1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: frag6.c,v 1.33 2002/01/07 11:34:48 kjc Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_rss.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/domain.h> 44 #include <sys/eventhandler.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/errno.h> 48 #include <sys/time.h> 49 #include <sys/kernel.h> 50 #include <sys/syslog.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/netisr.h> 55 #include <net/route.h> 56 #include <net/vnet.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip6.h> 61 #include <netinet6/ip6_var.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/in_systm.h> /* for ECN definitions */ 64 #include <netinet/ip.h> /* for ECN definitions */ 65 66 #include <security/mac/mac_framework.h> 67 68 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *); 69 static void frag6_deq(struct ip6asfrag *); 70 static void frag6_insque(struct ip6q *, struct ip6q *); 71 static void frag6_remque(struct ip6q *); 72 static void frag6_freef(struct ip6q *); 73 74 static struct mtx ip6qlock; 75 /* 76 * These fields all protected by ip6qlock. 77 */ 78 static VNET_DEFINE(u_int, frag6_nfragpackets); 79 static VNET_DEFINE(u_int, frag6_nfrags); 80 static VNET_DEFINE(struct ip6q, ip6q); /* ip6 reassemble queue */ 81 82 #define V_frag6_nfragpackets VNET(frag6_nfragpackets) 83 #define V_frag6_nfrags VNET(frag6_nfrags) 84 #define V_ip6q VNET(ip6q) 85 86 #define IP6Q_LOCK_INIT() mtx_init(&ip6qlock, "ip6qlock", NULL, MTX_DEF); 87 #define IP6Q_LOCK() mtx_lock(&ip6qlock) 88 #define IP6Q_TRYLOCK() mtx_trylock(&ip6qlock) 89 #define IP6Q_LOCK_ASSERT() mtx_assert(&ip6qlock, MA_OWNED) 90 #define IP6Q_UNLOCK() mtx_unlock(&ip6qlock) 91 92 static MALLOC_DEFINE(M_FTABLE, "fragment", "fragment reassembly header"); 93 94 /* 95 * Initialise reassembly queue and fragment identifier. 96 */ 97 static void 98 frag6_change(void *tag) 99 { 100 101 V_ip6_maxfragpackets = nmbclusters / 4; 102 V_ip6_maxfrags = nmbclusters / 4; 103 } 104 105 void 106 frag6_init(void) 107 { 108 109 V_ip6_maxfragpackets = nmbclusters / 4; 110 V_ip6_maxfrags = nmbclusters / 4; 111 V_ip6q.ip6q_next = V_ip6q.ip6q_prev = &V_ip6q; 112 113 if (!IS_DEFAULT_VNET(curvnet)) 114 return; 115 116 EVENTHANDLER_REGISTER(nmbclusters_change, 117 frag6_change, NULL, EVENTHANDLER_PRI_ANY); 118 119 IP6Q_LOCK_INIT(); 120 } 121 122 /* 123 * In RFC2460, fragment and reassembly rule do not agree with each other, 124 * in terms of next header field handling in fragment header. 125 * While the sender will use the same value for all of the fragmented packets, 126 * receiver is suggested not to check the consistency. 127 * 128 * fragment rule (p20): 129 * (2) A Fragment header containing: 130 * The Next Header value that identifies the first header of 131 * the Fragmentable Part of the original packet. 132 * -> next header field is same for all fragments 133 * 134 * reassembly rule (p21): 135 * The Next Header field of the last header of the Unfragmentable 136 * Part is obtained from the Next Header field of the first 137 * fragment's Fragment header. 138 * -> should grab it from the first fragment only 139 * 140 * The following note also contradicts with fragment rule - no one is going to 141 * send different fragment with different next header field. 142 * 143 * additional note (p22): 144 * The Next Header values in the Fragment headers of different 145 * fragments of the same original packet may differ. Only the value 146 * from the Offset zero fragment packet is used for reassembly. 147 * -> should grab it from the first fragment only 148 * 149 * There is no explicit reason given in the RFC. Historical reason maybe? 150 */ 151 /* 152 * Fragment input 153 */ 154 int 155 frag6_input(struct mbuf **mp, int *offp, int proto) 156 { 157 struct mbuf *m = *mp, *t; 158 struct ip6_hdr *ip6; 159 struct ip6_frag *ip6f; 160 struct ip6q *q6; 161 struct ip6asfrag *af6, *ip6af, *af6dwn; 162 struct in6_ifaddr *ia; 163 int offset = *offp, nxt, i, next; 164 int first_frag = 0; 165 int fragoff, frgpartlen; /* must be larger than u_int16_t */ 166 struct ifnet *dstifp; 167 u_int8_t ecn, ecn0; 168 #ifdef RSS 169 struct m_tag *mtag; 170 struct ip6_direct_ctx *ip6dc; 171 #endif 172 173 #if 0 174 char ip6buf[INET6_ADDRSTRLEN]; 175 #endif 176 177 ip6 = mtod(m, struct ip6_hdr *); 178 #ifndef PULLDOWN_TEST 179 IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), IPPROTO_DONE); 180 ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset); 181 #else 182 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f)); 183 if (ip6f == NULL) 184 return (IPPROTO_DONE); 185 #endif 186 187 dstifp = NULL; 188 /* find the destination interface of the packet. */ 189 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */); 190 if (ia != NULL) { 191 dstifp = ia->ia_ifp; 192 ifa_free(&ia->ia_ifa); 193 } 194 /* jumbo payload can't contain a fragment header */ 195 if (ip6->ip6_plen == 0) { 196 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset); 197 in6_ifstat_inc(dstifp, ifs6_reass_fail); 198 return IPPROTO_DONE; 199 } 200 201 /* 202 * check whether fragment packet's fragment length is 203 * multiple of 8 octets. 204 * sizeof(struct ip6_frag) == 8 205 * sizeof(struct ip6_hdr) = 40 206 */ 207 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) && 208 (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) { 209 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, 210 offsetof(struct ip6_hdr, ip6_plen)); 211 in6_ifstat_inc(dstifp, ifs6_reass_fail); 212 return IPPROTO_DONE; 213 } 214 215 IP6STAT_INC(ip6s_fragments); 216 in6_ifstat_inc(dstifp, ifs6_reass_reqd); 217 218 /* offset now points to data portion */ 219 offset += sizeof(struct ip6_frag); 220 221 /* 222 * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0) 223 * upfront, unrelated to any reassembly. Just skip the fragment header. 224 */ 225 if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) { 226 /* XXX-BZ we want dedicated counters for this. */ 227 IP6STAT_INC(ip6s_reassembled); 228 in6_ifstat_inc(dstifp, ifs6_reass_ok); 229 *offp = offset; 230 m->m_flags |= M_FRAGMENTED; 231 return (ip6f->ip6f_nxt); 232 } 233 234 IP6Q_LOCK(); 235 236 /* 237 * Enforce upper bound on number of fragments. 238 * If maxfrag is 0, never accept fragments. 239 * If maxfrag is -1, accept all fragments without limitation. 240 */ 241 if (V_ip6_maxfrags < 0) 242 ; 243 else if (V_frag6_nfrags >= (u_int)V_ip6_maxfrags) 244 goto dropfrag; 245 246 for (q6 = V_ip6q.ip6q_next; q6 != &V_ip6q; q6 = q6->ip6q_next) 247 if (ip6f->ip6f_ident == q6->ip6q_ident && 248 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) && 249 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst) 250 #ifdef MAC 251 && mac_ip6q_match(m, q6) 252 #endif 253 ) 254 break; 255 256 if (q6 == &V_ip6q) { 257 /* 258 * the first fragment to arrive, create a reassembly queue. 259 */ 260 first_frag = 1; 261 262 /* 263 * Enforce upper bound on number of fragmented packets 264 * for which we attempt reassembly; 265 * If maxfragpackets is 0, never accept fragments. 266 * If maxfragpackets is -1, accept all fragments without 267 * limitation. 268 */ 269 if (V_ip6_maxfragpackets < 0) 270 ; 271 else if (V_frag6_nfragpackets >= (u_int)V_ip6_maxfragpackets) 272 goto dropfrag; 273 V_frag6_nfragpackets++; 274 q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FTABLE, 275 M_NOWAIT); 276 if (q6 == NULL) 277 goto dropfrag; 278 bzero(q6, sizeof(*q6)); 279 #ifdef MAC 280 if (mac_ip6q_init(q6, M_NOWAIT) != 0) { 281 free(q6, M_FTABLE); 282 goto dropfrag; 283 } 284 mac_ip6q_create(m, q6); 285 #endif 286 frag6_insque(q6, &V_ip6q); 287 288 /* ip6q_nxt will be filled afterwards, from 1st fragment */ 289 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6; 290 #ifdef notyet 291 q6->ip6q_nxtp = (u_char *)nxtp; 292 #endif 293 q6->ip6q_ident = ip6f->ip6f_ident; 294 q6->ip6q_ttl = IPV6_FRAGTTL; 295 q6->ip6q_src = ip6->ip6_src; 296 q6->ip6q_dst = ip6->ip6_dst; 297 q6->ip6q_ecn = 298 (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; 299 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */ 300 301 q6->ip6q_nfrag = 0; 302 } 303 304 /* 305 * If it's the 1st fragment, record the length of the 306 * unfragmentable part and the next header of the fragment header. 307 */ 308 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK); 309 if (fragoff == 0) { 310 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) - 311 sizeof(struct ip6_frag); 312 q6->ip6q_nxt = ip6f->ip6f_nxt; 313 } 314 315 /* 316 * Check that the reassembled packet would not exceed 65535 bytes 317 * in size. 318 * If it would exceed, discard the fragment and return an ICMP error. 319 */ 320 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset; 321 if (q6->ip6q_unfrglen >= 0) { 322 /* The 1st fragment has already arrived. */ 323 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) { 324 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, 325 offset - sizeof(struct ip6_frag) + 326 offsetof(struct ip6_frag, ip6f_offlg)); 327 IP6Q_UNLOCK(); 328 return (IPPROTO_DONE); 329 } 330 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) { 331 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, 332 offset - sizeof(struct ip6_frag) + 333 offsetof(struct ip6_frag, ip6f_offlg)); 334 IP6Q_UNLOCK(); 335 return (IPPROTO_DONE); 336 } 337 /* 338 * If it's the first fragment, do the above check for each 339 * fragment already stored in the reassembly queue. 340 */ 341 if (fragoff == 0) { 342 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 343 af6 = af6dwn) { 344 af6dwn = af6->ip6af_down; 345 346 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen > 347 IPV6_MAXPACKET) { 348 struct mbuf *merr = IP6_REASS_MBUF(af6); 349 struct ip6_hdr *ip6err; 350 int erroff = af6->ip6af_offset; 351 352 /* dequeue the fragment. */ 353 frag6_deq(af6); 354 free(af6, M_FTABLE); 355 356 /* adjust pointer. */ 357 ip6err = mtod(merr, struct ip6_hdr *); 358 359 /* 360 * Restore source and destination addresses 361 * in the erroneous IPv6 header. 362 */ 363 ip6err->ip6_src = q6->ip6q_src; 364 ip6err->ip6_dst = q6->ip6q_dst; 365 366 icmp6_error(merr, ICMP6_PARAM_PROB, 367 ICMP6_PARAMPROB_HEADER, 368 erroff - sizeof(struct ip6_frag) + 369 offsetof(struct ip6_frag, ip6f_offlg)); 370 } 371 } 372 } 373 374 ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FTABLE, 375 M_NOWAIT); 376 if (ip6af == NULL) 377 goto dropfrag; 378 bzero(ip6af, sizeof(*ip6af)); 379 ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG; 380 ip6af->ip6af_off = fragoff; 381 ip6af->ip6af_frglen = frgpartlen; 382 ip6af->ip6af_offset = offset; 383 IP6_REASS_MBUF(ip6af) = m; 384 385 if (first_frag) { 386 af6 = (struct ip6asfrag *)q6; 387 goto insert; 388 } 389 390 /* 391 * Handle ECN by comparing this segment with the first one; 392 * if CE is set, do not lose CE. 393 * drop if CE and not-ECT are mixed for the same packet. 394 */ 395 ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; 396 ecn0 = q6->ip6q_ecn; 397 if (ecn == IPTOS_ECN_CE) { 398 if (ecn0 == IPTOS_ECN_NOTECT) { 399 free(ip6af, M_FTABLE); 400 goto dropfrag; 401 } 402 if (ecn0 != IPTOS_ECN_CE) 403 q6->ip6q_ecn = IPTOS_ECN_CE; 404 } 405 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) { 406 free(ip6af, M_FTABLE); 407 goto dropfrag; 408 } 409 410 /* 411 * Find a segment which begins after this one does. 412 */ 413 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 414 af6 = af6->ip6af_down) 415 if (af6->ip6af_off > ip6af->ip6af_off) 416 break; 417 418 #if 0 419 /* 420 * If there is a preceding segment, it may provide some of 421 * our data already. If so, drop the data from the incoming 422 * segment. If it provides all of our data, drop us. 423 */ 424 if (af6->ip6af_up != (struct ip6asfrag *)q6) { 425 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen 426 - ip6af->ip6af_off; 427 if (i > 0) { 428 if (i >= ip6af->ip6af_frglen) 429 goto dropfrag; 430 m_adj(IP6_REASS_MBUF(ip6af), i); 431 ip6af->ip6af_off += i; 432 ip6af->ip6af_frglen -= i; 433 } 434 } 435 436 /* 437 * While we overlap succeeding segments trim them or, 438 * if they are completely covered, dequeue them. 439 */ 440 while (af6 != (struct ip6asfrag *)q6 && 441 ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) { 442 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; 443 if (i < af6->ip6af_frglen) { 444 af6->ip6af_frglen -= i; 445 af6->ip6af_off += i; 446 m_adj(IP6_REASS_MBUF(af6), i); 447 break; 448 } 449 af6 = af6->ip6af_down; 450 m_freem(IP6_REASS_MBUF(af6->ip6af_up)); 451 frag6_deq(af6->ip6af_up); 452 } 453 #else 454 /* 455 * If the incoming framgent overlaps some existing fragments in 456 * the reassembly queue, drop it, since it is dangerous to override 457 * existing fragments from a security point of view. 458 * We don't know which fragment is the bad guy - here we trust 459 * fragment that came in earlier, with no real reason. 460 * 461 * Note: due to changes after disabling this part, mbuf passed to 462 * m_adj() below now does not meet the requirement. 463 */ 464 if (af6->ip6af_up != (struct ip6asfrag *)q6) { 465 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen 466 - ip6af->ip6af_off; 467 if (i > 0) { 468 #if 0 /* suppress the noisy log */ 469 log(LOG_ERR, "%d bytes of a fragment from %s " 470 "overlaps the previous fragment\n", 471 i, ip6_sprintf(ip6buf, &q6->ip6q_src)); 472 #endif 473 free(ip6af, M_FTABLE); 474 goto dropfrag; 475 } 476 } 477 if (af6 != (struct ip6asfrag *)q6) { 478 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; 479 if (i > 0) { 480 #if 0 /* suppress the noisy log */ 481 log(LOG_ERR, "%d bytes of a fragment from %s " 482 "overlaps the succeeding fragment", 483 i, ip6_sprintf(ip6buf, &q6->ip6q_src)); 484 #endif 485 free(ip6af, M_FTABLE); 486 goto dropfrag; 487 } 488 } 489 #endif 490 491 insert: 492 #ifdef MAC 493 if (!first_frag) 494 mac_ip6q_update(m, q6); 495 #endif 496 497 /* 498 * Stick new segment in its place; 499 * check for complete reassembly. 500 * Move to front of packet queue, as we are 501 * the most recently active fragmented packet. 502 */ 503 frag6_enq(ip6af, af6->ip6af_up); 504 V_frag6_nfrags++; 505 q6->ip6q_nfrag++; 506 #if 0 /* xxx */ 507 if (q6 != V_ip6q.ip6q_next) { 508 frag6_remque(q6); 509 frag6_insque(q6, &V_ip6q); 510 } 511 #endif 512 next = 0; 513 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 514 af6 = af6->ip6af_down) { 515 if (af6->ip6af_off != next) { 516 IP6Q_UNLOCK(); 517 return IPPROTO_DONE; 518 } 519 next += af6->ip6af_frglen; 520 } 521 if (af6->ip6af_up->ip6af_mff) { 522 IP6Q_UNLOCK(); 523 return IPPROTO_DONE; 524 } 525 526 /* 527 * Reassembly is complete; concatenate fragments. 528 */ 529 ip6af = q6->ip6q_down; 530 t = m = IP6_REASS_MBUF(ip6af); 531 af6 = ip6af->ip6af_down; 532 frag6_deq(ip6af); 533 while (af6 != (struct ip6asfrag *)q6) { 534 m->m_pkthdr.csum_flags &= 535 IP6_REASS_MBUF(af6)->m_pkthdr.csum_flags; 536 m->m_pkthdr.csum_data += 537 IP6_REASS_MBUF(af6)->m_pkthdr.csum_data; 538 539 af6dwn = af6->ip6af_down; 540 frag6_deq(af6); 541 while (t->m_next) 542 t = t->m_next; 543 m_adj(IP6_REASS_MBUF(af6), af6->ip6af_offset); 544 m_demote_pkthdr(IP6_REASS_MBUF(af6)); 545 m_cat(t, IP6_REASS_MBUF(af6)); 546 free(af6, M_FTABLE); 547 af6 = af6dwn; 548 } 549 550 while (m->m_pkthdr.csum_data & 0xffff0000) 551 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) + 552 (m->m_pkthdr.csum_data >> 16); 553 554 /* adjust offset to point where the original next header starts */ 555 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag); 556 free(ip6af, M_FTABLE); 557 ip6 = mtod(m, struct ip6_hdr *); 558 ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr)); 559 if (q6->ip6q_ecn == IPTOS_ECN_CE) 560 ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20); 561 nxt = q6->ip6q_nxt; 562 #ifdef notyet 563 *q6->ip6q_nxtp = (u_char)(nxt & 0xff); 564 #endif 565 566 if (ip6_deletefraghdr(m, offset, M_NOWAIT) != 0) { 567 frag6_remque(q6); 568 V_frag6_nfrags -= q6->ip6q_nfrag; 569 #ifdef MAC 570 mac_ip6q_destroy(q6); 571 #endif 572 free(q6, M_FTABLE); 573 V_frag6_nfragpackets--; 574 575 goto dropfrag; 576 } 577 578 /* 579 * Store NXT to the original. 580 */ 581 m_copyback(m, ip6_get_prevhdr(m, offset), sizeof(uint8_t), 582 (caddr_t)&nxt); 583 584 frag6_remque(q6); 585 V_frag6_nfrags -= q6->ip6q_nfrag; 586 #ifdef MAC 587 mac_ip6q_reassemble(q6, m); 588 mac_ip6q_destroy(q6); 589 #endif 590 free(q6, M_FTABLE); 591 V_frag6_nfragpackets--; 592 593 if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */ 594 int plen = 0; 595 for (t = m; t; t = t->m_next) 596 plen += t->m_len; 597 m->m_pkthdr.len = plen; 598 } 599 600 #ifdef RSS 601 mtag = m_tag_alloc(MTAG_ABI_IPV6, IPV6_TAG_DIRECT, sizeof(*ip6dc), 602 M_NOWAIT); 603 if (mtag == NULL) 604 goto dropfrag; 605 606 ip6dc = (struct ip6_direct_ctx *)(mtag + 1); 607 ip6dc->ip6dc_nxt = nxt; 608 ip6dc->ip6dc_off = offset; 609 610 m_tag_prepend(m, mtag); 611 #endif 612 613 IP6Q_UNLOCK(); 614 IP6STAT_INC(ip6s_reassembled); 615 in6_ifstat_inc(dstifp, ifs6_reass_ok); 616 617 #ifdef RSS 618 /* 619 * Queue/dispatch for reprocessing. 620 */ 621 netisr_dispatch(NETISR_IPV6_DIRECT, m); 622 return IPPROTO_DONE; 623 #endif 624 625 /* 626 * Tell launch routine the next header 627 */ 628 629 *mp = m; 630 *offp = offset; 631 632 return nxt; 633 634 dropfrag: 635 IP6Q_UNLOCK(); 636 in6_ifstat_inc(dstifp, ifs6_reass_fail); 637 IP6STAT_INC(ip6s_fragdropped); 638 m_freem(m); 639 return IPPROTO_DONE; 640 } 641 642 /* 643 * Free a fragment reassembly header and all 644 * associated datagrams. 645 */ 646 void 647 frag6_freef(struct ip6q *q6) 648 { 649 struct ip6asfrag *af6, *down6; 650 651 IP6Q_LOCK_ASSERT(); 652 653 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 654 af6 = down6) { 655 struct mbuf *m = IP6_REASS_MBUF(af6); 656 657 down6 = af6->ip6af_down; 658 frag6_deq(af6); 659 660 /* 661 * Return ICMP time exceeded error for the 1st fragment. 662 * Just free other fragments. 663 */ 664 if (af6->ip6af_off == 0) { 665 struct ip6_hdr *ip6; 666 667 /* adjust pointer */ 668 ip6 = mtod(m, struct ip6_hdr *); 669 670 /* restore source and destination addresses */ 671 ip6->ip6_src = q6->ip6q_src; 672 ip6->ip6_dst = q6->ip6q_dst; 673 674 icmp6_error(m, ICMP6_TIME_EXCEEDED, 675 ICMP6_TIME_EXCEED_REASSEMBLY, 0); 676 } else 677 m_freem(m); 678 free(af6, M_FTABLE); 679 } 680 frag6_remque(q6); 681 V_frag6_nfrags -= q6->ip6q_nfrag; 682 #ifdef MAC 683 mac_ip6q_destroy(q6); 684 #endif 685 free(q6, M_FTABLE); 686 V_frag6_nfragpackets--; 687 } 688 689 /* 690 * Put an ip fragment on a reassembly chain. 691 * Like insque, but pointers in middle of structure. 692 */ 693 void 694 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6) 695 { 696 697 IP6Q_LOCK_ASSERT(); 698 699 af6->ip6af_up = up6; 700 af6->ip6af_down = up6->ip6af_down; 701 up6->ip6af_down->ip6af_up = af6; 702 up6->ip6af_down = af6; 703 } 704 705 /* 706 * To frag6_enq as remque is to insque. 707 */ 708 void 709 frag6_deq(struct ip6asfrag *af6) 710 { 711 712 IP6Q_LOCK_ASSERT(); 713 714 af6->ip6af_up->ip6af_down = af6->ip6af_down; 715 af6->ip6af_down->ip6af_up = af6->ip6af_up; 716 } 717 718 void 719 frag6_insque(struct ip6q *new, struct ip6q *old) 720 { 721 722 IP6Q_LOCK_ASSERT(); 723 724 new->ip6q_prev = old; 725 new->ip6q_next = old->ip6q_next; 726 old->ip6q_next->ip6q_prev= new; 727 old->ip6q_next = new; 728 } 729 730 void 731 frag6_remque(struct ip6q *p6) 732 { 733 734 IP6Q_LOCK_ASSERT(); 735 736 p6->ip6q_prev->ip6q_next = p6->ip6q_next; 737 p6->ip6q_next->ip6q_prev = p6->ip6q_prev; 738 } 739 740 /* 741 * IPv6 reassembling timer processing; 742 * if a timer expires on a reassembly 743 * queue, discard it. 744 */ 745 void 746 frag6_slowtimo(void) 747 { 748 VNET_ITERATOR_DECL(vnet_iter); 749 struct ip6q *q6; 750 751 VNET_LIST_RLOCK_NOSLEEP(); 752 IP6Q_LOCK(); 753 VNET_FOREACH(vnet_iter) { 754 CURVNET_SET(vnet_iter); 755 q6 = V_ip6q.ip6q_next; 756 if (q6) 757 while (q6 != &V_ip6q) { 758 --q6->ip6q_ttl; 759 q6 = q6->ip6q_next; 760 if (q6->ip6q_prev->ip6q_ttl == 0) { 761 IP6STAT_INC(ip6s_fragtimeout); 762 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ 763 frag6_freef(q6->ip6q_prev); 764 } 765 } 766 /* 767 * If we are over the maximum number of fragments 768 * (due to the limit being lowered), drain off 769 * enough to get down to the new limit. 770 */ 771 while (V_frag6_nfragpackets > (u_int)V_ip6_maxfragpackets && 772 V_ip6q.ip6q_prev) { 773 IP6STAT_INC(ip6s_fragoverflow); 774 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ 775 frag6_freef(V_ip6q.ip6q_prev); 776 } 777 CURVNET_RESTORE(); 778 } 779 IP6Q_UNLOCK(); 780 VNET_LIST_RUNLOCK_NOSLEEP(); 781 } 782 783 /* 784 * Drain off all datagram fragments. 785 */ 786 void 787 frag6_drain(void) 788 { 789 VNET_ITERATOR_DECL(vnet_iter); 790 791 VNET_LIST_RLOCK_NOSLEEP(); 792 if (IP6Q_TRYLOCK() == 0) { 793 VNET_LIST_RUNLOCK_NOSLEEP(); 794 return; 795 } 796 VNET_FOREACH(vnet_iter) { 797 CURVNET_SET(vnet_iter); 798 while (V_ip6q.ip6q_next != &V_ip6q) { 799 IP6STAT_INC(ip6s_fragdropped); 800 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ 801 frag6_freef(V_ip6q.ip6q_next); 802 } 803 CURVNET_RESTORE(); 804 } 805 IP6Q_UNLOCK(); 806 VNET_LIST_RUNLOCK_NOSLEEP(); 807 } 808 809 int 810 ip6_deletefraghdr(struct mbuf *m, int offset, int wait) 811 { 812 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 813 struct mbuf *t; 814 815 /* Delete frag6 header. */ 816 if (m->m_len >= offset + sizeof(struct ip6_frag)) { 817 /* This is the only possible case with !PULLDOWN_TEST. */ 818 bcopy(ip6, (char *)ip6 + sizeof(struct ip6_frag), 819 offset); 820 m->m_data += sizeof(struct ip6_frag); 821 m->m_len -= sizeof(struct ip6_frag); 822 } else { 823 /* This comes with no copy if the boundary is on cluster. */ 824 if ((t = m_split(m, offset, wait)) == NULL) 825 return (ENOMEM); 826 m_adj(t, sizeof(struct ip6_frag)); 827 m_cat(m, t); 828 } 829 830 m->m_flags |= M_FRAGMENTED; 831 return (0); 832 } 833