1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_inet.h" 41 #include "opt_inet6.h" 42 #include "opt_ipsec.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/domain.h> 48 #include <sys/eventhandler.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/sdt.h> 58 #include <sys/signalvar.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sx.h> 62 #include <sys/sysctl.h> 63 #include <sys/syslog.h> 64 #include <sys/systm.h> 65 66 #include <vm/uma.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip.h> 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #endif 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/ip_options.h> 88 #ifdef INET6 89 #include <netinet6/ip6_var.h> 90 #endif 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 #include <netinet/udplite.h> 94 #include <netinet/in_rss.h> 95 96 #include <netipsec/ipsec_support.h> 97 98 #include <machine/in_cksum.h> 99 100 #include <security/mac/mac_framework.h> 101 102 /* 103 * UDP and UDP-Lite protocols implementation. 104 * Per RFC 768, August, 1980. 105 * Per RFC 3828, July, 2004. 106 */ 107 108 VNET_DEFINE(int, udp_bind_all_fibs) = 1; 109 SYSCTL_INT(_net_inet_udp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN, 110 &VNET_NAME(udp_bind_all_fibs), 0, 111 "Bound sockets receive traffic from all FIBs"); 112 113 /* 114 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 115 * removes the only data integrity mechanism for packets and malformed 116 * packets that would otherwise be discarded due to bad checksums, and may 117 * cause problems (especially for NFS data blocks). 118 */ 119 VNET_DEFINE(int, udp_cksum) = 1; 120 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 121 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 122 123 VNET_DEFINE(int, udp_log_in_vain) = 0; 124 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 125 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 126 127 VNET_DEFINE(int, udp_blackhole) = 0; 128 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 129 &VNET_NAME(udp_blackhole), 0, 130 "Do not send port unreachables for refused connects"); 131 VNET_DEFINE(bool, udp_blackhole_local) = false; 132 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 133 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 134 "Enforce net.inet.udp.blackhole for locally originated packets"); 135 136 u_long udp_sendspace = 9216; /* really max datagram size */ 137 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 138 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 139 140 u_long udp_recvspace = 40 * (1024 + 141 #ifdef INET6 142 sizeof(struct sockaddr_in6) 143 #else 144 sizeof(struct sockaddr_in) 145 #endif 146 ); /* 40 1K datagrams */ 147 148 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 149 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 150 151 VNET_DEFINE(struct inpcbinfo, udbinfo); 152 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 153 154 #ifndef UDBHASHSIZE 155 #define UDBHASHSIZE 128 156 #endif 157 158 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 159 VNET_PCPUSTAT_SYSINIT(udpstat); 160 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 161 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 162 163 #ifdef VIMAGE 164 VNET_PCPUSTAT_SYSUNINIT(udpstat); 165 #endif /* VIMAGE */ 166 #ifdef INET 167 static void udp_detach(struct socket *so); 168 #endif 169 170 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash"); 171 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb", 172 "udplite", "udplitehash"); 173 174 static void 175 udp_vnet_init(void *arg __unused) 176 { 177 178 /* 179 * For now default to 2-tuple UDP hashing - until the fragment 180 * reassembly code can also update the flowid. 181 * 182 * Once we can calculate the flowid that way and re-establish 183 * a 4-tuple, flip this to 4-tuple. 184 */ 185 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 186 /* Additional pcbinfo for UDP-Lite */ 187 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 188 UDBHASHSIZE); 189 } 190 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 191 udp_vnet_init, NULL); 192 193 /* 194 * Kernel module interface for updating udpstat. The argument is an index 195 * into udpstat treated as an array of u_long. While this encodes the 196 * general layout of udpstat into the caller, it doesn't encode its location, 197 * so that future changes to add, for example, per-CPU stats support won't 198 * cause binary compatibility problems for kernel modules. 199 */ 200 void 201 kmod_udpstat_inc(int statnum) 202 { 203 204 counter_u64_add(VNET(udpstat)[statnum], 1); 205 } 206 207 #ifdef VIMAGE 208 static void 209 udp_destroy(void *unused __unused) 210 { 211 212 in_pcbinfo_destroy(&V_udbinfo); 213 in_pcbinfo_destroy(&V_ulitecbinfo); 214 } 215 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 216 #endif 217 218 #ifdef INET 219 /* 220 * Subroutine of udp_input(), which appends the provided mbuf chain to the 221 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 222 * contains the source address. If the socket ends up being an IPv6 socket, 223 * udp_append() will convert to a sockaddr_in6 before passing the address 224 * into the socket code. 225 * 226 * In the normal case udp_append() will return 0, indicating that you 227 * must unlock the inp. However if a tunneling protocol is in place we increment 228 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 229 * then decrement the reference count. If the inp_rele returns 1, indicating the 230 * inp is gone, we return that to the caller to tell them *not* to unlock 231 * the inp. In the case of multi-cast this will cause the distribution 232 * to stop (though most tunneling protocols known currently do *not* use 233 * multicast). 234 */ 235 static int 236 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 237 struct sockaddr_in *udp_in) 238 { 239 struct sockaddr *append_sa; 240 struct socket *so; 241 struct mbuf *tmpopts, *opts = NULL; 242 #ifdef INET6 243 struct sockaddr_in6 udp_in6; 244 #endif 245 struct udpcb *up; 246 bool filtered; 247 248 INP_LOCK_ASSERT(inp); 249 250 /* 251 * Engage the tunneling protocol. 252 */ 253 up = intoudpcb(inp); 254 if (up->u_tun_func != NULL) { 255 in_pcbref(inp); 256 INP_RUNLOCK(inp); 257 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 258 up->u_tun_ctx); 259 INP_RLOCK(inp); 260 if (filtered) 261 return (in_pcbrele_rlocked(inp)); 262 } 263 264 off += sizeof(struct udphdr); 265 266 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 267 /* Check AH/ESP integrity. */ 268 if (IPSEC_ENABLED(ipv4) && 269 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 270 m_freem(n); 271 return (0); 272 } 273 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 274 if (IPSEC_ENABLED(ipv4) && 275 UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0) 276 return (0); /* Consumed. */ 277 } 278 #endif /* IPSEC */ 279 #ifdef MAC 280 if (mac_inpcb_check_deliver(inp, n) != 0) { 281 m_freem(n); 282 return (0); 283 } 284 #endif /* MAC */ 285 if (inp->inp_flags & INP_CONTROLOPTS || 286 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 287 #ifdef INET6 288 if (inp->inp_vflag & INP_IPV6) 289 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 290 else 291 #endif /* INET6 */ 292 ip_savecontrol(inp, &opts, ip, n); 293 } 294 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 295 tmpopts = sbcreatecontrol(&udp_in[1], 296 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 297 M_NOWAIT); 298 if (tmpopts) { 299 if (opts) { 300 tmpopts->m_next = opts; 301 opts = tmpopts; 302 } else 303 opts = tmpopts; 304 } 305 } 306 #ifdef INET6 307 if (inp->inp_vflag & INP_IPV6) { 308 bzero(&udp_in6, sizeof(udp_in6)); 309 udp_in6.sin6_len = sizeof(udp_in6); 310 udp_in6.sin6_family = AF_INET6; 311 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 312 append_sa = (struct sockaddr *)&udp_in6; 313 } else 314 #endif /* INET6 */ 315 append_sa = (struct sockaddr *)&udp_in[0]; 316 m_adj(n, off); 317 318 so = inp->inp_socket; 319 SOCKBUF_LOCK(&so->so_rcv); 320 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 321 soroverflow_locked(so); 322 m_freem(n); 323 if (opts) 324 m_freem(opts); 325 UDPSTAT_INC(udps_fullsock); 326 } else 327 sorwakeup_locked(so); 328 return (0); 329 } 330 331 static bool 332 udp_multi_match(const struct inpcb *inp, void *v) 333 { 334 struct ip *ip = v; 335 struct udphdr *uh = (struct udphdr *)(ip + 1); 336 337 if (inp->inp_lport != uh->uh_dport) 338 return (false); 339 #ifdef INET6 340 if ((inp->inp_vflag & INP_IPV4) == 0) 341 return (false); 342 #endif 343 if (inp->inp_laddr.s_addr != INADDR_ANY && 344 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 345 return (false); 346 if (inp->inp_faddr.s_addr != INADDR_ANY && 347 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 348 return (false); 349 if (inp->inp_fport != 0 && 350 inp->inp_fport != uh->uh_sport) 351 return (false); 352 353 return (true); 354 } 355 356 static int 357 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 358 { 359 struct ip *ip = mtod(m, struct ip *); 360 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 361 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 362 #ifdef KDTRACE_HOOKS 363 struct udphdr *uh = (struct udphdr *)(ip + 1); 364 #endif 365 struct inpcb *inp; 366 struct mbuf *n; 367 int appends = 0, fib; 368 369 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 370 371 fib = M_GETFIB(m); 372 373 while ((inp = inp_next(&inpi)) != NULL) { 374 /* 375 * XXXRW: Because we weren't holding either the inpcb 376 * or the hash lock when we checked for a match 377 * before, we should probably recheck now that the 378 * inpcb lock is held. 379 */ 380 381 if (V_udp_bind_all_fibs == 0 && fib != inp->inp_inc.inc_fibnum) 382 /* 383 * Sockets bound to a specific FIB can only receive 384 * packets from that FIB. 385 */ 386 continue; 387 388 /* 389 * Handle socket delivery policy for any-source 390 * and source-specific multicast. [RFC3678] 391 */ 392 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 393 struct ip_moptions *imo; 394 struct sockaddr_in group; 395 int blocked; 396 397 imo = inp->inp_moptions; 398 if (imo == NULL) 399 continue; 400 bzero(&group, sizeof(struct sockaddr_in)); 401 group.sin_len = sizeof(struct sockaddr_in); 402 group.sin_family = AF_INET; 403 group.sin_addr = ip->ip_dst; 404 405 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 406 (struct sockaddr *)&group, 407 (struct sockaddr *)&udp_in[0]); 408 if (blocked != MCAST_PASS) { 409 if (blocked == MCAST_NOTGMEMBER) 410 IPSTAT_INC(ips_notmember); 411 if (blocked == MCAST_NOTSMEMBER || 412 blocked == MCAST_MUTED) 413 UDPSTAT_INC(udps_filtermcast); 414 continue; 415 } 416 } 417 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 418 if (proto == IPPROTO_UDPLITE) 419 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 420 else 421 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 422 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 423 break; 424 } else 425 appends++; 426 } 427 /* 428 * Don't look for additional matches if this one does 429 * not have either the SO_REUSEPORT or SO_REUSEADDR 430 * socket options set. This heuristic avoids 431 * searching through all pcbs in the common case of a 432 * non-shared port. It assumes that an application 433 * will never clear these options after setting them. 434 */ 435 if ((inp->inp_socket->so_options & 436 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 437 INP_RUNLOCK(inp); 438 break; 439 } 440 } 441 442 if (appends == 0) { 443 /* 444 * No matching pcb found; discard datagram. (No need 445 * to send an ICMP Port Unreachable for a broadcast 446 * or multicast datgram.) 447 */ 448 UDPSTAT_INC(udps_noport); 449 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 450 UDPSTAT_INC(udps_noportmcast); 451 else 452 UDPSTAT_INC(udps_noportbcast); 453 } 454 m_freem(m); 455 456 return (IPPROTO_DONE); 457 } 458 459 static int 460 udp_input(struct mbuf **mp, int *offp, int proto) 461 { 462 struct ip *ip; 463 struct udphdr *uh; 464 struct ifnet *ifp; 465 struct inpcb *inp; 466 uint16_t len, ip_len; 467 struct inpcbinfo *pcbinfo; 468 struct sockaddr_in udp_in[2]; 469 struct mbuf *m; 470 struct m_tag *fwd_tag; 471 int cscov_partial, iphlen, lookupflags; 472 473 m = *mp; 474 iphlen = *offp; 475 ifp = m->m_pkthdr.rcvif; 476 *mp = NULL; 477 UDPSTAT_INC(udps_ipackets); 478 479 /* 480 * Strip IP options, if any; should skip this, make available to 481 * user, and use on returned packets, but we don't yet have a way to 482 * check the checksum with options still present. 483 */ 484 if (iphlen > sizeof (struct ip)) { 485 ip_stripoptions(m); 486 iphlen = sizeof(struct ip); 487 } 488 489 /* 490 * Get IP and UDP header together in first mbuf. 491 */ 492 if (m->m_len < iphlen + sizeof(struct udphdr)) { 493 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 494 UDPSTAT_INC(udps_hdrops); 495 return (IPPROTO_DONE); 496 } 497 } 498 ip = mtod(m, struct ip *); 499 uh = (struct udphdr *)((caddr_t)ip + iphlen); 500 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 501 502 /* 503 * Destination port of 0 is illegal, based on RFC768. 504 */ 505 if (uh->uh_dport == 0) 506 goto badunlocked; 507 508 /* 509 * Construct sockaddr format source address. Stuff source address 510 * and datagram in user buffer. 511 */ 512 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 513 udp_in[0].sin_len = sizeof(struct sockaddr_in); 514 udp_in[0].sin_family = AF_INET; 515 udp_in[0].sin_port = uh->uh_sport; 516 udp_in[0].sin_addr = ip->ip_src; 517 udp_in[1].sin_len = sizeof(struct sockaddr_in); 518 udp_in[1].sin_family = AF_INET; 519 udp_in[1].sin_port = uh->uh_dport; 520 udp_in[1].sin_addr = ip->ip_dst; 521 522 /* 523 * Make mbuf data length reflect UDP length. If not enough data to 524 * reflect UDP length, drop. 525 */ 526 len = ntohs((u_short)uh->uh_ulen); 527 ip_len = ntohs(ip->ip_len) - iphlen; 528 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 529 /* Zero means checksum over the complete packet. */ 530 if (len == 0) 531 len = ip_len; 532 cscov_partial = 0; 533 } 534 if (ip_len != len) { 535 if (len > ip_len || len < sizeof(struct udphdr)) { 536 UDPSTAT_INC(udps_badlen); 537 goto badunlocked; 538 } 539 if (proto == IPPROTO_UDP) 540 m_adj(m, len - ip_len); 541 } 542 543 /* 544 * Checksum extended UDP header and data. 545 */ 546 if (uh->uh_sum) { 547 u_short uh_sum; 548 549 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 550 !cscov_partial) { 551 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 552 uh_sum = m->m_pkthdr.csum_data; 553 else 554 uh_sum = in_pseudo(ip->ip_src.s_addr, 555 ip->ip_dst.s_addr, htonl((u_short)len + 556 m->m_pkthdr.csum_data + proto)); 557 uh_sum ^= 0xffff; 558 } else { 559 char b[offsetof(struct ipovly, ih_src)]; 560 struct ipovly *ipov = (struct ipovly *)ip; 561 562 memcpy(b, ipov, sizeof(b)); 563 bzero(ipov, sizeof(ipov->ih_x1)); 564 ipov->ih_len = (proto == IPPROTO_UDP) ? 565 uh->uh_ulen : htons(ip_len); 566 uh_sum = in_cksum(m, len + sizeof (struct ip)); 567 memcpy(ipov, b, sizeof(b)); 568 } 569 if (uh_sum) { 570 UDPSTAT_INC(udps_badsum); 571 m_freem(m); 572 return (IPPROTO_DONE); 573 } 574 } else { 575 if (proto == IPPROTO_UDP) { 576 UDPSTAT_INC(udps_nosum); 577 } else { 578 /* UDPLite requires a checksum */ 579 /* XXX: What is the right UDPLite MIB counter here? */ 580 m_freem(m); 581 return (IPPROTO_DONE); 582 } 583 } 584 585 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 586 in_ifnet_broadcast(ip->ip_dst, ifp)) 587 return (udp_multi_input(m, proto, udp_in)); 588 589 pcbinfo = udp_get_inpcbinfo(proto); 590 591 /* 592 * Locate pcb for datagram. 593 */ 594 lookupflags = INPLOOKUP_RLOCKPCB | 595 (V_udp_bind_all_fibs ? 0 : INPLOOKUP_FIB); 596 597 /* 598 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 599 */ 600 if ((m->m_flags & M_IP_NEXTHOP) && 601 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 602 struct sockaddr_in *next_hop; 603 604 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 605 606 /* 607 * Transparently forwarded. Pretend to be the destination. 608 * Already got one like this? 609 */ 610 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 611 ip->ip_dst, uh->uh_dport, lookupflags, ifp, m); 612 if (!inp) { 613 /* 614 * It's new. Try to find the ambushing socket. 615 * Because we've rewritten the destination address, 616 * any hardware-generated hash is ignored. 617 */ 618 inp = in_pcblookup(pcbinfo, ip->ip_src, 619 uh->uh_sport, next_hop->sin_addr, 620 next_hop->sin_port ? htons(next_hop->sin_port) : 621 uh->uh_dport, INPLOOKUP_WILDCARD | lookupflags, 622 ifp); 623 } 624 /* Remove the tag from the packet. We don't need it anymore. */ 625 m_tag_delete(m, fwd_tag); 626 m->m_flags &= ~M_IP_NEXTHOP; 627 } else 628 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 629 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 630 lookupflags, ifp, m); 631 if (inp == NULL) { 632 if (V_udp_log_in_vain) { 633 char src[INET_ADDRSTRLEN]; 634 char dst[INET_ADDRSTRLEN]; 635 636 log(LOG_INFO, 637 "Connection attempt to UDP %s:%d from %s:%d\n", 638 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 639 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 640 } 641 if (proto == IPPROTO_UDPLITE) 642 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 643 else 644 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 645 UDPSTAT_INC(udps_noport); 646 if (m->m_flags & (M_BCAST | M_MCAST)) { 647 UDPSTAT_INC(udps_noportbcast); 648 goto badunlocked; 649 } 650 if (V_udp_blackhole && (V_udp_blackhole_local || 651 !in_localip(ip->ip_src))) 652 goto badunlocked; 653 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 654 goto badunlocked; 655 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 656 return (IPPROTO_DONE); 657 } 658 659 /* 660 * Check the minimum TTL for socket. 661 */ 662 INP_RLOCK_ASSERT(inp); 663 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 664 if (proto == IPPROTO_UDPLITE) 665 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 666 else 667 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 668 INP_RUNLOCK(inp); 669 m_freem(m); 670 return (IPPROTO_DONE); 671 } 672 if (cscov_partial) { 673 struct udpcb *up; 674 675 up = intoudpcb(inp); 676 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 677 INP_RUNLOCK(inp); 678 m_freem(m); 679 return (IPPROTO_DONE); 680 } 681 } 682 683 if (proto == IPPROTO_UDPLITE) 684 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 685 else 686 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 687 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 688 INP_RUNLOCK(inp); 689 return (IPPROTO_DONE); 690 691 badunlocked: 692 m_freem(m); 693 return (IPPROTO_DONE); 694 } 695 #endif /* INET */ 696 697 /* 698 * Notify a udp user of an asynchronous error; just wake up so that they can 699 * collect error status. 700 */ 701 struct inpcb * 702 udp_notify(struct inpcb *inp, int errno) 703 { 704 705 INP_WLOCK_ASSERT(inp); 706 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 707 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 708 NH_FREE(inp->inp_route.ro_nh); 709 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 710 } 711 712 inp->inp_socket->so_error = errno; 713 sorwakeup(inp->inp_socket); 714 sowwakeup(inp->inp_socket); 715 return (inp); 716 } 717 718 #ifdef INET 719 static void 720 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) 721 { 722 struct ip *ip = &icmp->icmp_ip; 723 struct udphdr *uh; 724 struct inpcb *inp; 725 726 if (icmp_errmap(icmp) == 0) 727 return; 728 729 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 730 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, 731 uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 732 if (inp != NULL) { 733 INP_WLOCK_ASSERT(inp); 734 if (inp->inp_socket != NULL) 735 udp_notify(inp, icmp_errmap(icmp)); 736 INP_WUNLOCK(inp); 737 } else { 738 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, 739 ip->ip_src, uh->uh_sport, 740 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 741 if (inp != NULL) { 742 struct udpcb *up; 743 udp_tun_icmp_t *func; 744 745 up = intoudpcb(inp); 746 func = up->u_icmp_func; 747 INP_RUNLOCK(inp); 748 if (func != NULL) 749 func(icmp); 750 } 751 } 752 } 753 754 static void 755 udp_ctlinput(struct icmp *icmp) 756 { 757 758 return (udp_common_ctlinput(icmp, &V_udbinfo)); 759 } 760 761 static void 762 udplite_ctlinput(struct icmp *icmp) 763 { 764 765 return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); 766 } 767 #endif /* INET */ 768 769 static int 770 udp_pcblist(SYSCTL_HANDLER_ARGS) 771 { 772 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 773 INPLOOKUP_RLOCKPCB); 774 struct xinpgen xig; 775 struct inpcb *inp; 776 int error; 777 778 if (req->newptr != 0) 779 return (EPERM); 780 781 if (req->oldptr == 0) { 782 int n; 783 784 n = V_udbinfo.ipi_count; 785 n += imax(n / 8, 10); 786 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 787 return (0); 788 } 789 790 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 791 return (error); 792 793 bzero(&xig, sizeof(xig)); 794 xig.xig_len = sizeof xig; 795 xig.xig_count = V_udbinfo.ipi_count; 796 xig.xig_gen = V_udbinfo.ipi_gencnt; 797 xig.xig_sogen = so_gencnt; 798 error = SYSCTL_OUT(req, &xig, sizeof xig); 799 if (error) 800 return (error); 801 802 while ((inp = inp_next(&inpi)) != NULL) { 803 if (inp->inp_gencnt <= xig.xig_gen && 804 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 805 struct xinpcb xi; 806 807 in_pcbtoxinpcb(inp, &xi); 808 error = SYSCTL_OUT(req, &xi, sizeof xi); 809 if (error) { 810 INP_RUNLOCK(inp); 811 break; 812 } 813 } 814 } 815 816 if (!error) { 817 /* 818 * Give the user an updated idea of our state. If the 819 * generation differs from what we told her before, she knows 820 * that something happened while we were processing this 821 * request, and it might be necessary to retry. 822 */ 823 xig.xig_gen = V_udbinfo.ipi_gencnt; 824 xig.xig_sogen = so_gencnt; 825 xig.xig_count = V_udbinfo.ipi_count; 826 error = SYSCTL_OUT(req, &xig, sizeof xig); 827 } 828 829 return (error); 830 } 831 832 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 833 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 834 udp_pcblist, "S,xinpcb", 835 "List of active UDP sockets"); 836 837 #ifdef INET 838 static int 839 udp_getcred(SYSCTL_HANDLER_ARGS) 840 { 841 struct xucred xuc; 842 struct sockaddr_in addrs[2]; 843 struct epoch_tracker et; 844 struct inpcb *inp; 845 int error; 846 847 if (req->newptr == NULL) 848 return (EINVAL); 849 error = priv_check(req->td, PRIV_NETINET_GETCRED); 850 if (error) 851 return (error); 852 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 853 if (error) 854 return (error); 855 NET_EPOCH_ENTER(et); 856 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 857 addrs[0].sin_addr, addrs[0].sin_port, 858 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 859 NET_EPOCH_EXIT(et); 860 if (inp != NULL) { 861 INP_RLOCK_ASSERT(inp); 862 if (inp->inp_socket == NULL) 863 error = ENOENT; 864 if (error == 0) 865 error = cr_canseeinpcb(req->td->td_ucred, inp); 866 if (error == 0) 867 cru2x(inp->inp_cred, &xuc); 868 INP_RUNLOCK(inp); 869 } else 870 error = ENOENT; 871 if (error == 0) 872 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 873 return (error); 874 } 875 876 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 877 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 878 0, 0, udp_getcred, "S,xucred", 879 "Get the xucred of a UDP connection"); 880 #endif /* INET */ 881 882 int 883 udp_ctloutput(struct socket *so, struct sockopt *sopt) 884 { 885 struct inpcb *inp; 886 struct udpcb *up; 887 int isudplite, error, optval; 888 889 error = 0; 890 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 891 inp = sotoinpcb(so); 892 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 893 INP_WLOCK(inp); 894 if (sopt->sopt_level != so->so_proto->pr_protocol) { 895 #ifdef INET6 896 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 897 INP_WUNLOCK(inp); 898 error = ip6_ctloutput(so, sopt); 899 } 900 #endif 901 #if defined(INET) && defined(INET6) 902 else 903 #endif 904 #ifdef INET 905 { 906 INP_WUNLOCK(inp); 907 error = ip_ctloutput(so, sopt); 908 } 909 #endif 910 return (error); 911 } 912 913 switch (sopt->sopt_dir) { 914 case SOPT_SET: 915 switch (sopt->sopt_name) { 916 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 917 #if defined(INET) || defined(INET6) 918 case UDP_ENCAP: 919 #ifdef INET 920 if (INP_SOCKAF(so) == AF_INET) { 921 if (!IPSEC_ENABLED(ipv4)) { 922 INP_WUNLOCK(inp); 923 return (ENOPROTOOPT); 924 } 925 error = UDPENCAP_PCBCTL(ipv4, inp, sopt); 926 break; 927 } 928 #endif /* INET */ 929 #ifdef INET6 930 if (INP_SOCKAF(so) == AF_INET6) { 931 if (!IPSEC_ENABLED(ipv6)) { 932 INP_WUNLOCK(inp); 933 return (ENOPROTOOPT); 934 } 935 error = UDPENCAP_PCBCTL(ipv6, inp, sopt); 936 break; 937 } 938 #endif /* INET6 */ 939 INP_WUNLOCK(inp); 940 return (EINVAL); 941 #endif /* INET || INET6 */ 942 943 #endif /* IPSEC */ 944 case UDPLITE_SEND_CSCOV: 945 case UDPLITE_RECV_CSCOV: 946 if (!isudplite) { 947 INP_WUNLOCK(inp); 948 error = ENOPROTOOPT; 949 break; 950 } 951 INP_WUNLOCK(inp); 952 error = sooptcopyin(sopt, &optval, sizeof(optval), 953 sizeof(optval)); 954 if (error != 0) 955 break; 956 inp = sotoinpcb(so); 957 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 958 INP_WLOCK(inp); 959 up = intoudpcb(inp); 960 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 961 if ((optval != 0 && optval < 8) || (optval > 65535)) { 962 INP_WUNLOCK(inp); 963 error = EINVAL; 964 break; 965 } 966 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 967 up->u_txcslen = optval; 968 else 969 up->u_rxcslen = optval; 970 INP_WUNLOCK(inp); 971 break; 972 default: 973 INP_WUNLOCK(inp); 974 error = ENOPROTOOPT; 975 break; 976 } 977 break; 978 case SOPT_GET: 979 switch (sopt->sopt_name) { 980 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 981 #if defined(INET) || defined(INET6) 982 case UDP_ENCAP: 983 #ifdef INET 984 if (INP_SOCKAF(so) == AF_INET) { 985 if (!IPSEC_ENABLED(ipv4)) { 986 INP_WUNLOCK(inp); 987 return (ENOPROTOOPT); 988 } 989 error = UDPENCAP_PCBCTL(ipv4, inp, sopt); 990 break; 991 } 992 #endif /* INET */ 993 #ifdef INET6 994 if (INP_SOCKAF(so) == AF_INET6) { 995 if (!IPSEC_ENABLED(ipv6)) { 996 INP_WUNLOCK(inp); 997 return (ENOPROTOOPT); 998 } 999 error = UDPENCAP_PCBCTL(ipv6, inp, sopt); 1000 break; 1001 } 1002 #endif /* INET6 */ 1003 INP_WUNLOCK(inp); 1004 return (EINVAL); 1005 #endif /* INET || INET6 */ 1006 1007 #endif /* IPSEC */ 1008 case UDPLITE_SEND_CSCOV: 1009 case UDPLITE_RECV_CSCOV: 1010 if (!isudplite) { 1011 INP_WUNLOCK(inp); 1012 error = ENOPROTOOPT; 1013 break; 1014 } 1015 up = intoudpcb(inp); 1016 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1017 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1018 optval = up->u_txcslen; 1019 else 1020 optval = up->u_rxcslen; 1021 INP_WUNLOCK(inp); 1022 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1023 break; 1024 default: 1025 INP_WUNLOCK(inp); 1026 error = ENOPROTOOPT; 1027 break; 1028 } 1029 break; 1030 } 1031 return (error); 1032 } 1033 1034 #ifdef INET 1035 #ifdef INET6 1036 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1037 static int 1038 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1039 struct inpcb *inp, int flags) 1040 { 1041 struct ifnet *ifp; 1042 struct in6_pktinfo *pktinfo; 1043 struct in_addr ia; 1044 1045 NET_EPOCH_ASSERT(); 1046 1047 if ((flags & PRUS_IPV6) == 0) 1048 return (0); 1049 1050 if (cm->cmsg_level != IPPROTO_IPV6) 1051 return (0); 1052 1053 if (cm->cmsg_type != IPV6_2292PKTINFO && 1054 cm->cmsg_type != IPV6_PKTINFO) 1055 return (0); 1056 1057 if (cm->cmsg_len != 1058 CMSG_LEN(sizeof(struct in6_pktinfo))) 1059 return (EINVAL); 1060 1061 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1062 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1063 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1064 return (EINVAL); 1065 1066 /* Validate the interface index if specified. */ 1067 if (pktinfo->ipi6_ifindex) { 1068 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1069 if (ifp == NULL) 1070 return (ENXIO); 1071 } else 1072 ifp = NULL; 1073 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1074 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1075 if (!in_ifhasaddr(ifp, ia)) 1076 return (EADDRNOTAVAIL); 1077 } 1078 1079 bzero(src, sizeof(*src)); 1080 src->sin_family = AF_INET; 1081 src->sin_len = sizeof(*src); 1082 src->sin_port = inp->inp_lport; 1083 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1084 1085 return (0); 1086 } 1087 #endif /* INET6 */ 1088 1089 int 1090 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1091 struct mbuf *control, struct thread *td) 1092 { 1093 struct inpcb *inp; 1094 struct udpiphdr *ui; 1095 int len, error = 0; 1096 struct in_addr faddr, laddr; 1097 struct cmsghdr *cm; 1098 struct inpcbinfo *pcbinfo; 1099 struct sockaddr_in *sin, src; 1100 struct epoch_tracker et; 1101 int cscov_partial = 0; 1102 int ipflags = 0; 1103 u_short fport, lport; 1104 u_char tos, vflagsav; 1105 uint8_t pr; 1106 uint16_t cscov = 0; 1107 uint32_t flowid = 0; 1108 uint8_t flowtype = M_HASHTYPE_NONE; 1109 bool use_cached_route; 1110 1111 inp = sotoinpcb(so); 1112 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1113 1114 if (addr != NULL) { 1115 if (addr->sa_family != AF_INET) 1116 error = EAFNOSUPPORT; 1117 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1118 error = EINVAL; 1119 if (__predict_false(error != 0)) { 1120 m_freem(control); 1121 m_freem(m); 1122 return (error); 1123 } 1124 } 1125 1126 len = m->m_pkthdr.len; 1127 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1128 if (control) 1129 m_freem(control); 1130 m_freem(m); 1131 return (EMSGSIZE); 1132 } 1133 1134 src.sin_family = 0; 1135 sin = (struct sockaddr_in *)addr; 1136 1137 /* 1138 * udp_send() may need to bind the current inpcb. As such, we don't 1139 * know up front whether we will need the pcbinfo lock or not. Do any 1140 * work to decide what is needed up front before acquiring any locks. 1141 * 1142 * We will need network epoch in either case, to safely lookup into 1143 * pcb hash. 1144 */ 1145 use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0); 1146 if (use_cached_route || (flags & PRUS_IPV6) != 0) 1147 INP_WLOCK(inp); 1148 else 1149 INP_RLOCK(inp); 1150 NET_EPOCH_ENTER(et); 1151 tos = inp->inp_ip_tos; 1152 if (control != NULL) { 1153 /* 1154 * XXX: Currently, we assume all the optional information is 1155 * stored in a single mbuf. 1156 */ 1157 if (control->m_next) { 1158 m_freem(control); 1159 error = EINVAL; 1160 goto release; 1161 } 1162 for (; control->m_len > 0; 1163 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1164 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1165 cm = mtod(control, struct cmsghdr *); 1166 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1167 || cm->cmsg_len > control->m_len) { 1168 error = EINVAL; 1169 break; 1170 } 1171 #ifdef INET6 1172 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1173 if (error != 0) 1174 break; 1175 #endif 1176 if (cm->cmsg_level != IPPROTO_IP) 1177 continue; 1178 1179 switch (cm->cmsg_type) { 1180 case IP_SENDSRCADDR: 1181 if (cm->cmsg_len != 1182 CMSG_LEN(sizeof(struct in_addr))) { 1183 error = EINVAL; 1184 break; 1185 } 1186 bzero(&src, sizeof(src)); 1187 src.sin_family = AF_INET; 1188 src.sin_len = sizeof(src); 1189 src.sin_port = inp->inp_lport; 1190 src.sin_addr = 1191 *(struct in_addr *)CMSG_DATA(cm); 1192 break; 1193 1194 case IP_TOS: 1195 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1196 error = EINVAL; 1197 break; 1198 } 1199 tos = *(u_char *)CMSG_DATA(cm); 1200 break; 1201 1202 case IP_FLOWID: 1203 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1204 error = EINVAL; 1205 break; 1206 } 1207 flowid = *(uint32_t *) CMSG_DATA(cm); 1208 break; 1209 1210 case IP_FLOWTYPE: 1211 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1212 error = EINVAL; 1213 break; 1214 } 1215 flowtype = *(uint32_t *) CMSG_DATA(cm); 1216 break; 1217 1218 #ifdef RSS 1219 case IP_RSSBUCKETID: 1220 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1221 error = EINVAL; 1222 break; 1223 } 1224 /* This is just a placeholder for now */ 1225 break; 1226 #endif /* RSS */ 1227 default: 1228 error = ENOPROTOOPT; 1229 break; 1230 } 1231 if (error) 1232 break; 1233 } 1234 m_freem(control); 1235 control = NULL; 1236 } 1237 if (error) 1238 goto release; 1239 1240 pr = inp->inp_socket->so_proto->pr_protocol; 1241 pcbinfo = udp_get_inpcbinfo(pr); 1242 1243 /* 1244 * If the IP_SENDSRCADDR control message was specified, override the 1245 * source address for this datagram. Its use is invalidated if the 1246 * address thus specified is incomplete or clobbers other inpcbs. 1247 */ 1248 laddr = inp->inp_laddr; 1249 lport = inp->inp_lport; 1250 if (src.sin_family == AF_INET) { 1251 if ((lport == 0) || 1252 (laddr.s_addr == INADDR_ANY && 1253 src.sin_addr.s_addr == INADDR_ANY)) { 1254 error = EINVAL; 1255 goto release; 1256 } 1257 if ((flags & PRUS_IPV6) != 0) { 1258 vflagsav = inp->inp_vflag; 1259 inp->inp_vflag |= INP_IPV4; 1260 inp->inp_vflag &= ~INP_IPV6; 1261 } 1262 INP_HASH_WLOCK(pcbinfo); 1263 error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport, 1264 V_udp_bind_all_fibs ? 0 : INPBIND_FIB, td->td_ucred); 1265 INP_HASH_WUNLOCK(pcbinfo); 1266 if ((flags & PRUS_IPV6) != 0) 1267 inp->inp_vflag = vflagsav; 1268 if (error) 1269 goto release; 1270 } 1271 1272 /* 1273 * If a UDP socket has been connected, then a local address/port will 1274 * have been selected and bound. 1275 * 1276 * If a UDP socket has not been connected to, then an explicit 1277 * destination address must be used, in which case a local 1278 * address/port may not have been selected and bound. 1279 */ 1280 if (sin != NULL) { 1281 INP_LOCK_ASSERT(inp); 1282 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1283 error = EISCONN; 1284 goto release; 1285 } 1286 1287 /* 1288 * Jail may rewrite the destination address, so let it do 1289 * that before we use it. 1290 */ 1291 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1292 if (error) 1293 goto release; 1294 /* 1295 * sendto(2) on unconnected UDP socket results in implicit 1296 * binding to INADDR_ANY and anonymous port. This has two 1297 * side effects: 1298 * 1) after first sendto(2) the socket will receive datagrams 1299 * destined to the selected port. 1300 * 2) subsequent sendto(2) calls will use the same source port. 1301 */ 1302 if (inp->inp_lport == 0) { 1303 struct sockaddr_in wild = { 1304 .sin_family = AF_INET, 1305 .sin_len = sizeof(struct sockaddr_in), 1306 }; 1307 1308 INP_HASH_WLOCK(pcbinfo); 1309 error = in_pcbbind(inp, &wild, V_udp_bind_all_fibs ? 1310 0 : INPBIND_FIB, td->td_ucred); 1311 INP_HASH_WUNLOCK(pcbinfo); 1312 if (error) 1313 goto release; 1314 lport = inp->inp_lport; 1315 laddr = inp->inp_laddr; 1316 } 1317 if (laddr.s_addr == INADDR_ANY) { 1318 error = in_pcbladdr(inp, &sin->sin_addr, &laddr, 1319 td->td_ucred); 1320 if (error) 1321 goto release; 1322 } 1323 faddr = sin->sin_addr; 1324 fport = sin->sin_port; 1325 } else { 1326 INP_LOCK_ASSERT(inp); 1327 faddr = inp->inp_faddr; 1328 fport = inp->inp_fport; 1329 if (faddr.s_addr == INADDR_ANY) { 1330 error = ENOTCONN; 1331 goto release; 1332 } 1333 } 1334 1335 /* 1336 * Calculate data length and get a mbuf for UDP, IP, and possible 1337 * link-layer headers. Immediate slide the data pointer back forward 1338 * since we won't use that space at this layer. 1339 */ 1340 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1341 if (m == NULL) { 1342 error = ENOBUFS; 1343 goto release; 1344 } 1345 m->m_data += max_linkhdr; 1346 m->m_len -= max_linkhdr; 1347 m->m_pkthdr.len -= max_linkhdr; 1348 1349 /* 1350 * Fill in mbuf with extended UDP header and addresses and length put 1351 * into network format. 1352 */ 1353 ui = mtod(m, struct udpiphdr *); 1354 /* 1355 * Filling only those fields of udpiphdr that participate in the 1356 * checksum calculation. The rest must be zeroed and will be filled 1357 * later. 1358 */ 1359 bzero(ui->ui_x1, sizeof(ui->ui_x1)); 1360 ui->ui_pr = pr; 1361 ui->ui_src = laddr; 1362 ui->ui_dst = faddr; 1363 ui->ui_sport = lport; 1364 ui->ui_dport = fport; 1365 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1366 if (pr == IPPROTO_UDPLITE) { 1367 struct udpcb *up; 1368 uint16_t plen; 1369 1370 up = intoudpcb(inp); 1371 cscov = up->u_txcslen; 1372 plen = (u_short)len + sizeof(struct udphdr); 1373 if (cscov >= plen) 1374 cscov = 0; 1375 ui->ui_len = htons(plen); 1376 ui->ui_ulen = htons(cscov); 1377 /* 1378 * For UDP-Lite, checksum coverage length of zero means 1379 * the entire UDPLite packet is covered by the checksum. 1380 */ 1381 cscov_partial = (cscov == 0) ? 0 : 1; 1382 } 1383 1384 if (inp->inp_socket->so_options & SO_DONTROUTE) 1385 ipflags |= IP_ROUTETOIF; 1386 if (inp->inp_socket->so_options & SO_BROADCAST) 1387 ipflags |= IP_ALLOWBROADCAST; 1388 if (inp->inp_flags & INP_ONESBCAST) 1389 ipflags |= IP_SENDONES; 1390 1391 #ifdef MAC 1392 mac_inpcb_create_mbuf(inp, m); 1393 #endif 1394 1395 /* 1396 * Set up checksum and output datagram. 1397 */ 1398 ui->ui_sum = 0; 1399 if (pr == IPPROTO_UDPLITE) { 1400 if (inp->inp_flags & INP_ONESBCAST) 1401 faddr.s_addr = INADDR_BROADCAST; 1402 if (cscov_partial) { 1403 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1404 ui->ui_sum = 0xffff; 1405 } else { 1406 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1407 ui->ui_sum = 0xffff; 1408 } 1409 } else if (V_udp_cksum) { 1410 if (inp->inp_flags & INP_ONESBCAST) 1411 faddr.s_addr = INADDR_BROADCAST; 1412 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1413 htons((u_short)len + sizeof(struct udphdr) + pr)); 1414 m->m_pkthdr.csum_flags = CSUM_UDP; 1415 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1416 } 1417 /* 1418 * After finishing the checksum computation, fill the remaining fields 1419 * of udpiphdr. 1420 */ 1421 ((struct ip *)ui)->ip_v = IPVERSION; 1422 ((struct ip *)ui)->ip_tos = tos; 1423 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1424 if (inp->inp_flags & INP_DONTFRAG) 1425 ((struct ip *)ui)->ip_off |= htons(IP_DF); 1426 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; 1427 UDPSTAT_INC(udps_opackets); 1428 1429 /* 1430 * Setup flowid / RSS information for outbound socket. 1431 * 1432 * Once the UDP code decides to set a flowid some other way, 1433 * this allows the flowid to be overridden by userland. 1434 */ 1435 if (flowtype != M_HASHTYPE_NONE) { 1436 m->m_pkthdr.flowid = flowid; 1437 M_HASHTYPE_SET(m, flowtype); 1438 } 1439 #if defined(ROUTE_MPATH) || defined(RSS) 1440 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1441 uint32_t hash_val, hash_type; 1442 1443 hash_val = fib4_calc_packet_hash(laddr, faddr, 1444 lport, fport, pr, &hash_type); 1445 m->m_pkthdr.flowid = hash_val; 1446 M_HASHTYPE_SET(m, hash_type); 1447 } 1448 1449 /* 1450 * Don't override with the inp cached flowid value. 1451 * 1452 * Depending upon the kind of send being done, the inp 1453 * flowid/flowtype values may actually not be appropriate 1454 * for this particular socket send. 1455 * 1456 * We should either leave the flowid at zero (which is what is 1457 * currently done) or set it to some software generated 1458 * hash value based on the packet contents. 1459 */ 1460 ipflags |= IP_NODEFAULTFLOWID; 1461 #endif /* RSS */ 1462 1463 if (pr == IPPROTO_UDPLITE) 1464 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1465 else 1466 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1467 error = ip_output(m, inp->inp_options, 1468 use_cached_route ? &inp->inp_route : NULL, ipflags, 1469 inp->inp_moptions, inp); 1470 INP_UNLOCK(inp); 1471 NET_EPOCH_EXIT(et); 1472 return (error); 1473 1474 release: 1475 INP_UNLOCK(inp); 1476 NET_EPOCH_EXIT(et); 1477 m_freem(m); 1478 return (error); 1479 } 1480 1481 void 1482 udp_abort(struct socket *so) 1483 { 1484 struct inpcb *inp; 1485 struct inpcbinfo *pcbinfo; 1486 1487 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1488 inp = sotoinpcb(so); 1489 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1490 INP_WLOCK(inp); 1491 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1492 INP_HASH_WLOCK(pcbinfo); 1493 in_pcbdisconnect(inp); 1494 INP_HASH_WUNLOCK(pcbinfo); 1495 soisdisconnected(so); 1496 } 1497 INP_WUNLOCK(inp); 1498 } 1499 1500 static int 1501 udp_attach(struct socket *so, int proto, struct thread *td) 1502 { 1503 static uint32_t udp_flowid; 1504 struct inpcbinfo *pcbinfo; 1505 struct inpcb *inp; 1506 struct udpcb *up; 1507 int error; 1508 1509 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1510 inp = sotoinpcb(so); 1511 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1512 error = soreserve(so, udp_sendspace, udp_recvspace); 1513 if (error) 1514 return (error); 1515 error = in_pcballoc(so, pcbinfo); 1516 if (error) 1517 return (error); 1518 1519 inp = sotoinpcb(so); 1520 inp->inp_ip_ttl = V_ip_defttl; 1521 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1522 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1523 up = intoudpcb(inp); 1524 bzero(&up->u_start_zero, u_zero_size); 1525 INP_WUNLOCK(inp); 1526 1527 return (0); 1528 } 1529 #endif /* INET */ 1530 1531 int 1532 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1533 { 1534 struct inpcb *inp; 1535 struct udpcb *up; 1536 1537 KASSERT(so->so_type == SOCK_DGRAM, 1538 ("udp_set_kernel_tunneling: !dgram")); 1539 inp = sotoinpcb(so); 1540 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1541 INP_WLOCK(inp); 1542 up = intoudpcb(inp); 1543 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1544 (up->u_icmp_func != NULL))) { 1545 INP_WUNLOCK(inp); 1546 return (EBUSY); 1547 } 1548 up->u_tun_func = f; 1549 up->u_icmp_func = i; 1550 up->u_tun_ctx = ctx; 1551 INP_WUNLOCK(inp); 1552 return (0); 1553 } 1554 1555 #ifdef INET 1556 static int 1557 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1558 { 1559 struct inpcb *inp; 1560 struct inpcbinfo *pcbinfo; 1561 struct sockaddr_in *sinp; 1562 int error; 1563 1564 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1565 inp = sotoinpcb(so); 1566 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1567 1568 sinp = (struct sockaddr_in *)nam; 1569 if (nam->sa_family != AF_INET) { 1570 /* 1571 * Preserve compatibility with old programs. 1572 */ 1573 if (nam->sa_family != AF_UNSPEC || 1574 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1575 sinp->sin_addr.s_addr != INADDR_ANY) 1576 return (EAFNOSUPPORT); 1577 nam->sa_family = AF_INET; 1578 } 1579 if (nam->sa_len != sizeof(struct sockaddr_in)) 1580 return (EINVAL); 1581 1582 INP_WLOCK(inp); 1583 INP_HASH_WLOCK(pcbinfo); 1584 error = in_pcbbind(inp, sinp, V_udp_bind_all_fibs ? 0 : INPBIND_FIB, 1585 td->td_ucred); 1586 INP_HASH_WUNLOCK(pcbinfo); 1587 INP_WUNLOCK(inp); 1588 return (error); 1589 } 1590 1591 static void 1592 udp_close(struct socket *so) 1593 { 1594 struct inpcb *inp; 1595 struct inpcbinfo *pcbinfo; 1596 1597 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1598 inp = sotoinpcb(so); 1599 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1600 INP_WLOCK(inp); 1601 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1602 INP_HASH_WLOCK(pcbinfo); 1603 in_pcbdisconnect(inp); 1604 INP_HASH_WUNLOCK(pcbinfo); 1605 soisdisconnected(so); 1606 } 1607 INP_WUNLOCK(inp); 1608 } 1609 1610 static int 1611 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1612 { 1613 struct epoch_tracker et; 1614 struct inpcb *inp; 1615 struct inpcbinfo *pcbinfo; 1616 struct sockaddr_in *sin; 1617 int error; 1618 1619 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1620 inp = sotoinpcb(so); 1621 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1622 1623 sin = (struct sockaddr_in *)nam; 1624 if (sin->sin_family != AF_INET) 1625 return (EAFNOSUPPORT); 1626 if (sin->sin_len != sizeof(*sin)) 1627 return (EINVAL); 1628 1629 INP_WLOCK(inp); 1630 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1631 INP_WUNLOCK(inp); 1632 return (EISCONN); 1633 } 1634 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1635 if (error != 0) { 1636 INP_WUNLOCK(inp); 1637 return (error); 1638 } 1639 NET_EPOCH_ENTER(et); 1640 INP_HASH_WLOCK(pcbinfo); 1641 error = in_pcbconnect(inp, sin, td->td_ucred); 1642 INP_HASH_WUNLOCK(pcbinfo); 1643 NET_EPOCH_EXIT(et); 1644 if (error == 0) 1645 soisconnected(so); 1646 INP_WUNLOCK(inp); 1647 return (error); 1648 } 1649 1650 static void 1651 udp_detach(struct socket *so) 1652 { 1653 struct inpcb *inp; 1654 1655 inp = sotoinpcb(so); 1656 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1657 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1658 ("udp_detach: not disconnected")); 1659 INP_WLOCK(inp); 1660 in_pcbfree(inp); 1661 } 1662 1663 int 1664 udp_disconnect(struct socket *so) 1665 { 1666 struct inpcb *inp; 1667 struct inpcbinfo *pcbinfo; 1668 1669 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1670 inp = sotoinpcb(so); 1671 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1672 INP_WLOCK(inp); 1673 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1674 INP_WUNLOCK(inp); 1675 return (ENOTCONN); 1676 } 1677 INP_HASH_WLOCK(pcbinfo); 1678 in_pcbdisconnect(inp); 1679 INP_HASH_WUNLOCK(pcbinfo); 1680 SOCK_LOCK(so); 1681 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1682 SOCK_UNLOCK(so); 1683 INP_WUNLOCK(inp); 1684 return (0); 1685 } 1686 #endif /* INET */ 1687 1688 int 1689 udp_shutdown(struct socket *so, enum shutdown_how how) 1690 { 1691 int error; 1692 1693 SOCK_LOCK(so); 1694 if (!(so->so_state & SS_ISCONNECTED)) 1695 /* 1696 * POSIX mandates us to just return ENOTCONN when shutdown(2) is 1697 * invoked on a datagram sockets, however historically we would 1698 * actually tear socket down. This is known to be leveraged by 1699 * some applications to unblock process waiting in recv(2) by 1700 * other process that it shares that socket with. Try to meet 1701 * both backward-compatibility and POSIX requirements by forcing 1702 * ENOTCONN but still flushing buffers and performing wakeup(9). 1703 * 1704 * XXXGL: it remains unknown what applications expect this 1705 * behavior and is this isolated to unix/dgram or inet/dgram or 1706 * both. See: D10351, D3039. 1707 */ 1708 error = ENOTCONN; 1709 else 1710 error = 0; 1711 SOCK_UNLOCK(so); 1712 1713 switch (how) { 1714 case SHUT_RD: 1715 sorflush(so); 1716 break; 1717 case SHUT_RDWR: 1718 sorflush(so); 1719 /* FALLTHROUGH */ 1720 case SHUT_WR: 1721 socantsendmore(so); 1722 } 1723 1724 return (error); 1725 } 1726 1727 #ifdef INET 1728 #define UDP_PROTOSW \ 1729 .pr_type = SOCK_DGRAM, \ 1730 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ 1731 .pr_ctloutput = udp_ctloutput, \ 1732 .pr_abort = udp_abort, \ 1733 .pr_attach = udp_attach, \ 1734 .pr_bind = udp_bind, \ 1735 .pr_connect = udp_connect, \ 1736 .pr_control = in_control, \ 1737 .pr_detach = udp_detach, \ 1738 .pr_disconnect = udp_disconnect, \ 1739 .pr_peeraddr = in_getpeeraddr, \ 1740 .pr_send = udp_send, \ 1741 .pr_soreceive = soreceive_dgram, \ 1742 .pr_sosend = sosend_dgram, \ 1743 .pr_shutdown = udp_shutdown, \ 1744 .pr_sockaddr = in_getsockaddr, \ 1745 .pr_sosetlabel = in_pcbsosetlabel, \ 1746 .pr_close = udp_close 1747 1748 struct protosw udp_protosw = { 1749 .pr_protocol = IPPROTO_UDP, 1750 UDP_PROTOSW 1751 }; 1752 1753 struct protosw udplite_protosw = { 1754 .pr_protocol = IPPROTO_UDPLITE, 1755 UDP_PROTOSW 1756 }; 1757 1758 static void 1759 udp_init(void *arg __unused) 1760 { 1761 1762 IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); 1763 IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); 1764 } 1765 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 1766 #endif /* INET */ 1767