1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2008 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * Copyright (c) 2014 Kevin Lo 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Robert N. M. Watson under 10 * contract to Juniper Networks, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ipfw.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ipsec.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/domain.h> 50 #include <sys/eventhandler.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/sdt.h> 60 #include <sys/signalvar.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sx.h> 64 #include <sys/sysctl.h> 65 #include <sys/syslog.h> 66 #include <sys/systm.h> 67 68 #include <vm/uma.h> 69 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/route.h> 73 #include <net/rss_config.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip.h> 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #endif 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/ip_options.h> 88 #ifdef INET6 89 #include <netinet6/ip6_var.h> 90 #endif 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 #include <netinet/udplite.h> 94 #include <netinet/in_rss.h> 95 96 #ifdef IPSEC 97 #include <netipsec/ipsec.h> 98 #include <netipsec/esp.h> 99 #endif 100 101 #include <machine/in_cksum.h> 102 103 #include <security/mac/mac_framework.h> 104 105 /* 106 * UDP and UDP-Lite protocols implementation. 107 * Per RFC 768, August, 1980. 108 * Per RFC 3828, July, 2004. 109 */ 110 111 /* 112 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 113 * removes the only data integrity mechanism for packets and malformed 114 * packets that would otherwise be discarded due to bad checksums, and may 115 * cause problems (especially for NFS data blocks). 116 */ 117 VNET_DEFINE(int, udp_cksum) = 1; 118 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 119 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 120 121 int udp_log_in_vain = 0; 122 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 123 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 124 125 VNET_DEFINE(int, udp_blackhole) = 0; 126 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 127 &VNET_NAME(udp_blackhole), 0, 128 "Do not send port unreachables for refused connects"); 129 130 u_long udp_sendspace = 9216; /* really max datagram size */ 131 /* 40 1K datagrams */ 132 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 133 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 134 135 u_long udp_recvspace = 40 * (1024 + 136 #ifdef INET6 137 sizeof(struct sockaddr_in6) 138 #else 139 sizeof(struct sockaddr_in) 140 #endif 141 ); 142 143 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 144 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 145 146 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 147 VNET_DEFINE(struct inpcbinfo, udbinfo); 148 VNET_DEFINE(struct inpcbhead, ulitecb); 149 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 150 static VNET_DEFINE(uma_zone_t, udpcb_zone); 151 #define V_udpcb_zone VNET(udpcb_zone) 152 153 #ifndef UDBHASHSIZE 154 #define UDBHASHSIZE 128 155 #endif 156 157 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 158 VNET_PCPUSTAT_SYSINIT(udpstat); 159 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 160 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 161 162 #ifdef VIMAGE 163 VNET_PCPUSTAT_SYSUNINIT(udpstat); 164 #endif /* VIMAGE */ 165 #ifdef INET 166 static void udp_detach(struct socket *so); 167 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 168 struct mbuf *, struct thread *); 169 #endif 170 171 #ifdef IPSEC 172 #ifdef IPSEC_NAT_T 173 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP) 174 #ifdef INET 175 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int); 176 #endif 177 #endif /* IPSEC_NAT_T */ 178 #endif /* IPSEC */ 179 180 static void 181 udp_zone_change(void *tag) 182 { 183 184 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 185 uma_zone_set_max(V_udpcb_zone, maxsockets); 186 } 187 188 static int 189 udp_inpcb_init(void *mem, int size, int flags) 190 { 191 struct inpcb *inp; 192 193 inp = mem; 194 INP_LOCK_INIT(inp, "inp", "udpinp"); 195 return (0); 196 } 197 198 static int 199 udplite_inpcb_init(void *mem, int size, int flags) 200 { 201 struct inpcb *inp; 202 203 inp = mem; 204 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 205 return (0); 206 } 207 208 void 209 udp_init(void) 210 { 211 212 /* 213 * For now default to 2-tuple UDP hashing - until the fragment 214 * reassembly code can also update the flowid. 215 * 216 * Once we can calculate the flowid that way and re-establish 217 * a 4-tuple, flip this to 4-tuple. 218 */ 219 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 220 "udp_inpcb", udp_inpcb_init, NULL, 0, 221 IPI_HASHFIELDS_2TUPLE); 222 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 223 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 224 uma_zone_set_max(V_udpcb_zone, maxsockets); 225 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 226 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 227 EVENTHANDLER_PRI_ANY); 228 } 229 230 void 231 udplite_init(void) 232 { 233 234 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 235 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL, 236 0, IPI_HASHFIELDS_2TUPLE); 237 } 238 239 /* 240 * Kernel module interface for updating udpstat. The argument is an index 241 * into udpstat treated as an array of u_long. While this encodes the 242 * general layout of udpstat into the caller, it doesn't encode its location, 243 * so that future changes to add, for example, per-CPU stats support won't 244 * cause binary compatibility problems for kernel modules. 245 */ 246 void 247 kmod_udpstat_inc(int statnum) 248 { 249 250 counter_u64_add(VNET(udpstat)[statnum], 1); 251 } 252 253 int 254 udp_newudpcb(struct inpcb *inp) 255 { 256 struct udpcb *up; 257 258 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 259 if (up == NULL) 260 return (ENOBUFS); 261 inp->inp_ppcb = up; 262 return (0); 263 } 264 265 void 266 udp_discardcb(struct udpcb *up) 267 { 268 269 uma_zfree(V_udpcb_zone, up); 270 } 271 272 #ifdef VIMAGE 273 void 274 udp_destroy(void) 275 { 276 277 in_pcbinfo_destroy(&V_udbinfo); 278 uma_zdestroy(V_udpcb_zone); 279 } 280 281 void 282 udplite_destroy(void) 283 { 284 285 in_pcbinfo_destroy(&V_ulitecbinfo); 286 } 287 #endif 288 289 #ifdef INET 290 /* 291 * Subroutine of udp_input(), which appends the provided mbuf chain to the 292 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 293 * contains the source address. If the socket ends up being an IPv6 socket, 294 * udp_append() will convert to a sockaddr_in6 before passing the address 295 * into the socket code. 296 * 297 * In the normal case udp_append() will return 0, indicating that you 298 * must unlock the inp. However if a tunneling protocol is in place we increment 299 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 300 * then decrement the reference count. If the inp_rele returns 1, indicating the 301 * inp is gone, we return that to the caller to tell them *not* to unlock 302 * the inp. In the case of multi-cast this will cause the distribution 303 * to stop (though most tunneling protocols known currently do *not* use 304 * multicast). 305 */ 306 static int 307 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 308 struct sockaddr_in *udp_in) 309 { 310 struct sockaddr *append_sa; 311 struct socket *so; 312 struct mbuf *opts = 0; 313 #ifdef INET6 314 struct sockaddr_in6 udp_in6; 315 #endif 316 struct udpcb *up; 317 318 INP_LOCK_ASSERT(inp); 319 320 /* 321 * Engage the tunneling protocol. 322 */ 323 up = intoudpcb(inp); 324 if (up->u_tun_func != NULL) { 325 in_pcbref(inp); 326 INP_RUNLOCK(inp); 327 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in, 328 up->u_tun_ctx); 329 INP_RLOCK(inp); 330 return (in_pcbrele_rlocked(inp)); 331 } 332 333 off += sizeof(struct udphdr); 334 335 #ifdef IPSEC 336 /* Check AH/ESP integrity. */ 337 if (ipsec4_in_reject(n, inp)) { 338 m_freem(n); 339 return (0); 340 } 341 #ifdef IPSEC_NAT_T 342 up = intoudpcb(inp); 343 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 344 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */ 345 n = udp4_espdecap(inp, n, off); 346 if (n == NULL) /* Consumed. */ 347 return (0); 348 } 349 #endif /* IPSEC_NAT_T */ 350 #endif /* IPSEC */ 351 #ifdef MAC 352 if (mac_inpcb_check_deliver(inp, n) != 0) { 353 m_freem(n); 354 return (0); 355 } 356 #endif /* MAC */ 357 if (inp->inp_flags & INP_CONTROLOPTS || 358 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 359 #ifdef INET6 360 if (inp->inp_vflag & INP_IPV6) 361 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 362 else 363 #endif /* INET6 */ 364 ip_savecontrol(inp, &opts, ip, n); 365 } 366 #ifdef INET6 367 if (inp->inp_vflag & INP_IPV6) { 368 bzero(&udp_in6, sizeof(udp_in6)); 369 udp_in6.sin6_len = sizeof(udp_in6); 370 udp_in6.sin6_family = AF_INET6; 371 in6_sin_2_v4mapsin6(udp_in, &udp_in6); 372 append_sa = (struct sockaddr *)&udp_in6; 373 } else 374 #endif /* INET6 */ 375 append_sa = (struct sockaddr *)udp_in; 376 m_adj(n, off); 377 378 so = inp->inp_socket; 379 SOCKBUF_LOCK(&so->so_rcv); 380 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 381 SOCKBUF_UNLOCK(&so->so_rcv); 382 m_freem(n); 383 if (opts) 384 m_freem(opts); 385 UDPSTAT_INC(udps_fullsock); 386 } else 387 sorwakeup_locked(so); 388 return (0); 389 } 390 391 int 392 udp_input(struct mbuf **mp, int *offp, int proto) 393 { 394 struct ip *ip; 395 struct udphdr *uh; 396 struct ifnet *ifp; 397 struct inpcb *inp; 398 uint16_t len, ip_len; 399 struct inpcbinfo *pcbinfo; 400 struct ip save_ip; 401 struct sockaddr_in udp_in; 402 struct mbuf *m; 403 struct m_tag *fwd_tag; 404 int cscov_partial, iphlen; 405 406 m = *mp; 407 iphlen = *offp; 408 ifp = m->m_pkthdr.rcvif; 409 *mp = NULL; 410 UDPSTAT_INC(udps_ipackets); 411 412 /* 413 * Strip IP options, if any; should skip this, make available to 414 * user, and use on returned packets, but we don't yet have a way to 415 * check the checksum with options still present. 416 */ 417 if (iphlen > sizeof (struct ip)) { 418 ip_stripoptions(m); 419 iphlen = sizeof(struct ip); 420 } 421 422 /* 423 * Get IP and UDP header together in first mbuf. 424 */ 425 ip = mtod(m, struct ip *); 426 if (m->m_len < iphlen + sizeof(struct udphdr)) { 427 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 428 UDPSTAT_INC(udps_hdrops); 429 return (IPPROTO_DONE); 430 } 431 ip = mtod(m, struct ip *); 432 } 433 uh = (struct udphdr *)((caddr_t)ip + iphlen); 434 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 435 436 /* 437 * Destination port of 0 is illegal, based on RFC768. 438 */ 439 if (uh->uh_dport == 0) 440 goto badunlocked; 441 442 /* 443 * Construct sockaddr format source address. Stuff source address 444 * and datagram in user buffer. 445 */ 446 bzero(&udp_in, sizeof(udp_in)); 447 udp_in.sin_len = sizeof(udp_in); 448 udp_in.sin_family = AF_INET; 449 udp_in.sin_port = uh->uh_sport; 450 udp_in.sin_addr = ip->ip_src; 451 452 /* 453 * Make mbuf data length reflect UDP length. If not enough data to 454 * reflect UDP length, drop. 455 */ 456 len = ntohs((u_short)uh->uh_ulen); 457 ip_len = ntohs(ip->ip_len) - iphlen; 458 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 459 /* Zero means checksum over the complete packet. */ 460 if (len == 0) 461 len = ip_len; 462 cscov_partial = 0; 463 } 464 if (ip_len != len) { 465 if (len > ip_len || len < sizeof(struct udphdr)) { 466 UDPSTAT_INC(udps_badlen); 467 goto badunlocked; 468 } 469 if (proto == IPPROTO_UDP) 470 m_adj(m, len - ip_len); 471 } 472 473 /* 474 * Save a copy of the IP header in case we want restore it for 475 * sending an ICMP error message in response. 476 */ 477 if (!V_udp_blackhole) 478 save_ip = *ip; 479 else 480 memset(&save_ip, 0, sizeof(save_ip)); 481 482 /* 483 * Checksum extended UDP header and data. 484 */ 485 if (uh->uh_sum) { 486 u_short uh_sum; 487 488 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 489 !cscov_partial) { 490 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 491 uh_sum = m->m_pkthdr.csum_data; 492 else 493 uh_sum = in_pseudo(ip->ip_src.s_addr, 494 ip->ip_dst.s_addr, htonl((u_short)len + 495 m->m_pkthdr.csum_data + proto)); 496 uh_sum ^= 0xffff; 497 } else { 498 char b[9]; 499 500 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 501 bzero(((struct ipovly *)ip)->ih_x1, 9); 502 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 503 uh->uh_ulen : htons(ip_len); 504 uh_sum = in_cksum(m, len + sizeof (struct ip)); 505 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 506 } 507 if (uh_sum) { 508 UDPSTAT_INC(udps_badsum); 509 m_freem(m); 510 return (IPPROTO_DONE); 511 } 512 } else { 513 if (proto == IPPROTO_UDP) { 514 UDPSTAT_INC(udps_nosum); 515 } else { 516 /* UDPLite requires a checksum */ 517 /* XXX: What is the right UDPLite MIB counter here? */ 518 m_freem(m); 519 return (IPPROTO_DONE); 520 } 521 } 522 523 pcbinfo = get_inpcbinfo(proto); 524 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 525 in_broadcast(ip->ip_dst, ifp)) { 526 struct inpcb *last; 527 struct inpcbhead *pcblist; 528 struct ip_moptions *imo; 529 530 INP_INFO_RLOCK(pcbinfo); 531 pcblist = get_pcblist(proto); 532 last = NULL; 533 LIST_FOREACH(inp, pcblist, inp_list) { 534 if (inp->inp_lport != uh->uh_dport) 535 continue; 536 #ifdef INET6 537 if ((inp->inp_vflag & INP_IPV4) == 0) 538 continue; 539 #endif 540 if (inp->inp_laddr.s_addr != INADDR_ANY && 541 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 542 continue; 543 if (inp->inp_faddr.s_addr != INADDR_ANY && 544 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 545 continue; 546 if (inp->inp_fport != 0 && 547 inp->inp_fport != uh->uh_sport) 548 continue; 549 550 INP_RLOCK(inp); 551 552 /* 553 * XXXRW: Because we weren't holding either the inpcb 554 * or the hash lock when we checked for a match 555 * before, we should probably recheck now that the 556 * inpcb lock is held. 557 */ 558 559 /* 560 * Handle socket delivery policy for any-source 561 * and source-specific multicast. [RFC3678] 562 */ 563 imo = inp->inp_moptions; 564 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 565 struct sockaddr_in group; 566 int blocked; 567 if (imo == NULL) { 568 INP_RUNLOCK(inp); 569 continue; 570 } 571 bzero(&group, sizeof(struct sockaddr_in)); 572 group.sin_len = sizeof(struct sockaddr_in); 573 group.sin_family = AF_INET; 574 group.sin_addr = ip->ip_dst; 575 576 blocked = imo_multi_filter(imo, ifp, 577 (struct sockaddr *)&group, 578 (struct sockaddr *)&udp_in); 579 if (blocked != MCAST_PASS) { 580 if (blocked == MCAST_NOTGMEMBER) 581 IPSTAT_INC(ips_notmember); 582 if (blocked == MCAST_NOTSMEMBER || 583 blocked == MCAST_MUTED) 584 UDPSTAT_INC(udps_filtermcast); 585 INP_RUNLOCK(inp); 586 continue; 587 } 588 } 589 if (last != NULL) { 590 struct mbuf *n; 591 592 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) { 593 UDP_PROBE(receive, NULL, last, ip, 594 last, uh); 595 if (udp_append(last, ip, n, iphlen, 596 &udp_in)) { 597 goto inp_lost; 598 } 599 } 600 INP_RUNLOCK(last); 601 } 602 last = inp; 603 /* 604 * Don't look for additional matches if this one does 605 * not have either the SO_REUSEPORT or SO_REUSEADDR 606 * socket options set. This heuristic avoids 607 * searching through all pcbs in the common case of a 608 * non-shared port. It assumes that an application 609 * will never clear these options after setting them. 610 */ 611 if ((last->inp_socket->so_options & 612 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 613 break; 614 } 615 616 if (last == NULL) { 617 /* 618 * No matching pcb found; discard datagram. (No need 619 * to send an ICMP Port Unreachable for a broadcast 620 * or multicast datgram.) 621 */ 622 UDPSTAT_INC(udps_noportbcast); 623 if (inp) 624 INP_RUNLOCK(inp); 625 INP_INFO_RUNLOCK(pcbinfo); 626 goto badunlocked; 627 } 628 UDP_PROBE(receive, NULL, last, ip, last, uh); 629 if (udp_append(last, ip, m, iphlen, &udp_in) == 0) 630 INP_RUNLOCK(last); 631 inp_lost: 632 INP_INFO_RUNLOCK(pcbinfo); 633 return (IPPROTO_DONE); 634 } 635 636 /* 637 * Locate pcb for datagram. 638 */ 639 640 /* 641 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 642 */ 643 if ((m->m_flags & M_IP_NEXTHOP) && 644 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 645 struct sockaddr_in *next_hop; 646 647 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 648 649 /* 650 * Transparently forwarded. Pretend to be the destination. 651 * Already got one like this? 652 */ 653 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 654 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 655 if (!inp) { 656 /* 657 * It's new. Try to find the ambushing socket. 658 * Because we've rewritten the destination address, 659 * any hardware-generated hash is ignored. 660 */ 661 inp = in_pcblookup(pcbinfo, ip->ip_src, 662 uh->uh_sport, next_hop->sin_addr, 663 next_hop->sin_port ? htons(next_hop->sin_port) : 664 uh->uh_dport, INPLOOKUP_WILDCARD | 665 INPLOOKUP_RLOCKPCB, ifp); 666 } 667 /* Remove the tag from the packet. We don't need it anymore. */ 668 m_tag_delete(m, fwd_tag); 669 m->m_flags &= ~M_IP_NEXTHOP; 670 } else 671 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 672 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 673 INPLOOKUP_RLOCKPCB, ifp, m); 674 if (inp == NULL) { 675 if (udp_log_in_vain) { 676 char buf[4*sizeof "123"]; 677 678 strcpy(buf, inet_ntoa(ip->ip_dst)); 679 log(LOG_INFO, 680 "Connection attempt to UDP %s:%d from %s:%d\n", 681 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), 682 ntohs(uh->uh_sport)); 683 } 684 UDPSTAT_INC(udps_noport); 685 if (m->m_flags & (M_BCAST | M_MCAST)) { 686 UDPSTAT_INC(udps_noportbcast); 687 goto badunlocked; 688 } 689 if (V_udp_blackhole) 690 goto badunlocked; 691 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 692 goto badunlocked; 693 *ip = save_ip; 694 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 695 return (IPPROTO_DONE); 696 } 697 698 /* 699 * Check the minimum TTL for socket. 700 */ 701 INP_RLOCK_ASSERT(inp); 702 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 703 INP_RUNLOCK(inp); 704 m_freem(m); 705 return (IPPROTO_DONE); 706 } 707 if (cscov_partial) { 708 struct udpcb *up; 709 710 up = intoudpcb(inp); 711 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 712 INP_RUNLOCK(inp); 713 m_freem(m); 714 return (IPPROTO_DONE); 715 } 716 } 717 718 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 719 if (udp_append(inp, ip, m, iphlen, &udp_in) == 0) 720 INP_RUNLOCK(inp); 721 return (IPPROTO_DONE); 722 723 badunlocked: 724 m_freem(m); 725 return (IPPROTO_DONE); 726 } 727 #endif /* INET */ 728 729 /* 730 * Notify a udp user of an asynchronous error; just wake up so that they can 731 * collect error status. 732 */ 733 struct inpcb * 734 udp_notify(struct inpcb *inp, int errno) 735 { 736 737 /* 738 * While udp_ctlinput() always calls udp_notify() with a read lock 739 * when invoking it directly, in_pcbnotifyall() currently uses write 740 * locks due to sharing code with TCP. For now, accept either a read 741 * or a write lock, but a read lock is sufficient. 742 */ 743 INP_LOCK_ASSERT(inp); 744 745 inp->inp_socket->so_error = errno; 746 sorwakeup(inp->inp_socket); 747 sowwakeup(inp->inp_socket); 748 return (inp); 749 } 750 751 #ifdef INET 752 static void 753 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 754 struct inpcbinfo *pcbinfo) 755 { 756 struct ip *ip = vip; 757 struct udphdr *uh; 758 struct in_addr faddr; 759 struct inpcb *inp; 760 761 faddr = ((struct sockaddr_in *)sa)->sin_addr; 762 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 763 return; 764 765 /* 766 * Redirects don't need to be handled up here. 767 */ 768 if (PRC_IS_REDIRECT(cmd)) 769 return; 770 771 /* 772 * Hostdead is ugly because it goes linearly through all PCBs. 773 * 774 * XXX: We never get this from ICMP, otherwise it makes an excellent 775 * DoS attack on machines with many connections. 776 */ 777 if (cmd == PRC_HOSTDEAD) 778 ip = NULL; 779 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 780 return; 781 if (ip != NULL) { 782 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 783 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 784 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); 785 if (inp != NULL) { 786 INP_RLOCK_ASSERT(inp); 787 if (inp->inp_socket != NULL) { 788 udp_notify(inp, inetctlerrmap[cmd]); 789 } 790 INP_RUNLOCK(inp); 791 } 792 } else 793 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 794 udp_notify); 795 } 796 void 797 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 798 { 799 800 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 801 } 802 803 void 804 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 805 { 806 807 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 808 } 809 #endif /* INET */ 810 811 static int 812 udp_pcblist(SYSCTL_HANDLER_ARGS) 813 { 814 int error, i, n; 815 struct inpcb *inp, **inp_list; 816 inp_gen_t gencnt; 817 struct xinpgen xig; 818 819 /* 820 * The process of preparing the PCB list is too time-consuming and 821 * resource-intensive to repeat twice on every request. 822 */ 823 if (req->oldptr == 0) { 824 n = V_udbinfo.ipi_count; 825 n += imax(n / 8, 10); 826 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 827 return (0); 828 } 829 830 if (req->newptr != 0) 831 return (EPERM); 832 833 /* 834 * OK, now we're committed to doing something. 835 */ 836 INP_INFO_RLOCK(&V_udbinfo); 837 gencnt = V_udbinfo.ipi_gencnt; 838 n = V_udbinfo.ipi_count; 839 INP_INFO_RUNLOCK(&V_udbinfo); 840 841 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 842 + n * sizeof(struct xinpcb)); 843 if (error != 0) 844 return (error); 845 846 xig.xig_len = sizeof xig; 847 xig.xig_count = n; 848 xig.xig_gen = gencnt; 849 xig.xig_sogen = so_gencnt; 850 error = SYSCTL_OUT(req, &xig, sizeof xig); 851 if (error) 852 return (error); 853 854 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 855 if (inp_list == 0) 856 return (ENOMEM); 857 858 INP_INFO_RLOCK(&V_udbinfo); 859 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 860 inp = LIST_NEXT(inp, inp_list)) { 861 INP_WLOCK(inp); 862 if (inp->inp_gencnt <= gencnt && 863 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 864 in_pcbref(inp); 865 inp_list[i++] = inp; 866 } 867 INP_WUNLOCK(inp); 868 } 869 INP_INFO_RUNLOCK(&V_udbinfo); 870 n = i; 871 872 error = 0; 873 for (i = 0; i < n; i++) { 874 inp = inp_list[i]; 875 INP_RLOCK(inp); 876 if (inp->inp_gencnt <= gencnt) { 877 struct xinpcb xi; 878 879 bzero(&xi, sizeof(xi)); 880 xi.xi_len = sizeof xi; 881 /* XXX should avoid extra copy */ 882 bcopy(inp, &xi.xi_inp, sizeof *inp); 883 if (inp->inp_socket) 884 sotoxsocket(inp->inp_socket, &xi.xi_socket); 885 xi.xi_inp.inp_gencnt = inp->inp_gencnt; 886 INP_RUNLOCK(inp); 887 error = SYSCTL_OUT(req, &xi, sizeof xi); 888 } else 889 INP_RUNLOCK(inp); 890 } 891 INP_INFO_WLOCK(&V_udbinfo); 892 for (i = 0; i < n; i++) { 893 inp = inp_list[i]; 894 INP_RLOCK(inp); 895 if (!in_pcbrele_rlocked(inp)) 896 INP_RUNLOCK(inp); 897 } 898 INP_INFO_WUNLOCK(&V_udbinfo); 899 900 if (!error) { 901 /* 902 * Give the user an updated idea of our state. If the 903 * generation differs from what we told her before, she knows 904 * that something happened while we were processing this 905 * request, and it might be necessary to retry. 906 */ 907 INP_INFO_RLOCK(&V_udbinfo); 908 xig.xig_gen = V_udbinfo.ipi_gencnt; 909 xig.xig_sogen = so_gencnt; 910 xig.xig_count = V_udbinfo.ipi_count; 911 INP_INFO_RUNLOCK(&V_udbinfo); 912 error = SYSCTL_OUT(req, &xig, sizeof xig); 913 } 914 free(inp_list, M_TEMP); 915 return (error); 916 } 917 918 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 919 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 920 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 921 922 #ifdef INET 923 static int 924 udp_getcred(SYSCTL_HANDLER_ARGS) 925 { 926 struct xucred xuc; 927 struct sockaddr_in addrs[2]; 928 struct inpcb *inp; 929 int error; 930 931 error = priv_check(req->td, PRIV_NETINET_GETCRED); 932 if (error) 933 return (error); 934 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 935 if (error) 936 return (error); 937 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 938 addrs[0].sin_addr, addrs[0].sin_port, 939 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 940 if (inp != NULL) { 941 INP_RLOCK_ASSERT(inp); 942 if (inp->inp_socket == NULL) 943 error = ENOENT; 944 if (error == 0) 945 error = cr_canseeinpcb(req->td->td_ucred, inp); 946 if (error == 0) 947 cru2x(inp->inp_cred, &xuc); 948 INP_RUNLOCK(inp); 949 } else 950 error = ENOENT; 951 if (error == 0) 952 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 953 return (error); 954 } 955 956 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 957 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 958 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 959 #endif /* INET */ 960 961 int 962 udp_ctloutput(struct socket *so, struct sockopt *sopt) 963 { 964 struct inpcb *inp; 965 struct udpcb *up; 966 int isudplite, error, optval; 967 968 error = 0; 969 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 970 inp = sotoinpcb(so); 971 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 972 INP_WLOCK(inp); 973 if (sopt->sopt_level != so->so_proto->pr_protocol) { 974 #ifdef INET6 975 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 976 INP_WUNLOCK(inp); 977 error = ip6_ctloutput(so, sopt); 978 } 979 #endif 980 #if defined(INET) && defined(INET6) 981 else 982 #endif 983 #ifdef INET 984 { 985 INP_WUNLOCK(inp); 986 error = ip_ctloutput(so, sopt); 987 } 988 #endif 989 return (error); 990 } 991 992 switch (sopt->sopt_dir) { 993 case SOPT_SET: 994 switch (sopt->sopt_name) { 995 case UDP_ENCAP: 996 INP_WUNLOCK(inp); 997 error = sooptcopyin(sopt, &optval, sizeof optval, 998 sizeof optval); 999 if (error) 1000 break; 1001 inp = sotoinpcb(so); 1002 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1003 INP_WLOCK(inp); 1004 #ifdef IPSEC_NAT_T 1005 up = intoudpcb(inp); 1006 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1007 #endif 1008 switch (optval) { 1009 case 0: 1010 /* Clear all UDP encap. */ 1011 #ifdef IPSEC_NAT_T 1012 up->u_flags &= ~UF_ESPINUDP_ALL; 1013 #endif 1014 break; 1015 #ifdef IPSEC_NAT_T 1016 case UDP_ENCAP_ESPINUDP: 1017 case UDP_ENCAP_ESPINUDP_NON_IKE: 1018 up->u_flags &= ~UF_ESPINUDP_ALL; 1019 if (optval == UDP_ENCAP_ESPINUDP) 1020 up->u_flags |= UF_ESPINUDP; 1021 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE) 1022 up->u_flags |= UF_ESPINUDP_NON_IKE; 1023 break; 1024 #endif 1025 default: 1026 error = EINVAL; 1027 break; 1028 } 1029 INP_WUNLOCK(inp); 1030 break; 1031 case UDPLITE_SEND_CSCOV: 1032 case UDPLITE_RECV_CSCOV: 1033 if (!isudplite) { 1034 INP_WUNLOCK(inp); 1035 error = ENOPROTOOPT; 1036 break; 1037 } 1038 INP_WUNLOCK(inp); 1039 error = sooptcopyin(sopt, &optval, sizeof(optval), 1040 sizeof(optval)); 1041 if (error != 0) 1042 break; 1043 inp = sotoinpcb(so); 1044 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1045 INP_WLOCK(inp); 1046 up = intoudpcb(inp); 1047 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1048 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1049 INP_WUNLOCK(inp); 1050 error = EINVAL; 1051 break; 1052 } 1053 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1054 up->u_txcslen = optval; 1055 else 1056 up->u_rxcslen = optval; 1057 INP_WUNLOCK(inp); 1058 break; 1059 default: 1060 INP_WUNLOCK(inp); 1061 error = ENOPROTOOPT; 1062 break; 1063 } 1064 break; 1065 case SOPT_GET: 1066 switch (sopt->sopt_name) { 1067 #ifdef IPSEC_NAT_T 1068 case UDP_ENCAP: 1069 up = intoudpcb(inp); 1070 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1071 optval = up->u_flags & UF_ESPINUDP_ALL; 1072 INP_WUNLOCK(inp); 1073 error = sooptcopyout(sopt, &optval, sizeof optval); 1074 break; 1075 #endif 1076 case UDPLITE_SEND_CSCOV: 1077 case UDPLITE_RECV_CSCOV: 1078 if (!isudplite) { 1079 INP_WUNLOCK(inp); 1080 error = ENOPROTOOPT; 1081 break; 1082 } 1083 up = intoudpcb(inp); 1084 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1085 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1086 optval = up->u_txcslen; 1087 else 1088 optval = up->u_rxcslen; 1089 INP_WUNLOCK(inp); 1090 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1091 break; 1092 default: 1093 INP_WUNLOCK(inp); 1094 error = ENOPROTOOPT; 1095 break; 1096 } 1097 break; 1098 } 1099 return (error); 1100 } 1101 1102 #ifdef INET 1103 #define UH_WLOCKED 2 1104 #define UH_RLOCKED 1 1105 #define UH_UNLOCKED 0 1106 static int 1107 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1108 struct mbuf *control, struct thread *td) 1109 { 1110 struct udpiphdr *ui; 1111 int len = m->m_pkthdr.len; 1112 struct in_addr faddr, laddr; 1113 struct cmsghdr *cm; 1114 struct inpcbinfo *pcbinfo; 1115 struct sockaddr_in *sin, src; 1116 int cscov_partial = 0; 1117 int error = 0; 1118 int ipflags; 1119 u_short fport, lport; 1120 int unlock_udbinfo; 1121 u_char tos; 1122 uint8_t pr; 1123 uint16_t cscov = 0; 1124 uint32_t flowid = 0; 1125 uint8_t flowtype = M_HASHTYPE_NONE; 1126 1127 /* 1128 * udp_output() may need to temporarily bind or connect the current 1129 * inpcb. As such, we don't know up front whether we will need the 1130 * pcbinfo lock or not. Do any work to decide what is needed up 1131 * front before acquiring any locks. 1132 */ 1133 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1134 if (control) 1135 m_freem(control); 1136 m_freem(m); 1137 return (EMSGSIZE); 1138 } 1139 1140 src.sin_family = 0; 1141 INP_RLOCK(inp); 1142 tos = inp->inp_ip_tos; 1143 if (control != NULL) { 1144 /* 1145 * XXX: Currently, we assume all the optional information is 1146 * stored in a single mbuf. 1147 */ 1148 if (control->m_next) { 1149 INP_RUNLOCK(inp); 1150 m_freem(control); 1151 m_freem(m); 1152 return (EINVAL); 1153 } 1154 for (; control->m_len > 0; 1155 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1156 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1157 cm = mtod(control, struct cmsghdr *); 1158 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1159 || cm->cmsg_len > control->m_len) { 1160 error = EINVAL; 1161 break; 1162 } 1163 if (cm->cmsg_level != IPPROTO_IP) 1164 continue; 1165 1166 switch (cm->cmsg_type) { 1167 case IP_SENDSRCADDR: 1168 if (cm->cmsg_len != 1169 CMSG_LEN(sizeof(struct in_addr))) { 1170 error = EINVAL; 1171 break; 1172 } 1173 bzero(&src, sizeof(src)); 1174 src.sin_family = AF_INET; 1175 src.sin_len = sizeof(src); 1176 src.sin_port = inp->inp_lport; 1177 src.sin_addr = 1178 *(struct in_addr *)CMSG_DATA(cm); 1179 break; 1180 1181 case IP_TOS: 1182 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1183 error = EINVAL; 1184 break; 1185 } 1186 tos = *(u_char *)CMSG_DATA(cm); 1187 break; 1188 1189 case IP_FLOWID: 1190 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1191 error = EINVAL; 1192 break; 1193 } 1194 flowid = *(uint32_t *) CMSG_DATA(cm); 1195 break; 1196 1197 case IP_FLOWTYPE: 1198 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1199 error = EINVAL; 1200 break; 1201 } 1202 flowtype = *(uint32_t *) CMSG_DATA(cm); 1203 break; 1204 1205 #ifdef RSS 1206 case IP_RSSBUCKETID: 1207 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1208 error = EINVAL; 1209 break; 1210 } 1211 /* This is just a placeholder for now */ 1212 break; 1213 #endif /* RSS */ 1214 default: 1215 error = ENOPROTOOPT; 1216 break; 1217 } 1218 if (error) 1219 break; 1220 } 1221 m_freem(control); 1222 } 1223 if (error) { 1224 INP_RUNLOCK(inp); 1225 m_freem(m); 1226 return (error); 1227 } 1228 1229 /* 1230 * Depending on whether or not the application has bound or connected 1231 * the socket, we may have to do varying levels of work. The optimal 1232 * case is for a connected UDP socket, as a global lock isn't 1233 * required at all. 1234 * 1235 * In order to decide which we need, we require stability of the 1236 * inpcb binding, which we ensure by acquiring a read lock on the 1237 * inpcb. This doesn't strictly follow the lock order, so we play 1238 * the trylock and retry game; note that we may end up with more 1239 * conservative locks than required the second time around, so later 1240 * assertions have to accept that. Further analysis of the number of 1241 * misses under contention is required. 1242 * 1243 * XXXRW: Check that hash locking update here is correct. 1244 */ 1245 pr = inp->inp_socket->so_proto->pr_protocol; 1246 pcbinfo = get_inpcbinfo(pr); 1247 sin = (struct sockaddr_in *)addr; 1248 if (sin != NULL && 1249 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1250 INP_RUNLOCK(inp); 1251 INP_WLOCK(inp); 1252 INP_HASH_WLOCK(pcbinfo); 1253 unlock_udbinfo = UH_WLOCKED; 1254 } else if ((sin != NULL && ( 1255 (sin->sin_addr.s_addr == INADDR_ANY) || 1256 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1257 (inp->inp_laddr.s_addr == INADDR_ANY) || 1258 (inp->inp_lport == 0))) || 1259 (src.sin_family == AF_INET)) { 1260 INP_HASH_RLOCK(pcbinfo); 1261 unlock_udbinfo = UH_RLOCKED; 1262 } else 1263 unlock_udbinfo = UH_UNLOCKED; 1264 1265 /* 1266 * If the IP_SENDSRCADDR control message was specified, override the 1267 * source address for this datagram. Its use is invalidated if the 1268 * address thus specified is incomplete or clobbers other inpcbs. 1269 */ 1270 laddr = inp->inp_laddr; 1271 lport = inp->inp_lport; 1272 if (src.sin_family == AF_INET) { 1273 INP_HASH_LOCK_ASSERT(pcbinfo); 1274 if ((lport == 0) || 1275 (laddr.s_addr == INADDR_ANY && 1276 src.sin_addr.s_addr == INADDR_ANY)) { 1277 error = EINVAL; 1278 goto release; 1279 } 1280 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1281 &laddr.s_addr, &lport, td->td_ucred); 1282 if (error) 1283 goto release; 1284 } 1285 1286 /* 1287 * If a UDP socket has been connected, then a local address/port will 1288 * have been selected and bound. 1289 * 1290 * If a UDP socket has not been connected to, then an explicit 1291 * destination address must be used, in which case a local 1292 * address/port may not have been selected and bound. 1293 */ 1294 if (sin != NULL) { 1295 INP_LOCK_ASSERT(inp); 1296 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1297 error = EISCONN; 1298 goto release; 1299 } 1300 1301 /* 1302 * Jail may rewrite the destination address, so let it do 1303 * that before we use it. 1304 */ 1305 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1306 if (error) 1307 goto release; 1308 1309 /* 1310 * If a local address or port hasn't yet been selected, or if 1311 * the destination address needs to be rewritten due to using 1312 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1313 * to do the heavy lifting. Once a port is selected, we 1314 * commit the binding back to the socket; we also commit the 1315 * binding of the address if in jail. 1316 * 1317 * If we already have a valid binding and we're not 1318 * requesting a destination address rewrite, use a fast path. 1319 */ 1320 if (inp->inp_laddr.s_addr == INADDR_ANY || 1321 inp->inp_lport == 0 || 1322 sin->sin_addr.s_addr == INADDR_ANY || 1323 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1324 INP_HASH_LOCK_ASSERT(pcbinfo); 1325 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1326 &lport, &faddr.s_addr, &fport, NULL, 1327 td->td_ucred); 1328 if (error) 1329 goto release; 1330 1331 /* 1332 * XXXRW: Why not commit the port if the address is 1333 * !INADDR_ANY? 1334 */ 1335 /* Commit the local port if newly assigned. */ 1336 if (inp->inp_laddr.s_addr == INADDR_ANY && 1337 inp->inp_lport == 0) { 1338 INP_WLOCK_ASSERT(inp); 1339 INP_HASH_WLOCK_ASSERT(pcbinfo); 1340 /* 1341 * Remember addr if jailed, to prevent 1342 * rebinding. 1343 */ 1344 if (prison_flag(td->td_ucred, PR_IP4)) 1345 inp->inp_laddr = laddr; 1346 inp->inp_lport = lport; 1347 if (in_pcbinshash(inp) != 0) { 1348 inp->inp_lport = 0; 1349 error = EAGAIN; 1350 goto release; 1351 } 1352 inp->inp_flags |= INP_ANONPORT; 1353 } 1354 } else { 1355 faddr = sin->sin_addr; 1356 fport = sin->sin_port; 1357 } 1358 } else { 1359 INP_LOCK_ASSERT(inp); 1360 faddr = inp->inp_faddr; 1361 fport = inp->inp_fport; 1362 if (faddr.s_addr == INADDR_ANY) { 1363 error = ENOTCONN; 1364 goto release; 1365 } 1366 } 1367 1368 /* 1369 * Calculate data length and get a mbuf for UDP, IP, and possible 1370 * link-layer headers. Immediate slide the data pointer back forward 1371 * since we won't use that space at this layer. 1372 */ 1373 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1374 if (m == NULL) { 1375 error = ENOBUFS; 1376 goto release; 1377 } 1378 m->m_data += max_linkhdr; 1379 m->m_len -= max_linkhdr; 1380 m->m_pkthdr.len -= max_linkhdr; 1381 1382 /* 1383 * Fill in mbuf with extended UDP header and addresses and length put 1384 * into network format. 1385 */ 1386 ui = mtod(m, struct udpiphdr *); 1387 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1388 ui->ui_pr = pr; 1389 ui->ui_src = laddr; 1390 ui->ui_dst = faddr; 1391 ui->ui_sport = lport; 1392 ui->ui_dport = fport; 1393 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1394 if (pr == IPPROTO_UDPLITE) { 1395 struct udpcb *up; 1396 uint16_t plen; 1397 1398 up = intoudpcb(inp); 1399 cscov = up->u_txcslen; 1400 plen = (u_short)len + sizeof(struct udphdr); 1401 if (cscov >= plen) 1402 cscov = 0; 1403 ui->ui_len = htons(plen); 1404 ui->ui_ulen = htons(cscov); 1405 /* 1406 * For UDP-Lite, checksum coverage length of zero means 1407 * the entire UDPLite packet is covered by the checksum. 1408 */ 1409 cscov_partial = (cscov == 0) ? 0 : 1; 1410 } else 1411 ui->ui_v = IPVERSION << 4; 1412 1413 /* 1414 * Set the Don't Fragment bit in the IP header. 1415 */ 1416 if (inp->inp_flags & INP_DONTFRAG) { 1417 struct ip *ip; 1418 1419 ip = (struct ip *)&ui->ui_i; 1420 ip->ip_off |= htons(IP_DF); 1421 } 1422 1423 ipflags = 0; 1424 if (inp->inp_socket->so_options & SO_DONTROUTE) 1425 ipflags |= IP_ROUTETOIF; 1426 if (inp->inp_socket->so_options & SO_BROADCAST) 1427 ipflags |= IP_ALLOWBROADCAST; 1428 if (inp->inp_flags & INP_ONESBCAST) 1429 ipflags |= IP_SENDONES; 1430 1431 #ifdef MAC 1432 mac_inpcb_create_mbuf(inp, m); 1433 #endif 1434 1435 /* 1436 * Set up checksum and output datagram. 1437 */ 1438 ui->ui_sum = 0; 1439 if (pr == IPPROTO_UDPLITE) { 1440 if (inp->inp_flags & INP_ONESBCAST) 1441 faddr.s_addr = INADDR_BROADCAST; 1442 if (cscov_partial) { 1443 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1444 ui->ui_sum = 0xffff; 1445 } else { 1446 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1447 ui->ui_sum = 0xffff; 1448 } 1449 } else if (V_udp_cksum) { 1450 if (inp->inp_flags & INP_ONESBCAST) 1451 faddr.s_addr = INADDR_BROADCAST; 1452 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1453 htons((u_short)len + sizeof(struct udphdr) + pr)); 1454 m->m_pkthdr.csum_flags = CSUM_UDP; 1455 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1456 } 1457 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1458 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1459 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1460 UDPSTAT_INC(udps_opackets); 1461 1462 /* 1463 * Setup flowid / RSS information for outbound socket. 1464 * 1465 * Once the UDP code decides to set a flowid some other way, 1466 * this allows the flowid to be overridden by userland. 1467 */ 1468 if (flowtype != M_HASHTYPE_NONE) { 1469 m->m_pkthdr.flowid = flowid; 1470 M_HASHTYPE_SET(m, flowtype); 1471 #ifdef RSS 1472 } else { 1473 uint32_t hash_val, hash_type; 1474 /* 1475 * Calculate an appropriate RSS hash for UDP and 1476 * UDP Lite. 1477 * 1478 * The called function will take care of figuring out 1479 * whether a 2-tuple or 4-tuple hash is required based 1480 * on the currently configured scheme. 1481 * 1482 * Later later on connected socket values should be 1483 * cached in the inpcb and reused, rather than constantly 1484 * re-calculating it. 1485 * 1486 * UDP Lite is a different protocol number and will 1487 * likely end up being hashed as a 2-tuple until 1488 * RSS / NICs grow UDP Lite protocol awareness. 1489 */ 1490 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, 1491 pr, &hash_val, &hash_type) == 0) { 1492 m->m_pkthdr.flowid = hash_val; 1493 M_HASHTYPE_SET(m, hash_type); 1494 } 1495 #endif 1496 } 1497 1498 #ifdef RSS 1499 /* 1500 * Don't override with the inp cached flowid value. 1501 * 1502 * Depending upon the kind of send being done, the inp 1503 * flowid/flowtype values may actually not be appropriate 1504 * for this particular socket send. 1505 * 1506 * We should either leave the flowid at zero (which is what is 1507 * currently done) or set it to some software generated 1508 * hash value based on the packet contents. 1509 */ 1510 ipflags |= IP_NODEFAULTFLOWID; 1511 #endif /* RSS */ 1512 1513 if (unlock_udbinfo == UH_WLOCKED) 1514 INP_HASH_WUNLOCK(pcbinfo); 1515 else if (unlock_udbinfo == UH_RLOCKED) 1516 INP_HASH_RUNLOCK(pcbinfo); 1517 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1518 error = ip_output(m, inp->inp_options, NULL, ipflags, 1519 inp->inp_moptions, inp); 1520 if (unlock_udbinfo == UH_WLOCKED) 1521 INP_WUNLOCK(inp); 1522 else 1523 INP_RUNLOCK(inp); 1524 return (error); 1525 1526 release: 1527 if (unlock_udbinfo == UH_WLOCKED) { 1528 INP_HASH_WUNLOCK(pcbinfo); 1529 INP_WUNLOCK(inp); 1530 } else if (unlock_udbinfo == UH_RLOCKED) { 1531 INP_HASH_RUNLOCK(pcbinfo); 1532 INP_RUNLOCK(inp); 1533 } else 1534 INP_RUNLOCK(inp); 1535 m_freem(m); 1536 return (error); 1537 } 1538 1539 1540 #if defined(IPSEC) && defined(IPSEC_NAT_T) 1541 /* 1542 * Potentially decap ESP in UDP frame. Check for an ESP header 1543 * and optional marker; if present, strip the UDP header and 1544 * push the result through IPSec. 1545 * 1546 * Returns mbuf to be processed (potentially re-allocated) or 1547 * NULL if consumed and/or processed. 1548 */ 1549 static struct mbuf * 1550 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off) 1551 { 1552 size_t minlen, payload, skip, iphlen; 1553 caddr_t data; 1554 struct udpcb *up; 1555 struct m_tag *tag; 1556 struct udphdr *udphdr; 1557 struct ip *ip; 1558 1559 INP_RLOCK_ASSERT(inp); 1560 1561 /* 1562 * Pull up data so the longest case is contiguous: 1563 * IP/UDP hdr + non ESP marker + ESP hdr. 1564 */ 1565 minlen = off + sizeof(uint64_t) + sizeof(struct esp); 1566 if (minlen > m->m_pkthdr.len) 1567 minlen = m->m_pkthdr.len; 1568 if ((m = m_pullup(m, minlen)) == NULL) { 1569 IPSECSTAT_INC(ips_in_inval); 1570 return (NULL); /* Bypass caller processing. */ 1571 } 1572 data = mtod(m, caddr_t); /* Points to ip header. */ 1573 payload = m->m_len - off; /* Size of payload. */ 1574 1575 if (payload == 1 && data[off] == '\xff') 1576 return (m); /* NB: keepalive packet, no decap. */ 1577 1578 up = intoudpcb(inp); 1579 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 1580 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0, 1581 ("u_flags 0x%x", up->u_flags)); 1582 1583 /* 1584 * Check that the payload is large enough to hold an 1585 * ESP header and compute the amount of data to remove. 1586 * 1587 * NB: the caller has already done a pullup for us. 1588 * XXX can we assume alignment and eliminate bcopys? 1589 */ 1590 if (up->u_flags & UF_ESPINUDP_NON_IKE) { 1591 /* 1592 * draft-ietf-ipsec-nat-t-ike-0[01].txt and 1593 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring 1594 * possible AH mode non-IKE marker+non-ESP marker 1595 * from draft-ietf-ipsec-udp-encaps-00.txt. 1596 */ 1597 uint64_t marker; 1598 1599 if (payload <= sizeof(uint64_t) + sizeof(struct esp)) 1600 return (m); /* NB: no decap. */ 1601 bcopy(data + off, &marker, sizeof(uint64_t)); 1602 if (marker != 0) /* Non-IKE marker. */ 1603 return (m); /* NB: no decap. */ 1604 skip = sizeof(uint64_t) + sizeof(struct udphdr); 1605 } else { 1606 uint32_t spi; 1607 1608 if (payload <= sizeof(struct esp)) { 1609 IPSECSTAT_INC(ips_in_inval); 1610 m_freem(m); 1611 return (NULL); /* Discard. */ 1612 } 1613 bcopy(data + off, &spi, sizeof(uint32_t)); 1614 if (spi == 0) /* Non-ESP marker. */ 1615 return (m); /* NB: no decap. */ 1616 skip = sizeof(struct udphdr); 1617 } 1618 1619 /* 1620 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember 1621 * the UDP ports. This is required if we want to select 1622 * the right SPD for multiple hosts behind same NAT. 1623 * 1624 * NB: ports are maintained in network byte order everywhere 1625 * in the NAT-T code. 1626 */ 1627 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, 1628 2 * sizeof(uint16_t), M_NOWAIT); 1629 if (tag == NULL) { 1630 IPSECSTAT_INC(ips_in_nomem); 1631 m_freem(m); 1632 return (NULL); /* Discard. */ 1633 } 1634 iphlen = off - sizeof(struct udphdr); 1635 udphdr = (struct udphdr *)(data + iphlen); 1636 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport; 1637 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport; 1638 m_tag_prepend(m, tag); 1639 1640 /* 1641 * Remove the UDP header (and possibly the non ESP marker) 1642 * IP header length is iphlen 1643 * Before: 1644 * <--- off ---> 1645 * +----+------+-----+ 1646 * | IP | UDP | ESP | 1647 * +----+------+-----+ 1648 * <-skip-> 1649 * After: 1650 * +----+-----+ 1651 * | IP | ESP | 1652 * +----+-----+ 1653 * <-skip-> 1654 */ 1655 ovbcopy(data, data + skip, iphlen); 1656 m_adj(m, skip); 1657 1658 ip = mtod(m, struct ip *); 1659 ip->ip_len = htons(ntohs(ip->ip_len) - skip); 1660 ip->ip_p = IPPROTO_ESP; 1661 1662 /* 1663 * We cannot yet update the cksums so clear any 1664 * h/w cksum flags as they are no longer valid. 1665 */ 1666 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) 1667 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 1668 1669 (void) ipsec_common_input(m, iphlen, offsetof(struct ip, ip_p), 1670 AF_INET, ip->ip_p); 1671 return (NULL); /* NB: consumed, bypass processing. */ 1672 } 1673 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */ 1674 1675 static void 1676 udp_abort(struct socket *so) 1677 { 1678 struct inpcb *inp; 1679 struct inpcbinfo *pcbinfo; 1680 1681 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1682 inp = sotoinpcb(so); 1683 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1684 INP_WLOCK(inp); 1685 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1686 INP_HASH_WLOCK(pcbinfo); 1687 in_pcbdisconnect(inp); 1688 inp->inp_laddr.s_addr = INADDR_ANY; 1689 INP_HASH_WUNLOCK(pcbinfo); 1690 soisdisconnected(so); 1691 } 1692 INP_WUNLOCK(inp); 1693 } 1694 1695 static int 1696 udp_attach(struct socket *so, int proto, struct thread *td) 1697 { 1698 struct inpcb *inp; 1699 struct inpcbinfo *pcbinfo; 1700 int error; 1701 1702 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1703 inp = sotoinpcb(so); 1704 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1705 error = soreserve(so, udp_sendspace, udp_recvspace); 1706 if (error) 1707 return (error); 1708 INP_INFO_WLOCK(pcbinfo); 1709 error = in_pcballoc(so, pcbinfo); 1710 if (error) { 1711 INP_INFO_WUNLOCK(pcbinfo); 1712 return (error); 1713 } 1714 1715 inp = sotoinpcb(so); 1716 inp->inp_vflag |= INP_IPV4; 1717 inp->inp_ip_ttl = V_ip_defttl; 1718 1719 error = udp_newudpcb(inp); 1720 if (error) { 1721 in_pcbdetach(inp); 1722 in_pcbfree(inp); 1723 INP_INFO_WUNLOCK(pcbinfo); 1724 return (error); 1725 } 1726 1727 INP_WUNLOCK(inp); 1728 INP_INFO_WUNLOCK(pcbinfo); 1729 return (0); 1730 } 1731 #endif /* INET */ 1732 1733 int 1734 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, void *ctx) 1735 { 1736 struct inpcb *inp; 1737 struct udpcb *up; 1738 1739 KASSERT(so->so_type == SOCK_DGRAM, 1740 ("udp_set_kernel_tunneling: !dgram")); 1741 inp = sotoinpcb(so); 1742 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1743 INP_WLOCK(inp); 1744 up = intoudpcb(inp); 1745 if (up->u_tun_func != NULL) { 1746 INP_WUNLOCK(inp); 1747 return (EBUSY); 1748 } 1749 up->u_tun_func = f; 1750 up->u_tun_ctx = ctx; 1751 INP_WUNLOCK(inp); 1752 return (0); 1753 } 1754 1755 #ifdef INET 1756 static int 1757 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1758 { 1759 struct inpcb *inp; 1760 struct inpcbinfo *pcbinfo; 1761 int error; 1762 1763 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1764 inp = sotoinpcb(so); 1765 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1766 INP_WLOCK(inp); 1767 INP_HASH_WLOCK(pcbinfo); 1768 error = in_pcbbind(inp, nam, td->td_ucred); 1769 INP_HASH_WUNLOCK(pcbinfo); 1770 INP_WUNLOCK(inp); 1771 return (error); 1772 } 1773 1774 static void 1775 udp_close(struct socket *so) 1776 { 1777 struct inpcb *inp; 1778 struct inpcbinfo *pcbinfo; 1779 1780 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1781 inp = sotoinpcb(so); 1782 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1783 INP_WLOCK(inp); 1784 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1785 INP_HASH_WLOCK(pcbinfo); 1786 in_pcbdisconnect(inp); 1787 inp->inp_laddr.s_addr = INADDR_ANY; 1788 INP_HASH_WUNLOCK(pcbinfo); 1789 soisdisconnected(so); 1790 } 1791 INP_WUNLOCK(inp); 1792 } 1793 1794 static int 1795 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1796 { 1797 struct inpcb *inp; 1798 struct inpcbinfo *pcbinfo; 1799 struct sockaddr_in *sin; 1800 int error; 1801 1802 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1803 inp = sotoinpcb(so); 1804 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1805 INP_WLOCK(inp); 1806 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1807 INP_WUNLOCK(inp); 1808 return (EISCONN); 1809 } 1810 sin = (struct sockaddr_in *)nam; 1811 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1812 if (error != 0) { 1813 INP_WUNLOCK(inp); 1814 return (error); 1815 } 1816 INP_HASH_WLOCK(pcbinfo); 1817 error = in_pcbconnect(inp, nam, td->td_ucred); 1818 INP_HASH_WUNLOCK(pcbinfo); 1819 if (error == 0) 1820 soisconnected(so); 1821 INP_WUNLOCK(inp); 1822 return (error); 1823 } 1824 1825 static void 1826 udp_detach(struct socket *so) 1827 { 1828 struct inpcb *inp; 1829 struct inpcbinfo *pcbinfo; 1830 struct udpcb *up; 1831 1832 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1833 inp = sotoinpcb(so); 1834 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1835 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1836 ("udp_detach: not disconnected")); 1837 INP_INFO_WLOCK(pcbinfo); 1838 INP_WLOCK(inp); 1839 up = intoudpcb(inp); 1840 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1841 inp->inp_ppcb = NULL; 1842 in_pcbdetach(inp); 1843 in_pcbfree(inp); 1844 INP_INFO_WUNLOCK(pcbinfo); 1845 udp_discardcb(up); 1846 } 1847 1848 static int 1849 udp_disconnect(struct socket *so) 1850 { 1851 struct inpcb *inp; 1852 struct inpcbinfo *pcbinfo; 1853 1854 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1855 inp = sotoinpcb(so); 1856 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1857 INP_WLOCK(inp); 1858 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1859 INP_WUNLOCK(inp); 1860 return (ENOTCONN); 1861 } 1862 INP_HASH_WLOCK(pcbinfo); 1863 in_pcbdisconnect(inp); 1864 inp->inp_laddr.s_addr = INADDR_ANY; 1865 INP_HASH_WUNLOCK(pcbinfo); 1866 SOCK_LOCK(so); 1867 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1868 SOCK_UNLOCK(so); 1869 INP_WUNLOCK(inp); 1870 return (0); 1871 } 1872 1873 static int 1874 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1875 struct mbuf *control, struct thread *td) 1876 { 1877 struct inpcb *inp; 1878 1879 inp = sotoinpcb(so); 1880 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1881 return (udp_output(inp, m, addr, control, td)); 1882 } 1883 #endif /* INET */ 1884 1885 int 1886 udp_shutdown(struct socket *so) 1887 { 1888 struct inpcb *inp; 1889 1890 inp = sotoinpcb(so); 1891 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1892 INP_WLOCK(inp); 1893 socantsendmore(so); 1894 INP_WUNLOCK(inp); 1895 return (0); 1896 } 1897 1898 #ifdef INET 1899 struct pr_usrreqs udp_usrreqs = { 1900 .pru_abort = udp_abort, 1901 .pru_attach = udp_attach, 1902 .pru_bind = udp_bind, 1903 .pru_connect = udp_connect, 1904 .pru_control = in_control, 1905 .pru_detach = udp_detach, 1906 .pru_disconnect = udp_disconnect, 1907 .pru_peeraddr = in_getpeeraddr, 1908 .pru_send = udp_send, 1909 .pru_soreceive = soreceive_dgram, 1910 .pru_sosend = sosend_dgram, 1911 .pru_shutdown = udp_shutdown, 1912 .pru_sockaddr = in_getsockaddr, 1913 .pru_sosetlabel = in_pcbsosetlabel, 1914 .pru_close = udp_close, 1915 }; 1916 #endif /* INET */ 1917