xref: /freebsd/sys/netinet6/frag6.c (revision 5fa29797910346fc0c54829bd979856e83b9b7ea)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: frag6.c,v 1.33 2002/01/07 11:34:48 kjc Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/hash.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/domain.h>
45 #include <sys/eventhandler.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/errno.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/syslog.h>
52 
53 #include <machine/atomic.h>
54 
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/netisr.h>
58 #include <net/route.h>
59 #include <net/vnet.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet/icmp6.h>
66 #include <netinet/in_systm.h>	/* for ECN definitions */
67 #include <netinet/ip.h>		/* for ECN definitions */
68 
69 #include <security/mac/mac_framework.h>
70 
71 /*
72  * Reassembly headers are stored in hash buckets.
73  */
74 #define	IP6REASS_NHASH_LOG2	10
75 #define	IP6REASS_NHASH		(1 << IP6REASS_NHASH_LOG2)
76 #define	IP6REASS_HMASK		(IP6REASS_NHASH - 1)
77 
78 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *,
79     uint32_t bucket __unused);
80 static void frag6_deq(struct ip6asfrag *, uint32_t bucket __unused);
81 static void frag6_insque_head(struct ip6q *, struct ip6q *,
82     uint32_t bucket);
83 static void frag6_remque(struct ip6q *, uint32_t bucket);
84 static void frag6_freef(struct ip6q *, uint32_t bucket);
85 
86 struct ip6qbucket {
87 	struct ip6q	ip6q;
88 	struct mtx	lock;
89 	int		count;
90 };
91 
92 VNET_DEFINE_STATIC(volatile u_int, frag6_nfragpackets);
93 volatile u_int frag6_nfrags = 0;
94 VNET_DEFINE_STATIC(struct ip6qbucket, ip6q[IP6REASS_NHASH]);
95 VNET_DEFINE_STATIC(uint32_t, ip6q_hashseed);
96 
97 #define	V_frag6_nfragpackets		VNET(frag6_nfragpackets)
98 #define	V_ip6q				VNET(ip6q)
99 #define	V_ip6q_hashseed			VNET(ip6q_hashseed)
100 
101 #define	IP6Q_LOCK(i)		mtx_lock(&V_ip6q[(i)].lock)
102 #define	IP6Q_TRYLOCK(i)		mtx_trylock(&V_ip6q[(i)].lock)
103 #define	IP6Q_LOCK_ASSERT(i)	mtx_assert(&V_ip6q[(i)].lock, MA_OWNED)
104 #define	IP6Q_UNLOCK(i)		mtx_unlock(&V_ip6q[(i)].lock)
105 #define	IP6Q_HEAD(i)		(&V_ip6q[(i)].ip6q)
106 
107 static MALLOC_DEFINE(M_FTABLE, "fragment", "fragment reassembly header");
108 
109 /*
110  * By default, limit the number of IP6 fragments across all reassembly
111  * queues to  1/32 of the total number of mbuf clusters.
112  *
113  * Limit the total number of reassembly queues per VNET to the
114  * IP6 fragment limit, but ensure the limit will not allow any bucket
115  * to grow above 100 items. (The bucket limit is
116  * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
117  * multiplier to reach a 100-item limit.)
118  * The 100-item limit was chosen as brief testing seems to show that
119  * this produces "reasonable" performance on some subset of systems
120  * under DoS attack.
121  */
122 #define	IP6_MAXFRAGS		(nmbclusters / 32)
123 #define	IP6_MAXFRAGPACKETS	(imin(IP6_MAXFRAGS, IP6REASS_NHASH * 50))
124 
125 /*
126  * Initialise reassembly queue and fragment identifier.
127  */
128 void
129 frag6_set_bucketsize()
130 {
131 	int i;
132 
133 	if ((i = V_ip6_maxfragpackets) > 0)
134 		V_ip6_maxfragbucketsize = imax(i / (IP6REASS_NHASH / 2), 1);
135 }
136 
137 static void
138 frag6_change(void *tag)
139 {
140 	VNET_ITERATOR_DECL(vnet_iter);
141 
142 	ip6_maxfrags = IP6_MAXFRAGS;
143 	VNET_LIST_RLOCK_NOSLEEP();
144 	VNET_FOREACH(vnet_iter) {
145 		CURVNET_SET(vnet_iter);
146 		V_ip6_maxfragpackets = IP6_MAXFRAGPACKETS;
147 		frag6_set_bucketsize();
148 		CURVNET_RESTORE();
149 	}
150 	VNET_LIST_RUNLOCK_NOSLEEP();
151 }
152 
153 void
154 frag6_init(void)
155 {
156 	struct ip6q *q6;
157 	int i;
158 
159 	V_ip6_maxfragpackets = IP6_MAXFRAGPACKETS;
160 	frag6_set_bucketsize();
161 	for (i = 0; i < IP6REASS_NHASH; i++) {
162 		q6 = IP6Q_HEAD(i);
163 		q6->ip6q_next = q6->ip6q_prev = q6;
164 		mtx_init(&V_ip6q[i].lock, "ip6qlock", NULL, MTX_DEF);
165 		V_ip6q[i].count = 0;
166 	}
167 	V_ip6q_hashseed = arc4random();
168 	V_ip6_maxfragsperpacket = 64;
169 	if (!IS_DEFAULT_VNET(curvnet))
170 		return;
171 
172 	ip6_maxfrags = IP6_MAXFRAGS;
173 	EVENTHANDLER_REGISTER(nmbclusters_change,
174 	    frag6_change, NULL, EVENTHANDLER_PRI_ANY);
175 }
176 
177 /*
178  * In RFC2460, fragment and reassembly rule do not agree with each other,
179  * in terms of next header field handling in fragment header.
180  * While the sender will use the same value for all of the fragmented packets,
181  * receiver is suggested not to check the consistency.
182  *
183  * fragment rule (p20):
184  *	(2) A Fragment header containing:
185  *	The Next Header value that identifies the first header of
186  *	the Fragmentable Part of the original packet.
187  *		-> next header field is same for all fragments
188  *
189  * reassembly rule (p21):
190  *	The Next Header field of the last header of the Unfragmentable
191  *	Part is obtained from the Next Header field of the first
192  *	fragment's Fragment header.
193  *		-> should grab it from the first fragment only
194  *
195  * The following note also contradicts with fragment rule - no one is going to
196  * send different fragment with different next header field.
197  *
198  * additional note (p22):
199  *	The Next Header values in the Fragment headers of different
200  *	fragments of the same original packet may differ.  Only the value
201  *	from the Offset zero fragment packet is used for reassembly.
202  *		-> should grab it from the first fragment only
203  *
204  * There is no explicit reason given in the RFC.  Historical reason maybe?
205  */
206 /*
207  * Fragment input
208  */
209 int
210 frag6_input(struct mbuf **mp, int *offp, int proto)
211 {
212 	struct mbuf *m = *mp, *t;
213 	struct ip6_hdr *ip6;
214 	struct ip6_frag *ip6f;
215 	struct ip6q *head, *q6;
216 	struct ip6asfrag *af6, *ip6af, *af6dwn;
217 	struct in6_ifaddr *ia;
218 	int offset = *offp, nxt, i, next;
219 	int first_frag = 0;
220 	int fragoff, frgpartlen;	/* must be larger than u_int16_t */
221 	uint32_t hash, hashkey[sizeof(struct in6_addr) * 2 + 1], *hashkeyp;
222 	struct ifnet *dstifp;
223 	u_int8_t ecn, ecn0;
224 #ifdef RSS
225 	struct m_tag *mtag;
226 	struct ip6_direct_ctx *ip6dc;
227 #endif
228 
229 #if 0
230 	char ip6buf[INET6_ADDRSTRLEN];
231 #endif
232 
233 	ip6 = mtod(m, struct ip6_hdr *);
234 #ifndef PULLDOWN_TEST
235 	IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), IPPROTO_DONE);
236 	ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
237 #else
238 	IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
239 	if (ip6f == NULL)
240 		return (IPPROTO_DONE);
241 #endif
242 
243 	dstifp = NULL;
244 	/* find the destination interface of the packet. */
245 	ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
246 	if (ia != NULL) {
247 		dstifp = ia->ia_ifp;
248 		ifa_free(&ia->ia_ifa);
249 	}
250 	/* jumbo payload can't contain a fragment header */
251 	if (ip6->ip6_plen == 0) {
252 		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
253 		in6_ifstat_inc(dstifp, ifs6_reass_fail);
254 		return IPPROTO_DONE;
255 	}
256 
257 	/*
258 	 * check whether fragment packet's fragment length is
259 	 * multiple of 8 octets.
260 	 * sizeof(struct ip6_frag) == 8
261 	 * sizeof(struct ip6_hdr) = 40
262 	 */
263 	if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
264 	    (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
265 		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
266 		    offsetof(struct ip6_hdr, ip6_plen));
267 		in6_ifstat_inc(dstifp, ifs6_reass_fail);
268 		return IPPROTO_DONE;
269 	}
270 
271 	IP6STAT_INC(ip6s_fragments);
272 	in6_ifstat_inc(dstifp, ifs6_reass_reqd);
273 
274 	/* offset now points to data portion */
275 	offset += sizeof(struct ip6_frag);
276 
277 	/*
278 	 * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0)
279 	 * upfront, unrelated to any reassembly.  Just skip the fragment header.
280 	 */
281 	if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) {
282 		/* XXX-BZ we want dedicated counters for this. */
283 		IP6STAT_INC(ip6s_reassembled);
284 		in6_ifstat_inc(dstifp, ifs6_reass_ok);
285 		*offp = offset;
286 		m->m_flags |= M_FRAGMENTED;
287 		return (ip6f->ip6f_nxt);
288 	}
289 
290 	/* Get fragment length and discard 0-byte fragments. */
291 	frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
292 	if (frgpartlen == 0) {
293 		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
294 		    offsetof(struct ip6_hdr, ip6_plen));
295 		in6_ifstat_inc(dstifp, ifs6_reass_fail);
296 		IP6STAT_INC(ip6s_fragdropped);
297 		return IPPROTO_DONE;
298 	}
299 
300 	hashkeyp = hashkey;
301 	memcpy(hashkeyp, &ip6->ip6_src, sizeof(struct in6_addr));
302 	hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp);
303 	memcpy(hashkeyp, &ip6->ip6_dst, sizeof(struct in6_addr));
304 	hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp);
305 	*hashkeyp = ip6f->ip6f_ident;
306 	hash = jenkins_hash32(hashkey, nitems(hashkey), V_ip6q_hashseed);
307 	hash &= IP6REASS_HMASK;
308 	head = IP6Q_HEAD(hash);
309 	IP6Q_LOCK(hash);
310 
311 	/*
312 	 * Enforce upper bound on number of fragments.
313 	 * If maxfrag is 0, never accept fragments.
314 	 * If maxfrag is -1, accept all fragments without limitation.
315 	 */
316 	if (ip6_maxfrags < 0)
317 		;
318 	else if (atomic_load_int(&frag6_nfrags) >= (u_int)ip6_maxfrags)
319 		goto dropfrag;
320 
321 	for (q6 = head->ip6q_next; q6 != head; q6 = q6->ip6q_next)
322 		if (ip6f->ip6f_ident == q6->ip6q_ident &&
323 		    IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
324 		    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)
325 #ifdef MAC
326 		    && mac_ip6q_match(m, q6)
327 #endif
328 		    )
329 			break;
330 
331 	if (q6 == head) {
332 		/*
333 		 * the first fragment to arrive, create a reassembly queue.
334 		 */
335 		first_frag = 1;
336 
337 		/*
338 		 * Enforce upper bound on number of fragmented packets
339 		 * for which we attempt reassembly;
340 		 * If maxfragpackets is 0, never accept fragments.
341 		 * If maxfragpackets is -1, accept all fragments without
342 		 * limitation.
343 		 */
344 		if (V_ip6_maxfragpackets < 0)
345 			;
346 		else if (V_ip6q[hash].count >= V_ip6_maxfragbucketsize ||
347 		    atomic_load_int(&V_frag6_nfragpackets) >=
348 		    (u_int)V_ip6_maxfragpackets)
349 			goto dropfrag;
350 		atomic_add_int(&V_frag6_nfragpackets, 1);
351 		q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FTABLE,
352 		    M_NOWAIT);
353 		if (q6 == NULL)
354 			goto dropfrag;
355 		bzero(q6, sizeof(*q6));
356 #ifdef MAC
357 		if (mac_ip6q_init(q6, M_NOWAIT) != 0) {
358 			free(q6, M_FTABLE);
359 			goto dropfrag;
360 		}
361 		mac_ip6q_create(m, q6);
362 #endif
363 		frag6_insque_head(q6, head, hash);
364 
365 		/* ip6q_nxt will be filled afterwards, from 1st fragment */
366 		q6->ip6q_down	= q6->ip6q_up = (struct ip6asfrag *)q6;
367 #ifdef notyet
368 		q6->ip6q_nxtp	= (u_char *)nxtp;
369 #endif
370 		q6->ip6q_ident	= ip6f->ip6f_ident;
371 		q6->ip6q_ttl	= IPV6_FRAGTTL;
372 		q6->ip6q_src	= ip6->ip6_src;
373 		q6->ip6q_dst	= ip6->ip6_dst;
374 		q6->ip6q_ecn	=
375 		    (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
376 		q6->ip6q_unfrglen = -1;	/* The 1st fragment has not arrived. */
377 
378 		q6->ip6q_nfrag = 0;
379 	}
380 
381 	/*
382 	 * If it's the 1st fragment, record the length of the
383 	 * unfragmentable part and the next header of the fragment header.
384 	 */
385 	fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
386 	if (fragoff == 0) {
387 		q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
388 		    sizeof(struct ip6_frag);
389 		q6->ip6q_nxt = ip6f->ip6f_nxt;
390 	}
391 
392 	/*
393 	 * Check that the reassembled packet would not exceed 65535 bytes
394 	 * in size.
395 	 * If it would exceed, discard the fragment and return an ICMP error.
396 	 */
397 	if (q6->ip6q_unfrglen >= 0) {
398 		/* The 1st fragment has already arrived. */
399 		if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
400 			icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
401 			    offset - sizeof(struct ip6_frag) +
402 			    offsetof(struct ip6_frag, ip6f_offlg));
403 			IP6Q_UNLOCK(hash);
404 			return (IPPROTO_DONE);
405 		}
406 	} else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
407 		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
408 		    offset - sizeof(struct ip6_frag) +
409 		    offsetof(struct ip6_frag, ip6f_offlg));
410 		IP6Q_UNLOCK(hash);
411 		return (IPPROTO_DONE);
412 	}
413 	/*
414 	 * If it's the first fragment, do the above check for each
415 	 * fragment already stored in the reassembly queue.
416 	 */
417 	if (fragoff == 0) {
418 		for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
419 		     af6 = af6dwn) {
420 			af6dwn = af6->ip6af_down;
421 
422 			if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
423 			    IPV6_MAXPACKET) {
424 				struct mbuf *merr = IP6_REASS_MBUF(af6);
425 				struct ip6_hdr *ip6err;
426 				int erroff = af6->ip6af_offset;
427 
428 				/* dequeue the fragment. */
429 				frag6_deq(af6, hash);
430 				free(af6, M_FTABLE);
431 
432 				/* adjust pointer. */
433 				ip6err = mtod(merr, struct ip6_hdr *);
434 
435 				/*
436 				 * Restore source and destination addresses
437 				 * in the erroneous IPv6 header.
438 				 */
439 				ip6err->ip6_src = q6->ip6q_src;
440 				ip6err->ip6_dst = q6->ip6q_dst;
441 
442 				icmp6_error(merr, ICMP6_PARAM_PROB,
443 				    ICMP6_PARAMPROB_HEADER,
444 				    erroff - sizeof(struct ip6_frag) +
445 				    offsetof(struct ip6_frag, ip6f_offlg));
446 			}
447 		}
448 	}
449 
450 	ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FTABLE,
451 	    M_NOWAIT);
452 	if (ip6af == NULL)
453 		goto dropfrag;
454 	bzero(ip6af, sizeof(*ip6af));
455 	ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
456 	ip6af->ip6af_off = fragoff;
457 	ip6af->ip6af_frglen = frgpartlen;
458 	ip6af->ip6af_offset = offset;
459 	IP6_REASS_MBUF(ip6af) = m;
460 
461 	if (first_frag) {
462 		af6 = (struct ip6asfrag *)q6;
463 		goto insert;
464 	}
465 
466 	/*
467 	 * Handle ECN by comparing this segment with the first one;
468 	 * if CE is set, do not lose CE.
469 	 * drop if CE and not-ECT are mixed for the same packet.
470 	 */
471 	ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
472 	ecn0 = q6->ip6q_ecn;
473 	if (ecn == IPTOS_ECN_CE) {
474 		if (ecn0 == IPTOS_ECN_NOTECT) {
475 			free(ip6af, M_FTABLE);
476 			goto dropfrag;
477 		}
478 		if (ecn0 != IPTOS_ECN_CE)
479 			q6->ip6q_ecn = IPTOS_ECN_CE;
480 	}
481 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
482 		free(ip6af, M_FTABLE);
483 		goto dropfrag;
484 	}
485 
486 	/*
487 	 * Find a segment which begins after this one does.
488 	 */
489 	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
490 	     af6 = af6->ip6af_down)
491 		if (af6->ip6af_off > ip6af->ip6af_off)
492 			break;
493 
494 #if 0
495 	/*
496 	 * If there is a preceding segment, it may provide some of
497 	 * our data already.  If so, drop the data from the incoming
498 	 * segment.  If it provides all of our data, drop us.
499 	 */
500 	if (af6->ip6af_up != (struct ip6asfrag *)q6) {
501 		i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
502 			- ip6af->ip6af_off;
503 		if (i > 0) {
504 			if (i >= ip6af->ip6af_frglen)
505 				goto dropfrag;
506 			m_adj(IP6_REASS_MBUF(ip6af), i);
507 			ip6af->ip6af_off += i;
508 			ip6af->ip6af_frglen -= i;
509 		}
510 	}
511 
512 	/*
513 	 * While we overlap succeeding segments trim them or,
514 	 * if they are completely covered, dequeue them.
515 	 */
516 	while (af6 != (struct ip6asfrag *)q6 &&
517 	       ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
518 		i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
519 		if (i < af6->ip6af_frglen) {
520 			af6->ip6af_frglen -= i;
521 			af6->ip6af_off += i;
522 			m_adj(IP6_REASS_MBUF(af6), i);
523 			break;
524 		}
525 		af6 = af6->ip6af_down;
526 		m_freem(IP6_REASS_MBUF(af6->ip6af_up));
527 		frag6_deq(af6->ip6af_up, hash);
528 	}
529 #else
530 	/*
531 	 * If the incoming framgent overlaps some existing fragments in
532 	 * the reassembly queue, drop it, since it is dangerous to override
533 	 * existing fragments from a security point of view.
534 	 * We don't know which fragment is the bad guy - here we trust
535 	 * fragment that came in earlier, with no real reason.
536 	 *
537 	 * Note: due to changes after disabling this part, mbuf passed to
538 	 * m_adj() below now does not meet the requirement.
539 	 */
540 	if (af6->ip6af_up != (struct ip6asfrag *)q6) {
541 		i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
542 			- ip6af->ip6af_off;
543 		if (i > 0) {
544 #if 0				/* suppress the noisy log */
545 			log(LOG_ERR, "%d bytes of a fragment from %s "
546 			    "overlaps the previous fragment\n",
547 			    i, ip6_sprintf(ip6buf, &q6->ip6q_src));
548 #endif
549 			free(ip6af, M_FTABLE);
550 			goto dropfrag;
551 		}
552 	}
553 	if (af6 != (struct ip6asfrag *)q6) {
554 		i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
555 		if (i > 0) {
556 #if 0				/* suppress the noisy log */
557 			log(LOG_ERR, "%d bytes of a fragment from %s "
558 			    "overlaps the succeeding fragment",
559 			    i, ip6_sprintf(ip6buf, &q6->ip6q_src));
560 #endif
561 			free(ip6af, M_FTABLE);
562 			goto dropfrag;
563 		}
564 	}
565 #endif
566 
567 insert:
568 #ifdef MAC
569 	if (!first_frag)
570 		mac_ip6q_update(m, q6);
571 #endif
572 
573 	/*
574 	 * Stick new segment in its place;
575 	 * check for complete reassembly.
576 	 * If not complete, check fragment limit.
577 	 * Move to front of packet queue, as we are
578 	 * the most recently active fragmented packet.
579 	 */
580 	frag6_enq(ip6af, af6->ip6af_up, hash);
581 	atomic_add_int(&frag6_nfrags, 1);
582 	q6->ip6q_nfrag++;
583 #if 0 /* xxx */
584 	if (q6 != head->ip6q_next) {
585 		frag6_remque(q6, hash);
586 		frag6_insque_head(q6, head, hash);
587 	}
588 #endif
589 	next = 0;
590 	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
591 	     af6 = af6->ip6af_down) {
592 		if (af6->ip6af_off != next) {
593 			if (q6->ip6q_nfrag > V_ip6_maxfragsperpacket) {
594 				IP6STAT_INC(ip6s_fragdropped);
595 				frag6_freef(q6, hash);
596 			}
597 			IP6Q_UNLOCK(hash);
598 			return IPPROTO_DONE;
599 		}
600 		next += af6->ip6af_frglen;
601 	}
602 	if (af6->ip6af_up->ip6af_mff) {
603 		if (q6->ip6q_nfrag > V_ip6_maxfragsperpacket) {
604 			IP6STAT_INC(ip6s_fragdropped);
605 			frag6_freef(q6, hash);
606 		}
607 		IP6Q_UNLOCK(hash);
608 		return IPPROTO_DONE;
609 	}
610 
611 	/*
612 	 * Reassembly is complete; concatenate fragments.
613 	 */
614 	ip6af = q6->ip6q_down;
615 	t = m = IP6_REASS_MBUF(ip6af);
616 	af6 = ip6af->ip6af_down;
617 	frag6_deq(ip6af, hash);
618 	while (af6 != (struct ip6asfrag *)q6) {
619 		m->m_pkthdr.csum_flags &=
620 		    IP6_REASS_MBUF(af6)->m_pkthdr.csum_flags;
621 		m->m_pkthdr.csum_data +=
622 		    IP6_REASS_MBUF(af6)->m_pkthdr.csum_data;
623 
624 		af6dwn = af6->ip6af_down;
625 		frag6_deq(af6, hash);
626 		while (t->m_next)
627 			t = t->m_next;
628 		m_adj(IP6_REASS_MBUF(af6), af6->ip6af_offset);
629 		m_demote_pkthdr(IP6_REASS_MBUF(af6));
630 		m_cat(t, IP6_REASS_MBUF(af6));
631 		free(af6, M_FTABLE);
632 		af6 = af6dwn;
633 	}
634 
635 	while (m->m_pkthdr.csum_data & 0xffff0000)
636 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
637 		    (m->m_pkthdr.csum_data >> 16);
638 
639 	/* adjust offset to point where the original next header starts */
640 	offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
641 	free(ip6af, M_FTABLE);
642 	ip6 = mtod(m, struct ip6_hdr *);
643 	ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr));
644 	if (q6->ip6q_ecn == IPTOS_ECN_CE)
645 		ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
646 	nxt = q6->ip6q_nxt;
647 #ifdef notyet
648 	*q6->ip6q_nxtp = (u_char)(nxt & 0xff);
649 #endif
650 
651 	if (ip6_deletefraghdr(m, offset, M_NOWAIT) != 0) {
652 		frag6_remque(q6, hash);
653 		atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag);
654 #ifdef MAC
655 		mac_ip6q_destroy(q6);
656 #endif
657 		free(q6, M_FTABLE);
658 		atomic_subtract_int(&V_frag6_nfragpackets, 1);
659 
660 		goto dropfrag;
661 	}
662 
663 	/*
664 	 * Store NXT to the original.
665 	 */
666 	m_copyback(m, ip6_get_prevhdr(m, offset), sizeof(uint8_t),
667 	    (caddr_t)&nxt);
668 
669 	frag6_remque(q6, hash);
670 	atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag);
671 #ifdef MAC
672 	mac_ip6q_reassemble(q6, m);
673 	mac_ip6q_destroy(q6);
674 #endif
675 	free(q6, M_FTABLE);
676 	atomic_subtract_int(&V_frag6_nfragpackets, 1);
677 
678 	if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
679 		int plen = 0;
680 		for (t = m; t; t = t->m_next)
681 			plen += t->m_len;
682 		m->m_pkthdr.len = plen;
683 	}
684 
685 #ifdef RSS
686 	mtag = m_tag_alloc(MTAG_ABI_IPV6, IPV6_TAG_DIRECT, sizeof(*ip6dc),
687 	    M_NOWAIT);
688 	if (mtag == NULL)
689 		goto dropfrag;
690 
691 	ip6dc = (struct ip6_direct_ctx *)(mtag + 1);
692 	ip6dc->ip6dc_nxt = nxt;
693 	ip6dc->ip6dc_off = offset;
694 
695 	m_tag_prepend(m, mtag);
696 #endif
697 
698 	IP6Q_UNLOCK(hash);
699 	IP6STAT_INC(ip6s_reassembled);
700 	in6_ifstat_inc(dstifp, ifs6_reass_ok);
701 
702 #ifdef RSS
703 	/*
704 	 * Queue/dispatch for reprocessing.
705 	 */
706 	netisr_dispatch(NETISR_IPV6_DIRECT, m);
707 	return IPPROTO_DONE;
708 #endif
709 
710 	/*
711 	 * Tell launch routine the next header
712 	 */
713 
714 	*mp = m;
715 	*offp = offset;
716 
717 	return nxt;
718 
719  dropfrag:
720 	IP6Q_UNLOCK(hash);
721 	in6_ifstat_inc(dstifp, ifs6_reass_fail);
722 	IP6STAT_INC(ip6s_fragdropped);
723 	m_freem(m);
724 	return IPPROTO_DONE;
725 }
726 
727 /*
728  * Free a fragment reassembly header and all
729  * associated datagrams.
730  */
731 static void
732 frag6_freef(struct ip6q *q6, uint32_t bucket)
733 {
734 	struct ip6asfrag *af6, *down6;
735 
736 	IP6Q_LOCK_ASSERT(bucket);
737 
738 	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
739 	     af6 = down6) {
740 		struct mbuf *m = IP6_REASS_MBUF(af6);
741 
742 		down6 = af6->ip6af_down;
743 		frag6_deq(af6, bucket);
744 
745 		/*
746 		 * Return ICMP time exceeded error for the 1st fragment.
747 		 * Just free other fragments.
748 		 */
749 		if (af6->ip6af_off == 0) {
750 			struct ip6_hdr *ip6;
751 
752 			/* adjust pointer */
753 			ip6 = mtod(m, struct ip6_hdr *);
754 
755 			/* restore source and destination addresses */
756 			ip6->ip6_src = q6->ip6q_src;
757 			ip6->ip6_dst = q6->ip6q_dst;
758 
759 			icmp6_error(m, ICMP6_TIME_EXCEEDED,
760 				    ICMP6_TIME_EXCEED_REASSEMBLY, 0);
761 		} else
762 			m_freem(m);
763 		free(af6, M_FTABLE);
764 	}
765 	frag6_remque(q6, bucket);
766 	atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag);
767 #ifdef MAC
768 	mac_ip6q_destroy(q6);
769 #endif
770 	free(q6, M_FTABLE);
771 	atomic_subtract_int(&V_frag6_nfragpackets, 1);
772 }
773 
774 /*
775  * Put an ip fragment on a reassembly chain.
776  * Like insque, but pointers in middle of structure.
777  */
778 static void
779 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6,
780     uint32_t bucket __unused)
781 {
782 
783 	IP6Q_LOCK_ASSERT(bucket);
784 
785 	af6->ip6af_up = up6;
786 	af6->ip6af_down = up6->ip6af_down;
787 	up6->ip6af_down->ip6af_up = af6;
788 	up6->ip6af_down = af6;
789 }
790 
791 /*
792  * To frag6_enq as remque is to insque.
793  */
794 static void
795 frag6_deq(struct ip6asfrag *af6, uint32_t bucket __unused)
796 {
797 
798 	IP6Q_LOCK_ASSERT(bucket);
799 
800 	af6->ip6af_up->ip6af_down = af6->ip6af_down;
801 	af6->ip6af_down->ip6af_up = af6->ip6af_up;
802 }
803 
804 static void
805 frag6_insque_head(struct ip6q *new, struct ip6q *old, uint32_t bucket)
806 {
807 
808 	IP6Q_LOCK_ASSERT(bucket);
809 	KASSERT(IP6Q_HEAD(bucket) == old,
810 	    ("%s: attempt to insert at head of wrong bucket"
811 	    " (bucket=%u, old=%p)", __func__, bucket, old));
812 
813 	new->ip6q_prev = old;
814 	new->ip6q_next = old->ip6q_next;
815 	old->ip6q_next->ip6q_prev= new;
816 	old->ip6q_next = new;
817 	V_ip6q[bucket].count++;
818 }
819 
820 static void
821 frag6_remque(struct ip6q *p6, uint32_t bucket)
822 {
823 
824 	IP6Q_LOCK_ASSERT(bucket);
825 
826 	p6->ip6q_prev->ip6q_next = p6->ip6q_next;
827 	p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
828 	V_ip6q[bucket].count--;
829 }
830 
831 /*
832  * IPv6 reassembling timer processing;
833  * if a timer expires on a reassembly
834  * queue, discard it.
835  */
836 void
837 frag6_slowtimo(void)
838 {
839 	VNET_ITERATOR_DECL(vnet_iter);
840 	struct ip6q *head, *q6;
841 	int i;
842 
843 	VNET_LIST_RLOCK_NOSLEEP();
844 	VNET_FOREACH(vnet_iter) {
845 		CURVNET_SET(vnet_iter);
846 		for (i = 0; i < IP6REASS_NHASH; i++) {
847 			IP6Q_LOCK(i);
848 			head = IP6Q_HEAD(i);
849 			q6 = head->ip6q_next;
850 			if (q6 == NULL) {
851 				/*
852 				 * XXXJTL: This should never happen. This
853 				 * should turn into an assertion.
854 				 */
855 				IP6Q_UNLOCK(i);
856 				continue;
857 			}
858 			while (q6 != head) {
859 				--q6->ip6q_ttl;
860 				q6 = q6->ip6q_next;
861 				if (q6->ip6q_prev->ip6q_ttl == 0) {
862 					IP6STAT_INC(ip6s_fragtimeout);
863 					/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
864 					frag6_freef(q6->ip6q_prev, i);
865 				}
866 			}
867 			/*
868 			 * If we are over the maximum number of fragments
869 			 * (due to the limit being lowered), drain off
870 			 * enough to get down to the new limit.
871 			 * Note that we drain all reassembly queues if
872 			 * maxfragpackets is 0 (fragmentation is disabled),
873 			 * and don't enforce a limit when maxfragpackets
874 			 * is negative.
875 			 */
876 			while ((V_ip6_maxfragpackets == 0 ||
877 			    (V_ip6_maxfragpackets > 0 &&
878 			    V_ip6q[i].count > V_ip6_maxfragbucketsize)) &&
879 			    head->ip6q_prev != head) {
880 				IP6STAT_INC(ip6s_fragoverflow);
881 				/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
882 				frag6_freef(head->ip6q_prev, i);
883 			}
884 			IP6Q_UNLOCK(i);
885 		}
886 		/*
887 		 * If we are still over the maximum number of fragmented
888 		 * packets, drain off enough to get down to the new limit.
889 		 */
890 		i = 0;
891 		while (V_ip6_maxfragpackets >= 0 &&
892 		    atomic_load_int(&V_frag6_nfragpackets) >
893 		    (u_int)V_ip6_maxfragpackets) {
894 			IP6Q_LOCK(i);
895 			head = IP6Q_HEAD(i);
896 			if (head->ip6q_prev != head) {
897 				IP6STAT_INC(ip6s_fragoverflow);
898 				/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
899 				frag6_freef(head->ip6q_prev, i);
900 			}
901 			IP6Q_UNLOCK(i);
902 			i = (i + 1) % IP6REASS_NHASH;
903 		}
904 		CURVNET_RESTORE();
905 	}
906 	VNET_LIST_RUNLOCK_NOSLEEP();
907 }
908 
909 /*
910  * Drain off all datagram fragments.
911  */
912 void
913 frag6_drain(void)
914 {
915 	VNET_ITERATOR_DECL(vnet_iter);
916 	struct ip6q *head;
917 	int i;
918 
919 	VNET_LIST_RLOCK_NOSLEEP();
920 	VNET_FOREACH(vnet_iter) {
921 		CURVNET_SET(vnet_iter);
922 		for (i = 0; i < IP6REASS_NHASH; i++) {
923 			if (IP6Q_TRYLOCK(i) == 0)
924 				continue;
925 			head = IP6Q_HEAD(i);
926 			while (head->ip6q_next != head) {
927 				IP6STAT_INC(ip6s_fragdropped);
928 				/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
929 				frag6_freef(head->ip6q_next, i);
930 			}
931 			IP6Q_UNLOCK(i);
932 		}
933 		CURVNET_RESTORE();
934 	}
935 	VNET_LIST_RUNLOCK_NOSLEEP();
936 }
937 
938 int
939 ip6_deletefraghdr(struct mbuf *m, int offset, int wait)
940 {
941 	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
942 	struct mbuf *t;
943 
944 	/* Delete frag6 header. */
945 	if (m->m_len >= offset + sizeof(struct ip6_frag)) {
946 		/* This is the only possible case with !PULLDOWN_TEST. */
947 		bcopy(ip6, (char *)ip6 + sizeof(struct ip6_frag),
948 		    offset);
949 		m->m_data += sizeof(struct ip6_frag);
950 		m->m_len -= sizeof(struct ip6_frag);
951 	} else {
952 		/* This comes with no copy if the boundary is on cluster. */
953 		if ((t = m_split(m, offset, wait)) == NULL)
954 			return (ENOMEM);
955 		m_adj(t, sizeof(struct ip6_frag));
956 		m_cat(m, t);
957 	}
958 
959 	m->m_flags |= M_FRAGMENTED;
960 	return (0);
961 }
962