1819 		}
1820 		d = (u_char *)a;
1821 		*cp++ = digits[*d >> 4];
1822 		*cp++ = digits[*d++ & 0xf];
1823 		*cp++ = digits[*d >> 4];
1824 		*cp++ = digits[*d & 0xf];
1825 		*cp++ = ':';
1826 		a++;
1827 	}
1828 	*--cp = 0;
1829 	return(ip6buf[ip6round]);
1830 }
1831 
1832 int
1833 in6_localaddr(in6)
1834 	struct in6_addr *in6;
1835 {
1836 	struct in6_ifaddr *ia;
1837 
1838 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1839 		return 1;
1840 
1841 	for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1842 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1843 					      &ia->ia_prefixmask.sin6_addr))
1844 			return 1;
1845 
1846 	return (0);
1847 }
1848 
1849 int
1850 in6_is_addr_deprecated(sa6)
1851 	struct sockaddr_in6 *sa6;
1852 {
1853 	struct in6_ifaddr *ia;
1854 
1855 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1856 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1857 				       &sa6->sin6_addr) &&
1858 #ifdef SCOPEDROUTING
1859 		    ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
1860 #endif
1861 		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1862 			return(1); /* true */
1863 
1864 		/* XXX: do we still have to go thru the rest of the list? */
1865 	}
1866 
1867 	return(0);		/* false */
1868 }
1869 
1870 /*
1871  * return length of part which dst and src are equal
1872  * hard coding...
1873  */
1874 int
1875 in6_matchlen(src, dst)
1876 struct in6_addr *src, *dst;
1877 {
1878 	int match = 0;
1879 	u_char *s = (u_char *)src, *d = (u_char *)dst;
1880 	u_char *lim = s + 16, r;
1881 
1882 	while (s < lim)
1883 		if ((r = (*d++ ^ *s++)) != 0) {
1884 			while (r < 128) {
1885 				match++;
1886 				r <<= 1;
1887 			}
1888 			break;
1889 		} else
1890 			match += 8;
1891 	return match;
1892 }
1893 
1894 /* XXX: to be scope conscious */
1895 int
1896 in6_are_prefix_equal(p1, p2, len)
1897 	struct in6_addr *p1, *p2;
1898 	int len;
1899 {
1900 	int bytelen, bitlen;
1901 
1902 	/* sanity check */
1903 	if (0 > len || len > 128) {
1904 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
1905 		    len);
1906 		return(0);
1907 	}
1908 
1909 	bytelen = len / 8;
1910 	bitlen = len % 8;
1911 
1912 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
1913 		return(0);
1914 	if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
1915 	    p2->s6_addr[bytelen] >> (8 - bitlen))
1916 		return(0);
1917 
1918 	return(1);
1919 }
1920 
1921 void
1922 in6_prefixlen2mask(maskp, len)
1923 	struct in6_addr *maskp;
1924 	int len;
1925 {
1926 	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
1927 	int bytelen, bitlen, i;
1928 
1929 	/* sanity check */
1930 	if (0 > len || len > 128) {
1931 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
1932 		    len);
1933 		return;
1934 	}
1935 
1936 	bzero(maskp, sizeof(*maskp));
1937 	bytelen = len / 8;
1938 	bitlen = len % 8;
1939 	for (i = 0; i < bytelen; i++)
1940 		maskp->s6_addr[i] = 0xff;
1941 	if (bitlen)
1942 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
1943 }
1944 
1945 /*
1946  * return the best address out of the same scope
1947  */
1948 struct in6_ifaddr *
1949 in6_ifawithscope(oifp, dst)
1950 	struct ifnet *oifp;
1951 	struct in6_addr *dst;
1952 {
1953 	int dst_scope =	in6_addrscope(dst), src_scope, best_scope = 0;
1954 	int blen = -1;
1955 	struct ifaddr *ifa;
1956 	struct ifnet *ifp;
1957 	struct in6_ifaddr *ifa_best = NULL;
1958 
1959 	if (oifp == NULL) {
1960 #if 0
1961 		printf("in6_ifawithscope: output interface is not specified\n");
1962 #endif
1963 		return(NULL);
1964 	}
1965 
1966 	/*
1967 	 * We search for all addresses on all interfaces from the beginning.
1968 	 * Comparing an interface with the outgoing interface will be done
1969 	 * only at the final stage of tiebreaking.
1970 	 */
1971 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1972 	{
1973 		/*
1974 		 * We can never take an address that breaks the scope zone
1975 		 * of the destination.
1976 		 */
1977 		if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
1978 			continue;
1979 
1980 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1981 		{
1982 			int tlen = -1, dscopecmp, bscopecmp, matchcmp;
1983 
1984 			if (ifa->ifa_addr->sa_family != AF_INET6)
1985 				continue;
1986 
1987 			src_scope = in6_addrscope(IFA_IN6(ifa));
1988 
1989 			/*
1990 			 * Don't use an address before completing DAD
1991 			 * nor a duplicated address.
1992 			 */
1993 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
1994 			    IN6_IFF_NOTREADY)
1995 				continue;
1996 
1997 			/* XXX: is there any case to allow anycasts? */
1998 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
1999 			    IN6_IFF_ANYCAST)
2000 				continue;
2001 
2002 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
2003 			    IN6_IFF_DETACHED)
2004 				continue;
2005 
2006 			/*
2007 			 * If this is the first address we find,
2008 			 * keep it anyway.
2009 			 */
2010 			if (ifa_best == NULL)
2011 				goto replace;
2012 
2013 			/*
2014 			 * ifa_best is never NULL beyond this line except
2015 			 * within the block labeled "replace".
2016 			 */
2017 
2018 			/*
2019 			 * If ifa_best has a smaller scope than dst and
2020 			 * the current address has a larger one than
2021 			 * (or equal to) dst, always replace ifa_best.
2022 			 * Also, if the current address has a smaller scope
2023 			 * than dst, ignore it unless ifa_best also has a
2024 			 * smaller scope.
2025 			 * Consequently, after the two if-clause below,
2026 			 * the followings must be satisfied:
2027 			 * (scope(src) < scope(dst) &&
2028 			 *  scope(best) < scope(dst))
2029 			 *  OR
2030 			 * (scope(best) >= scope(dst) &&
2031 			 *  scope(src) >= scope(dst))
2032 			 */
2033 			if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2034 			    IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2035 				goto replace; /* (A) */
2036 			if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2037 			    IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2038 				continue; /* (B) */
2039 
2040 			/*
2041 			 * A deprecated address SHOULD NOT be used in new
2042 			 * communications if an alternate (non-deprecated)
2043 			 * address is available and has sufficient scope.
2044 			 * RFC 2462, Section 5.5.4.
2045 			 */
2046 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
2047 			    IN6_IFF_DEPRECATED) {
2048 				/*
2049 				 * Ignore any deprecated addresses if
2050 				 * specified by configuration.
2051 				 */
2052 				if (!ip6_use_deprecated)
2053 					continue;
2054 
2055 				/*
2056 				 * If we have already found a non-deprecated
2057 				 * candidate, just ignore deprecated addresses.
2058 				 */
2059 				if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2060 				    == 0)
2061 					continue;
2062 			}
2063 
2064 			/*
2065 			 * A non-deprecated address is always preferred
2066 			 * to a deprecated one regardless of scopes and
2067 			 * address matching (Note invariants ensured by the
2068 			 * conditions (A) and (B) above.)
2069 			 */
2070 			if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2071 			    (((struct in6_ifaddr *)ifa)->ia6_flags &
2072 			     IN6_IFF_DEPRECATED) == 0)
2073 				goto replace;
2074 
2075 			/*
2076 			 * When we use temporary addresses described in
2077 			 * RFC 3041, we prefer temporary addresses to
2078 			 * public autoconf addresses.  Again, note the
2079 			 * invariants from (A) and (B).  Also note that we
2080 			 * don't have any preference between static addresses
2081 			 * and autoconf addresses (despite of whether or not
2082 			 * the latter is temporary or public.)
2083 			 */
2084 			if (ip6_use_tempaddr) {
2085 				struct in6_ifaddr *ifat;
2086 
2087 				ifat = (struct in6_ifaddr *)ifa;
2088 				if ((ifa_best->ia6_flags &
2089 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2090 				     == IN6_IFF_AUTOCONF &&
2091 				    (ifat->ia6_flags &
2092 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2093 				     == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) {
2094 					goto replace;
2095 				}
2096 				if ((ifa_best->ia6_flags &
2097 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2098 				    == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) &&
2099 				    (ifat->ia6_flags &
2100 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2101 				     == IN6_IFF_AUTOCONF) {
2102 					continue;
2103 				}
2104 			}
2105 
2106 			/*
2107 			 * At this point, we have two cases:
2108 			 * 1. we are looking at a non-deprecated address,
2109 			 *    and ifa_best is also non-deprecated.
2110 			 * 2. we are looking at a deprecated address,
2111 			 *    and ifa_best is also deprecated.
2112 			 * Also, we do not have to consider a case where
2113 			 * the scope of if_best is larger(smaller) than dst and
2114 			 * the scope of the current address is smaller(larger)
2115 			 * than dst. Such a case has already been covered.
2116 			 * Tiebreaking is done according to the following
2117 			 * items:
2118 			 * - the scope comparison between the address and
2119 			 *   dst (dscopecmp)
2120 			 * - the scope comparison between the address and
2121 			 *   ifa_best (bscopecmp)
2122 			 * - if the address match dst longer than ifa_best
2123 			 *   (matchcmp)
2124 			 * - if the address is on the outgoing I/F (outI/F)
2125 			 *
2126 			 * Roughly speaking, the selection policy is
2127 			 * - the most important item is scope. The same scope
2128 			 *   is best. Then search for a larger scope.
2129 			 *   Smaller scopes are the last resort.
2130 			 * - A deprecated address is chosen only when we have
2131 			 *   no address that has an enough scope, but is
2132 			 *   prefered to any addresses of smaller scopes
2133 			 *   (this must be already done above.)
2134 			 * - addresses on the outgoing I/F are preferred to
2135 			 *   ones on other interfaces if none of above
2136 			 *   tiebreaks.  In the table below, the column "bI"
2137 			 *   means if the best_ifa is on the outgoing
2138 			 *   interface, and the column "sI" means if the ifa
2139 			 *   is on the outgoing interface.
2140 			 * - If there is no other reasons to choose one,
2141 			 *   longest address match against dst is considered.
2142 			 *
2143 			 * The precise decision table is as follows:
2144 			 * dscopecmp bscopecmp    match  bI oI | replace?
2145 			 *       N/A     equal      N/A   Y  N |   No (1)
2146 			 *       N/A     equal      N/A   N  Y |  Yes (2)
2147 			 *       N/A     equal   larger    N/A |  Yes (3)
2148 			 *       N/A     equal  !larger    N/A |   No (4)
2149 			 *    larger    larger      N/A    N/A |   No (5)
2150 			 *    larger   smaller      N/A    N/A |  Yes (6)
2151 			 *   smaller    larger      N/A    N/A |  Yes (7)
2152 			 *   smaller   smaller      N/A    N/A |   No (8)
2153 			 *     equal   smaller      N/A    N/A |  Yes (9)
2154 			 *     equal    larger       (already done at A above)
2155 			 */
2156 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2157 			bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2158 
2159 			if (bscopecmp == 0) {
2160 				struct ifnet *bifp = ifa_best->ia_ifp;
2161 
2162 				if (bifp == oifp && ifp != oifp) /* (1) */
2163 					continue;
2164 				if (bifp != oifp && ifp == oifp) /* (2) */
2165 					goto replace;
2166 
2167 				/*
2168 				 * Both bifp and ifp are on the outgoing
2169 				 * interface, or both two are on a different
2170 				 * interface from the outgoing I/F.
2171 				 * now we need address matching against dst
2172 				 * for tiebreaking.
2173 				 */
2174 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2175 				matchcmp = tlen - blen;
2176 				if (matchcmp > 0) /* (3) */
2177 					goto replace;
2178 				continue; /* (4) */
2179 			}
2180 			if (dscopecmp > 0) {
2181 				if (bscopecmp > 0) /* (5) */
2182 					continue;
2183 				goto replace; /* (6) */
2184 			}
2185 			if (dscopecmp < 0) {
2186 				if (bscopecmp > 0) /* (7) */
2187 					goto replace;
2188 				continue; /* (8) */
2189 			}
2190 
2191 			/* now dscopecmp must be 0 */
2192 			if (bscopecmp < 0)
2193 				goto replace; /* (9) */
2194 
2195 		  replace:
2196 			ifa_best = (struct in6_ifaddr *)ifa;
2197 			blen = tlen >= 0 ? tlen :
2198 				in6_matchlen(IFA_IN6(ifa), dst);
2199 			best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2200 		}
2201 	}
2202 
2203 	/* count statistics for future improvements */
2204 	if (ifa_best == NULL)
2205 		ip6stat.ip6s_sources_none++;
2206 	else {
2207 		if (oifp == ifa_best->ia_ifp)
2208 			ip6stat.ip6s_sources_sameif[best_scope]++;
2209 		else
2210 			ip6stat.ip6s_sources_otherif[best_scope]++;
2211 
2212 		if (best_scope == dst_scope)
2213 			ip6stat.ip6s_sources_samescope[best_scope]++;
2214 		else
2215 			ip6stat.ip6s_sources_otherscope[best_scope]++;
2216 
2217 		if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2218 			ip6stat.ip6s_sources_deprecated[best_scope]++;
2219 	}
2220 
2221 	return(ifa_best);
2222 }
2223 
2224 /*
2225  * return the best address out of the same scope. if no address was
2226  * found, return the first valid address from designated IF.
2227  */
2228 struct in6_ifaddr *
2229 in6_ifawithifp(ifp, dst)
2230 	struct ifnet *ifp;
2231 	struct in6_addr *dst;
2232 {
2233 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2234 	struct ifaddr *ifa;
2235 	struct in6_ifaddr *besta = 0;
2236 	struct in6_ifaddr *dep[2];	/*last-resort: deprecated*/
2237 
2238 	dep[0] = dep[1] = NULL;
2239 
2240 	/*
2241 	 * We first look for addresses in the same scope.
2242 	 * If there is one, return it.
2243 	 * If two or more, return one which matches the dst longest.
2244 	 * If none, return one of global addresses assigned other ifs.
2245 	 */
2246 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2247 	{
2248 		if (ifa->ifa_addr->sa_family != AF_INET6)
2249 			continue;
2250 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2251 			continue; /* XXX: is there any case to allow anycast? */
2252 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2253 			continue; /* don't use this interface */
2254 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2255 			continue;
2256 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2257 			if (ip6_use_deprecated)
2258 				dep[0] = (struct in6_ifaddr *)ifa;
2259 			continue;
2260 		}
2261 
2262 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2263 			/*
2264 			 * call in6_matchlen() as few as possible
2265 			 */
2266 			if (besta) {
2267 				if (blen == -1)
2268 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2269 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2270 				if (tlen > blen) {
2271 					blen = tlen;
2272 					besta = (struct in6_ifaddr *)ifa;
2273 				}
2274 			} else
2275 				besta = (struct in6_ifaddr *)ifa;
2276 		}
2277 	}
2278 	if (besta)
2279 		return(besta);
2280 
2281 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2282 	{
2283 		if (ifa->ifa_addr->sa_family != AF_INET6)
2284 			continue;
2285 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2286 			continue; /* XXX: is there any case to allow anycast? */
2287 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2288 			continue; /* don't use this interface */
2289 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2290 			continue;
2291 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2292 			if (ip6_use_deprecated)
2293 				dep[1] = (struct in6_ifaddr *)ifa;
2294 			continue;
2295 		}
2296 
2297 		return (struct in6_ifaddr *)ifa;
2298 	}
2299 
2300 	/* use the last-resort values, that are, deprecated addresses */
2301 	if (dep[0])
2302 		return dep[0];
2303 	if (dep[1])
2304 		return dep[1];
2305 
2306 	return NULL;
2307 }
2308 
2309 /*
2310  * perform DAD when interface becomes IFF_UP.
2311  */
2312 void
2313 in6_if_up(ifp)
2314 	struct ifnet *ifp;
2315 {
2316 	struct ifaddr *ifa;
2317 	struct in6_ifaddr *ia;
2318 	int dad_delay;		/* delay ticks before DAD output */
2319 
2320 	/*
2321 	 * special cases, like 6to4, are handled in in6_ifattach
2322 	 */
2323 	in6_ifattach(ifp, NULL);
2324 
2325 	dad_delay = 0;
2326 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2327 	{
2328 		if (ifa->ifa_addr->sa_family != AF_INET6)
2329 			continue;
2330 		ia = (struct in6_ifaddr *)ifa;
2331 		if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2332 			nd6_dad_start(ifa, &dad_delay);
2333 	}
2334 }
2335 
2336 int
2337 in6if_do_dad(ifp)
2338 	struct ifnet *ifp;
2339 {
2340 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2341 		return(0);
2342 
2343 	switch (ifp->if_type) {
2344 #ifdef IFT_DUMMY
2345 	case IFT_DUMMY:
2346 #endif
2347 	case IFT_FAITH:
2348 		/*
2349 		 * These interfaces do not have the IFF_LOOPBACK flag,
2350 		 * but loop packets back.  We do not have to do DAD on such
2351 		 * interfaces.  We should even omit it, because loop-backed
2352 		 * NS would confuse the DAD procedure.
2353 		 */
2354 		return(0);
2355 	default:
2356 		/*
2357 		 * Our DAD routine requires the interface up and running.
2358 		 * However, some interfaces can be up before the RUNNING
2359 		 * status.  Additionaly, users may try to assign addresses
2360 		 * before the interface becomes up (or running).
2361 		 * We simply skip DAD in such a case as a work around.
2362 		 * XXX: we should rather mark "tentative" on such addresses,
2363 		 * and do DAD after the interface becomes ready.
2364 		 */
2365 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2366 		    (IFF_UP|IFF_RUNNING))
2367 			return(0);
2368 
2369 		return(1);
2370 	}
2371 }
2372 
2373 /*
2374  * Calculate max IPv6 MTU through all the interfaces and store it
2375  * to in6_maxmtu.
2376  */
2377 void
2378 in6_setmaxmtu()
2379 {
2380 	unsigned long maxmtu = 0;
2381 	struct ifnet *ifp;
2382 
2383 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2384 	{
2385 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2386 		    nd_ifinfo[ifp->if_index].linkmtu > maxmtu)
2387 			maxmtu =  nd_ifinfo[ifp->if_index].linkmtu;
2388 	}
2389 	if (maxmtu)	/* update only when maxmtu is positive */
2390 		in6_maxmtu = maxmtu;
2391 }
2392 
2393 /*
2394  * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
2395  * v4 mapped addr or v4 compat addr
2396  */
2397 void
2398 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2399 {
2400 	bzero(sin, sizeof(*sin));
2401 	sin->sin_len = sizeof(struct sockaddr_in);
2402 	sin->sin_family = AF_INET;
2403 	sin->sin_port = sin6->sin6_port;
2404 	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2405 }
2406 
2407 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2408 void
2409 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2410 {
2411 	bzero(sin6, sizeof(*sin6));
2412 	sin6->sin6_len = sizeof(struct sockaddr_in6);
2413 	sin6->sin6_family = AF_INET6;
2414 	sin6->sin6_port = sin->sin_port;
2415 	sin6->sin6_addr.s6_addr32[0] = 0;
2416 	sin6->sin6_addr.s6_addr32[1] = 0;
2417 	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2418 	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2419 }
2420 
2421 /* Convert sockaddr_in6 into sockaddr_in. */
2422 void
2423 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2424 {
2425 	struct sockaddr_in *sin_p;
2426 	struct sockaddr_in6 sin6;
2427 
2428 	/*
2429 	 * Save original sockaddr_in6 addr and convert it
2430 	 * to sockaddr_in.
2431 	 */
2432 	sin6 = *(struct sockaddr_in6 *)nam;
2433 	sin_p = (struct sockaddr_in *)nam;
2434 	in6_sin6_2_sin(sin_p, &sin6);
2435 }
2436 
2437 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2438 void
2439 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2440 {
2441 	struct sockaddr_in *sin_p;
2442 	struct sockaddr_in6 *sin6_p;
2443 
2444 	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2445 	       M_WAITOK);
2446 	sin_p = (struct sockaddr_in *)*nam;
2447 	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2448 	FREE(*nam, M_SONAME);
2449 	*nam = (struct sockaddr *)sin6_p;
2450 }
2451