1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)in.c 8.2 (Berkeley) 11/15/93 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 70 #include <sys/param.h> 71 #include <sys/eventhandler.h> 72 #include <sys/errno.h> 73 #include <sys/jail.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/time.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/rmlock.h> 85 #include <sys/syslog.h> 86 87 #include <net/if.h> 88 #include <net/if_var.h> 89 #include <net/if_types.h> 90 #include <net/route.h> 91 #include <net/if_dl.h> 92 #include <net/vnet.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_var.h> 96 #include <net/if_llatbl.h> 97 #include <netinet/if_ether.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/ip.h> 100 #include <netinet/in_pcb.h> 101 #include <netinet/ip_carp.h> 102 103 #include <netinet/ip6.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet6/nd6.h> 106 #include <netinet6/mld6_var.h> 107 #include <netinet6/ip6_mroute.h> 108 #include <netinet6/in6_ifattach.h> 109 #include <netinet6/scope6_var.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/in6_pcb.h> 112 113 VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); 114 #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) 115 116 /* 117 * Definitions of some costant IP6 addresses. 118 */ 119 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 120 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 121 const struct in6_addr in6addr_nodelocal_allnodes = 122 IN6ADDR_NODELOCAL_ALLNODES_INIT; 123 const struct in6_addr in6addr_linklocal_allnodes = 124 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 125 const struct in6_addr in6addr_linklocal_allrouters = 126 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 127 const struct in6_addr in6addr_linklocal_allv2routers = 128 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; 129 130 const struct in6_addr in6mask0 = IN6MASK0; 131 const struct in6_addr in6mask32 = IN6MASK32; 132 const struct in6_addr in6mask64 = IN6MASK64; 133 const struct in6_addr in6mask96 = IN6MASK96; 134 const struct in6_addr in6mask128 = IN6MASK128; 135 136 const struct sockaddr_in6 sa6_any = 137 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; 138 139 static int in6_notify_ifa(struct ifnet *, struct in6_ifaddr *, 140 struct in6_aliasreq *, int); 141 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 142 143 static int in6_validate_ifra(struct ifnet *, struct in6_aliasreq *, 144 struct in6_ifaddr *, int); 145 static struct in6_ifaddr *in6_alloc_ifa(struct ifnet *, 146 struct in6_aliasreq *, int flags); 147 static int in6_update_ifa_internal(struct ifnet *, struct in6_aliasreq *, 148 struct in6_ifaddr *, int, int); 149 static int in6_broadcast_ifa(struct ifnet *, struct in6_aliasreq *, 150 struct in6_ifaddr *, int); 151 152 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 153 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 154 155 156 void 157 in6_newaddrmsg(struct in6_ifaddr *ia, int cmd) 158 { 159 struct sockaddr_dl gateway; 160 struct sockaddr_in6 mask, addr; 161 struct rtentry rt; 162 163 /* 164 * initialize for rtmsg generation 165 */ 166 bzero(&gateway, sizeof(gateway)); 167 gateway.sdl_len = sizeof(gateway); 168 gateway.sdl_family = AF_LINK; 169 170 bzero(&rt, sizeof(rt)); 171 rt.rt_gateway = (struct sockaddr *)&gateway; 172 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 173 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 174 rt_mask(&rt) = (struct sockaddr *)&mask; 175 rt_key(&rt) = (struct sockaddr *)&addr; 176 rt.rt_flags = RTF_HOST | RTF_STATIC; 177 if (cmd == RTM_ADD) 178 rt.rt_flags |= RTF_UP; 179 /* Announce arrival of local address to all FIBs. */ 180 rt_newaddrmsg(cmd, &ia->ia_ifa, 0, &rt); 181 } 182 183 int 184 in6_mask2len(struct in6_addr *mask, u_char *lim0) 185 { 186 int x = 0, y; 187 u_char *lim = lim0, *p; 188 189 /* ignore the scope_id part */ 190 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 191 lim = (u_char *)mask + sizeof(*mask); 192 for (p = (u_char *)mask; p < lim; x++, p++) { 193 if (*p != 0xff) 194 break; 195 } 196 y = 0; 197 if (p < lim) { 198 for (y = 0; y < 8; y++) { 199 if ((*p & (0x80 >> y)) == 0) 200 break; 201 } 202 } 203 204 /* 205 * when the limit pointer is given, do a stricter check on the 206 * remaining bits. 207 */ 208 if (p < lim) { 209 if (y != 0 && (*p & (0x00ff >> y)) != 0) 210 return (-1); 211 for (p = p + 1; p < lim; p++) 212 if (*p != 0) 213 return (-1); 214 } 215 216 return x * 8 + y; 217 } 218 219 #ifdef COMPAT_FREEBSD32 220 struct in6_ndifreq32 { 221 char ifname[IFNAMSIZ]; 222 uint32_t ifindex; 223 }; 224 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) 225 #endif 226 227 int 228 in6_control(struct socket *so, u_long cmd, caddr_t data, 229 struct ifnet *ifp, struct thread *td) 230 { 231 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 232 struct in6_ifaddr *ia = NULL; 233 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 234 struct sockaddr_in6 *sa6; 235 int carp_attached = 0; 236 int error; 237 u_long ocmd = cmd; 238 239 /* 240 * Compat to make pre-10.x ifconfig(8) operable. 241 */ 242 if (cmd == OSIOCAIFADDR_IN6) 243 cmd = SIOCAIFADDR_IN6; 244 245 switch (cmd) { 246 case SIOCGETSGCNT_IN6: 247 case SIOCGETMIFCNT_IN6: 248 /* 249 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. 250 * We cannot see how that would be needed, so do not adjust the 251 * KPI blindly; more likely should clean up the IPv4 variant. 252 */ 253 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); 254 } 255 256 switch (cmd) { 257 case SIOCAADDRCTL_POLICY: 258 case SIOCDADDRCTL_POLICY: 259 if (td != NULL) { 260 error = priv_check(td, PRIV_NETINET_ADDRCTRL6); 261 if (error) 262 return (error); 263 } 264 return (in6_src_ioctl(cmd, data)); 265 } 266 267 if (ifp == NULL) 268 return (EOPNOTSUPP); 269 270 switch (cmd) { 271 case SIOCSNDFLUSH_IN6: 272 case SIOCSPFXFLUSH_IN6: 273 case SIOCSRTRFLUSH_IN6: 274 case SIOCSDEFIFACE_IN6: 275 case SIOCSIFINFO_FLAGS: 276 case SIOCSIFINFO_IN6: 277 if (td != NULL) { 278 error = priv_check(td, PRIV_NETINET_ND6); 279 if (error) 280 return (error); 281 } 282 /* FALLTHROUGH */ 283 case OSIOCGIFINFO_IN6: 284 case SIOCGIFINFO_IN6: 285 case SIOCGNBRINFO_IN6: 286 case SIOCGDEFIFACE_IN6: 287 return (nd6_ioctl(cmd, data, ifp)); 288 289 #ifdef COMPAT_FREEBSD32 290 case SIOCGDEFIFACE32_IN6: 291 { 292 struct in6_ndifreq ndif; 293 struct in6_ndifreq32 *ndif32; 294 295 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, 296 ifp); 297 if (error) 298 return (error); 299 ndif32 = (struct in6_ndifreq32 *)data; 300 ndif32->ifindex = ndif.ifindex; 301 return (0); 302 } 303 #endif 304 } 305 306 switch (cmd) { 307 case SIOCSIFPREFIX_IN6: 308 case SIOCDIFPREFIX_IN6: 309 case SIOCAIFPREFIX_IN6: 310 case SIOCCIFPREFIX_IN6: 311 case SIOCSGIFPREFIX_IN6: 312 case SIOCGIFPREFIX_IN6: 313 log(LOG_NOTICE, 314 "prefix ioctls are now invalidated. " 315 "please use ifconfig.\n"); 316 return (EOPNOTSUPP); 317 } 318 319 switch (cmd) { 320 case SIOCSSCOPE6: 321 if (td != NULL) { 322 error = priv_check(td, PRIV_NETINET_SCOPE6); 323 if (error) 324 return (error); 325 } 326 /* FALLTHROUGH */ 327 case SIOCGSCOPE6: 328 case SIOCGSCOPE6DEF: 329 return (scope6_ioctl(cmd, data, ifp)); 330 } 331 332 /* 333 * Find address for this interface, if it exists. 334 * 335 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 336 * only, and used the first interface address as the target of other 337 * operations (without checking ifra_addr). This was because netinet 338 * code/API assumed at most 1 interface address per interface. 339 * Since IPv6 allows a node to assign multiple addresses 340 * on a single interface, we almost always look and check the 341 * presence of ifra_addr, and reject invalid ones here. 342 * It also decreases duplicated code among SIOC*_IN6 operations. 343 */ 344 switch (cmd) { 345 case SIOCAIFADDR_IN6: 346 case SIOCSIFPHYADDR_IN6: 347 sa6 = &ifra->ifra_addr; 348 break; 349 case SIOCSIFADDR_IN6: 350 case SIOCGIFADDR_IN6: 351 case SIOCSIFDSTADDR_IN6: 352 case SIOCSIFNETMASK_IN6: 353 case SIOCGIFDSTADDR_IN6: 354 case SIOCGIFNETMASK_IN6: 355 case SIOCDIFADDR_IN6: 356 case SIOCGIFPSRCADDR_IN6: 357 case SIOCGIFPDSTADDR_IN6: 358 case SIOCGIFAFLAG_IN6: 359 case SIOCSNDFLUSH_IN6: 360 case SIOCSPFXFLUSH_IN6: 361 case SIOCSRTRFLUSH_IN6: 362 case SIOCGIFALIFETIME_IN6: 363 case SIOCSIFALIFETIME_IN6: 364 case SIOCGIFSTAT_IN6: 365 case SIOCGIFSTAT_ICMP6: 366 sa6 = &ifr->ifr_addr; 367 break; 368 case SIOCSIFADDR: 369 case SIOCSIFBRDADDR: 370 case SIOCSIFDSTADDR: 371 case SIOCSIFNETMASK: 372 /* 373 * Although we should pass any non-INET6 ioctl requests 374 * down to driver, we filter some legacy INET requests. 375 * Drivers trust SIOCSIFADDR et al to come from an already 376 * privileged layer, and do not perform any credentials 377 * checks or input validation. 378 */ 379 return (EINVAL); 380 default: 381 sa6 = NULL; 382 break; 383 } 384 if (sa6 && sa6->sin6_family == AF_INET6) { 385 if (sa6->sin6_scope_id != 0) 386 error = sa6_embedscope(sa6, 0); 387 else 388 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 389 if (error != 0) 390 return (error); 391 if (td != NULL && (error = prison_check_ip6(td->td_ucred, 392 &sa6->sin6_addr)) != 0) 393 return (error); 394 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 395 } else 396 ia = NULL; 397 398 switch (cmd) { 399 case SIOCSIFADDR_IN6: 400 case SIOCSIFDSTADDR_IN6: 401 case SIOCSIFNETMASK_IN6: 402 /* 403 * Since IPv6 allows a node to assign multiple addresses 404 * on a single interface, SIOCSIFxxx ioctls are deprecated. 405 */ 406 /* we decided to obsolete this command (20000704) */ 407 error = EINVAL; 408 goto out; 409 410 case SIOCDIFADDR_IN6: 411 /* 412 * for IPv4, we look for existing in_ifaddr here to allow 413 * "ifconfig if0 delete" to remove the first IPv4 address on 414 * the interface. For IPv6, as the spec allows multiple 415 * interface address from the day one, we consider "remove the 416 * first one" semantics to be not preferable. 417 */ 418 if (ia == NULL) { 419 error = EADDRNOTAVAIL; 420 goto out; 421 } 422 /* FALLTHROUGH */ 423 case SIOCAIFADDR_IN6: 424 /* 425 * We always require users to specify a valid IPv6 address for 426 * the corresponding operation. 427 */ 428 if (ifra->ifra_addr.sin6_family != AF_INET6 || 429 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { 430 error = EAFNOSUPPORT; 431 goto out; 432 } 433 434 if (td != NULL) { 435 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? 436 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); 437 if (error) 438 goto out; 439 } 440 /* FALLTHROUGH */ 441 case SIOCGIFSTAT_IN6: 442 case SIOCGIFSTAT_ICMP6: 443 if (ifp->if_afdata[AF_INET6] == NULL) { 444 error = EPFNOSUPPORT; 445 goto out; 446 } 447 break; 448 449 case SIOCGIFADDR_IN6: 450 /* This interface is basically deprecated. use SIOCGIFCONF. */ 451 /* FALLTHROUGH */ 452 case SIOCGIFAFLAG_IN6: 453 case SIOCGIFNETMASK_IN6: 454 case SIOCGIFDSTADDR_IN6: 455 case SIOCGIFALIFETIME_IN6: 456 /* must think again about its semantics */ 457 if (ia == NULL) { 458 error = EADDRNOTAVAIL; 459 goto out; 460 } 461 break; 462 463 case SIOCSIFALIFETIME_IN6: 464 { 465 struct in6_addrlifetime *lt; 466 467 if (td != NULL) { 468 error = priv_check(td, PRIV_NETINET_ALIFETIME6); 469 if (error) 470 goto out; 471 } 472 if (ia == NULL) { 473 error = EADDRNOTAVAIL; 474 goto out; 475 } 476 /* sanity for overflow - beware unsigned */ 477 lt = &ifr->ifr_ifru.ifru_lifetime; 478 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && 479 lt->ia6t_vltime + time_uptime < time_uptime) { 480 error = EINVAL; 481 goto out; 482 } 483 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && 484 lt->ia6t_pltime + time_uptime < time_uptime) { 485 error = EINVAL; 486 goto out; 487 } 488 break; 489 } 490 } 491 492 switch (cmd) { 493 case SIOCGIFADDR_IN6: 494 ifr->ifr_addr = ia->ia_addr; 495 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 496 goto out; 497 break; 498 499 case SIOCGIFDSTADDR_IN6: 500 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 501 error = EINVAL; 502 goto out; 503 } 504 /* 505 * XXX: should we check if ifa_dstaddr is NULL and return 506 * an error? 507 */ 508 ifr->ifr_dstaddr = ia->ia_dstaddr; 509 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 510 goto out; 511 break; 512 513 case SIOCGIFNETMASK_IN6: 514 ifr->ifr_addr = ia->ia_prefixmask; 515 break; 516 517 case SIOCGIFAFLAG_IN6: 518 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 519 break; 520 521 case SIOCGIFSTAT_IN6: 522 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 523 ifp->if_afdata[AF_INET6])->in6_ifstat, 524 &ifr->ifr_ifru.ifru_stat, 525 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 526 break; 527 528 case SIOCGIFSTAT_ICMP6: 529 COUNTER_ARRAY_COPY(((struct in6_ifextra *) 530 ifp->if_afdata[AF_INET6])->icmp6_ifstat, 531 &ifr->ifr_ifru.ifru_icmp6stat, 532 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 533 break; 534 535 case SIOCGIFALIFETIME_IN6: 536 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 537 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 538 time_t maxexpire; 539 struct in6_addrlifetime *retlt = 540 &ifr->ifr_ifru.ifru_lifetime; 541 542 /* 543 * XXX: adjust expiration time assuming time_t is 544 * signed. 545 */ 546 maxexpire = (-1) & 547 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 548 if (ia->ia6_lifetime.ia6t_vltime < 549 maxexpire - ia->ia6_updatetime) { 550 retlt->ia6t_expire = ia->ia6_updatetime + 551 ia->ia6_lifetime.ia6t_vltime; 552 } else 553 retlt->ia6t_expire = maxexpire; 554 } 555 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 556 time_t maxexpire; 557 struct in6_addrlifetime *retlt = 558 &ifr->ifr_ifru.ifru_lifetime; 559 560 /* 561 * XXX: adjust expiration time assuming time_t is 562 * signed. 563 */ 564 maxexpire = (-1) & 565 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 566 if (ia->ia6_lifetime.ia6t_pltime < 567 maxexpire - ia->ia6_updatetime) { 568 retlt->ia6t_preferred = ia->ia6_updatetime + 569 ia->ia6_lifetime.ia6t_pltime; 570 } else 571 retlt->ia6t_preferred = maxexpire; 572 } 573 break; 574 575 case SIOCSIFALIFETIME_IN6: 576 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 577 /* for sanity */ 578 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 579 ia->ia6_lifetime.ia6t_expire = 580 time_uptime + ia->ia6_lifetime.ia6t_vltime; 581 } else 582 ia->ia6_lifetime.ia6t_expire = 0; 583 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 584 ia->ia6_lifetime.ia6t_preferred = 585 time_uptime + ia->ia6_lifetime.ia6t_pltime; 586 } else 587 ia->ia6_lifetime.ia6t_preferred = 0; 588 break; 589 590 case SIOCAIFADDR_IN6: 591 { 592 struct nd_prefixctl pr0; 593 struct nd_prefix *pr; 594 595 /* 596 * first, make or update the interface address structure, 597 * and link it to the list. 598 */ 599 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 600 goto out; 601 if (ia != NULL) 602 ifa_free(&ia->ia_ifa); 603 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 604 == NULL) { 605 /* 606 * this can happen when the user specify the 0 valid 607 * lifetime. 608 */ 609 break; 610 } 611 612 if (cmd == ocmd && ifra->ifra_vhid > 0) { 613 if (carp_attach_p != NULL) 614 error = (*carp_attach_p)(&ia->ia_ifa, 615 ifra->ifra_vhid); 616 else 617 error = EPROTONOSUPPORT; 618 if (error) 619 goto out; 620 else 621 carp_attached = 1; 622 } 623 624 /* 625 * then, make the prefix on-link on the interface. 626 * XXX: we'd rather create the prefix before the address, but 627 * we need at least one address to install the corresponding 628 * interface route, so we configure the address first. 629 */ 630 631 /* 632 * convert mask to prefix length (prefixmask has already 633 * been validated in in6_update_ifa(). 634 */ 635 bzero(&pr0, sizeof(pr0)); 636 pr0.ndpr_ifp = ifp; 637 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 638 NULL); 639 if (pr0.ndpr_plen == 128) { 640 /* we don't need to install a host route. */ 641 goto aifaddr_out; 642 } 643 pr0.ndpr_prefix = ifra->ifra_addr; 644 /* apply the mask for safety. */ 645 IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, 646 &ifra->ifra_prefixmask.sin6_addr); 647 648 /* 649 * XXX: since we don't have an API to set prefix (not address) 650 * lifetimes, we just use the same lifetimes as addresses. 651 * The (temporarily) installed lifetimes can be overridden by 652 * later advertised RAs (when accept_rtadv is non 0), which is 653 * an intended behavior. 654 */ 655 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 656 pr0.ndpr_raf_auto = 657 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 658 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 659 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 660 661 /* add the prefix if not yet. */ 662 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 663 /* 664 * nd6_prelist_add will install the corresponding 665 * interface route. 666 */ 667 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { 668 if (carp_attached) 669 (*carp_detach_p)(&ia->ia_ifa); 670 goto out; 671 } 672 } 673 674 /* relate the address to the prefix */ 675 if (ia->ia6_ndpr == NULL) { 676 ia->ia6_ndpr = pr; 677 pr->ndpr_refcnt++; 678 679 /* 680 * If this is the first autoconf address from the 681 * prefix, create a temporary address as well 682 * (when required). 683 */ 684 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 685 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 686 int e; 687 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 688 log(LOG_NOTICE, "in6_control: failed " 689 "to create a temporary address, " 690 "errno=%d\n", e); 691 } 692 } 693 } 694 695 /* 696 * this might affect the status of autoconfigured addresses, 697 * that is, this address might make other addresses detached. 698 */ 699 pfxlist_onlink_check(); 700 aifaddr_out: 701 if (error != 0 || ia == NULL) 702 break; 703 /* 704 * Try to clear the flag when a new IPv6 address is added 705 * onto an IFDISABLED interface and it succeeds. 706 */ 707 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { 708 struct in6_ndireq nd; 709 710 memset(&nd, 0, sizeof(nd)); 711 nd.ndi.flags = ND_IFINFO(ifp)->flags; 712 nd.ndi.flags &= ~ND6_IFF_IFDISABLED; 713 if (nd6_ioctl(SIOCSIFINFO_FLAGS, (caddr_t)&nd, ifp) < 0) 714 log(LOG_NOTICE, "SIOCAIFADDR_IN6: " 715 "SIOCSIFINFO_FLAGS for -ifdisabled " 716 "failed."); 717 /* 718 * Ignore failure of clearing the flag intentionally. 719 * The failure means address duplication was detected. 720 */ 721 } 722 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 723 break; 724 } 725 726 case SIOCDIFADDR_IN6: 727 { 728 struct nd_prefix *pr; 729 730 /* 731 * If the address being deleted is the only one that owns 732 * the corresponding prefix, expire the prefix as well. 733 * XXX: theoretically, we don't have to worry about such 734 * relationship, since we separate the address management 735 * and the prefix management. We do this, however, to provide 736 * as much backward compatibility as possible in terms of 737 * the ioctl operation. 738 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 739 */ 740 pr = ia->ia6_ndpr; 741 in6_purgeaddr(&ia->ia_ifa); 742 if (pr && pr->ndpr_refcnt == 0) 743 prelist_remove(pr); 744 EVENTHANDLER_INVOKE(ifaddr_event, ifp); 745 break; 746 } 747 748 default: 749 if (ifp->if_ioctl == NULL) { 750 error = EOPNOTSUPP; 751 goto out; 752 } 753 error = (*ifp->if_ioctl)(ifp, cmd, data); 754 goto out; 755 } 756 757 error = 0; 758 out: 759 if (ia != NULL) 760 ifa_free(&ia->ia_ifa); 761 return (error); 762 } 763 764 765 /* 766 * Join necessary multicast groups. Factored out from in6_update_ifa(). 767 * This entire work should only be done once, for the default FIB. 768 */ 769 static int 770 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, 771 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) 772 { 773 char ip6buf[INET6_ADDRSTRLEN]; 774 struct in6_addr mltaddr; 775 struct in6_multi_mship *imm; 776 int delay, error; 777 778 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); 779 780 /* Join solicited multicast addr for new host id. */ 781 bzero(&mltaddr, sizeof(struct in6_addr)); 782 mltaddr.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 783 mltaddr.s6_addr32[2] = htonl(1); 784 mltaddr.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 785 mltaddr.s6_addr8[12] = 0xff; 786 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) { 787 /* XXX: should not happen */ 788 log(LOG_ERR, "%s: in6_setscope failed\n", __func__); 789 goto cleanup; 790 } 791 delay = error = 0; 792 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 793 /* 794 * We need a random delay for DAD on the address being 795 * configured. It also means delaying transmission of the 796 * corresponding MLD report to avoid report collision. 797 * [RFC 4861, Section 6.3.7] 798 */ 799 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 800 } 801 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 802 if (imm == NULL) { 803 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 804 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 805 if_name(ifp), error)); 806 goto cleanup; 807 } 808 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 809 *in6m_sol = imm->i6mm_maddr; 810 811 /* 812 * Join link-local all-nodes address. 813 */ 814 mltaddr = in6addr_linklocal_allnodes; 815 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 816 goto cleanup; /* XXX: should not fail */ 817 818 imm = in6_joingroup(ifp, &mltaddr, &error, 0); 819 if (imm == NULL) { 820 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 821 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), 822 if_name(ifp), error)); 823 goto cleanup; 824 } 825 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 826 827 /* 828 * Join node information group address. 829 */ 830 delay = 0; 831 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 832 /* 833 * The spec does not say anything about delay for this group, 834 * but the same logic should apply. 835 */ 836 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); 837 } 838 if (in6_nigroup(ifp, NULL, -1, &mltaddr) == 0) { 839 /* XXX jinmei */ 840 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 841 if (imm == NULL) 842 nd6log((LOG_WARNING, 843 "%s: in6_joingroup failed for %s on %s " 844 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 845 &mltaddr), if_name(ifp), error)); 846 /* XXX not very fatal, go on... */ 847 else 848 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 849 } 850 if (V_icmp6_nodeinfo_oldmcprefix && 851 in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr) == 0) { 852 imm = in6_joingroup(ifp, &mltaddr, &error, delay); 853 if (imm == NULL) 854 nd6log((LOG_WARNING, 855 "%s: in6_joingroup failed for %s on %s " 856 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 857 &mltaddr), if_name(ifp), error)); 858 /* XXX not very fatal, go on... */ 859 else 860 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 861 } 862 863 /* 864 * Join interface-local all-nodes address. 865 * (ff01::1%ifN, and ff01::%ifN/32) 866 */ 867 mltaddr = in6addr_nodelocal_allnodes; 868 if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) 869 goto cleanup; /* XXX: should not fail */ 870 871 imm = in6_joingroup(ifp, &mltaddr, &error, 0); 872 if (imm == NULL) { 873 nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " 874 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, 875 &mltaddr), if_name(ifp), error)); 876 goto cleanup; 877 } 878 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 879 880 cleanup: 881 return (error); 882 } 883 884 /* 885 * Update parameters of an IPv6 interface address. 886 * If necessary, a new entry is created and linked into address chains. 887 * This function is separated from in6_control(). 888 */ 889 int 890 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 891 struct in6_ifaddr *ia, int flags) 892 { 893 int error, hostIsNew = 0; 894 895 if ((error = in6_validate_ifra(ifp, ifra, ia, flags)) != 0) 896 return (error); 897 898 if (ia == NULL) { 899 hostIsNew = 1; 900 if ((ia = in6_alloc_ifa(ifp, ifra, flags)) == NULL) 901 return (ENOBUFS); 902 } 903 904 error = in6_update_ifa_internal(ifp, ifra, ia, hostIsNew, flags); 905 if (error != 0) { 906 if (hostIsNew != 0) { 907 in6_unlink_ifa(ia, ifp); 908 ifa_free(&ia->ia_ifa); 909 } 910 return (error); 911 } 912 913 if (hostIsNew) 914 error = in6_broadcast_ifa(ifp, ifra, ia, flags); 915 916 return (error); 917 } 918 919 /* 920 * Fill in basic IPv6 address request info. 921 */ 922 void 923 in6_prepare_ifra(struct in6_aliasreq *ifra, const struct in6_addr *addr, 924 const struct in6_addr *mask) 925 { 926 927 memset(ifra, 0, sizeof(struct in6_aliasreq)); 928 929 ifra->ifra_addr.sin6_family = AF_INET6; 930 ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); 931 if (addr != NULL) 932 ifra->ifra_addr.sin6_addr = *addr; 933 934 ifra->ifra_prefixmask.sin6_family = AF_INET6; 935 ifra->ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 936 if (mask != NULL) 937 ifra->ifra_prefixmask.sin6_addr = *mask; 938 } 939 940 static int 941 in6_validate_ifra(struct ifnet *ifp, struct in6_aliasreq *ifra, 942 struct in6_ifaddr *ia, int flags) 943 { 944 int plen = -1; 945 struct sockaddr_in6 dst6; 946 struct in6_addrlifetime *lt; 947 char ip6buf[INET6_ADDRSTRLEN]; 948 949 /* Validate parameters */ 950 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 951 return (EINVAL); 952 953 /* 954 * The destination address for a p2p link must have a family 955 * of AF_UNSPEC or AF_INET6. 956 */ 957 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 958 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 959 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 960 return (EAFNOSUPPORT); 961 962 /* 963 * Validate address 964 */ 965 if (ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6) || 966 ifra->ifra_addr.sin6_family != AF_INET6) 967 return (EINVAL); 968 969 /* 970 * validate ifra_prefixmask. don't check sin6_family, netmask 971 * does not carry fields other than sin6_len. 972 */ 973 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 974 return (EINVAL); 975 /* 976 * Because the IPv6 address architecture is classless, we require 977 * users to specify a (non 0) prefix length (mask) for a new address. 978 * We also require the prefix (when specified) mask is valid, and thus 979 * reject a non-consecutive mask. 980 */ 981 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 982 return (EINVAL); 983 if (ifra->ifra_prefixmask.sin6_len != 0) { 984 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 985 (u_char *)&ifra->ifra_prefixmask + 986 ifra->ifra_prefixmask.sin6_len); 987 if (plen <= 0) 988 return (EINVAL); 989 } else { 990 /* 991 * In this case, ia must not be NULL. We just use its prefix 992 * length. 993 */ 994 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 995 } 996 /* 997 * If the destination address on a p2p interface is specified, 998 * and the address is a scoped one, validate/set the scope 999 * zone identifier. 1000 */ 1001 dst6 = ifra->ifra_dstaddr; 1002 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 1003 (dst6.sin6_family == AF_INET6)) { 1004 struct in6_addr in6_tmp; 1005 u_int32_t zoneid; 1006 1007 in6_tmp = dst6.sin6_addr; 1008 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 1009 return (EINVAL); /* XXX: should be impossible */ 1010 1011 if (dst6.sin6_scope_id != 0) { 1012 if (dst6.sin6_scope_id != zoneid) 1013 return (EINVAL); 1014 } else /* user omit to specify the ID. */ 1015 dst6.sin6_scope_id = zoneid; 1016 1017 /* convert into the internal form */ 1018 if (sa6_embedscope(&dst6, 0)) 1019 return (EINVAL); /* XXX: should be impossible */ 1020 } 1021 /* Modify original ifra_dstaddr to reflect changes */ 1022 ifra->ifra_dstaddr = dst6; 1023 1024 /* 1025 * The destination address can be specified only for a p2p or a 1026 * loopback interface. If specified, the corresponding prefix length 1027 * must be 128. 1028 */ 1029 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 1030 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 1031 /* XXX: noisy message */ 1032 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 1033 "be specified for a p2p or a loopback IF only\n")); 1034 return (EINVAL); 1035 } 1036 if (plen != 128) { 1037 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 1038 "be 128 when dstaddr is specified\n")); 1039 return (EINVAL); 1040 } 1041 } 1042 /* lifetime consistency check */ 1043 lt = &ifra->ifra_lifetime; 1044 if (lt->ia6t_pltime > lt->ia6t_vltime) 1045 return (EINVAL); 1046 if (lt->ia6t_vltime == 0) { 1047 /* 1048 * the following log might be noisy, but this is a typical 1049 * configuration mistake or a tool's bug. 1050 */ 1051 nd6log((LOG_INFO, 1052 "in6_update_ifa: valid lifetime is 0 for %s\n", 1053 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); 1054 1055 if (ia == NULL) 1056 return (0); /* there's nothing to do */ 1057 } 1058 1059 /* Check prefix mask */ 1060 if (ia != NULL && ifra->ifra_prefixmask.sin6_len != 0) { 1061 /* 1062 * We prohibit changing the prefix length of an existing 1063 * address, because 1064 * + such an operation should be rare in IPv6, and 1065 * + the operation would confuse prefix management. 1066 */ 1067 if (ia->ia_prefixmask.sin6_len != 0 && 1068 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1069 nd6log((LOG_INFO, "in6_validate_ifa: the prefix length " 1070 "of an existing %s address should not be changed\n", 1071 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1072 1073 return (EINVAL); 1074 } 1075 } 1076 1077 return (0); 1078 } 1079 1080 1081 /* 1082 * Allocate a new ifaddr and link it into chains. 1083 */ 1084 static struct in6_ifaddr * 1085 in6_alloc_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int flags) 1086 { 1087 struct in6_ifaddr *ia; 1088 1089 /* 1090 * When in6_alloc_ifa() is called in a process of a received 1091 * RA, it is called under an interrupt context. So, we should 1092 * call malloc with M_NOWAIT. 1093 */ 1094 ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); 1095 if (ia == NULL) 1096 return (NULL); 1097 LIST_INIT(&ia->ia6_memberships); 1098 /* Initialize the address and masks, and put time stamp */ 1099 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 1100 ia->ia_addr.sin6_family = AF_INET6; 1101 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 1102 /* XXX: Can we assign ,sin6_addr and skip the rest? */ 1103 ia->ia_addr = ifra->ifra_addr; 1104 ia->ia6_createtime = time_uptime; 1105 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 1106 /* 1107 * Some functions expect that ifa_dstaddr is not 1108 * NULL for p2p interfaces. 1109 */ 1110 ia->ia_ifa.ifa_dstaddr = 1111 (struct sockaddr *)&ia->ia_dstaddr; 1112 } else { 1113 ia->ia_ifa.ifa_dstaddr = NULL; 1114 } 1115 1116 /* set prefix mask if any */ 1117 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; 1118 if (ifra->ifra_prefixmask.sin6_len != 0) { 1119 ia->ia_prefixmask.sin6_family = AF_INET6; 1120 ia->ia_prefixmask.sin6_len = ifra->ifra_prefixmask.sin6_len; 1121 ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; 1122 } 1123 1124 ia->ia_ifp = ifp; 1125 ifa_ref(&ia->ia_ifa); /* if_addrhead */ 1126 IF_ADDR_WLOCK(ifp); 1127 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1128 IF_ADDR_WUNLOCK(ifp); 1129 1130 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ 1131 IN6_IFADDR_WLOCK(); 1132 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); 1133 LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); 1134 IN6_IFADDR_WUNLOCK(); 1135 1136 return (ia); 1137 } 1138 1139 /* 1140 * Update/configure interface address parameters: 1141 * 1142 * 1) Update lifetime 1143 * 2) Update interface metric ad flags 1144 * 3) Notify other subsystems 1145 */ 1146 static int 1147 in6_update_ifa_internal(struct ifnet *ifp, struct in6_aliasreq *ifra, 1148 struct in6_ifaddr *ia, int hostIsNew, int flags) 1149 { 1150 int error; 1151 1152 /* update timestamp */ 1153 ia->ia6_updatetime = time_uptime; 1154 1155 /* 1156 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1157 * to see if the address is deprecated or invalidated, but initialize 1158 * these members for applications. 1159 */ 1160 ia->ia6_lifetime = ifra->ifra_lifetime; 1161 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1162 ia->ia6_lifetime.ia6t_expire = 1163 time_uptime + ia->ia6_lifetime.ia6t_vltime; 1164 } else 1165 ia->ia6_lifetime.ia6t_expire = 0; 1166 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1167 ia->ia6_lifetime.ia6t_preferred = 1168 time_uptime + ia->ia6_lifetime.ia6t_pltime; 1169 } else 1170 ia->ia6_lifetime.ia6t_preferred = 0; 1171 1172 /* 1173 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1174 * userland, make it deprecated. 1175 */ 1176 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1177 ia->ia6_lifetime.ia6t_pltime = 0; 1178 ia->ia6_lifetime.ia6t_preferred = time_uptime; 1179 } 1180 1181 /* 1182 * configure address flags. 1183 */ 1184 ia->ia6_flags = ifra->ifra_flags; 1185 1186 /* 1187 * Make the address tentative before joining multicast addresses, 1188 * so that corresponding MLD responses would not have a tentative 1189 * source address. 1190 */ 1191 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1192 1193 /* 1194 * DAD should be performed for an new address or addresses on 1195 * an interface with ND6_IFF_IFDISABLED. 1196 */ 1197 if (in6if_do_dad(ifp) && 1198 (hostIsNew || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED))) 1199 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1200 1201 /* notify other subsystems */ 1202 error = in6_notify_ifa(ifp, ia, ifra, hostIsNew); 1203 1204 return (error); 1205 } 1206 1207 /* 1208 * Do link-level ifa job: 1209 * 1) Add lle entry for added address 1210 * 2) Notifies routing socket users about new address 1211 * 3) join appropriate multicast group 1212 * 4) start DAD if enabled 1213 */ 1214 static int 1215 in6_broadcast_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1216 struct in6_ifaddr *ia, int flags) 1217 { 1218 struct in6_multi *in6m_sol; 1219 int error = 0; 1220 1221 /* Add local address to lltable, if necessary (ex. on p2p link). */ 1222 if ((error = nd6_add_ifa_lle(ia)) != 0) { 1223 in6_purgeaddr(&ia->ia_ifa); 1224 ifa_free(&ia->ia_ifa); 1225 return (error); 1226 } 1227 1228 /* Join necessary multicast groups. */ 1229 in6m_sol = NULL; 1230 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1231 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); 1232 if (error != 0) { 1233 in6_purgeaddr(&ia->ia_ifa); 1234 ifa_free(&ia->ia_ifa); 1235 return (error); 1236 } 1237 } 1238 1239 /* Perform DAD, if the address is TENTATIVE. */ 1240 if ((ia->ia6_flags & IN6_IFF_TENTATIVE)) { 1241 int delay, mindelay, maxdelay; 1242 1243 delay = 0; 1244 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1245 /* 1246 * We need to impose a delay before sending an NS 1247 * for DAD. Check if we also needed a delay for the 1248 * corresponding MLD message. If we did, the delay 1249 * should be larger than the MLD delay (this could be 1250 * relaxed a bit, but this simple logic is at least 1251 * safe). 1252 * XXX: Break data hiding guidelines and look at 1253 * state for the solicited multicast group. 1254 */ 1255 mindelay = 0; 1256 if (in6m_sol != NULL && 1257 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { 1258 mindelay = in6m_sol->in6m_timer; 1259 } 1260 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1261 if (maxdelay - mindelay == 0) 1262 delay = 0; 1263 else { 1264 delay = 1265 (arc4random() % (maxdelay - mindelay)) + 1266 mindelay; 1267 } 1268 } 1269 nd6_dad_start((struct ifaddr *)ia, delay); 1270 } 1271 1272 in6_newaddrmsg(ia, RTM_ADD); 1273 ifa_free(&ia->ia_ifa); 1274 return (error); 1275 } 1276 1277 void 1278 in6_purgeaddr(struct ifaddr *ifa) 1279 { 1280 struct ifnet *ifp = ifa->ifa_ifp; 1281 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1282 struct in6_multi_mship *imm; 1283 int plen, error; 1284 1285 if (ifa->ifa_carp) 1286 (*carp_detach_p)(ifa); 1287 1288 /* 1289 * Remove the loopback route to the interface address. 1290 * The check for the current setting of "nd6_useloopback" 1291 * is not needed. 1292 */ 1293 if (ia->ia_flags & IFA_RTSELF) { 1294 error = ifa_del_loopback_route((struct ifaddr *)ia, 1295 (struct sockaddr *)&ia->ia_addr); 1296 if (error == 0) 1297 ia->ia_flags &= ~IFA_RTSELF; 1298 } 1299 1300 /* stop DAD processing */ 1301 nd6_dad_stop(ifa); 1302 1303 /* Leave multicast groups. */ 1304 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1305 LIST_REMOVE(imm, i6mm_chain); 1306 in6_leavegroup(imm); 1307 } 1308 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1309 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { 1310 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | 1311 (ia->ia_dstaddr.sin6_family == AF_INET6 ? RTF_HOST : 0)); 1312 if (error != 0) 1313 log(LOG_INFO, "%s: err=%d, destination address delete " 1314 "failed\n", __func__, error); 1315 ia->ia_flags &= ~IFA_ROUTE; 1316 } 1317 1318 in6_newaddrmsg(ia, RTM_DELETE); 1319 in6_unlink_ifa(ia, ifp); 1320 } 1321 1322 static void 1323 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1324 { 1325 char ip6buf[INET6_ADDRSTRLEN]; 1326 int remove_lle; 1327 1328 IF_ADDR_WLOCK(ifp); 1329 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); 1330 IF_ADDR_WUNLOCK(ifp); 1331 ifa_free(&ia->ia_ifa); /* if_addrhead */ 1332 1333 /* 1334 * Defer the release of what might be the last reference to the 1335 * in6_ifaddr so that it can't be freed before the remainder of the 1336 * cleanup. 1337 */ 1338 IN6_IFADDR_WLOCK(); 1339 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link); 1340 LIST_REMOVE(ia, ia6_hash); 1341 IN6_IFADDR_WUNLOCK(); 1342 1343 /* 1344 * Release the reference to the base prefix. There should be a 1345 * positive reference. 1346 */ 1347 remove_lle = 0; 1348 if (ia->ia6_ndpr == NULL) { 1349 nd6log((LOG_NOTICE, 1350 "in6_unlink_ifa: autoconf'ed address " 1351 "%s has no prefix\n", ip6_sprintf(ip6buf, IA6_IN6(ia)))); 1352 } else { 1353 ia->ia6_ndpr->ndpr_refcnt--; 1354 /* Do not delete lles within prefix if refcont != 0 */ 1355 if (ia->ia6_ndpr->ndpr_refcnt == 0) 1356 remove_lle = 1; 1357 ia->ia6_ndpr = NULL; 1358 } 1359 1360 nd6_rem_ifa_lle(ia, remove_lle); 1361 1362 /* 1363 * Also, if the address being removed is autoconf'ed, call 1364 * pfxlist_onlink_check() since the release might affect the status of 1365 * other (detached) addresses. 1366 */ 1367 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { 1368 pfxlist_onlink_check(); 1369 } 1370 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ 1371 } 1372 1373 /* 1374 * Notifies other subsystems about address change/arrival: 1375 * 1) Notifies device handler on the first IPv6 address assignment 1376 * 2) Handle routing table changes for P2P links and route 1377 * 3) Handle routing table changes for address host route 1378 */ 1379 static int 1380 in6_notify_ifa(struct ifnet *ifp, struct in6_ifaddr *ia, 1381 struct in6_aliasreq *ifra, int hostIsNew) 1382 { 1383 int error = 0, plen, ifacount = 0; 1384 struct ifaddr *ifa; 1385 struct sockaddr_in6 *pdst; 1386 char ip6buf[INET6_ADDRSTRLEN]; 1387 1388 /* 1389 * Give the interface a chance to initialize 1390 * if this is its first address, 1391 */ 1392 if (hostIsNew != 0) { 1393 IF_ADDR_RLOCK(ifp); 1394 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1395 if (ifa->ifa_addr->sa_family != AF_INET6) 1396 continue; 1397 ifacount++; 1398 } 1399 IF_ADDR_RUNLOCK(ifp); 1400 } 1401 1402 if (ifacount <= 1 && ifp->if_ioctl) { 1403 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); 1404 if (error) 1405 return (error); 1406 } 1407 1408 /* 1409 * If a new destination address is specified, scrub the old one and 1410 * install the new destination. Note that the interface must be 1411 * p2p or loopback. 1412 */ 1413 pdst = &ifra->ifra_dstaddr; 1414 if (pdst->sin6_family == AF_INET6 && 1415 !IN6_ARE_ADDR_EQUAL(&pdst->sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1416 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1417 (rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0)) { 1418 nd6log((LOG_ERR, "in6_update_ifa_internal: failed to " 1419 "remove a route to the old destination: %s\n", 1420 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); 1421 /* proceed anyway... */ 1422 } else 1423 ia->ia_flags &= ~IFA_ROUTE; 1424 ia->ia_dstaddr = *pdst; 1425 } 1426 1427 /* 1428 * If a new destination address is specified for a point-to-point 1429 * interface, install a route to the destination as an interface 1430 * direct route. 1431 * XXX: the logic below rejects assigning multiple addresses on a p2p 1432 * interface that share the same destination. 1433 */ 1434 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1435 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && 1436 ia->ia_dstaddr.sin6_family == AF_INET6) { 1437 int rtflags = RTF_UP | RTF_HOST; 1438 /* 1439 * Handle the case for ::1 . 1440 */ 1441 if (ifp->if_flags & IFF_LOOPBACK) 1442 ia->ia_flags |= IFA_RTSELF; 1443 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); 1444 if (error) 1445 return (error); 1446 ia->ia_flags |= IFA_ROUTE; 1447 } 1448 1449 /* 1450 * add a loopback route to self if not exists 1451 */ 1452 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { 1453 error = ifa_add_loopback_route((struct ifaddr *)ia, 1454 (struct sockaddr *)&ia->ia_addr); 1455 if (error == 0) 1456 ia->ia_flags |= IFA_RTSELF; 1457 } 1458 1459 return (error); 1460 } 1461 1462 /* 1463 * Find an IPv6 interface link-local address specific to an interface. 1464 * ifaddr is returned referenced. 1465 */ 1466 struct in6_ifaddr * 1467 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) 1468 { 1469 struct ifaddr *ifa; 1470 1471 IF_ADDR_RLOCK(ifp); 1472 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1473 if (ifa->ifa_addr->sa_family != AF_INET6) 1474 continue; 1475 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 1476 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 1477 ignoreflags) != 0) 1478 continue; 1479 ifa_ref(ifa); 1480 break; 1481 } 1482 } 1483 IF_ADDR_RUNLOCK(ifp); 1484 1485 return ((struct in6_ifaddr *)ifa); 1486 } 1487 1488 1489 /* 1490 * find the internet address corresponding to a given address. 1491 * ifaddr is returned referenced. 1492 */ 1493 struct in6_ifaddr * 1494 in6ifa_ifwithaddr(const struct in6_addr *addr, uint32_t zoneid) 1495 { 1496 struct rm_priotracker in6_ifa_tracker; 1497 struct in6_ifaddr *ia; 1498 1499 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1500 LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { 1501 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), addr)) { 1502 if (zoneid != 0 && 1503 zoneid != ia->ia_addr.sin6_scope_id) 1504 continue; 1505 ifa_ref(&ia->ia_ifa); 1506 break; 1507 } 1508 } 1509 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1510 return (ia); 1511 } 1512 1513 /* 1514 * find the internet address corresponding to a given interface and address. 1515 * ifaddr is returned referenced. 1516 */ 1517 struct in6_ifaddr * 1518 in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr) 1519 { 1520 struct ifaddr *ifa; 1521 1522 IF_ADDR_RLOCK(ifp); 1523 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1524 if (ifa->ifa_addr->sa_family != AF_INET6) 1525 continue; 1526 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { 1527 ifa_ref(ifa); 1528 break; 1529 } 1530 } 1531 IF_ADDR_RUNLOCK(ifp); 1532 1533 return ((struct in6_ifaddr *)ifa); 1534 } 1535 1536 /* 1537 * Find a link-local scoped address on ifp and return it if any. 1538 */ 1539 struct in6_ifaddr * 1540 in6ifa_llaonifp(struct ifnet *ifp) 1541 { 1542 struct sockaddr_in6 *sin6; 1543 struct ifaddr *ifa; 1544 1545 if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) 1546 return (NULL); 1547 IF_ADDR_RLOCK(ifp); 1548 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1549 if (ifa->ifa_addr->sa_family != AF_INET6) 1550 continue; 1551 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 1552 if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || 1553 IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || 1554 IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) 1555 break; 1556 } 1557 IF_ADDR_RUNLOCK(ifp); 1558 1559 return ((struct in6_ifaddr *)ifa); 1560 } 1561 1562 /* 1563 * Convert IP6 address to printable (loggable) representation. Caller 1564 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. 1565 */ 1566 static char digits[] = "0123456789abcdef"; 1567 char * 1568 ip6_sprintf(char *ip6buf, const struct in6_addr *addr) 1569 { 1570 int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; 1571 char *cp; 1572 const u_int16_t *a = (const u_int16_t *)addr; 1573 const u_int8_t *d; 1574 int dcolon = 0, zero = 0; 1575 1576 cp = ip6buf; 1577 1578 for (i = 0; i < 8; i++) { 1579 if (*(a + i) == 0) { 1580 cnt++; 1581 if (cnt == 1) 1582 idx = i; 1583 } 1584 else if (maxcnt < cnt) { 1585 maxcnt = cnt; 1586 index = idx; 1587 cnt = 0; 1588 } 1589 } 1590 if (maxcnt < cnt) { 1591 maxcnt = cnt; 1592 index = idx; 1593 } 1594 1595 for (i = 0; i < 8; i++) { 1596 if (dcolon == 1) { 1597 if (*a == 0) { 1598 if (i == 7) 1599 *cp++ = ':'; 1600 a++; 1601 continue; 1602 } else 1603 dcolon = 2; 1604 } 1605 if (*a == 0) { 1606 if (dcolon == 0 && *(a + 1) == 0 && i == index) { 1607 if (i == 0) 1608 *cp++ = ':'; 1609 *cp++ = ':'; 1610 dcolon = 1; 1611 } else { 1612 *cp++ = '0'; 1613 *cp++ = ':'; 1614 } 1615 a++; 1616 continue; 1617 } 1618 d = (const u_char *)a; 1619 /* Try to eliminate leading zeros in printout like in :0001. */ 1620 zero = 1; 1621 *cp = digits[*d >> 4]; 1622 if (*cp != '0') { 1623 zero = 0; 1624 cp++; 1625 } 1626 *cp = digits[*d++ & 0xf]; 1627 if (zero == 0 || (*cp != '0')) { 1628 zero = 0; 1629 cp++; 1630 } 1631 *cp = digits[*d >> 4]; 1632 if (zero == 0 || (*cp != '0')) { 1633 zero = 0; 1634 cp++; 1635 } 1636 *cp++ = digits[*d & 0xf]; 1637 *cp++ = ':'; 1638 a++; 1639 } 1640 *--cp = '\0'; 1641 return (ip6buf); 1642 } 1643 1644 int 1645 in6_localaddr(struct in6_addr *in6) 1646 { 1647 struct rm_priotracker in6_ifa_tracker; 1648 struct in6_ifaddr *ia; 1649 1650 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1651 return 1; 1652 1653 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1654 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 1655 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1656 &ia->ia_prefixmask.sin6_addr)) { 1657 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1658 return 1; 1659 } 1660 } 1661 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1662 1663 return (0); 1664 } 1665 1666 /* 1667 * Return 1 if an internet address is for the local host and configured 1668 * on one of its interfaces. 1669 */ 1670 int 1671 in6_localip(struct in6_addr *in6) 1672 { 1673 struct rm_priotracker in6_ifa_tracker; 1674 struct in6_ifaddr *ia; 1675 1676 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1677 LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { 1678 if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { 1679 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1680 return (1); 1681 } 1682 } 1683 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1684 return (0); 1685 } 1686 1687 /* 1688 * Return 1 if an internet address is configured on an interface. 1689 */ 1690 int 1691 in6_ifhasaddr(struct ifnet *ifp, struct in6_addr *addr) 1692 { 1693 struct in6_addr in6; 1694 struct ifaddr *ifa; 1695 struct in6_ifaddr *ia6; 1696 1697 in6 = *addr; 1698 if (in6_clearscope(&in6)) 1699 return (0); 1700 in6_setscope(&in6, ifp, NULL); 1701 1702 IF_ADDR_RLOCK(ifp); 1703 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1704 if (ifa->ifa_addr->sa_family != AF_INET6) 1705 continue; 1706 ia6 = (struct in6_ifaddr *)ifa; 1707 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &in6)) { 1708 IF_ADDR_RUNLOCK(ifp); 1709 return (1); 1710 } 1711 } 1712 IF_ADDR_RUNLOCK(ifp); 1713 1714 return (0); 1715 } 1716 1717 int 1718 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1719 { 1720 struct rm_priotracker in6_ifa_tracker; 1721 struct in6_ifaddr *ia; 1722 1723 IN6_IFADDR_RLOCK(&in6_ifa_tracker); 1724 LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { 1725 if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { 1726 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 1727 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1728 return (1); /* true */ 1729 } 1730 break; 1731 } 1732 } 1733 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); 1734 1735 return (0); /* false */ 1736 } 1737 1738 /* 1739 * return length of part which dst and src are equal 1740 * hard coding... 1741 */ 1742 int 1743 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1744 { 1745 int match = 0; 1746 u_char *s = (u_char *)src, *d = (u_char *)dst; 1747 u_char *lim = s + 16, r; 1748 1749 while (s < lim) 1750 if ((r = (*d++ ^ *s++)) != 0) { 1751 while (r < 128) { 1752 match++; 1753 r <<= 1; 1754 } 1755 break; 1756 } else 1757 match += 8; 1758 return match; 1759 } 1760 1761 /* XXX: to be scope conscious */ 1762 int 1763 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 1764 { 1765 int bytelen, bitlen; 1766 1767 /* sanity check */ 1768 if (0 > len || len > 128) { 1769 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 1770 len); 1771 return (0); 1772 } 1773 1774 bytelen = len / 8; 1775 bitlen = len % 8; 1776 1777 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 1778 return (0); 1779 if (bitlen != 0 && 1780 p1->s6_addr[bytelen] >> (8 - bitlen) != 1781 p2->s6_addr[bytelen] >> (8 - bitlen)) 1782 return (0); 1783 1784 return (1); 1785 } 1786 1787 void 1788 in6_prefixlen2mask(struct in6_addr *maskp, int len) 1789 { 1790 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 1791 int bytelen, bitlen, i; 1792 1793 /* sanity check */ 1794 if (0 > len || len > 128) { 1795 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 1796 len); 1797 return; 1798 } 1799 1800 bzero(maskp, sizeof(*maskp)); 1801 bytelen = len / 8; 1802 bitlen = len % 8; 1803 for (i = 0; i < bytelen; i++) 1804 maskp->s6_addr[i] = 0xff; 1805 if (bitlen) 1806 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 1807 } 1808 1809 /* 1810 * return the best address out of the same scope. if no address was 1811 * found, return the first valid address from designated IF. 1812 */ 1813 struct in6_ifaddr * 1814 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 1815 { 1816 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 1817 struct ifaddr *ifa; 1818 struct in6_ifaddr *besta = NULL; 1819 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 1820 1821 dep[0] = dep[1] = NULL; 1822 1823 /* 1824 * We first look for addresses in the same scope. 1825 * If there is one, return it. 1826 * If two or more, return one which matches the dst longest. 1827 * If none, return one of global addresses assigned other ifs. 1828 */ 1829 IF_ADDR_RLOCK(ifp); 1830 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1831 if (ifa->ifa_addr->sa_family != AF_INET6) 1832 continue; 1833 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1834 continue; /* XXX: is there any case to allow anycast? */ 1835 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1836 continue; /* don't use this interface */ 1837 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1838 continue; 1839 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1840 if (V_ip6_use_deprecated) 1841 dep[0] = (struct in6_ifaddr *)ifa; 1842 continue; 1843 } 1844 1845 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 1846 /* 1847 * call in6_matchlen() as few as possible 1848 */ 1849 if (besta) { 1850 if (blen == -1) 1851 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 1852 tlen = in6_matchlen(IFA_IN6(ifa), dst); 1853 if (tlen > blen) { 1854 blen = tlen; 1855 besta = (struct in6_ifaddr *)ifa; 1856 } 1857 } else 1858 besta = (struct in6_ifaddr *)ifa; 1859 } 1860 } 1861 if (besta) { 1862 ifa_ref(&besta->ia_ifa); 1863 IF_ADDR_RUNLOCK(ifp); 1864 return (besta); 1865 } 1866 1867 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1868 if (ifa->ifa_addr->sa_family != AF_INET6) 1869 continue; 1870 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 1871 continue; /* XXX: is there any case to allow anycast? */ 1872 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 1873 continue; /* don't use this interface */ 1874 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 1875 continue; 1876 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 1877 if (V_ip6_use_deprecated) 1878 dep[1] = (struct in6_ifaddr *)ifa; 1879 continue; 1880 } 1881 1882 if (ifa != NULL) 1883 ifa_ref(ifa); 1884 IF_ADDR_RUNLOCK(ifp); 1885 return (struct in6_ifaddr *)ifa; 1886 } 1887 1888 /* use the last-resort values, that are, deprecated addresses */ 1889 if (dep[0]) { 1890 ifa_ref((struct ifaddr *)dep[0]); 1891 IF_ADDR_RUNLOCK(ifp); 1892 return dep[0]; 1893 } 1894 if (dep[1]) { 1895 ifa_ref((struct ifaddr *)dep[1]); 1896 IF_ADDR_RUNLOCK(ifp); 1897 return dep[1]; 1898 } 1899 1900 IF_ADDR_RUNLOCK(ifp); 1901 return NULL; 1902 } 1903 1904 /* 1905 * perform DAD when interface becomes IFF_UP. 1906 */ 1907 void 1908 in6_if_up(struct ifnet *ifp) 1909 { 1910 struct ifaddr *ifa; 1911 struct in6_ifaddr *ia; 1912 1913 IF_ADDR_RLOCK(ifp); 1914 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1915 if (ifa->ifa_addr->sa_family != AF_INET6) 1916 continue; 1917 ia = (struct in6_ifaddr *)ifa; 1918 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 1919 /* 1920 * The TENTATIVE flag was likely set by hand 1921 * beforehand, implicitly indicating the need for DAD. 1922 * We may be able to skip the random delay in this 1923 * case, but we impose delays just in case. 1924 */ 1925 nd6_dad_start(ifa, 1926 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); 1927 } 1928 } 1929 IF_ADDR_RUNLOCK(ifp); 1930 1931 /* 1932 * special cases, like 6to4, are handled in in6_ifattach 1933 */ 1934 in6_ifattach(ifp, NULL); 1935 } 1936 1937 int 1938 in6if_do_dad(struct ifnet *ifp) 1939 { 1940 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1941 return (0); 1942 1943 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) || 1944 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD)) 1945 return (0); 1946 1947 /* 1948 * Our DAD routine requires the interface up and running. 1949 * However, some interfaces can be up before the RUNNING 1950 * status. Additionally, users may try to assign addresses 1951 * before the interface becomes up (or running). 1952 * This function returns EAGAIN in that case. 1953 * The caller should mark "tentative" on the address instead of 1954 * performing DAD immediately. 1955 */ 1956 if (!((ifp->if_flags & IFF_UP) && 1957 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 1958 return (EAGAIN); 1959 1960 return (1); 1961 } 1962 1963 /* 1964 * Calculate max IPv6 MTU through all the interfaces and store it 1965 * to in6_maxmtu. 1966 */ 1967 void 1968 in6_setmaxmtu(void) 1969 { 1970 unsigned long maxmtu = 0; 1971 struct ifnet *ifp; 1972 1973 IFNET_RLOCK_NOSLEEP(); 1974 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1975 /* this function can be called during ifnet initialization */ 1976 if (!ifp->if_afdata[AF_INET6]) 1977 continue; 1978 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 1979 IN6_LINKMTU(ifp) > maxmtu) 1980 maxmtu = IN6_LINKMTU(ifp); 1981 } 1982 IFNET_RUNLOCK_NOSLEEP(); 1983 if (maxmtu) /* update only when maxmtu is positive */ 1984 V_in6_maxmtu = maxmtu; 1985 } 1986 1987 /* 1988 * Provide the length of interface identifiers to be used for the link attached 1989 * to the given interface. The length should be defined in "IPv6 over 1990 * xxx-link" document. Note that address architecture might also define 1991 * the length for a particular set of address prefixes, regardless of the 1992 * link type. As clarified in rfc2462bis, those two definitions should be 1993 * consistent, and those really are as of August 2004. 1994 */ 1995 int 1996 in6_if2idlen(struct ifnet *ifp) 1997 { 1998 switch (ifp->if_type) { 1999 case IFT_ETHER: /* RFC2464 */ 2000 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2001 case IFT_L2VLAN: /* ditto */ 2002 case IFT_IEEE80211: /* ditto */ 2003 case IFT_BRIDGE: /* bridge(4) only does Ethernet-like links */ 2004 case IFT_INFINIBAND: 2005 return (64); 2006 case IFT_FDDI: /* RFC2467 */ 2007 return (64); 2008 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2009 return (64); 2010 case IFT_PPP: /* RFC2472 */ 2011 return (64); 2012 case IFT_ARCNET: /* RFC2497 */ 2013 return (64); 2014 case IFT_FRELAY: /* RFC2590 */ 2015 return (64); 2016 case IFT_IEEE1394: /* RFC3146 */ 2017 return (64); 2018 case IFT_GIF: 2019 return (64); /* draft-ietf-v6ops-mech-v2-07 */ 2020 case IFT_LOOP: 2021 return (64); /* XXX: is this really correct? */ 2022 default: 2023 /* 2024 * Unknown link type: 2025 * It might be controversial to use the today's common constant 2026 * of 64 for these cases unconditionally. For full compliance, 2027 * we should return an error in this case. On the other hand, 2028 * if we simply miss the standard for the link type or a new 2029 * standard is defined for a new link type, the IFID length 2030 * is very likely to be the common constant. As a compromise, 2031 * we always use the constant, but make an explicit notice 2032 * indicating the "unknown" case. 2033 */ 2034 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2035 return (64); 2036 } 2037 } 2038 2039 #include <sys/sysctl.h> 2040 2041 struct in6_llentry { 2042 struct llentry base; 2043 }; 2044 2045 #define IN6_LLTBL_DEFAULT_HSIZE 32 2046 #define IN6_LLTBL_HASH(k, h) \ 2047 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) 2048 2049 /* 2050 * Do actual deallocation of @lle. 2051 */ 2052 static void 2053 in6_lltable_destroy_lle_unlocked(struct llentry *lle) 2054 { 2055 2056 LLE_LOCK_DESTROY(lle); 2057 LLE_REQ_DESTROY(lle); 2058 free(lle, M_LLTABLE); 2059 } 2060 2061 /* 2062 * Called by LLE_FREE_LOCKED when number of references 2063 * drops to zero. 2064 */ 2065 static void 2066 in6_lltable_destroy_lle(struct llentry *lle) 2067 { 2068 2069 LLE_WUNLOCK(lle); 2070 in6_lltable_destroy_lle_unlocked(lle); 2071 } 2072 2073 static struct llentry * 2074 in6_lltable_new(const struct in6_addr *addr6, u_int flags) 2075 { 2076 struct in6_llentry *lle; 2077 2078 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); 2079 if (lle == NULL) /* NB: caller generates msg */ 2080 return NULL; 2081 2082 lle->base.r_l3addr.addr6 = *addr6; 2083 lle->base.lle_refcnt = 1; 2084 lle->base.lle_free = in6_lltable_destroy_lle; 2085 LLE_LOCK_INIT(&lle->base); 2086 LLE_REQ_INIT(&lle->base); 2087 callout_init(&lle->base.lle_timer, 1); 2088 2089 return (&lle->base); 2090 } 2091 2092 static int 2093 in6_lltable_match_prefix(const struct sockaddr *saddr, 2094 const struct sockaddr *smask, u_int flags, struct llentry *lle) 2095 { 2096 const struct in6_addr *addr, *mask, *lle_addr; 2097 2098 addr = &((const struct sockaddr_in6 *)saddr)->sin6_addr; 2099 mask = &((const struct sockaddr_in6 *)smask)->sin6_addr; 2100 lle_addr = &lle->r_l3addr.addr6; 2101 2102 if (IN6_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) 2103 return (0); 2104 2105 if (lle->la_flags & LLE_IFADDR) { 2106 2107 /* 2108 * Delete LLE_IFADDR records IFF address & flag matches. 2109 * Note that addr is the interface address within prefix 2110 * being matched. 2111 */ 2112 if (IN6_ARE_ADDR_EQUAL(addr, lle_addr) && 2113 (flags & LLE_STATIC) != 0) 2114 return (1); 2115 return (0); 2116 } 2117 2118 /* flags & LLE_STATIC means deleting both dynamic and static entries */ 2119 if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) 2120 return (1); 2121 2122 return (0); 2123 } 2124 2125 static void 2126 in6_lltable_free_entry(struct lltable *llt, struct llentry *lle) 2127 { 2128 struct ifnet *ifp; 2129 2130 LLE_WLOCK_ASSERT(lle); 2131 KASSERT(llt != NULL, ("lltable is NULL")); 2132 2133 /* Unlink entry from table */ 2134 if ((lle->la_flags & LLE_LINKED) != 0) { 2135 2136 ifp = llt->llt_ifp; 2137 IF_AFDATA_WLOCK_ASSERT(ifp); 2138 lltable_unlink_entry(llt, lle); 2139 } 2140 2141 if (callout_stop(&lle->lle_timer) > 0) 2142 LLE_REMREF(lle); 2143 2144 llentry_free(lle); 2145 } 2146 2147 static int 2148 in6_lltable_rtcheck(struct ifnet *ifp, 2149 u_int flags, 2150 const struct sockaddr *l3addr) 2151 { 2152 const struct sockaddr_in6 *sin6; 2153 struct nhop6_basic nh6; 2154 struct in6_addr dst; 2155 uint32_t scopeid; 2156 int error; 2157 char ip6buf[INET6_ADDRSTRLEN]; 2158 2159 KASSERT(l3addr->sa_family == AF_INET6, 2160 ("sin_family %d", l3addr->sa_family)); 2161 2162 /* Our local addresses are always only installed on the default FIB. */ 2163 2164 sin6 = (const struct sockaddr_in6 *)l3addr; 2165 in6_splitscope(&sin6->sin6_addr, &dst, &scopeid); 2166 error = fib6_lookup_nh_basic(RT_DEFAULT_FIB, &dst, scopeid, 0, 0, &nh6); 2167 if (error != 0 || (nh6.nh_flags & NHF_GATEWAY) || nh6.nh_ifp != ifp) { 2168 struct ifaddr *ifa; 2169 /* 2170 * Create an ND6 cache for an IPv6 neighbor 2171 * that is not covered by our own prefix. 2172 */ 2173 ifa = ifaof_ifpforaddr(l3addr, ifp); 2174 if (ifa != NULL) { 2175 ifa_free(ifa); 2176 return 0; 2177 } 2178 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", 2179 ip6_sprintf(ip6buf, &sin6->sin6_addr)); 2180 return EINVAL; 2181 } 2182 return 0; 2183 } 2184 2185 static inline uint32_t 2186 in6_lltable_hash_dst(const struct in6_addr *dst, uint32_t hsize) 2187 { 2188 2189 return (IN6_LLTBL_HASH(dst->s6_addr32[3], hsize)); 2190 } 2191 2192 static uint32_t 2193 in6_lltable_hash(const struct llentry *lle, uint32_t hsize) 2194 { 2195 2196 return (in6_lltable_hash_dst(&lle->r_l3addr.addr6, hsize)); 2197 } 2198 2199 static void 2200 in6_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) 2201 { 2202 struct sockaddr_in6 *sin6; 2203 2204 sin6 = (struct sockaddr_in6 *)sa; 2205 bzero(sin6, sizeof(*sin6)); 2206 sin6->sin6_family = AF_INET6; 2207 sin6->sin6_len = sizeof(*sin6); 2208 sin6->sin6_addr = lle->r_l3addr.addr6; 2209 } 2210 2211 static inline struct llentry * 2212 in6_lltable_find_dst(struct lltable *llt, const struct in6_addr *dst) 2213 { 2214 struct llentry *lle; 2215 struct llentries *lleh; 2216 u_int hashidx; 2217 2218 hashidx = in6_lltable_hash_dst(dst, llt->llt_hsize); 2219 lleh = &llt->lle_head[hashidx]; 2220 LIST_FOREACH(lle, lleh, lle_next) { 2221 if (lle->la_flags & LLE_DELETED) 2222 continue; 2223 if (IN6_ARE_ADDR_EQUAL(&lle->r_l3addr.addr6, dst)) 2224 break; 2225 } 2226 2227 return (lle); 2228 } 2229 2230 static void 2231 in6_lltable_delete_entry(struct lltable *llt, struct llentry *lle) 2232 { 2233 2234 lle->la_flags |= LLE_DELETED; 2235 EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); 2236 #ifdef DIAGNOSTIC 2237 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); 2238 #endif 2239 llentry_free(lle); 2240 } 2241 2242 static struct llentry * 2243 in6_lltable_alloc(struct lltable *llt, u_int flags, 2244 const struct sockaddr *l3addr) 2245 { 2246 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2247 struct ifnet *ifp = llt->llt_ifp; 2248 struct llentry *lle; 2249 char linkhdr[LLE_MAX_LINKHDR]; 2250 size_t linkhdrsize; 2251 int lladdr_off; 2252 2253 KASSERT(l3addr->sa_family == AF_INET6, 2254 ("sin_family %d", l3addr->sa_family)); 2255 2256 /* 2257 * A route that covers the given address must have 2258 * been installed 1st because we are doing a resolution, 2259 * verify this. 2260 */ 2261 if (!(flags & LLE_IFADDR) && 2262 in6_lltable_rtcheck(ifp, flags, l3addr) != 0) 2263 return (NULL); 2264 2265 lle = in6_lltable_new(&sin6->sin6_addr, flags); 2266 if (lle == NULL) { 2267 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2268 return (NULL); 2269 } 2270 lle->la_flags = flags; 2271 if ((flags & LLE_IFADDR) == LLE_IFADDR) { 2272 linkhdrsize = LLE_MAX_LINKHDR; 2273 if (lltable_calc_llheader(ifp, AF_INET6, IF_LLADDR(ifp), 2274 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 2275 in6_lltable_destroy_lle_unlocked(lle); 2276 return (NULL); 2277 } 2278 lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, 2279 lladdr_off); 2280 lle->la_flags |= LLE_STATIC; 2281 } 2282 2283 if ((lle->la_flags & LLE_STATIC) != 0) 2284 lle->ln_state = ND6_LLINFO_REACHABLE; 2285 2286 return (lle); 2287 } 2288 2289 static struct llentry * 2290 in6_lltable_lookup(struct lltable *llt, u_int flags, 2291 const struct sockaddr *l3addr) 2292 { 2293 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; 2294 struct llentry *lle; 2295 2296 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); 2297 KASSERT(l3addr->sa_family == AF_INET6, 2298 ("sin_family %d", l3addr->sa_family)); 2299 2300 lle = in6_lltable_find_dst(llt, &sin6->sin6_addr); 2301 2302 if (lle == NULL) 2303 return (NULL); 2304 2305 KASSERT((flags & (LLE_UNLOCKED|LLE_EXCLUSIVE)) != 2306 (LLE_UNLOCKED|LLE_EXCLUSIVE),("wrong lle request flags: 0x%X", 2307 flags)); 2308 2309 if (flags & LLE_UNLOCKED) 2310 return (lle); 2311 2312 if (flags & LLE_EXCLUSIVE) 2313 LLE_WLOCK(lle); 2314 else 2315 LLE_RLOCK(lle); 2316 return (lle); 2317 } 2318 2319 static int 2320 in6_lltable_dump_entry(struct lltable *llt, struct llentry *lle, 2321 struct sysctl_req *wr) 2322 { 2323 struct ifnet *ifp = llt->llt_ifp; 2324 /* XXX stack use */ 2325 struct { 2326 struct rt_msghdr rtm; 2327 struct sockaddr_in6 sin6; 2328 /* 2329 * ndp.c assumes that sdl is word aligned 2330 */ 2331 #ifdef __LP64__ 2332 uint32_t pad; 2333 #endif 2334 struct sockaddr_dl sdl; 2335 } ndpc; 2336 struct sockaddr_dl *sdl; 2337 int error; 2338 2339 bzero(&ndpc, sizeof(ndpc)); 2340 /* skip deleted entries */ 2341 if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) 2342 return (0); 2343 /* Skip if jailed and not a valid IP of the prison. */ 2344 lltable_fill_sa_entry(lle, 2345 (struct sockaddr *)&ndpc.sin6); 2346 if (prison_if(wr->td->td_ucred, 2347 (struct sockaddr *)&ndpc.sin6) != 0) 2348 return (0); 2349 /* 2350 * produce a msg made of: 2351 * struct rt_msghdr; 2352 * struct sockaddr_in6 (IPv6) 2353 * struct sockaddr_dl; 2354 */ 2355 ndpc.rtm.rtm_msglen = sizeof(ndpc); 2356 ndpc.rtm.rtm_version = RTM_VERSION; 2357 ndpc.rtm.rtm_type = RTM_GET; 2358 ndpc.rtm.rtm_flags = RTF_UP; 2359 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; 2360 if (V_deembed_scopeid) 2361 sa6_recoverscope(&ndpc.sin6); 2362 2363 /* publish */ 2364 if (lle->la_flags & LLE_PUB) 2365 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; 2366 2367 sdl = &ndpc.sdl; 2368 sdl->sdl_family = AF_LINK; 2369 sdl->sdl_len = sizeof(*sdl); 2370 sdl->sdl_alen = ifp->if_addrlen; 2371 sdl->sdl_index = ifp->if_index; 2372 sdl->sdl_type = ifp->if_type; 2373 bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); 2374 if (lle->la_expire != 0) 2375 ndpc.rtm.rtm_rmx.rmx_expire = lle->la_expire + 2376 lle->lle_remtime / hz + 2377 time_second - time_uptime; 2378 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); 2379 if (lle->la_flags & LLE_STATIC) 2380 ndpc.rtm.rtm_flags |= RTF_STATIC; 2381 if (lle->la_flags & LLE_IFADDR) 2382 ndpc.rtm.rtm_flags |= RTF_PINNED; 2383 if (lle->ln_router != 0) 2384 ndpc.rtm.rtm_flags |= RTF_GATEWAY; 2385 ndpc.rtm.rtm_rmx.rmx_pksent = lle->la_asked; 2386 /* Store state in rmx_weight value */ 2387 ndpc.rtm.rtm_rmx.rmx_state = lle->ln_state; 2388 ndpc.rtm.rtm_index = ifp->if_index; 2389 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); 2390 2391 return (error); 2392 } 2393 2394 static struct lltable * 2395 in6_lltattach(struct ifnet *ifp) 2396 { 2397 struct lltable *llt; 2398 2399 llt = lltable_allocate_htbl(IN6_LLTBL_DEFAULT_HSIZE); 2400 llt->llt_af = AF_INET6; 2401 llt->llt_ifp = ifp; 2402 2403 llt->llt_lookup = in6_lltable_lookup; 2404 llt->llt_alloc_entry = in6_lltable_alloc; 2405 llt->llt_delete_entry = in6_lltable_delete_entry; 2406 llt->llt_dump_entry = in6_lltable_dump_entry; 2407 llt->llt_hash = in6_lltable_hash; 2408 llt->llt_fill_sa_entry = in6_lltable_fill_sa_entry; 2409 llt->llt_free_entry = in6_lltable_free_entry; 2410 llt->llt_match_prefix = in6_lltable_match_prefix; 2411 lltable_link(llt); 2412 2413 return (llt); 2414 } 2415 2416 void * 2417 in6_domifattach(struct ifnet *ifp) 2418 { 2419 struct in6_ifextra *ext; 2420 2421 /* There are not IPv6-capable interfaces. */ 2422 switch (ifp->if_type) { 2423 case IFT_PFLOG: 2424 case IFT_PFSYNC: 2425 case IFT_USB: 2426 return (NULL); 2427 } 2428 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2429 bzero(ext, sizeof(*ext)); 2430 2431 ext->in6_ifstat = malloc(sizeof(counter_u64_t) * 2432 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); 2433 COUNTER_ARRAY_ALLOC(ext->in6_ifstat, 2434 sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); 2435 2436 ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * 2437 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, 2438 M_WAITOK); 2439 COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, 2440 sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); 2441 2442 ext->nd_ifinfo = nd6_ifattach(ifp); 2443 ext->scope6_id = scope6_ifattach(ifp); 2444 ext->lltable = in6_lltattach(ifp); 2445 2446 ext->mld_ifinfo = mld_domifattach(ifp); 2447 2448 return ext; 2449 } 2450 2451 int 2452 in6_domifmtu(struct ifnet *ifp) 2453 { 2454 if (ifp->if_afdata[AF_INET6] == NULL) 2455 return ifp->if_mtu; 2456 2457 return (IN6_LINKMTU(ifp)); 2458 } 2459 2460 void 2461 in6_domifdetach(struct ifnet *ifp, void *aux) 2462 { 2463 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2464 2465 mld_domifdetach(ifp); 2466 scope6_ifdetach(ext->scope6_id); 2467 nd6_ifdetach(ext->nd_ifinfo); 2468 lltable_free(ext->lltable); 2469 COUNTER_ARRAY_FREE(ext->in6_ifstat, 2470 sizeof(struct in6_ifstat) / sizeof(uint64_t)); 2471 free(ext->in6_ifstat, M_IFADDR); 2472 COUNTER_ARRAY_FREE(ext->icmp6_ifstat, 2473 sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); 2474 free(ext->icmp6_ifstat, M_IFADDR); 2475 free(ext, M_IFADDR); 2476 } 2477 2478 /* 2479 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2480 * v4 mapped addr or v4 compat addr 2481 */ 2482 void 2483 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2484 { 2485 2486 bzero(sin, sizeof(*sin)); 2487 sin->sin_len = sizeof(struct sockaddr_in); 2488 sin->sin_family = AF_INET; 2489 sin->sin_port = sin6->sin6_port; 2490 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2491 } 2492 2493 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2494 void 2495 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2496 { 2497 bzero(sin6, sizeof(*sin6)); 2498 sin6->sin6_len = sizeof(struct sockaddr_in6); 2499 sin6->sin6_family = AF_INET6; 2500 sin6->sin6_port = sin->sin_port; 2501 sin6->sin6_addr.s6_addr32[0] = 0; 2502 sin6->sin6_addr.s6_addr32[1] = 0; 2503 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2504 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2505 } 2506 2507 /* Convert sockaddr_in6 into sockaddr_in. */ 2508 void 2509 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2510 { 2511 struct sockaddr_in *sin_p; 2512 struct sockaddr_in6 sin6; 2513 2514 /* 2515 * Save original sockaddr_in6 addr and convert it 2516 * to sockaddr_in. 2517 */ 2518 sin6 = *(struct sockaddr_in6 *)nam; 2519 sin_p = (struct sockaddr_in *)nam; 2520 in6_sin6_2_sin(sin_p, &sin6); 2521 } 2522 2523 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2524 void 2525 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2526 { 2527 struct sockaddr_in *sin_p; 2528 struct sockaddr_in6 *sin6_p; 2529 2530 sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); 2531 sin_p = (struct sockaddr_in *)*nam; 2532 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2533 free(*nam, M_SONAME); 2534 *nam = (struct sockaddr *)sin6_p; 2535 } 2536