1 /* $FreeBSD$ */ 2 /* $KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)in.c 8.2 (Berkeley) 11/15/93 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 71 #include <sys/param.h> 72 #include <sys/errno.h> 73 #include <sys/malloc.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/time.h> 80 #include <sys/kernel.h> 81 #include <sys/syslog.h> 82 83 #include <net/if.h> 84 #include <net/if_types.h> 85 #include <net/route.h> 86 #include <net/if_dl.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/if_ether.h> 91 #ifndef SCOPEDROUTING 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/in_pcb.h> 95 #endif 96 97 #include <netinet6/nd6.h> 98 #include <netinet/ip6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/mld6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/in6_ifattach.h> 103 #include <netinet6/scope6_var.h> 104 #ifndef SCOPEDROUTING 105 #include <netinet6/in6_pcb.h> 106 #endif 107 108 #include "gif.h" 109 #if NGIF > 0 110 #include <net/if_gif.h> 111 #endif 112 113 #include <net/net_osdep.h> 114 115 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); 116 117 /* 118 * Definitions of some costant IP6 addresses. 119 */ 120 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 121 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 122 const struct in6_addr in6addr_nodelocal_allnodes = 123 IN6ADDR_NODELOCAL_ALLNODES_INIT; 124 const struct in6_addr in6addr_linklocal_allnodes = 125 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 126 const struct in6_addr in6addr_linklocal_allrouters = 127 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 128 129 const struct in6_addr in6mask0 = IN6MASK0; 130 const struct in6_addr in6mask32 = IN6MASK32; 131 const struct in6_addr in6mask64 = IN6MASK64; 132 const struct in6_addr in6mask96 = IN6MASK96; 133 const struct in6_addr in6mask128 = IN6MASK128; 134 135 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 136 0, 0, IN6ADDR_ANY_INIT, 0}; 137 138 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 139 struct ifnet *, struct proc *)); 140 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 141 struct sockaddr_in6 *, int)); 142 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 143 144 struct in6_multihead in6_multihead; /* XXX BSS initialization */ 145 146 /* 147 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 148 * This routine does actual work. 149 */ 150 static void 151 in6_ifloop_request(int cmd, struct ifaddr *ifa) 152 { 153 struct sockaddr_in6 all1_sa; 154 struct rtentry *nrt = NULL; 155 int e; 156 157 bzero(&all1_sa, sizeof(all1_sa)); 158 all1_sa.sin6_family = AF_INET6; 159 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 160 all1_sa.sin6_addr = in6mask128; 161 162 /* 163 * We specify the address itself as the gateway, and set the 164 * RTF_LLINFO flag, so that the corresponding host route would have 165 * the flag, and thus applications that assume traditional behavior 166 * would be happy. Note that we assume the caller of the function 167 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 168 * which changes the outgoing interface to the loopback interface. 169 */ 170 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 171 (struct sockaddr *)&all1_sa, 172 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 173 if (e != 0) { 174 log(LOG_ERR, "in6_ifloop_request: " 175 "%s operation failed for %s (errno=%d)\n", 176 cmd == RTM_ADD ? "ADD" : "DELETE", 177 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 178 e); 179 } 180 181 /* 182 * Make sure rt_ifa be equal to IFA, the second argument of the 183 * function. 184 * We need this because when we refer to rt_ifa->ia6_flags in 185 * ip6_input, we assume that the rt_ifa points to the address instead 186 * of the loopback address. 187 */ 188 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 189 IFAFREE(nrt->rt_ifa); 190 IFAREF(ifa); 191 nrt->rt_ifa = ifa; 192 } 193 194 /* 195 * Report the addition/removal of the address to the routing socket. 196 * XXX: since we called rtinit for a p2p interface with a destination, 197 * we end up reporting twice in such a case. Should we rather 198 * omit the second report? 199 */ 200 if (nrt) { 201 rt_newaddrmsg(cmd, ifa, e, nrt); 202 if (cmd == RTM_DELETE) { 203 if (nrt->rt_refcnt <= 0) { 204 /* XXX: we should free the entry ourselves. */ 205 nrt->rt_refcnt++; 206 rtfree(nrt); 207 } 208 } else { 209 /* the cmd must be RTM_ADD here */ 210 nrt->rt_refcnt--; 211 } 212 } 213 } 214 215 /* 216 * Add ownaddr as loopback rtentry. We previously add the route only if 217 * necessary (ex. on a p2p link). However, since we now manage addresses 218 * separately from prefixes, we should always add the route. We can't 219 * rely on the cloning mechanism from the corresponding interface route 220 * any more. 221 */ 222 static void 223 in6_ifaddloop(struct ifaddr *ifa) 224 { 225 struct rtentry *rt; 226 227 /* If there is no loopback entry, allocate one. */ 228 rt = rtalloc1(ifa->ifa_addr, 0, 0); 229 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 230 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 231 in6_ifloop_request(RTM_ADD, ifa); 232 if (rt) 233 rt->rt_refcnt--; 234 } 235 236 /* 237 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 238 * if it exists. 239 */ 240 static void 241 in6_ifremloop(struct ifaddr *ifa) 242 { 243 struct in6_ifaddr *ia; 244 struct rtentry *rt; 245 int ia_count = 0; 246 247 /* 248 * Some of BSD variants do not remove cloned routes 249 * from an interface direct route, when removing the direct route 250 * (see comments in net/net_osdep.h). Even for variants that do remove 251 * cloned routes, they could fail to remove the cloned routes when 252 * we handle multple addresses that share a common prefix. 253 * So, we should remove the route corresponding to the deleted address 254 * regardless of the result of in6_is_ifloop_auto(). 255 */ 256 257 /* 258 * Delete the entry only if exact one ifa exists. More than one ifa 259 * can exist if we assign a same single address to multiple 260 * (probably p2p) interfaces. 261 * XXX: we should avoid such a configuration in IPv6... 262 */ 263 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 264 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 265 ia_count++; 266 if (ia_count > 1) 267 break; 268 } 269 } 270 271 if (ia_count == 1) { 272 /* 273 * Before deleting, check if a corresponding loopbacked host 274 * route surely exists. With this check, we can avoid to 275 * delete an interface direct route whose destination is same 276 * as the address being removed. This can happen when remofing 277 * a subnet-router anycast address on an interface attahced 278 * to a shared medium. 279 */ 280 rt = rtalloc1(ifa->ifa_addr, 0, 0); 281 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 && 282 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 283 rt->rt_refcnt--; 284 in6_ifloop_request(RTM_DELETE, ifa); 285 } 286 } 287 } 288 289 int 290 in6_ifindex2scopeid(idx) 291 int idx; 292 { 293 struct ifnet *ifp; 294 struct ifaddr *ifa; 295 struct sockaddr_in6 *sin6; 296 297 if (idx < 0 || if_index < idx) 298 return -1; 299 ifp = ifindex2ifnet[idx]; 300 301 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 302 { 303 if (ifa->ifa_addr->sa_family != AF_INET6) 304 continue; 305 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 306 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 307 return sin6->sin6_scope_id & 0xffff; 308 } 309 310 return -1; 311 } 312 313 int 314 in6_mask2len(mask, lim0) 315 struct in6_addr *mask; 316 u_char *lim0; 317 { 318 int x = 0, y; 319 u_char *lim = lim0, *p; 320 321 if (lim0 == NULL || 322 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */ 323 lim = (u_char *)mask + sizeof(*mask); 324 for (p = (u_char *)mask; p < lim; x++, p++) { 325 if (*p != 0xff) 326 break; 327 } 328 y = 0; 329 if (p < lim) { 330 for (y = 0; y < 8; y++) { 331 if ((*p & (0x80 >> y)) == 0) 332 break; 333 } 334 } 335 336 /* 337 * when the limit pointer is given, do a stricter check on the 338 * remaining bits. 339 */ 340 if (p < lim) { 341 if (y != 0 && (*p & (0x00ff >> y)) != 0) 342 return(-1); 343 for (p = p + 1; p < lim; p++) 344 if (*p != 0) 345 return(-1); 346 } 347 348 return x * 8 + y; 349 } 350 351 void 352 in6_len2mask(mask, len) 353 struct in6_addr *mask; 354 int len; 355 { 356 int i; 357 358 bzero(mask, sizeof(*mask)); 359 for (i = 0; i < len / 8; i++) 360 mask->s6_addr8[i] = 0xff; 361 if (len % 8) 362 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; 363 } 364 365 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 366 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 367 368 int 369 in6_control(so, cmd, data, ifp, p) 370 struct socket *so; 371 u_long cmd; 372 caddr_t data; 373 struct ifnet *ifp; 374 struct proc *p; 375 { 376 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 377 struct in6_ifaddr *ia = NULL; 378 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 379 int privileged; 380 381 privileged = 0; 382 if (p == NULL || !suser(p)) 383 privileged++; 384 385 switch (cmd) { 386 case SIOCGETSGCNT_IN6: 387 case SIOCGETMIFCNT_IN6: 388 return (mrt6_ioctl(cmd, data)); 389 } 390 391 if (ifp == NULL) 392 return(EOPNOTSUPP); 393 394 switch (cmd) { 395 case SIOCSNDFLUSH_IN6: 396 case SIOCSPFXFLUSH_IN6: 397 case SIOCSRTRFLUSH_IN6: 398 case SIOCSDEFIFACE_IN6: 399 case SIOCSIFINFO_FLAGS: 400 if (!privileged) 401 return(EPERM); 402 /*fall through*/ 403 case OSIOCGIFINFO_IN6: 404 case SIOCGIFINFO_IN6: 405 case SIOCGDRLST_IN6: 406 case SIOCGPRLST_IN6: 407 case SIOCGNBRINFO_IN6: 408 case SIOCGDEFIFACE_IN6: 409 return(nd6_ioctl(cmd, data, ifp)); 410 } 411 412 switch (cmd) { 413 case SIOCSIFPREFIX_IN6: 414 case SIOCDIFPREFIX_IN6: 415 case SIOCAIFPREFIX_IN6: 416 case SIOCCIFPREFIX_IN6: 417 case SIOCSGIFPREFIX_IN6: 418 case SIOCGIFPREFIX_IN6: 419 log(LOG_NOTICE, 420 "prefix ioctls are now invalidated. " 421 "please use ifconfig.\n"); 422 return(EOPNOTSUPP); 423 } 424 425 switch(cmd) { 426 case SIOCSSCOPE6: 427 if (!privileged) 428 return(EPERM); 429 return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id)); 430 break; 431 case SIOCGSCOPE6: 432 return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id)); 433 break; 434 case SIOCGSCOPE6DEF: 435 return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id)); 436 break; 437 } 438 439 switch (cmd) { 440 case SIOCALIFADDR: 441 case SIOCDLIFADDR: 442 if (!privileged) 443 return(EPERM); 444 /*fall through*/ 445 case SIOCGLIFADDR: 446 return in6_lifaddr_ioctl(so, cmd, data, ifp, p); 447 } 448 449 /* 450 * Find address for this interface, if it exists. 451 */ 452 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ 453 struct sockaddr_in6 *sa6 = 454 (struct sockaddr_in6 *)&ifra->ifra_addr; 455 456 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 457 if (sa6->sin6_addr.s6_addr16[1] == 0) { 458 /* link ID is not embedded by the user */ 459 sa6->sin6_addr.s6_addr16[1] = 460 htons(ifp->if_index); 461 } else if (sa6->sin6_addr.s6_addr16[1] != 462 htons(ifp->if_index)) { 463 return(EINVAL); /* link ID contradicts */ 464 } 465 if (sa6->sin6_scope_id) { 466 if (sa6->sin6_scope_id != 467 (u_int32_t)ifp->if_index) 468 return(EINVAL); 469 sa6->sin6_scope_id = 0; /* XXX: good way? */ 470 } 471 } 472 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); 473 } 474 475 switch (cmd) { 476 case SIOCSIFADDR_IN6: 477 case SIOCSIFDSTADDR_IN6: 478 case SIOCSIFNETMASK_IN6: 479 /* 480 * Since IPv6 allows a node to assign multiple addresses 481 * on a single interface, SIOCSIFxxx ioctls are not suitable 482 * and should be unused. 483 */ 484 /* we decided to obsolete this command (20000704) */ 485 return(EINVAL); 486 487 case SIOCDIFADDR_IN6: 488 /* 489 * for IPv4, we look for existing in_ifaddr here to allow 490 * "ifconfig if0 delete" to remove first IPv4 address on the 491 * interface. For IPv6, as the spec allow multiple interface 492 * address from the day one, we consider "remove the first one" 493 * semantics to be not preferable. 494 */ 495 if (ia == NULL) 496 return(EADDRNOTAVAIL); 497 /* FALLTHROUGH */ 498 case SIOCAIFADDR_IN6: 499 /* 500 * We always require users to specify a valid IPv6 address for 501 * the corresponding operation. 502 */ 503 if (ifra->ifra_addr.sin6_family != AF_INET6 || 504 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 505 return(EAFNOSUPPORT); 506 if (!privileged) 507 return(EPERM); 508 509 break; 510 511 case SIOCGIFADDR_IN6: 512 /* This interface is basically deprecated. use SIOCGIFCONF. */ 513 /* fall through */ 514 case SIOCGIFAFLAG_IN6: 515 case SIOCGIFNETMASK_IN6: 516 case SIOCGIFDSTADDR_IN6: 517 case SIOCGIFALIFETIME_IN6: 518 /* must think again about its semantics */ 519 if (ia == NULL) 520 return(EADDRNOTAVAIL); 521 break; 522 case SIOCSIFALIFETIME_IN6: 523 { 524 struct in6_addrlifetime *lt; 525 526 if (!privileged) 527 return(EPERM); 528 if (ia == NULL) 529 return(EADDRNOTAVAIL); 530 /* sanity for overflow - beware unsigned */ 531 lt = &ifr->ifr_ifru.ifru_lifetime; 532 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 533 && lt->ia6t_vltime + time_second < time_second) { 534 return EINVAL; 535 } 536 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 537 && lt->ia6t_pltime + time_second < time_second) { 538 return EINVAL; 539 } 540 break; 541 } 542 } 543 544 switch (cmd) { 545 546 case SIOCGIFADDR_IN6: 547 ifr->ifr_addr = ia->ia_addr; 548 break; 549 550 case SIOCGIFDSTADDR_IN6: 551 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 552 return(EINVAL); 553 /* 554 * XXX: should we check if ifa_dstaddr is NULL and return 555 * an error? 556 */ 557 ifr->ifr_dstaddr = ia->ia_dstaddr; 558 break; 559 560 case SIOCGIFNETMASK_IN6: 561 ifr->ifr_addr = ia->ia_prefixmask; 562 break; 563 564 case SIOCGIFAFLAG_IN6: 565 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 566 break; 567 568 case SIOCGIFSTAT_IN6: 569 if (ifp == NULL) 570 return EINVAL; 571 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax 572 || in6_ifstat[ifp->if_index] == NULL) { 573 /* return EAFNOSUPPORT? */ 574 bzero(&ifr->ifr_ifru.ifru_stat, 575 sizeof(ifr->ifr_ifru.ifru_stat)); 576 } else 577 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index]; 578 break; 579 580 case SIOCGIFSTAT_ICMP6: 581 if (ifp == NULL) 582 return EINVAL; 583 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax || 584 icmp6_ifstat[ifp->if_index] == NULL) { 585 /* return EAFNOSUPPORT? */ 586 bzero(&ifr->ifr_ifru.ifru_stat, 587 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 588 } else 589 ifr->ifr_ifru.ifru_icmp6stat = 590 *icmp6_ifstat[ifp->if_index]; 591 break; 592 593 case SIOCGIFALIFETIME_IN6: 594 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 595 break; 596 597 case SIOCSIFALIFETIME_IN6: 598 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 599 /* for sanity */ 600 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 601 ia->ia6_lifetime.ia6t_expire = 602 time_second + ia->ia6_lifetime.ia6t_vltime; 603 } else 604 ia->ia6_lifetime.ia6t_expire = 0; 605 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 606 ia->ia6_lifetime.ia6t_preferred = 607 time_second + ia->ia6_lifetime.ia6t_pltime; 608 } else 609 ia->ia6_lifetime.ia6t_preferred = 0; 610 break; 611 612 case SIOCAIFADDR_IN6: 613 { 614 int i, error = 0; 615 struct nd_prefix pr0, *pr; 616 617 /* 618 * first, make or update the interface address structure, 619 * and link it to the list. 620 */ 621 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 622 return(error); 623 624 /* 625 * then, make the prefix on-link on the interface. 626 * XXX: we'd rather create the prefix before the address, but 627 * we need at least one address to install the corresponding 628 * interface route, so we configure the address first. 629 */ 630 631 /* 632 * convert mask to prefix length (prefixmask has already 633 * been validated in in6_update_ifa(). 634 */ 635 bzero(&pr0, sizeof(pr0)); 636 pr0.ndpr_ifp = ifp; 637 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 638 NULL); 639 if (pr0.ndpr_plen == 128) 640 break; /* we don't need to install a host route. */ 641 pr0.ndpr_prefix = ifra->ifra_addr; 642 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 643 /* apply the mask for safety. */ 644 for (i = 0; i < 4; i++) { 645 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 646 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 647 } 648 /* 649 * XXX: since we don't have enough APIs, we just set inifinity 650 * to lifetimes. They can be overridden by later advertised 651 * RAs (when accept_rtadv is non 0), but we'd rather intend 652 * such a behavior. 653 */ 654 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 655 pr0.ndpr_raf_auto = 656 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 657 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 658 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 659 660 /* add the prefix if there's one. */ 661 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 662 /* 663 * nd6_prelist_add will install the corresponding 664 * interface route. 665 */ 666 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 667 return(error); 668 if (pr == NULL) { 669 log(LOG_ERR, "nd6_prelist_add succedded but " 670 "no prefix\n"); 671 return(EINVAL); /* XXX panic here? */ 672 } 673 } 674 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 675 == NULL) { 676 /* XXX: this should not happen! */ 677 log(LOG_ERR, "in6_control: addition succeeded, but" 678 " no ifaddr\n"); 679 } else { 680 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 681 ia->ia6_ndpr == NULL) { /* new autoconfed addr */ 682 ia->ia6_ndpr = pr; 683 pr->ndpr_refcnt++; 684 685 /* 686 * If this is the first autoconf address from 687 * the prefix, create a temporary address 688 * as well (when specified). 689 */ 690 if (ip6_use_tempaddr && 691 pr->ndpr_refcnt == 1) { 692 int e; 693 if ((e = in6_tmpifadd(ia, 1)) != 0) { 694 log(LOG_NOTICE, "in6_control: " 695 "failed to create a " 696 "temporary address, " 697 "errno=%d\n", 698 e); 699 } 700 } 701 } 702 703 /* 704 * this might affect the status of autoconfigured 705 * addresses, that is, this address might make 706 * other addresses detached. 707 */ 708 pfxlist_onlink_check(); 709 } 710 break; 711 } 712 713 case SIOCDIFADDR_IN6: 714 { 715 int i = 0; 716 struct nd_prefix pr0, *pr; 717 718 /* 719 * If the address being deleted is the only one that owns 720 * the corresponding prefix, expire the prefix as well. 721 * XXX: theoretically, we don't have to warry about such 722 * relationship, since we separate the address management 723 * and the prefix management. We do this, however, to provide 724 * as much backward compatibility as possible in terms of 725 * the ioctl operation. 726 */ 727 bzero(&pr0, sizeof(pr0)); 728 pr0.ndpr_ifp = ifp; 729 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 730 NULL); 731 if (pr0.ndpr_plen == 128) 732 goto purgeaddr; 733 pr0.ndpr_prefix = ia->ia_addr; 734 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 735 for (i = 0; i < 4; i++) { 736 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 737 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 738 } 739 /* 740 * The logic of the following condition is a bit complicated. 741 * We expire the prefix when 742 * 1. the address obeys autoconfiguration and it is the 743 * only owner of the associated prefix, or 744 * 2. the address does not obey autoconf and there is no 745 * other owner of the prefix. 746 */ 747 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 748 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && 749 pr->ndpr_refcnt == 1) || 750 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && 751 pr->ndpr_refcnt == 0))) { 752 pr->ndpr_expire = 1; /* XXX: just for expiration */ 753 } 754 755 purgeaddr: 756 in6_purgeaddr(&ia->ia_ifa); 757 break; 758 } 759 760 default: 761 if (ifp == NULL || ifp->if_ioctl == 0) 762 return(EOPNOTSUPP); 763 return((*ifp->if_ioctl)(ifp, cmd, data)); 764 } 765 766 return(0); 767 } 768 769 /* 770 * Update parameters of an IPv6 interface address. 771 * If necessary, a new entry is created and linked into address chains. 772 * This function is separated from in6_control(). 773 * XXX: should this be performed under splnet()? 774 */ 775 int 776 in6_update_ifa(ifp, ifra, ia) 777 struct ifnet *ifp; 778 struct in6_aliasreq *ifra; 779 struct in6_ifaddr *ia; 780 { 781 int error = 0, hostIsNew = 0, plen = -1; 782 struct in6_ifaddr *oia; 783 struct sockaddr_in6 dst6; 784 struct in6_addrlifetime *lt; 785 786 /* Validate parameters */ 787 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 788 return(EINVAL); 789 790 /* 791 * The destination address for a p2p link must have a family 792 * of AF_UNSPEC or AF_INET6. 793 */ 794 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 795 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 796 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 797 return(EAFNOSUPPORT); 798 /* 799 * validate ifra_prefixmask. don't check sin6_family, netmask 800 * does not carry fields other than sin6_len. 801 */ 802 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 803 return(EINVAL); 804 /* 805 * Because the IPv6 address architecture is classless, we require 806 * users to specify a (non 0) prefix length (mask) for a new address. 807 * We also require the prefix (when specified) mask is valid, and thus 808 * reject a non-consecutive mask. 809 */ 810 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 811 return(EINVAL); 812 if (ifra->ifra_prefixmask.sin6_len != 0) { 813 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 814 (u_char *)&ifra->ifra_prefixmask + 815 ifra->ifra_prefixmask.sin6_len); 816 if (plen <= 0) 817 return(EINVAL); 818 } 819 else { 820 /* 821 * In this case, ia must not be NULL. We just use its prefix 822 * length. 823 */ 824 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 825 } 826 /* 827 * If the destination address on a p2p interface is specified, 828 * and the address is a scoped one, validate/set the scope 829 * zone identifier. 830 */ 831 dst6 = ifra->ifra_dstaddr; 832 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) && 833 (dst6.sin6_family == AF_INET6)) { 834 int scopeid; 835 836 #ifndef SCOPEDROUTING 837 if ((error = in6_recoverscope(&dst6, 838 &ifra->ifra_dstaddr.sin6_addr, 839 ifp)) != 0) 840 return(error); 841 #endif 842 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); 843 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ 844 dst6.sin6_scope_id = scopeid; 845 else if (dst6.sin6_scope_id != scopeid) 846 return(EINVAL); /* scope ID mismatch. */ 847 #ifndef SCOPEDROUTING 848 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) 849 != 0) 850 return(error); 851 dst6.sin6_scope_id = 0; /* XXX */ 852 #endif 853 } 854 /* 855 * The destination address can be specified only for a p2p or a 856 * loopback interface. If specified, the corresponding prefix length 857 * must be 128. 858 */ 859 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 860 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 861 /* XXX: noisy message */ 862 log(LOG_INFO, "in6_update_ifa: a destination can be " 863 "specified for a p2p or a loopback IF only\n"); 864 return(EINVAL); 865 } 866 if (plen != 128) { 867 /* 868 * The following message seems noisy, but we dare to 869 * add it for diagnosis. 870 */ 871 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " 872 "when dstaddr is specified\n"); 873 return(EINVAL); 874 } 875 } 876 /* lifetime consistency check */ 877 lt = &ifra->ifra_lifetime; 878 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 879 && lt->ia6t_vltime + time_second < time_second) { 880 return EINVAL; 881 } 882 if (lt->ia6t_vltime == 0) { 883 /* 884 * the following log might be noisy, but this is a typical 885 * configuration mistake or a tool's bug. 886 */ 887 log(LOG_INFO, 888 "in6_update_ifa: valid lifetime is 0 for %s\n", 889 ip6_sprintf(&ifra->ifra_addr.sin6_addr)); 890 } 891 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 892 && lt->ia6t_pltime + time_second < time_second) { 893 return EINVAL; 894 } 895 896 /* 897 * If this is a new address, allocate a new ifaddr and link it 898 * into chains. 899 */ 900 if (ia == NULL) { 901 hostIsNew = 1; 902 ia = (struct in6_ifaddr *) 903 malloc(sizeof(*ia), M_IFADDR, M_WAITOK); 904 if (ia == NULL) 905 return (ENOBUFS); 906 bzero((caddr_t)ia, sizeof(*ia)); 907 /* Initialize the address and masks */ 908 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 909 ia->ia_addr.sin6_family = AF_INET6; 910 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 911 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 912 /* 913 * XXX: some functions expect that ifa_dstaddr is not 914 * NULL for p2p interfaces. 915 */ 916 ia->ia_ifa.ifa_dstaddr 917 = (struct sockaddr *)&ia->ia_dstaddr; 918 } else { 919 ia->ia_ifa.ifa_dstaddr = NULL; 920 } 921 ia->ia_ifa.ifa_netmask 922 = (struct sockaddr *)&ia->ia_prefixmask; 923 924 ia->ia_ifp = ifp; 925 if ((oia = in6_ifaddr) != NULL) { 926 for ( ; oia->ia_next; oia = oia->ia_next) 927 continue; 928 oia->ia_next = ia; 929 } else 930 in6_ifaddr = ia; 931 932 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 933 ifa_list); 934 } 935 936 /* set prefix mask */ 937 if (ifra->ifra_prefixmask.sin6_len) { 938 /* 939 * We prohibit changing the prefix length of an existing 940 * address, because 941 * + such an operation should be rare in IPv6, and 942 * + the operation would confuse prefix management. 943 */ 944 if (ia->ia_prefixmask.sin6_len && 945 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 946 log(LOG_INFO, "in6_update_ifa: the prefix length of an" 947 " existing (%s) address should not be changed\n", 948 ip6_sprintf(&ia->ia_addr.sin6_addr)); 949 error = EINVAL; 950 goto unlink; 951 } 952 ia->ia_prefixmask = ifra->ifra_prefixmask; 953 } 954 955 /* 956 * If a new destination address is specified, scrub the old one and 957 * install the new destination. Note that the interface must be 958 * p2p or loopback (see the check above.) 959 */ 960 if (dst6.sin6_family == AF_INET6 && 961 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, 962 &ia->ia_dstaddr.sin6_addr)) { 963 int e; 964 965 if ((ia->ia_flags & IFA_ROUTE) != 0 && 966 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 967 != 0) { 968 log(LOG_ERR, "in6_update_ifa: failed to remove " 969 "a route to the old destination: %s\n", 970 ip6_sprintf(&ia->ia_addr.sin6_addr)); 971 /* proceed anyway... */ 972 } 973 else 974 ia->ia_flags &= ~IFA_ROUTE; 975 ia->ia_dstaddr = dst6; 976 } 977 978 /* reset the interface and routing table appropriately. */ 979 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 980 goto unlink; 981 982 /* 983 * Beyond this point, we should call in6_purgeaddr upon an error, 984 * not just go to unlink. 985 */ 986 987 #if 0 /* disable this mechanism for now */ 988 /* update prefix list */ 989 if (hostIsNew && 990 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */ 991 int iilen; 992 993 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen; 994 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) { 995 in6_purgeaddr((struct ifaddr *)ia); 996 return(error); 997 } 998 } 999 #endif 1000 1001 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1002 struct sockaddr_in6 mltaddr, mltmask; 1003 struct in6_multi *in6m; 1004 1005 if (hostIsNew) { 1006 /* 1007 * join solicited multicast addr for new host id 1008 */ 1009 struct in6_addr llsol; 1010 bzero(&llsol, sizeof(struct in6_addr)); 1011 llsol.s6_addr16[0] = htons(0xff02); 1012 llsol.s6_addr16[1] = htons(ifp->if_index); 1013 llsol.s6_addr32[1] = 0; 1014 llsol.s6_addr32[2] = htonl(1); 1015 llsol.s6_addr32[3] = 1016 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1017 llsol.s6_addr8[12] = 0xff; 1018 (void)in6_addmulti(&llsol, ifp, &error); 1019 if (error != 0) { 1020 log(LOG_WARNING, 1021 "in6_update_ifa: addmulti failed for " 1022 "%s on %s (errno=%d)\n", 1023 ip6_sprintf(&llsol), if_name(ifp), 1024 error); 1025 in6_purgeaddr((struct ifaddr *)ia); 1026 return(error); 1027 } 1028 } 1029 1030 bzero(&mltmask, sizeof(mltmask)); 1031 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1032 mltmask.sin6_family = AF_INET6; 1033 mltmask.sin6_addr = in6mask32; 1034 1035 /* 1036 * join link-local all-nodes address 1037 */ 1038 bzero(&mltaddr, sizeof(mltaddr)); 1039 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1040 mltaddr.sin6_family = AF_INET6; 1041 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1042 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1043 1044 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1045 if (in6m == NULL) { 1046 rtrequest(RTM_ADD, 1047 (struct sockaddr *)&mltaddr, 1048 (struct sockaddr *)&ia->ia_addr, 1049 (struct sockaddr *)&mltmask, 1050 RTF_UP|RTF_CLONING, /* xxx */ 1051 (struct rtentry **)0); 1052 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); 1053 if (error != 0) { 1054 log(LOG_WARNING, 1055 "in6_update_ifa: addmulti failed for " 1056 "%s on %s (errno=%d)\n", 1057 ip6_sprintf(&mltaddr.sin6_addr), 1058 if_name(ifp), error); 1059 } 1060 } 1061 1062 /* 1063 * join node information group address 1064 */ 1065 #define hostnamelen strlen(hostname) 1066 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) 1067 == 0) { 1068 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1069 if (in6m == NULL && ia != NULL) { 1070 (void)in6_addmulti(&mltaddr.sin6_addr, 1071 ifp, &error); 1072 if (error != 0) { 1073 log(LOG_WARNING, "in6_update_ifa: " 1074 "addmulti failed for " 1075 "%s on %s (errno=%d)\n", 1076 ip6_sprintf(&mltaddr.sin6_addr), 1077 if_name(ifp), error); 1078 } 1079 } 1080 } 1081 #undef hostnamelen 1082 1083 /* 1084 * join node-local all-nodes address, on loopback. 1085 * XXX: since "node-local" is obsoleted by interface-local, 1086 * we have to join the group on every interface with 1087 * some interface-boundary restriction. 1088 */ 1089 if (ifp->if_flags & IFF_LOOPBACK) { 1090 struct in6_addr loop6 = in6addr_loopback; 1091 ia = in6ifa_ifpwithaddr(ifp, &loop6); 1092 1093 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1094 1095 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); 1096 if (in6m == NULL && ia != NULL) { 1097 rtrequest(RTM_ADD, 1098 (struct sockaddr *)&mltaddr, 1099 (struct sockaddr *)&ia->ia_addr, 1100 (struct sockaddr *)&mltmask, 1101 RTF_UP, 1102 (struct rtentry **)0); 1103 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, 1104 &error); 1105 if (error != 0) { 1106 log(LOG_WARNING, "in6_update_ifa: " 1107 "addmulti failed for %s on %s " 1108 "(errno=%d)\n", 1109 ip6_sprintf(&mltaddr.sin6_addr), 1110 if_name(ifp), error); 1111 } 1112 } 1113 } 1114 } 1115 1116 ia->ia6_flags = ifra->ifra_flags; 1117 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ 1118 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ 1119 1120 ia->ia6_lifetime = ifra->ifra_lifetime; 1121 /* for sanity */ 1122 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1123 ia->ia6_lifetime.ia6t_expire = 1124 time_second + ia->ia6_lifetime.ia6t_vltime; 1125 } else 1126 ia->ia6_lifetime.ia6t_expire = 0; 1127 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1128 ia->ia6_lifetime.ia6t_preferred = 1129 time_second + ia->ia6_lifetime.ia6t_pltime; 1130 } else 1131 ia->ia6_lifetime.ia6t_preferred = 0; 1132 1133 /* 1134 * make sure to initialize ND6 information. this is to workaround 1135 * issues with interfaces with IPv6 addresses, which have never brought 1136 * up. We are assuming that it is safe to nd6_ifattach multiple times. 1137 */ 1138 nd6_ifattach(ifp); 1139 1140 /* 1141 * Perform DAD, if needed. 1142 * XXX It may be of use, if we can administratively 1143 * disable DAD. 1144 */ 1145 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { 1146 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1147 nd6_dad_start((struct ifaddr *)ia, NULL); 1148 } 1149 1150 return(error); 1151 1152 unlink: 1153 /* 1154 * XXX: if a change of an existing address failed, keep the entry 1155 * anyway. 1156 */ 1157 if (hostIsNew) 1158 in6_unlink_ifa(ia, ifp); 1159 return(error); 1160 } 1161 1162 void 1163 in6_purgeaddr(ifa) 1164 struct ifaddr *ifa; 1165 { 1166 struct ifnet *ifp = ifa->ifa_ifp; 1167 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1168 1169 /* stop DAD processing */ 1170 nd6_dad_stop(ifa); 1171 1172 /* 1173 * delete route to the destination of the address being purged. 1174 * The interface must be p2p or loopback in this case. 1175 */ 1176 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1177 int e; 1178 1179 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1180 != 0) { 1181 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1182 "a route to the p2p destination: %s on %s, " 1183 "errno=%d\n", 1184 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1185 e); 1186 /* proceed anyway... */ 1187 } 1188 else 1189 ia->ia_flags &= ~IFA_ROUTE; 1190 } 1191 1192 /* Remove ownaddr's loopback rtentry, if it exists. */ 1193 in6_ifremloop(&(ia->ia_ifa)); 1194 1195 if (ifp->if_flags & IFF_MULTICAST) { 1196 /* 1197 * delete solicited multicast addr for deleting host id 1198 */ 1199 struct in6_multi *in6m; 1200 struct in6_addr llsol; 1201 bzero(&llsol, sizeof(struct in6_addr)); 1202 llsol.s6_addr16[0] = htons(0xff02); 1203 llsol.s6_addr16[1] = htons(ifp->if_index); 1204 llsol.s6_addr32[1] = 0; 1205 llsol.s6_addr32[2] = htonl(1); 1206 llsol.s6_addr32[3] = 1207 ia->ia_addr.sin6_addr.s6_addr32[3]; 1208 llsol.s6_addr8[12] = 0xff; 1209 1210 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1211 if (in6m) 1212 in6_delmulti(in6m); 1213 } 1214 1215 in6_unlink_ifa(ia, ifp); 1216 } 1217 1218 static void 1219 in6_unlink_ifa(ia, ifp) 1220 struct in6_ifaddr *ia; 1221 struct ifnet *ifp; 1222 { 1223 int plen, iilen; 1224 struct in6_ifaddr *oia; 1225 int s = splnet(); 1226 1227 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1228 1229 oia = ia; 1230 if (oia == (ia = in6_ifaddr)) 1231 in6_ifaddr = ia->ia_next; 1232 else { 1233 while (ia->ia_next && (ia->ia_next != oia)) 1234 ia = ia->ia_next; 1235 if (ia->ia_next) 1236 ia->ia_next = oia->ia_next; 1237 else { 1238 /* search failed */ 1239 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1240 } 1241 } 1242 1243 if (oia->ia6_ifpr) { /* check for safety */ 1244 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); 1245 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; 1246 in6_prefix_remove_ifid(iilen, oia); 1247 } 1248 1249 /* 1250 * When an autoconfigured address is being removed, release the 1251 * reference to the base prefix. Also, since the release might 1252 * affect the status of other (detached) addresses, call 1253 * pfxlist_onlink_check(). 1254 */ 1255 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1256 if (oia->ia6_ndpr == NULL) { 1257 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1258 "%p has no prefix\n", oia); 1259 } else { 1260 oia->ia6_ndpr->ndpr_refcnt--; 1261 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1262 oia->ia6_ndpr = NULL; 1263 } 1264 1265 pfxlist_onlink_check(); 1266 } 1267 1268 /* 1269 * release another refcnt for the link from in6_ifaddr. 1270 * Note that we should decrement the refcnt at least once for all *BSD. 1271 */ 1272 IFAFREE(&oia->ia_ifa); 1273 1274 splx(s); 1275 } 1276 1277 void 1278 in6_purgeif(ifp) 1279 struct ifnet *ifp; 1280 { 1281 struct ifaddr *ifa, *nifa; 1282 1283 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1284 { 1285 nifa = TAILQ_NEXT(ifa, ifa_list); 1286 if (ifa->ifa_addr->sa_family != AF_INET6) 1287 continue; 1288 in6_purgeaddr(ifa); 1289 } 1290 1291 in6_ifdetach(ifp); 1292 } 1293 1294 /* 1295 * SIOC[GAD]LIFADDR. 1296 * SIOCGLIFADDR: get first address. (?) 1297 * SIOCGLIFADDR with IFLR_PREFIX: 1298 * get first address that matches the specified prefix. 1299 * SIOCALIFADDR: add the specified address. 1300 * SIOCALIFADDR with IFLR_PREFIX: 1301 * add the specified prefix, filling hostid part from 1302 * the first link-local address. prefixlen must be <= 64. 1303 * SIOCDLIFADDR: delete the specified address. 1304 * SIOCDLIFADDR with IFLR_PREFIX: 1305 * delete the first address that matches the specified prefix. 1306 * return values: 1307 * EINVAL on invalid parameters 1308 * EADDRNOTAVAIL on prefix match failed/specified address not found 1309 * other values may be returned from in6_ioctl() 1310 * 1311 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1312 * this is to accomodate address naming scheme other than RFC2374, 1313 * in the future. 1314 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1315 * address encoding scheme. (see figure on page 8) 1316 */ 1317 static int 1318 in6_lifaddr_ioctl(so, cmd, data, ifp, p) 1319 struct socket *so; 1320 u_long cmd; 1321 caddr_t data; 1322 struct ifnet *ifp; 1323 struct proc *p; 1324 { 1325 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1326 struct ifaddr *ifa; 1327 struct sockaddr *sa; 1328 1329 /* sanity checks */ 1330 if (!data || !ifp) { 1331 panic("invalid argument to in6_lifaddr_ioctl"); 1332 /*NOTRECHED*/ 1333 } 1334 1335 switch (cmd) { 1336 case SIOCGLIFADDR: 1337 /* address must be specified on GET with IFLR_PREFIX */ 1338 if ((iflr->flags & IFLR_PREFIX) == 0) 1339 break; 1340 /*FALLTHROUGH*/ 1341 case SIOCALIFADDR: 1342 case SIOCDLIFADDR: 1343 /* address must be specified on ADD and DELETE */ 1344 sa = (struct sockaddr *)&iflr->addr; 1345 if (sa->sa_family != AF_INET6) 1346 return EINVAL; 1347 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1348 return EINVAL; 1349 /* XXX need improvement */ 1350 sa = (struct sockaddr *)&iflr->dstaddr; 1351 if (sa->sa_family && sa->sa_family != AF_INET6) 1352 return EINVAL; 1353 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1354 return EINVAL; 1355 break; 1356 default: /*shouldn't happen*/ 1357 #if 0 1358 panic("invalid cmd to in6_lifaddr_ioctl"); 1359 /*NOTREACHED*/ 1360 #else 1361 return EOPNOTSUPP; 1362 #endif 1363 } 1364 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1365 return EINVAL; 1366 1367 switch (cmd) { 1368 case SIOCALIFADDR: 1369 { 1370 struct in6_aliasreq ifra; 1371 struct in6_addr *hostid = NULL; 1372 int prefixlen; 1373 1374 if ((iflr->flags & IFLR_PREFIX) != 0) { 1375 struct sockaddr_in6 *sin6; 1376 1377 /* 1378 * hostid is to fill in the hostid part of the 1379 * address. hostid points to the first link-local 1380 * address attached to the interface. 1381 */ 1382 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1383 if (!ifa) 1384 return EADDRNOTAVAIL; 1385 hostid = IFA_IN6(ifa); 1386 1387 /* prefixlen must be <= 64. */ 1388 if (64 < iflr->prefixlen) 1389 return EINVAL; 1390 prefixlen = iflr->prefixlen; 1391 1392 /* hostid part must be zero. */ 1393 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1394 if (sin6->sin6_addr.s6_addr32[2] != 0 1395 || sin6->sin6_addr.s6_addr32[3] != 0) { 1396 return EINVAL; 1397 } 1398 } else 1399 prefixlen = iflr->prefixlen; 1400 1401 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1402 bzero(&ifra, sizeof(ifra)); 1403 bcopy(iflr->iflr_name, ifra.ifra_name, 1404 sizeof(ifra.ifra_name)); 1405 1406 bcopy(&iflr->addr, &ifra.ifra_addr, 1407 ((struct sockaddr *)&iflr->addr)->sa_len); 1408 if (hostid) { 1409 /* fill in hostid part */ 1410 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1411 hostid->s6_addr32[2]; 1412 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1413 hostid->s6_addr32[3]; 1414 } 1415 1416 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1417 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1418 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1419 if (hostid) { 1420 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1421 hostid->s6_addr32[2]; 1422 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1423 hostid->s6_addr32[3]; 1424 } 1425 } 1426 1427 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1428 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1429 1430 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1431 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p); 1432 } 1433 case SIOCGLIFADDR: 1434 case SIOCDLIFADDR: 1435 { 1436 struct in6_ifaddr *ia; 1437 struct in6_addr mask, candidate, match; 1438 struct sockaddr_in6 *sin6; 1439 int cmp; 1440 1441 bzero(&mask, sizeof(mask)); 1442 if (iflr->flags & IFLR_PREFIX) { 1443 /* lookup a prefix rather than address. */ 1444 in6_len2mask(&mask, iflr->prefixlen); 1445 1446 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1447 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1448 match.s6_addr32[0] &= mask.s6_addr32[0]; 1449 match.s6_addr32[1] &= mask.s6_addr32[1]; 1450 match.s6_addr32[2] &= mask.s6_addr32[2]; 1451 match.s6_addr32[3] &= mask.s6_addr32[3]; 1452 1453 /* if you set extra bits, that's wrong */ 1454 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1455 return EINVAL; 1456 1457 cmp = 1; 1458 } else { 1459 if (cmd == SIOCGLIFADDR) { 1460 /* on getting an address, take the 1st match */ 1461 cmp = 0; /*XXX*/ 1462 } else { 1463 /* on deleting an address, do exact match */ 1464 in6_len2mask(&mask, 128); 1465 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1466 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1467 1468 cmp = 1; 1469 } 1470 } 1471 1472 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1473 { 1474 if (ifa->ifa_addr->sa_family != AF_INET6) 1475 continue; 1476 if (!cmp) 1477 break; 1478 1479 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1480 #ifndef SCOPEDROUTING 1481 /* 1482 * XXX: this is adhoc, but is necessary to allow 1483 * a user to specify fe80::/64 (not /10) for a 1484 * link-local address. 1485 */ 1486 if (IN6_IS_ADDR_LINKLOCAL(&candidate)) 1487 candidate.s6_addr16[1] = 0; 1488 #endif 1489 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1490 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1491 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1492 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1493 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1494 break; 1495 } 1496 if (!ifa) 1497 return EADDRNOTAVAIL; 1498 ia = ifa2ia6(ifa); 1499 1500 if (cmd == SIOCGLIFADDR) { 1501 #ifndef SCOPEDROUTING 1502 struct sockaddr_in6 *s6; 1503 #endif 1504 1505 /* fill in the if_laddrreq structure */ 1506 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1507 #ifndef SCOPEDROUTING /* XXX see above */ 1508 s6 = (struct sockaddr_in6 *)&iflr->addr; 1509 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1510 s6->sin6_addr.s6_addr16[1] = 0; 1511 s6->sin6_scope_id = 1512 in6_addr2scopeid(ifp, &s6->sin6_addr); 1513 } 1514 #endif 1515 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1516 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1517 ia->ia_dstaddr.sin6_len); 1518 #ifndef SCOPEDROUTING /* XXX see above */ 1519 s6 = (struct sockaddr_in6 *)&iflr->dstaddr; 1520 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { 1521 s6->sin6_addr.s6_addr16[1] = 0; 1522 s6->sin6_scope_id = 1523 in6_addr2scopeid(ifp, 1524 &s6->sin6_addr); 1525 } 1526 #endif 1527 } else 1528 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1529 1530 iflr->prefixlen = 1531 in6_mask2len(&ia->ia_prefixmask.sin6_addr, 1532 NULL); 1533 1534 iflr->flags = ia->ia6_flags; /*XXX*/ 1535 1536 return 0; 1537 } else { 1538 struct in6_aliasreq ifra; 1539 1540 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1541 bzero(&ifra, sizeof(ifra)); 1542 bcopy(iflr->iflr_name, ifra.ifra_name, 1543 sizeof(ifra.ifra_name)); 1544 1545 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1546 ia->ia_addr.sin6_len); 1547 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1548 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1549 ia->ia_dstaddr.sin6_len); 1550 } else { 1551 bzero(&ifra.ifra_dstaddr, 1552 sizeof(ifra.ifra_dstaddr)); 1553 } 1554 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1555 ia->ia_prefixmask.sin6_len); 1556 1557 ifra.ifra_flags = ia->ia6_flags; 1558 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1559 ifp, p); 1560 } 1561 } 1562 } 1563 1564 return EOPNOTSUPP; /*just for safety*/ 1565 } 1566 1567 /* 1568 * Initialize an interface's intetnet6 address 1569 * and routing table entry. 1570 */ 1571 static int 1572 in6_ifinit(ifp, ia, sin6, newhost) 1573 struct ifnet *ifp; 1574 struct in6_ifaddr *ia; 1575 struct sockaddr_in6 *sin6; 1576 int newhost; 1577 { 1578 int error = 0, plen, ifacount = 0; 1579 int s = splimp(); 1580 struct ifaddr *ifa; 1581 1582 /* 1583 * Give the interface a chance to initialize 1584 * if this is its first address, 1585 * and to validate the address if necessary. 1586 */ 1587 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1588 { 1589 if (ifa->ifa_addr == NULL) 1590 continue; /* just for safety */ 1591 if (ifa->ifa_addr->sa_family != AF_INET6) 1592 continue; 1593 ifacount++; 1594 } 1595 1596 ia->ia_addr = *sin6; 1597 1598 if (ifacount <= 1 && ifp->if_ioctl && 1599 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { 1600 splx(s); 1601 return(error); 1602 } 1603 splx(s); 1604 1605 ia->ia_ifa.ifa_metric = ifp->if_metric; 1606 1607 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1608 1609 /* 1610 * Special case: 1611 * If the destination address is specified for a point-to-point 1612 * interface, install a route to the destination as an interface 1613 * direct route. 1614 */ 1615 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1616 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1617 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1618 RTF_UP | RTF_HOST)) != 0) 1619 return(error); 1620 ia->ia_flags |= IFA_ROUTE; 1621 } 1622 if (plen < 128) { 1623 /* 1624 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). 1625 */ 1626 ia->ia_ifa.ifa_flags |= RTF_CLONING; 1627 } 1628 1629 /* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */ 1630 if (newhost) { 1631 /* set the rtrequest function to create llinfo */ 1632 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1633 in6_ifaddloop(&(ia->ia_ifa)); 1634 } 1635 1636 return(error); 1637 } 1638 1639 /* 1640 * Add an address to the list of IP6 multicast addresses for a 1641 * given interface. 1642 */ 1643 struct in6_multi * 1644 in6_addmulti(maddr6, ifp, errorp) 1645 struct in6_addr *maddr6; 1646 struct ifnet *ifp; 1647 int *errorp; 1648 { 1649 struct in6_multi *in6m; 1650 struct sockaddr_in6 sin6; 1651 struct ifmultiaddr *ifma; 1652 int s = splnet(); 1653 1654 *errorp = 0; 1655 1656 /* 1657 * Call generic routine to add membership or increment 1658 * refcount. It wants addresses in the form of a sockaddr, 1659 * so we build one here (being careful to zero the unused bytes). 1660 */ 1661 bzero(&sin6, sizeof sin6); 1662 sin6.sin6_family = AF_INET6; 1663 sin6.sin6_len = sizeof sin6; 1664 sin6.sin6_addr = *maddr6; 1665 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma); 1666 if (*errorp) { 1667 splx(s); 1668 return 0; 1669 } 1670 1671 /* 1672 * If ifma->ifma_protospec is null, then if_addmulti() created 1673 * a new record. Otherwise, we are done. 1674 */ 1675 if (ifma->ifma_protospec != 0) 1676 return ifma->ifma_protospec; 1677 1678 /* XXX - if_addmulti uses M_WAITOK. Can this really be called 1679 at interrupt time? If so, need to fix if_addmulti. XXX */ 1680 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1681 if (in6m == NULL) { 1682 splx(s); 1683 return (NULL); 1684 } 1685 1686 bzero(in6m, sizeof *in6m); 1687 in6m->in6m_addr = *maddr6; 1688 in6m->in6m_ifp = ifp; 1689 in6m->in6m_ifma = ifma; 1690 ifma->ifma_protospec = in6m; 1691 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry); 1692 1693 /* 1694 * Let MLD6 know that we have joined a new IP6 multicast 1695 * group. 1696 */ 1697 mld6_start_listening(in6m); 1698 splx(s); 1699 return(in6m); 1700 } 1701 1702 /* 1703 * Delete a multicast address record. 1704 */ 1705 void 1706 in6_delmulti(in6m) 1707 struct in6_multi *in6m; 1708 { 1709 struct ifmultiaddr *ifma = in6m->in6m_ifma; 1710 int s = splnet(); 1711 1712 if (ifma->ifma_refcount == 1) { 1713 /* 1714 * No remaining claims to this record; let MLD6 know 1715 * that we are leaving the multicast group. 1716 */ 1717 mld6_stop_listening(in6m); 1718 ifma->ifma_protospec = 0; 1719 LIST_REMOVE(in6m, in6m_entry); 1720 free(in6m, M_IPMADDR); 1721 } 1722 /* XXX - should be separate API for when we have an ifma? */ 1723 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); 1724 splx(s); 1725 } 1726 1727 /* 1728 * Find an IPv6 interface link-local address specific to an interface. 1729 */ 1730 struct in6_ifaddr * 1731 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1732 struct ifnet *ifp; 1733 int ignoreflags; 1734 { 1735 struct ifaddr *ifa; 1736 1737 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1738 { 1739 if (ifa->ifa_addr == NULL) 1740 continue; /* just for safety */ 1741 if (ifa->ifa_addr->sa_family != AF_INET6) 1742 continue; 1743 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1744 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1745 ignoreflags) != 0) 1746 continue; 1747 break; 1748 } 1749 } 1750 1751 return((struct in6_ifaddr *)ifa); 1752 } 1753 1754 1755 /* 1756 * find the internet address corresponding to a given interface and address. 1757 */ 1758 struct in6_ifaddr * 1759 in6ifa_ifpwithaddr(ifp, addr) 1760 struct ifnet *ifp; 1761 struct in6_addr *addr; 1762 { 1763 struct ifaddr *ifa; 1764 1765 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1766 { 1767 if (ifa->ifa_addr == NULL) 1768 continue; /* just for safety */ 1769 if (ifa->ifa_addr->sa_family != AF_INET6) 1770 continue; 1771 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1772 break; 1773 } 1774 1775 return((struct in6_ifaddr *)ifa); 1776 } 1777 1778 /* 1779 * Convert IP6 address to printable (loggable) representation. 1780 */ 1781 static char digits[] = "0123456789abcdef"; 1782 static int ip6round = 0; 1783 char * 1784 ip6_sprintf(addr) 1785 const struct in6_addr *addr; 1786 { 1787 static char ip6buf[8][48]; 1788 int i; 1789 char *cp; 1790 u_short *a = (u_short *)addr; 1791 u_char *d; 1792 int dcolon = 0; 1793 1794 ip6round = (ip6round + 1) & 7; 1795 cp = ip6buf[ip6round]; 1796 1797 for (i = 0; i < 8; i++) { 1798 if (dcolon == 1) { 1799 if (*a == 0) { 1800 if (i == 7) 1801 *cp++ = ':'; 1802 a++; 1803 continue; 1804 } else 1805 dcolon = 2; 1806 } 1807 if (*a == 0) { 1808 if (dcolon == 0 && *(a + 1) == 0) { 1809 if (i == 0) 1810 *cp++ = ':'; 1811 *cp++ = ':'; 1812 dcolon = 1; 1813 } else { 1814 *cp++ = '0'; 1815 *cp++ = ':'; 1816 } 1817 a++; 1818 continue; 1819 } 1820 d = (u_char *)a; 1821 *cp++ = digits[*d >> 4]; 1822 *cp++ = digits[*d++ & 0xf]; 1823 *cp++ = digits[*d >> 4]; 1824 *cp++ = digits[*d & 0xf]; 1825 *cp++ = ':'; 1826 a++; 1827 } 1828 *--cp = 0; 1829 return(ip6buf[ip6round]); 1830 } 1831 1832 int 1833 in6_localaddr(in6) 1834 struct in6_addr *in6; 1835 { 1836 struct in6_ifaddr *ia; 1837 1838 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1839 return 1; 1840 1841 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1842 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1843 &ia->ia_prefixmask.sin6_addr)) 1844 return 1; 1845 1846 return (0); 1847 } 1848 1849 int 1850 in6_is_addr_deprecated(sa6) 1851 struct sockaddr_in6 *sa6; 1852 { 1853 struct in6_ifaddr *ia; 1854 1855 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1856 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1857 &sa6->sin6_addr) && 1858 #ifdef SCOPEDROUTING 1859 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 1860 #endif 1861 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1862 return(1); /* true */ 1863 1864 /* XXX: do we still have to go thru the rest of the list? */ 1865 } 1866 1867 return(0); /* false */ 1868 } 1869 1870 /* 1871 * return length of part which dst and src are equal 1872 * hard coding... 1873 */ 1874 int 1875 in6_matchlen(src, dst) 1876 struct in6_addr *src, *dst; 1877 { 1878 int match = 0; 1879 u_char *s = (u_char *)src, *d = (u_char *)dst; 1880 u_char *lim = s + 16, r; 1881 1882 while (s < lim) 1883 if ((r = (*d++ ^ *s++)) != 0) { 1884 while (r < 128) { 1885 match++; 1886 r <<= 1; 1887 } 1888 break; 1889 } else 1890 match += 8; 1891 return match; 1892 } 1893 1894 /* XXX: to be scope conscious */ 1895 int 1896 in6_are_prefix_equal(p1, p2, len) 1897 struct in6_addr *p1, *p2; 1898 int len; 1899 { 1900 int bytelen, bitlen; 1901 1902 /* sanity check */ 1903 if (0 > len || len > 128) { 1904 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1905 len); 1906 return(0); 1907 } 1908 1909 bytelen = len / 8; 1910 bitlen = len % 8; 1911 1912 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1913 return(0); 1914 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 1915 p2->s6_addr[bytelen] >> (8 - bitlen)) 1916 return(0); 1917 1918 return(1); 1919 } 1920 1921 void 1922 in6_prefixlen2mask(maskp, len) 1923 struct in6_addr *maskp; 1924 int len; 1925 { 1926 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1927 int bytelen, bitlen, i; 1928 1929 /* sanity check */ 1930 if (0 > len || len > 128) { 1931 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1932 len); 1933 return; 1934 } 1935 1936 bzero(maskp, sizeof(*maskp)); 1937 bytelen = len / 8; 1938 bitlen = len % 8; 1939 for (i = 0; i < bytelen; i++) 1940 maskp->s6_addr[i] = 0xff; 1941 if (bitlen) 1942 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1943 } 1944 1945 /* 1946 * return the best address out of the same scope 1947 */ 1948 struct in6_ifaddr * 1949 in6_ifawithscope(oifp, dst) 1950 struct ifnet *oifp; 1951 struct in6_addr *dst; 1952 { 1953 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 1954 int blen = -1; 1955 struct ifaddr *ifa; 1956 struct ifnet *ifp; 1957 struct in6_ifaddr *ifa_best = NULL; 1958 1959 if (oifp == NULL) { 1960 #if 0 1961 printf("in6_ifawithscope: output interface is not specified\n"); 1962 #endif 1963 return(NULL); 1964 } 1965 1966 /* 1967 * We search for all addresses on all interfaces from the beginning. 1968 * Comparing an interface with the outgoing interface will be done 1969 * only at the final stage of tiebreaking. 1970 */ 1971 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1972 { 1973 /* 1974 * We can never take an address that breaks the scope zone 1975 * of the destination. 1976 */ 1977 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 1978 continue; 1979 1980 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 1981 { 1982 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 1983 1984 if (ifa->ifa_addr->sa_family != AF_INET6) 1985 continue; 1986 1987 src_scope = in6_addrscope(IFA_IN6(ifa)); 1988 1989 /* 1990 * Don't use an address before completing DAD 1991 * nor a duplicated address. 1992 */ 1993 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1994 IN6_IFF_NOTREADY) 1995 continue; 1996 1997 /* XXX: is there any case to allow anycasts? */ 1998 if (((struct in6_ifaddr *)ifa)->ia6_flags & 1999 IN6_IFF_ANYCAST) 2000 continue; 2001 2002 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2003 IN6_IFF_DETACHED) 2004 continue; 2005 2006 /* 2007 * If this is the first address we find, 2008 * keep it anyway. 2009 */ 2010 if (ifa_best == NULL) 2011 goto replace; 2012 2013 /* 2014 * ifa_best is never NULL beyond this line except 2015 * within the block labeled "replace". 2016 */ 2017 2018 /* 2019 * If ifa_best has a smaller scope than dst and 2020 * the current address has a larger one than 2021 * (or equal to) dst, always replace ifa_best. 2022 * Also, if the current address has a smaller scope 2023 * than dst, ignore it unless ifa_best also has a 2024 * smaller scope. 2025 * Consequently, after the two if-clause below, 2026 * the followings must be satisfied: 2027 * (scope(src) < scope(dst) && 2028 * scope(best) < scope(dst)) 2029 * OR 2030 * (scope(best) >= scope(dst) && 2031 * scope(src) >= scope(dst)) 2032 */ 2033 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2034 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2035 goto replace; /* (A) */ 2036 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2037 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2038 continue; /* (B) */ 2039 2040 /* 2041 * A deprecated address SHOULD NOT be used in new 2042 * communications if an alternate (non-deprecated) 2043 * address is available and has sufficient scope. 2044 * RFC 2462, Section 5.5.4. 2045 */ 2046 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2047 IN6_IFF_DEPRECATED) { 2048 /* 2049 * Ignore any deprecated addresses if 2050 * specified by configuration. 2051 */ 2052 if (!ip6_use_deprecated) 2053 continue; 2054 2055 /* 2056 * If we have already found a non-deprecated 2057 * candidate, just ignore deprecated addresses. 2058 */ 2059 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2060 == 0) 2061 continue; 2062 } 2063 2064 /* 2065 * A non-deprecated address is always preferred 2066 * to a deprecated one regardless of scopes and 2067 * address matching (Note invariants ensured by the 2068 * conditions (A) and (B) above.) 2069 */ 2070 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2071 (((struct in6_ifaddr *)ifa)->ia6_flags & 2072 IN6_IFF_DEPRECATED) == 0) 2073 goto replace; 2074 2075 /* 2076 * When we use temporary addresses described in 2077 * RFC 3041, we prefer temporary addresses to 2078 * public autoconf addresses. Again, note the 2079 * invariants from (A) and (B). Also note that we 2080 * don't have any preference between static addresses 2081 * and autoconf addresses (despite of whether or not 2082 * the latter is temporary or public.) 2083 */ 2084 if (ip6_use_tempaddr) { 2085 struct in6_ifaddr *ifat; 2086 2087 ifat = (struct in6_ifaddr *)ifa; 2088 if ((ifa_best->ia6_flags & 2089 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2090 == IN6_IFF_AUTOCONF && 2091 (ifat->ia6_flags & 2092 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2093 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { 2094 goto replace; 2095 } 2096 if ((ifa_best->ia6_flags & 2097 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2098 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && 2099 (ifat->ia6_flags & 2100 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) 2101 == IN6_IFF_AUTOCONF) { 2102 continue; 2103 } 2104 } 2105 2106 /* 2107 * At this point, we have two cases: 2108 * 1. we are looking at a non-deprecated address, 2109 * and ifa_best is also non-deprecated. 2110 * 2. we are looking at a deprecated address, 2111 * and ifa_best is also deprecated. 2112 * Also, we do not have to consider a case where 2113 * the scope of if_best is larger(smaller) than dst and 2114 * the scope of the current address is smaller(larger) 2115 * than dst. Such a case has already been covered. 2116 * Tiebreaking is done according to the following 2117 * items: 2118 * - the scope comparison between the address and 2119 * dst (dscopecmp) 2120 * - the scope comparison between the address and 2121 * ifa_best (bscopecmp) 2122 * - if the address match dst longer than ifa_best 2123 * (matchcmp) 2124 * - if the address is on the outgoing I/F (outI/F) 2125 * 2126 * Roughly speaking, the selection policy is 2127 * - the most important item is scope. The same scope 2128 * is best. Then search for a larger scope. 2129 * Smaller scopes are the last resort. 2130 * - A deprecated address is chosen only when we have 2131 * no address that has an enough scope, but is 2132 * prefered to any addresses of smaller scopes 2133 * (this must be already done above.) 2134 * - addresses on the outgoing I/F are preferred to 2135 * ones on other interfaces if none of above 2136 * tiebreaks. In the table below, the column "bI" 2137 * means if the best_ifa is on the outgoing 2138 * interface, and the column "sI" means if the ifa 2139 * is on the outgoing interface. 2140 * - If there is no other reasons to choose one, 2141 * longest address match against dst is considered. 2142 * 2143 * The precise decision table is as follows: 2144 * dscopecmp bscopecmp match bI oI | replace? 2145 * N/A equal N/A Y N | No (1) 2146 * N/A equal N/A N Y | Yes (2) 2147 * N/A equal larger N/A | Yes (3) 2148 * N/A equal !larger N/A | No (4) 2149 * larger larger N/A N/A | No (5) 2150 * larger smaller N/A N/A | Yes (6) 2151 * smaller larger N/A N/A | Yes (7) 2152 * smaller smaller N/A N/A | No (8) 2153 * equal smaller N/A N/A | Yes (9) 2154 * equal larger (already done at A above) 2155 */ 2156 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2157 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2158 2159 if (bscopecmp == 0) { 2160 struct ifnet *bifp = ifa_best->ia_ifp; 2161 2162 if (bifp == oifp && ifp != oifp) /* (1) */ 2163 continue; 2164 if (bifp != oifp && ifp == oifp) /* (2) */ 2165 goto replace; 2166 2167 /* 2168 * Both bifp and ifp are on the outgoing 2169 * interface, or both two are on a different 2170 * interface from the outgoing I/F. 2171 * now we need address matching against dst 2172 * for tiebreaking. 2173 */ 2174 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2175 matchcmp = tlen - blen; 2176 if (matchcmp > 0) /* (3) */ 2177 goto replace; 2178 continue; /* (4) */ 2179 } 2180 if (dscopecmp > 0) { 2181 if (bscopecmp > 0) /* (5) */ 2182 continue; 2183 goto replace; /* (6) */ 2184 } 2185 if (dscopecmp < 0) { 2186 if (bscopecmp > 0) /* (7) */ 2187 goto replace; 2188 continue; /* (8) */ 2189 } 2190 2191 /* now dscopecmp must be 0 */ 2192 if (bscopecmp < 0) 2193 goto replace; /* (9) */ 2194 2195 replace: 2196 ifa_best = (struct in6_ifaddr *)ifa; 2197 blen = tlen >= 0 ? tlen : 2198 in6_matchlen(IFA_IN6(ifa), dst); 2199 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2200 } 2201 } 2202 2203 /* count statistics for future improvements */ 2204 if (ifa_best == NULL) 2205 ip6stat.ip6s_sources_none++; 2206 else { 2207 if (oifp == ifa_best->ia_ifp) 2208 ip6stat.ip6s_sources_sameif[best_scope]++; 2209 else 2210 ip6stat.ip6s_sources_otherif[best_scope]++; 2211 2212 if (best_scope == dst_scope) 2213 ip6stat.ip6s_sources_samescope[best_scope]++; 2214 else 2215 ip6stat.ip6s_sources_otherscope[best_scope]++; 2216 2217 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2218 ip6stat.ip6s_sources_deprecated[best_scope]++; 2219 } 2220 2221 return(ifa_best); 2222 } 2223 2224 /* 2225 * return the best address out of the same scope. if no address was 2226 * found, return the first valid address from designated IF. 2227 */ 2228 struct in6_ifaddr * 2229 in6_ifawithifp(ifp, dst) 2230 struct ifnet *ifp; 2231 struct in6_addr *dst; 2232 { 2233 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2234 struct ifaddr *ifa; 2235 struct in6_ifaddr *besta = 0; 2236 struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/ 2237 2238 dep[0] = dep[1] = NULL; 2239 2240 /* 2241 * We first look for addresses in the same scope. 2242 * If there is one, return it. 2243 * If two or more, return one which matches the dst longest. 2244 * If none, return one of global addresses assigned other ifs. 2245 */ 2246 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2247 { 2248 if (ifa->ifa_addr->sa_family != AF_INET6) 2249 continue; 2250 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2251 continue; /* XXX: is there any case to allow anycast? */ 2252 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2253 continue; /* don't use this interface */ 2254 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2255 continue; 2256 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2257 if (ip6_use_deprecated) 2258 dep[0] = (struct in6_ifaddr *)ifa; 2259 continue; 2260 } 2261 2262 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2263 /* 2264 * call in6_matchlen() as few as possible 2265 */ 2266 if (besta) { 2267 if (blen == -1) 2268 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2269 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2270 if (tlen > blen) { 2271 blen = tlen; 2272 besta = (struct in6_ifaddr *)ifa; 2273 } 2274 } else 2275 besta = (struct in6_ifaddr *)ifa; 2276 } 2277 } 2278 if (besta) 2279 return(besta); 2280 2281 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2282 { 2283 if (ifa->ifa_addr->sa_family != AF_INET6) 2284 continue; 2285 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2286 continue; /* XXX: is there any case to allow anycast? */ 2287 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2288 continue; /* don't use this interface */ 2289 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2290 continue; 2291 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2292 if (ip6_use_deprecated) 2293 dep[1] = (struct in6_ifaddr *)ifa; 2294 continue; 2295 } 2296 2297 return (struct in6_ifaddr *)ifa; 2298 } 2299 2300 /* use the last-resort values, that are, deprecated addresses */ 2301 if (dep[0]) 2302 return dep[0]; 2303 if (dep[1]) 2304 return dep[1]; 2305 2306 return NULL; 2307 } 2308 2309 /* 2310 * perform DAD when interface becomes IFF_UP. 2311 */ 2312 void 2313 in6_if_up(ifp) 2314 struct ifnet *ifp; 2315 { 2316 struct ifaddr *ifa; 2317 struct in6_ifaddr *ia; 2318 int dad_delay; /* delay ticks before DAD output */ 2319 2320 /* 2321 * special cases, like 6to4, are handled in in6_ifattach 2322 */ 2323 in6_ifattach(ifp, NULL); 2324 2325 dad_delay = 0; 2326 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) 2327 { 2328 if (ifa->ifa_addr->sa_family != AF_INET6) 2329 continue; 2330 ia = (struct in6_ifaddr *)ifa; 2331 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2332 nd6_dad_start(ifa, &dad_delay); 2333 } 2334 } 2335 2336 int 2337 in6if_do_dad(ifp) 2338 struct ifnet *ifp; 2339 { 2340 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2341 return(0); 2342 2343 switch (ifp->if_type) { 2344 #ifdef IFT_DUMMY 2345 case IFT_DUMMY: 2346 #endif 2347 case IFT_FAITH: 2348 /* 2349 * These interfaces do not have the IFF_LOOPBACK flag, 2350 * but loop packets back. We do not have to do DAD on such 2351 * interfaces. We should even omit it, because loop-backed 2352 * NS would confuse the DAD procedure. 2353 */ 2354 return(0); 2355 default: 2356 /* 2357 * Our DAD routine requires the interface up and running. 2358 * However, some interfaces can be up before the RUNNING 2359 * status. Additionaly, users may try to assign addresses 2360 * before the interface becomes up (or running). 2361 * We simply skip DAD in such a case as a work around. 2362 * XXX: we should rather mark "tentative" on such addresses, 2363 * and do DAD after the interface becomes ready. 2364 */ 2365 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2366 (IFF_UP|IFF_RUNNING)) 2367 return(0); 2368 2369 return(1); 2370 } 2371 } 2372 2373 /* 2374 * Calculate max IPv6 MTU through all the interfaces and store it 2375 * to in6_maxmtu. 2376 */ 2377 void 2378 in6_setmaxmtu() 2379 { 2380 unsigned long maxmtu = 0; 2381 struct ifnet *ifp; 2382 2383 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2384 { 2385 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2386 nd_ifinfo[ifp->if_index].linkmtu > maxmtu) 2387 maxmtu = nd_ifinfo[ifp->if_index].linkmtu; 2388 } 2389 if (maxmtu) /* update only when maxmtu is positive */ 2390 in6_maxmtu = maxmtu; 2391 } 2392 2393 /* 2394 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2395 * v4 mapped addr or v4 compat addr 2396 */ 2397 void 2398 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2399 { 2400 bzero(sin, sizeof(*sin)); 2401 sin->sin_len = sizeof(struct sockaddr_in); 2402 sin->sin_family = AF_INET; 2403 sin->sin_port = sin6->sin6_port; 2404 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2405 } 2406 2407 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2408 void 2409 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2410 { 2411 bzero(sin6, sizeof(*sin6)); 2412 sin6->sin6_len = sizeof(struct sockaddr_in6); 2413 sin6->sin6_family = AF_INET6; 2414 sin6->sin6_port = sin->sin_port; 2415 sin6->sin6_addr.s6_addr32[0] = 0; 2416 sin6->sin6_addr.s6_addr32[1] = 0; 2417 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2418 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2419 } 2420 2421 /* Convert sockaddr_in6 into sockaddr_in. */ 2422 void 2423 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2424 { 2425 struct sockaddr_in *sin_p; 2426 struct sockaddr_in6 sin6; 2427 2428 /* 2429 * Save original sockaddr_in6 addr and convert it 2430 * to sockaddr_in. 2431 */ 2432 sin6 = *(struct sockaddr_in6 *)nam; 2433 sin_p = (struct sockaddr_in *)nam; 2434 in6_sin6_2_sin(sin_p, &sin6); 2435 } 2436 2437 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2438 void 2439 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2440 { 2441 struct sockaddr_in *sin_p; 2442 struct sockaddr_in6 *sin6_p; 2443 2444 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, 2445 M_WAITOK); 2446 sin_p = (struct sockaddr_in *)*nam; 2447 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2448 FREE(*nam, M_SONAME); 2449 *nam = (struct sockaddr *)sin6_p; 2450 } 2451