xref: /freebsd/sys/netinet/udp_usrreq.c (revision f18d3c411697ff46d85e579a72be54ca0cc67dd0)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ipfw.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45 
46 #include <sys/param.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/protosw.h>
57 #include <sys/sdt.h>
58 #include <sys/signalvar.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sx.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 #include <sys/systm.h>
65 
66 #include <vm/uma.h>
67 
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/route.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #endif
81 #include <netinet/ip_icmp.h>
82 #include <netinet/icmp_var.h>
83 #include <netinet/ip_var.h>
84 #include <netinet/ip_options.h>
85 #ifdef INET6
86 #include <netinet6/ip6_var.h>
87 #endif
88 #include <netinet/udp.h>
89 #include <netinet/udp_var.h>
90 
91 #ifdef IPSEC
92 #include <netipsec/ipsec.h>
93 #include <netipsec/esp.h>
94 #endif
95 
96 #include <machine/in_cksum.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 /*
101  * UDP protocol implementation.
102  * Per RFC 768, August, 1980.
103  */
104 
105 /*
106  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
107  * removes the only data integrity mechanism for packets and malformed
108  * packets that would otherwise be discarded due to bad checksums, and may
109  * cause problems (especially for NFS data blocks).
110  */
111 VNET_DEFINE(int, udp_cksum) = 1;
112 SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
113     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
114 
115 int	udp_log_in_vain = 0;
116 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
117     &udp_log_in_vain, 0, "Log all incoming UDP packets");
118 
119 VNET_DEFINE(int, udp_blackhole) = 0;
120 SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
121     &VNET_NAME(udp_blackhole), 0,
122     "Do not send port unreachables for refused connects");
123 
124 u_long	udp_sendspace = 9216;		/* really max datagram size */
125 					/* 40 1K datagrams */
126 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
127     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
128 
129 u_long	udp_recvspace = 40 * (1024 +
130 #ifdef INET6
131 				      sizeof(struct sockaddr_in6)
132 #else
133 				      sizeof(struct sockaddr_in)
134 #endif
135 				      );
136 
137 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
138     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
139 
140 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
141 VNET_DEFINE(struct inpcbinfo, udbinfo);
142 static VNET_DEFINE(uma_zone_t, udpcb_zone);
143 #define	V_udpcb_zone			VNET(udpcb_zone)
144 
145 #ifndef UDBHASHSIZE
146 #define	UDBHASHSIZE	128
147 #endif
148 
149 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
150 VNET_PCPUSTAT_SYSINIT(udpstat);
151 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
152     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
153 
154 #ifdef VIMAGE
155 VNET_PCPUSTAT_SYSUNINIT(udpstat);
156 #endif /* VIMAGE */
157 #ifdef INET
158 static void	udp_detach(struct socket *so);
159 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
160 		    struct mbuf *, struct thread *);
161 #endif
162 
163 #ifdef IPSEC
164 #ifdef IPSEC_NAT_T
165 #define	UF_ESPINUDP_ALL	(UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
166 #ifdef INET
167 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
168 #endif
169 #endif /* IPSEC_NAT_T */
170 #endif /* IPSEC */
171 
172 static void
173 udp_zone_change(void *tag)
174 {
175 
176 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
177 	uma_zone_set_max(V_udpcb_zone, maxsockets);
178 }
179 
180 static int
181 udp_inpcb_init(void *mem, int size, int flags)
182 {
183 	struct inpcb *inp;
184 
185 	inp = mem;
186 	INP_LOCK_INIT(inp, "inp", "udpinp");
187 	return (0);
188 }
189 
190 void
191 udp_init(void)
192 {
193 
194 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
195 	    "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
196 	    IPI_HASHFIELDS_2TUPLE);
197 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199 	uma_zone_set_max(V_udpcb_zone, maxsockets);
200 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
201 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
202 	    EVENTHANDLER_PRI_ANY);
203 }
204 
205 /*
206  * Kernel module interface for updating udpstat.  The argument is an index
207  * into udpstat treated as an array of u_long.  While this encodes the
208  * general layout of udpstat into the caller, it doesn't encode its location,
209  * so that future changes to add, for example, per-CPU stats support won't
210  * cause binary compatibility problems for kernel modules.
211  */
212 void
213 kmod_udpstat_inc(int statnum)
214 {
215 
216 	counter_u64_add(VNET(udpstat)[statnum], 1);
217 }
218 
219 int
220 udp_newudpcb(struct inpcb *inp)
221 {
222 	struct udpcb *up;
223 
224 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
225 	if (up == NULL)
226 		return (ENOBUFS);
227 	inp->inp_ppcb = up;
228 	return (0);
229 }
230 
231 void
232 udp_discardcb(struct udpcb *up)
233 {
234 
235 	uma_zfree(V_udpcb_zone, up);
236 }
237 
238 #ifdef VIMAGE
239 void
240 udp_destroy(void)
241 {
242 
243 	in_pcbinfo_destroy(&V_udbinfo);
244 	uma_zdestroy(V_udpcb_zone);
245 }
246 #endif
247 
248 #ifdef INET
249 /*
250  * Subroutine of udp_input(), which appends the provided mbuf chain to the
251  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
252  * contains the source address.  If the socket ends up being an IPv6 socket,
253  * udp_append() will convert to a sockaddr_in6 before passing the address
254  * into the socket code.
255  */
256 static void
257 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
258     struct sockaddr_in *udp_in)
259 {
260 	struct sockaddr *append_sa;
261 	struct socket *so;
262 	struct mbuf *opts = 0;
263 #ifdef INET6
264 	struct sockaddr_in6 udp_in6;
265 #endif
266 	struct udpcb *up;
267 
268 	INP_LOCK_ASSERT(inp);
269 
270 	/*
271 	 * Engage the tunneling protocol.
272 	 */
273 	up = intoudpcb(inp);
274 	if (up->u_tun_func != NULL) {
275 		(*up->u_tun_func)(n, off, inp);
276 		return;
277 	}
278 
279 	if (n == NULL)
280 		return;
281 
282 	off += sizeof(struct udphdr);
283 
284 #ifdef IPSEC
285 	/* Check AH/ESP integrity. */
286 	if (ipsec4_in_reject(n, inp)) {
287 		m_freem(n);
288 		IPSECSTAT_INC(ips_in_polvio);
289 		return;
290 	}
291 #ifdef IPSEC_NAT_T
292 	up = intoudpcb(inp);
293 	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
294 	if (up->u_flags & UF_ESPINUDP_ALL) {	/* IPSec UDP encaps. */
295 		n = udp4_espdecap(inp, n, off);
296 		if (n == NULL)				/* Consumed. */
297 			return;
298 	}
299 #endif /* IPSEC_NAT_T */
300 #endif /* IPSEC */
301 #ifdef MAC
302 	if (mac_inpcb_check_deliver(inp, n) != 0) {
303 		m_freem(n);
304 		return;
305 	}
306 #endif /* MAC */
307 	if (inp->inp_flags & INP_CONTROLOPTS ||
308 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
309 #ifdef INET6
310 		if (inp->inp_vflag & INP_IPV6)
311 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
312 		else
313 #endif /* INET6 */
314 			ip_savecontrol(inp, &opts, ip, n);
315 	}
316 #ifdef INET6
317 	if (inp->inp_vflag & INP_IPV6) {
318 		bzero(&udp_in6, sizeof(udp_in6));
319 		udp_in6.sin6_len = sizeof(udp_in6);
320 		udp_in6.sin6_family = AF_INET6;
321 		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
322 		append_sa = (struct sockaddr *)&udp_in6;
323 	} else
324 #endif /* INET6 */
325 		append_sa = (struct sockaddr *)udp_in;
326 	m_adj(n, off);
327 
328 	so = inp->inp_socket;
329 	SOCKBUF_LOCK(&so->so_rcv);
330 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
331 		SOCKBUF_UNLOCK(&so->so_rcv);
332 		m_freem(n);
333 		if (opts)
334 			m_freem(opts);
335 		UDPSTAT_INC(udps_fullsock);
336 	} else
337 		sorwakeup_locked(so);
338 }
339 
340 void
341 udp_input(struct mbuf *m, int off)
342 {
343 	int iphlen = off;
344 	struct ip *ip;
345 	struct udphdr *uh;
346 	struct ifnet *ifp;
347 	struct inpcb *inp;
348 	uint16_t len, ip_len;
349 	struct ip save_ip;
350 	struct sockaddr_in udp_in;
351 	struct m_tag *fwd_tag;
352 
353 	ifp = m->m_pkthdr.rcvif;
354 	UDPSTAT_INC(udps_ipackets);
355 
356 	/*
357 	 * Strip IP options, if any; should skip this, make available to
358 	 * user, and use on returned packets, but we don't yet have a way to
359 	 * check the checksum with options still present.
360 	 */
361 	if (iphlen > sizeof (struct ip)) {
362 		ip_stripoptions(m);
363 		iphlen = sizeof(struct ip);
364 	}
365 
366 	/*
367 	 * Get IP and UDP header together in first mbuf.
368 	 */
369 	ip = mtod(m, struct ip *);
370 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
371 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
372 			UDPSTAT_INC(udps_hdrops);
373 			return;
374 		}
375 		ip = mtod(m, struct ip *);
376 	}
377 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
378 
379 	/*
380 	 * Destination port of 0 is illegal, based on RFC768.
381 	 */
382 	if (uh->uh_dport == 0)
383 		goto badunlocked;
384 
385 	/*
386 	 * Construct sockaddr format source address.  Stuff source address
387 	 * and datagram in user buffer.
388 	 */
389 	bzero(&udp_in, sizeof(udp_in));
390 	udp_in.sin_len = sizeof(udp_in);
391 	udp_in.sin_family = AF_INET;
392 	udp_in.sin_port = uh->uh_sport;
393 	udp_in.sin_addr = ip->ip_src;
394 
395 	/*
396 	 * Make mbuf data length reflect UDP length.  If not enough data to
397 	 * reflect UDP length, drop.
398 	 */
399 	len = ntohs((u_short)uh->uh_ulen);
400 	ip_len = ntohs(ip->ip_len) - iphlen;
401 	if (ip_len != len) {
402 		if (len > ip_len || len < sizeof(struct udphdr)) {
403 			UDPSTAT_INC(udps_badlen);
404 			goto badunlocked;
405 		}
406 		m_adj(m, len - ip_len);
407 	}
408 
409 	/*
410 	 * Save a copy of the IP header in case we want restore it for
411 	 * sending an ICMP error message in response.
412 	 */
413 	if (!V_udp_blackhole)
414 		save_ip = *ip;
415 	else
416 		memset(&save_ip, 0, sizeof(save_ip));
417 
418 	/*
419 	 * Checksum extended UDP header and data.
420 	 */
421 	if (uh->uh_sum) {
422 		u_short uh_sum;
423 
424 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
425 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
426 				uh_sum = m->m_pkthdr.csum_data;
427 			else
428 				uh_sum = in_pseudo(ip->ip_src.s_addr,
429 				    ip->ip_dst.s_addr, htonl((u_short)len +
430 				    m->m_pkthdr.csum_data + IPPROTO_UDP));
431 			uh_sum ^= 0xffff;
432 		} else {
433 			char b[9];
434 
435 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
436 			bzero(((struct ipovly *)ip)->ih_x1, 9);
437 			((struct ipovly *)ip)->ih_len = uh->uh_ulen;
438 			uh_sum = in_cksum(m, len + sizeof (struct ip));
439 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
440 		}
441 		if (uh_sum) {
442 			UDPSTAT_INC(udps_badsum);
443 			m_freem(m);
444 			return;
445 		}
446 	} else
447 		UDPSTAT_INC(udps_nosum);
448 
449 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
450 	    in_broadcast(ip->ip_dst, ifp)) {
451 		struct inpcb *last;
452 		struct ip_moptions *imo;
453 
454 		INP_INFO_RLOCK(&V_udbinfo);
455 		last = NULL;
456 		LIST_FOREACH(inp, &V_udb, inp_list) {
457 			if (inp->inp_lport != uh->uh_dport)
458 				continue;
459 #ifdef INET6
460 			if ((inp->inp_vflag & INP_IPV4) == 0)
461 				continue;
462 #endif
463 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
464 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
465 				continue;
466 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
467 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
468 				continue;
469 			if (inp->inp_fport != 0 &&
470 			    inp->inp_fport != uh->uh_sport)
471 				continue;
472 
473 			INP_RLOCK(inp);
474 
475 			/*
476 			 * XXXRW: Because we weren't holding either the inpcb
477 			 * or the hash lock when we checked for a match
478 			 * before, we should probably recheck now that the
479 			 * inpcb lock is held.
480 			 */
481 
482 			/*
483 			 * Handle socket delivery policy for any-source
484 			 * and source-specific multicast. [RFC3678]
485 			 */
486 			imo = inp->inp_moptions;
487 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
488 				struct sockaddr_in	 group;
489 				int			 blocked;
490 				if (imo == NULL) {
491 					INP_RUNLOCK(inp);
492 					continue;
493 				}
494 				bzero(&group, sizeof(struct sockaddr_in));
495 				group.sin_len = sizeof(struct sockaddr_in);
496 				group.sin_family = AF_INET;
497 				group.sin_addr = ip->ip_dst;
498 
499 				blocked = imo_multi_filter(imo, ifp,
500 					(struct sockaddr *)&group,
501 					(struct sockaddr *)&udp_in);
502 				if (blocked != MCAST_PASS) {
503 					if (blocked == MCAST_NOTGMEMBER)
504 						IPSTAT_INC(ips_notmember);
505 					if (blocked == MCAST_NOTSMEMBER ||
506 					    blocked == MCAST_MUTED)
507 						UDPSTAT_INC(udps_filtermcast);
508 					INP_RUNLOCK(inp);
509 					continue;
510 				}
511 			}
512 			if (last != NULL) {
513 				struct mbuf *n;
514 
515 				n = m_copy(m, 0, M_COPYALL);
516 				udp_append(last, ip, n, iphlen, &udp_in);
517 				INP_RUNLOCK(last);
518 			}
519 			last = inp;
520 			/*
521 			 * Don't look for additional matches if this one does
522 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
523 			 * socket options set.  This heuristic avoids
524 			 * searching through all pcbs in the common case of a
525 			 * non-shared port.  It assumes that an application
526 			 * will never clear these options after setting them.
527 			 */
528 			if ((last->inp_socket->so_options &
529 			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
530 				break;
531 		}
532 
533 		if (last == NULL) {
534 			/*
535 			 * No matching pcb found; discard datagram.  (No need
536 			 * to send an ICMP Port Unreachable for a broadcast
537 			 * or multicast datgram.)
538 			 */
539 			UDPSTAT_INC(udps_noportbcast);
540 			if (inp)
541 				INP_RUNLOCK(inp);
542 			INP_INFO_RUNLOCK(&V_udbinfo);
543 			goto badunlocked;
544 		}
545 		udp_append(last, ip, m, iphlen, &udp_in);
546 		INP_RUNLOCK(last);
547 		INP_INFO_RUNLOCK(&V_udbinfo);
548 		return;
549 	}
550 
551 	/*
552 	 * Locate pcb for datagram.
553 	 */
554 
555 	/*
556 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
557 	 */
558 	if ((m->m_flags & M_IP_NEXTHOP) &&
559 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
560 		struct sockaddr_in *next_hop;
561 
562 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
563 
564 		/*
565 		 * Transparently forwarded. Pretend to be the destination.
566 		 * Already got one like this?
567 		 */
568 		inp = in_pcblookup_mbuf(&V_udbinfo, ip->ip_src, uh->uh_sport,
569 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
570 		if (!inp) {
571 			/*
572 			 * It's new.  Try to find the ambushing socket.
573 			 * Because we've rewritten the destination address,
574 			 * any hardware-generated hash is ignored.
575 			 */
576 			inp = in_pcblookup(&V_udbinfo, ip->ip_src,
577 			    uh->uh_sport, next_hop->sin_addr,
578 			    next_hop->sin_port ? htons(next_hop->sin_port) :
579 			    uh->uh_dport, INPLOOKUP_WILDCARD |
580 			    INPLOOKUP_RLOCKPCB, ifp);
581 		}
582 		/* Remove the tag from the packet. We don't need it anymore. */
583 		m_tag_delete(m, fwd_tag);
584 		m->m_flags &= ~M_IP_NEXTHOP;
585 	} else
586 		inp = in_pcblookup_mbuf(&V_udbinfo, ip->ip_src, uh->uh_sport,
587 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
588 		    INPLOOKUP_RLOCKPCB, ifp, m);
589 	if (inp == NULL) {
590 		if (udp_log_in_vain) {
591 			char buf[4*sizeof "123"];
592 
593 			strcpy(buf, inet_ntoa(ip->ip_dst));
594 			log(LOG_INFO,
595 			    "Connection attempt to UDP %s:%d from %s:%d\n",
596 			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
597 			    ntohs(uh->uh_sport));
598 		}
599 		UDPSTAT_INC(udps_noport);
600 		if (m->m_flags & (M_BCAST | M_MCAST)) {
601 			UDPSTAT_INC(udps_noportbcast);
602 			goto badunlocked;
603 		}
604 		if (V_udp_blackhole)
605 			goto badunlocked;
606 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
607 			goto badunlocked;
608 		*ip = save_ip;
609 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
610 		return;
611 	}
612 
613 	/*
614 	 * Check the minimum TTL for socket.
615 	 */
616 	INP_RLOCK_ASSERT(inp);
617 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
618 		INP_RUNLOCK(inp);
619 		m_freem(m);
620 		return;
621 	}
622 
623 	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
624 	udp_append(inp, ip, m, iphlen, &udp_in);
625 	INP_RUNLOCK(inp);
626 	return;
627 
628 badunlocked:
629 	m_freem(m);
630 }
631 #endif /* INET */
632 
633 /*
634  * Notify a udp user of an asynchronous error; just wake up so that they can
635  * collect error status.
636  */
637 struct inpcb *
638 udp_notify(struct inpcb *inp, int errno)
639 {
640 
641 	/*
642 	 * While udp_ctlinput() always calls udp_notify() with a read lock
643 	 * when invoking it directly, in_pcbnotifyall() currently uses write
644 	 * locks due to sharing code with TCP.  For now, accept either a read
645 	 * or a write lock, but a read lock is sufficient.
646 	 */
647 	INP_LOCK_ASSERT(inp);
648 
649 	inp->inp_socket->so_error = errno;
650 	sorwakeup(inp->inp_socket);
651 	sowwakeup(inp->inp_socket);
652 	return (inp);
653 }
654 
655 #ifdef INET
656 void
657 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
658 {
659 	struct ip *ip = vip;
660 	struct udphdr *uh;
661 	struct in_addr faddr;
662 	struct inpcb *inp;
663 
664 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
665 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
666 		return;
667 
668 	/*
669 	 * Redirects don't need to be handled up here.
670 	 */
671 	if (PRC_IS_REDIRECT(cmd))
672 		return;
673 
674 	/*
675 	 * Hostdead is ugly because it goes linearly through all PCBs.
676 	 *
677 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
678 	 * DoS attack on machines with many connections.
679 	 */
680 	if (cmd == PRC_HOSTDEAD)
681 		ip = NULL;
682 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
683 		return;
684 	if (ip != NULL) {
685 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
686 		inp = in_pcblookup(&V_udbinfo, faddr, uh->uh_dport,
687 		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
688 		if (inp != NULL) {
689 			INP_RLOCK_ASSERT(inp);
690 			if (inp->inp_socket != NULL) {
691 				udp_notify(inp, inetctlerrmap[cmd]);
692 			}
693 			INP_RUNLOCK(inp);
694 		}
695 	} else
696 		in_pcbnotifyall(&V_udbinfo, faddr, inetctlerrmap[cmd],
697 		    udp_notify);
698 }
699 #endif /* INET */
700 
701 static int
702 udp_pcblist(SYSCTL_HANDLER_ARGS)
703 {
704 	int error, i, n;
705 	struct inpcb *inp, **inp_list;
706 	inp_gen_t gencnt;
707 	struct xinpgen xig;
708 
709 	/*
710 	 * The process of preparing the PCB list is too time-consuming and
711 	 * resource-intensive to repeat twice on every request.
712 	 */
713 	if (req->oldptr == 0) {
714 		n = V_udbinfo.ipi_count;
715 		n += imax(n / 8, 10);
716 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
717 		return (0);
718 	}
719 
720 	if (req->newptr != 0)
721 		return (EPERM);
722 
723 	/*
724 	 * OK, now we're committed to doing something.
725 	 */
726 	INP_INFO_RLOCK(&V_udbinfo);
727 	gencnt = V_udbinfo.ipi_gencnt;
728 	n = V_udbinfo.ipi_count;
729 	INP_INFO_RUNLOCK(&V_udbinfo);
730 
731 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
732 		+ n * sizeof(struct xinpcb));
733 	if (error != 0)
734 		return (error);
735 
736 	xig.xig_len = sizeof xig;
737 	xig.xig_count = n;
738 	xig.xig_gen = gencnt;
739 	xig.xig_sogen = so_gencnt;
740 	error = SYSCTL_OUT(req, &xig, sizeof xig);
741 	if (error)
742 		return (error);
743 
744 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
745 	if (inp_list == 0)
746 		return (ENOMEM);
747 
748 	INP_INFO_RLOCK(&V_udbinfo);
749 	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
750 	     inp = LIST_NEXT(inp, inp_list)) {
751 		INP_WLOCK(inp);
752 		if (inp->inp_gencnt <= gencnt &&
753 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
754 			in_pcbref(inp);
755 			inp_list[i++] = inp;
756 		}
757 		INP_WUNLOCK(inp);
758 	}
759 	INP_INFO_RUNLOCK(&V_udbinfo);
760 	n = i;
761 
762 	error = 0;
763 	for (i = 0; i < n; i++) {
764 		inp = inp_list[i];
765 		INP_RLOCK(inp);
766 		if (inp->inp_gencnt <= gencnt) {
767 			struct xinpcb xi;
768 
769 			bzero(&xi, sizeof(xi));
770 			xi.xi_len = sizeof xi;
771 			/* XXX should avoid extra copy */
772 			bcopy(inp, &xi.xi_inp, sizeof *inp);
773 			if (inp->inp_socket)
774 				sotoxsocket(inp->inp_socket, &xi.xi_socket);
775 			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
776 			INP_RUNLOCK(inp);
777 			error = SYSCTL_OUT(req, &xi, sizeof xi);
778 		} else
779 			INP_RUNLOCK(inp);
780 	}
781 	INP_INFO_WLOCK(&V_udbinfo);
782 	for (i = 0; i < n; i++) {
783 		inp = inp_list[i];
784 		INP_RLOCK(inp);
785 		if (!in_pcbrele_rlocked(inp))
786 			INP_RUNLOCK(inp);
787 	}
788 	INP_INFO_WUNLOCK(&V_udbinfo);
789 
790 	if (!error) {
791 		/*
792 		 * Give the user an updated idea of our state.  If the
793 		 * generation differs from what we told her before, she knows
794 		 * that something happened while we were processing this
795 		 * request, and it might be necessary to retry.
796 		 */
797 		INP_INFO_RLOCK(&V_udbinfo);
798 		xig.xig_gen = V_udbinfo.ipi_gencnt;
799 		xig.xig_sogen = so_gencnt;
800 		xig.xig_count = V_udbinfo.ipi_count;
801 		INP_INFO_RUNLOCK(&V_udbinfo);
802 		error = SYSCTL_OUT(req, &xig, sizeof xig);
803 	}
804 	free(inp_list, M_TEMP);
805 	return (error);
806 }
807 
808 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
809     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
810     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
811 
812 #ifdef INET
813 static int
814 udp_getcred(SYSCTL_HANDLER_ARGS)
815 {
816 	struct xucred xuc;
817 	struct sockaddr_in addrs[2];
818 	struct inpcb *inp;
819 	int error;
820 
821 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
822 	if (error)
823 		return (error);
824 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
825 	if (error)
826 		return (error);
827 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
828 	    addrs[0].sin_addr, addrs[0].sin_port,
829 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
830 	if (inp != NULL) {
831 		INP_RLOCK_ASSERT(inp);
832 		if (inp->inp_socket == NULL)
833 			error = ENOENT;
834 		if (error == 0)
835 			error = cr_canseeinpcb(req->td->td_ucred, inp);
836 		if (error == 0)
837 			cru2x(inp->inp_cred, &xuc);
838 		INP_RUNLOCK(inp);
839 	} else
840 		error = ENOENT;
841 	if (error == 0)
842 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
843 	return (error);
844 }
845 
846 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
847     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
848     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
849 #endif /* INET */
850 
851 int
852 udp_ctloutput(struct socket *so, struct sockopt *sopt)
853 {
854 	int error = 0, optval;
855 	struct inpcb *inp;
856 #ifdef IPSEC_NAT_T
857 	struct udpcb *up;
858 #endif
859 
860 	inp = sotoinpcb(so);
861 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
862 	INP_WLOCK(inp);
863 	if (sopt->sopt_level != IPPROTO_UDP) {
864 #ifdef INET6
865 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
866 			INP_WUNLOCK(inp);
867 			error = ip6_ctloutput(so, sopt);
868 		}
869 #endif
870 #if defined(INET) && defined(INET6)
871 		else
872 #endif
873 #ifdef INET
874 		{
875 			INP_WUNLOCK(inp);
876 			error = ip_ctloutput(so, sopt);
877 		}
878 #endif
879 		return (error);
880 	}
881 
882 	switch (sopt->sopt_dir) {
883 	case SOPT_SET:
884 		switch (sopt->sopt_name) {
885 		case UDP_ENCAP:
886 			INP_WUNLOCK(inp);
887 			error = sooptcopyin(sopt, &optval, sizeof optval,
888 					    sizeof optval);
889 			if (error)
890 				break;
891 			inp = sotoinpcb(so);
892 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
893 			INP_WLOCK(inp);
894 #ifdef IPSEC_NAT_T
895 			up = intoudpcb(inp);
896 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
897 #endif
898 			switch (optval) {
899 			case 0:
900 				/* Clear all UDP encap. */
901 #ifdef IPSEC_NAT_T
902 				up->u_flags &= ~UF_ESPINUDP_ALL;
903 #endif
904 				break;
905 #ifdef IPSEC_NAT_T
906 			case UDP_ENCAP_ESPINUDP:
907 			case UDP_ENCAP_ESPINUDP_NON_IKE:
908 				up->u_flags &= ~UF_ESPINUDP_ALL;
909 				if (optval == UDP_ENCAP_ESPINUDP)
910 					up->u_flags |= UF_ESPINUDP;
911 				else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
912 					up->u_flags |= UF_ESPINUDP_NON_IKE;
913 				break;
914 #endif
915 			default:
916 				error = EINVAL;
917 				break;
918 			}
919 			INP_WUNLOCK(inp);
920 			break;
921 		default:
922 			INP_WUNLOCK(inp);
923 			error = ENOPROTOOPT;
924 			break;
925 		}
926 		break;
927 	case SOPT_GET:
928 		switch (sopt->sopt_name) {
929 #ifdef IPSEC_NAT_T
930 		case UDP_ENCAP:
931 			up = intoudpcb(inp);
932 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
933 			optval = up->u_flags & UF_ESPINUDP_ALL;
934 			INP_WUNLOCK(inp);
935 			error = sooptcopyout(sopt, &optval, sizeof optval);
936 			break;
937 #endif
938 		default:
939 			INP_WUNLOCK(inp);
940 			error = ENOPROTOOPT;
941 			break;
942 		}
943 		break;
944 	}
945 	return (error);
946 }
947 
948 #ifdef INET
949 #define	UH_WLOCKED	2
950 #define	UH_RLOCKED	1
951 #define	UH_UNLOCKED	0
952 static int
953 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
954     struct mbuf *control, struct thread *td)
955 {
956 	struct udpiphdr *ui;
957 	int len = m->m_pkthdr.len;
958 	struct in_addr faddr, laddr;
959 	struct cmsghdr *cm;
960 	struct sockaddr_in *sin, src;
961 	int error = 0;
962 	int ipflags;
963 	u_short fport, lport;
964 	int unlock_udbinfo;
965 	u_char tos;
966 
967 	/*
968 	 * udp_output() may need to temporarily bind or connect the current
969 	 * inpcb.  As such, we don't know up front whether we will need the
970 	 * pcbinfo lock or not.  Do any work to decide what is needed up
971 	 * front before acquiring any locks.
972 	 */
973 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
974 		if (control)
975 			m_freem(control);
976 		m_freem(m);
977 		return (EMSGSIZE);
978 	}
979 
980 	src.sin_family = 0;
981 	INP_RLOCK(inp);
982 	tos = inp->inp_ip_tos;
983 	if (control != NULL) {
984 		/*
985 		 * XXX: Currently, we assume all the optional information is
986 		 * stored in a single mbuf.
987 		 */
988 		if (control->m_next) {
989 			INP_RUNLOCK(inp);
990 			m_freem(control);
991 			m_freem(m);
992 			return (EINVAL);
993 		}
994 		for (; control->m_len > 0;
995 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
996 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
997 			cm = mtod(control, struct cmsghdr *);
998 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
999 			    || cm->cmsg_len > control->m_len) {
1000 				error = EINVAL;
1001 				break;
1002 			}
1003 			if (cm->cmsg_level != IPPROTO_IP)
1004 				continue;
1005 
1006 			switch (cm->cmsg_type) {
1007 			case IP_SENDSRCADDR:
1008 				if (cm->cmsg_len !=
1009 				    CMSG_LEN(sizeof(struct in_addr))) {
1010 					error = EINVAL;
1011 					break;
1012 				}
1013 				bzero(&src, sizeof(src));
1014 				src.sin_family = AF_INET;
1015 				src.sin_len = sizeof(src);
1016 				src.sin_port = inp->inp_lport;
1017 				src.sin_addr =
1018 				    *(struct in_addr *)CMSG_DATA(cm);
1019 				break;
1020 
1021 			case IP_TOS:
1022 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1023 					error = EINVAL;
1024 					break;
1025 				}
1026 				tos = *(u_char *)CMSG_DATA(cm);
1027 				break;
1028 
1029 			default:
1030 				error = ENOPROTOOPT;
1031 				break;
1032 			}
1033 			if (error)
1034 				break;
1035 		}
1036 		m_freem(control);
1037 	}
1038 	if (error) {
1039 		INP_RUNLOCK(inp);
1040 		m_freem(m);
1041 		return (error);
1042 	}
1043 
1044 	/*
1045 	 * Depending on whether or not the application has bound or connected
1046 	 * the socket, we may have to do varying levels of work.  The optimal
1047 	 * case is for a connected UDP socket, as a global lock isn't
1048 	 * required at all.
1049 	 *
1050 	 * In order to decide which we need, we require stability of the
1051 	 * inpcb binding, which we ensure by acquiring a read lock on the
1052 	 * inpcb.  This doesn't strictly follow the lock order, so we play
1053 	 * the trylock and retry game; note that we may end up with more
1054 	 * conservative locks than required the second time around, so later
1055 	 * assertions have to accept that.  Further analysis of the number of
1056 	 * misses under contention is required.
1057 	 *
1058 	 * XXXRW: Check that hash locking update here is correct.
1059 	 */
1060 	sin = (struct sockaddr_in *)addr;
1061 	if (sin != NULL &&
1062 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1063 		INP_RUNLOCK(inp);
1064 		INP_WLOCK(inp);
1065 		INP_HASH_WLOCK(&V_udbinfo);
1066 		unlock_udbinfo = UH_WLOCKED;
1067 	} else if ((sin != NULL && (
1068 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1069 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1070 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1071 	    (inp->inp_lport == 0))) ||
1072 	    (src.sin_family == AF_INET)) {
1073 		INP_HASH_RLOCK(&V_udbinfo);
1074 		unlock_udbinfo = UH_RLOCKED;
1075 	} else
1076 		unlock_udbinfo = UH_UNLOCKED;
1077 
1078 	/*
1079 	 * If the IP_SENDSRCADDR control message was specified, override the
1080 	 * source address for this datagram.  Its use is invalidated if the
1081 	 * address thus specified is incomplete or clobbers other inpcbs.
1082 	 */
1083 	laddr = inp->inp_laddr;
1084 	lport = inp->inp_lport;
1085 	if (src.sin_family == AF_INET) {
1086 		INP_HASH_LOCK_ASSERT(&V_udbinfo);
1087 		if ((lport == 0) ||
1088 		    (laddr.s_addr == INADDR_ANY &&
1089 		     src.sin_addr.s_addr == INADDR_ANY)) {
1090 			error = EINVAL;
1091 			goto release;
1092 		}
1093 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1094 		    &laddr.s_addr, &lport, td->td_ucred);
1095 		if (error)
1096 			goto release;
1097 	}
1098 
1099 	/*
1100 	 * If a UDP socket has been connected, then a local address/port will
1101 	 * have been selected and bound.
1102 	 *
1103 	 * If a UDP socket has not been connected to, then an explicit
1104 	 * destination address must be used, in which case a local
1105 	 * address/port may not have been selected and bound.
1106 	 */
1107 	if (sin != NULL) {
1108 		INP_LOCK_ASSERT(inp);
1109 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1110 			error = EISCONN;
1111 			goto release;
1112 		}
1113 
1114 		/*
1115 		 * Jail may rewrite the destination address, so let it do
1116 		 * that before we use it.
1117 		 */
1118 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1119 		if (error)
1120 			goto release;
1121 
1122 		/*
1123 		 * If a local address or port hasn't yet been selected, or if
1124 		 * the destination address needs to be rewritten due to using
1125 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1126 		 * to do the heavy lifting.  Once a port is selected, we
1127 		 * commit the binding back to the socket; we also commit the
1128 		 * binding of the address if in jail.
1129 		 *
1130 		 * If we already have a valid binding and we're not
1131 		 * requesting a destination address rewrite, use a fast path.
1132 		 */
1133 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1134 		    inp->inp_lport == 0 ||
1135 		    sin->sin_addr.s_addr == INADDR_ANY ||
1136 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1137 			INP_HASH_LOCK_ASSERT(&V_udbinfo);
1138 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1139 			    &lport, &faddr.s_addr, &fport, NULL,
1140 			    td->td_ucred);
1141 			if (error)
1142 				goto release;
1143 
1144 			/*
1145 			 * XXXRW: Why not commit the port if the address is
1146 			 * !INADDR_ANY?
1147 			 */
1148 			/* Commit the local port if newly assigned. */
1149 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1150 			    inp->inp_lport == 0) {
1151 				INP_WLOCK_ASSERT(inp);
1152 				INP_HASH_WLOCK_ASSERT(&V_udbinfo);
1153 				/*
1154 				 * Remember addr if jailed, to prevent
1155 				 * rebinding.
1156 				 */
1157 				if (prison_flag(td->td_ucred, PR_IP4))
1158 					inp->inp_laddr = laddr;
1159 				inp->inp_lport = lport;
1160 				if (in_pcbinshash(inp) != 0) {
1161 					inp->inp_lport = 0;
1162 					error = EAGAIN;
1163 					goto release;
1164 				}
1165 				inp->inp_flags |= INP_ANONPORT;
1166 			}
1167 		} else {
1168 			faddr = sin->sin_addr;
1169 			fport = sin->sin_port;
1170 		}
1171 	} else {
1172 		INP_LOCK_ASSERT(inp);
1173 		faddr = inp->inp_faddr;
1174 		fport = inp->inp_fport;
1175 		if (faddr.s_addr == INADDR_ANY) {
1176 			error = ENOTCONN;
1177 			goto release;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1183 	 * link-layer headers.  Immediate slide the data pointer back forward
1184 	 * since we won't use that space at this layer.
1185 	 */
1186 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1187 	if (m == NULL) {
1188 		error = ENOBUFS;
1189 		goto release;
1190 	}
1191 	m->m_data += max_linkhdr;
1192 	m->m_len -= max_linkhdr;
1193 	m->m_pkthdr.len -= max_linkhdr;
1194 
1195 	/*
1196 	 * Fill in mbuf with extended UDP header and addresses and length put
1197 	 * into network format.
1198 	 */
1199 	ui = mtod(m, struct udpiphdr *);
1200 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1201 	ui->ui_v = IPVERSION << 4;
1202 	ui->ui_pr = IPPROTO_UDP;
1203 	ui->ui_src = laddr;
1204 	ui->ui_dst = faddr;
1205 	ui->ui_sport = lport;
1206 	ui->ui_dport = fport;
1207 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1208 
1209 	/*
1210 	 * Set the Don't Fragment bit in the IP header.
1211 	 */
1212 	if (inp->inp_flags & INP_DONTFRAG) {
1213 		struct ip *ip;
1214 
1215 		ip = (struct ip *)&ui->ui_i;
1216 		ip->ip_off |= htons(IP_DF);
1217 	}
1218 
1219 	ipflags = 0;
1220 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1221 		ipflags |= IP_ROUTETOIF;
1222 	if (inp->inp_socket->so_options & SO_BROADCAST)
1223 		ipflags |= IP_ALLOWBROADCAST;
1224 	if (inp->inp_flags & INP_ONESBCAST)
1225 		ipflags |= IP_SENDONES;
1226 
1227 #ifdef MAC
1228 	mac_inpcb_create_mbuf(inp, m);
1229 #endif
1230 
1231 	/*
1232 	 * Set up checksum and output datagram.
1233 	 */
1234 	if (V_udp_cksum) {
1235 		if (inp->inp_flags & INP_ONESBCAST)
1236 			faddr.s_addr = INADDR_BROADCAST;
1237 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1238 		    htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
1239 		m->m_pkthdr.csum_flags = CSUM_UDP;
1240 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1241 	} else
1242 		ui->ui_sum = 0;
1243 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1244 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1245 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1246 	UDPSTAT_INC(udps_opackets);
1247 
1248 	if (unlock_udbinfo == UH_WLOCKED)
1249 		INP_HASH_WUNLOCK(&V_udbinfo);
1250 	else if (unlock_udbinfo == UH_RLOCKED)
1251 		INP_HASH_RUNLOCK(&V_udbinfo);
1252 	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1253 	error = ip_output(m, inp->inp_options, NULL, ipflags,
1254 	    inp->inp_moptions, inp);
1255 	if (unlock_udbinfo == UH_WLOCKED)
1256 		INP_WUNLOCK(inp);
1257 	else
1258 		INP_RUNLOCK(inp);
1259 	return (error);
1260 
1261 release:
1262 	if (unlock_udbinfo == UH_WLOCKED) {
1263 		INP_HASH_WUNLOCK(&V_udbinfo);
1264 		INP_WUNLOCK(inp);
1265 	} else if (unlock_udbinfo == UH_RLOCKED) {
1266 		INP_HASH_RUNLOCK(&V_udbinfo);
1267 		INP_RUNLOCK(inp);
1268 	} else
1269 		INP_RUNLOCK(inp);
1270 	m_freem(m);
1271 	return (error);
1272 }
1273 
1274 
1275 #if defined(IPSEC) && defined(IPSEC_NAT_T)
1276 /*
1277  * Potentially decap ESP in UDP frame.  Check for an ESP header
1278  * and optional marker; if present, strip the UDP header and
1279  * push the result through IPSec.
1280  *
1281  * Returns mbuf to be processed (potentially re-allocated) or
1282  * NULL if consumed and/or processed.
1283  */
1284 static struct mbuf *
1285 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1286 {
1287 	size_t minlen, payload, skip, iphlen;
1288 	caddr_t data;
1289 	struct udpcb *up;
1290 	struct m_tag *tag;
1291 	struct udphdr *udphdr;
1292 	struct ip *ip;
1293 
1294 	INP_RLOCK_ASSERT(inp);
1295 
1296 	/*
1297 	 * Pull up data so the longest case is contiguous:
1298 	 *    IP/UDP hdr + non ESP marker + ESP hdr.
1299 	 */
1300 	minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1301 	if (minlen > m->m_pkthdr.len)
1302 		minlen = m->m_pkthdr.len;
1303 	if ((m = m_pullup(m, minlen)) == NULL) {
1304 		IPSECSTAT_INC(ips_in_inval);
1305 		return (NULL);		/* Bypass caller processing. */
1306 	}
1307 	data = mtod(m, caddr_t);	/* Points to ip header. */
1308 	payload = m->m_len - off;	/* Size of payload. */
1309 
1310 	if (payload == 1 && data[off] == '\xff')
1311 		return (m);		/* NB: keepalive packet, no decap. */
1312 
1313 	up = intoudpcb(inp);
1314 	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1315 	KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1316 	    ("u_flags 0x%x", up->u_flags));
1317 
1318 	/*
1319 	 * Check that the payload is large enough to hold an
1320 	 * ESP header and compute the amount of data to remove.
1321 	 *
1322 	 * NB: the caller has already done a pullup for us.
1323 	 * XXX can we assume alignment and eliminate bcopys?
1324 	 */
1325 	if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1326 		/*
1327 		 * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1328 		 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1329 		 * possible AH mode non-IKE marker+non-ESP marker
1330 		 * from draft-ietf-ipsec-udp-encaps-00.txt.
1331 		 */
1332 		uint64_t marker;
1333 
1334 		if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1335 			return (m);	/* NB: no decap. */
1336 		bcopy(data + off, &marker, sizeof(uint64_t));
1337 		if (marker != 0)	/* Non-IKE marker. */
1338 			return (m);	/* NB: no decap. */
1339 		skip = sizeof(uint64_t) + sizeof(struct udphdr);
1340 	} else {
1341 		uint32_t spi;
1342 
1343 		if (payload <= sizeof(struct esp)) {
1344 			IPSECSTAT_INC(ips_in_inval);
1345 			m_freem(m);
1346 			return (NULL);	/* Discard. */
1347 		}
1348 		bcopy(data + off, &spi, sizeof(uint32_t));
1349 		if (spi == 0)		/* Non-ESP marker. */
1350 			return (m);	/* NB: no decap. */
1351 		skip = sizeof(struct udphdr);
1352 	}
1353 
1354 	/*
1355 	 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1356 	 * the UDP ports. This is required if we want to select
1357 	 * the right SPD for multiple hosts behind same NAT.
1358 	 *
1359 	 * NB: ports are maintained in network byte order everywhere
1360 	 *     in the NAT-T code.
1361 	 */
1362 	tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1363 		2 * sizeof(uint16_t), M_NOWAIT);
1364 	if (tag == NULL) {
1365 		IPSECSTAT_INC(ips_in_nomem);
1366 		m_freem(m);
1367 		return (NULL);		/* Discard. */
1368 	}
1369 	iphlen = off - sizeof(struct udphdr);
1370 	udphdr = (struct udphdr *)(data + iphlen);
1371 	((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1372 	((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1373 	m_tag_prepend(m, tag);
1374 
1375 	/*
1376 	 * Remove the UDP header (and possibly the non ESP marker)
1377 	 * IP header length is iphlen
1378 	 * Before:
1379 	 *   <--- off --->
1380 	 *   +----+------+-----+
1381 	 *   | IP |  UDP | ESP |
1382 	 *   +----+------+-----+
1383 	 *        <-skip->
1384 	 * After:
1385 	 *          +----+-----+
1386 	 *          | IP | ESP |
1387 	 *          +----+-----+
1388 	 *   <-skip->
1389 	 */
1390 	ovbcopy(data, data + skip, iphlen);
1391 	m_adj(m, skip);
1392 
1393 	ip = mtod(m, struct ip *);
1394 	ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1395 	ip->ip_p = IPPROTO_ESP;
1396 
1397 	/*
1398 	 * We cannot yet update the cksums so clear any
1399 	 * h/w cksum flags as they are no longer valid.
1400 	 */
1401 	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1402 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1403 
1404 	(void) ipsec4_common_input(m, iphlen, ip->ip_p);
1405 	return (NULL);			/* NB: consumed, bypass processing. */
1406 }
1407 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1408 
1409 static void
1410 udp_abort(struct socket *so)
1411 {
1412 	struct inpcb *inp;
1413 
1414 	inp = sotoinpcb(so);
1415 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1416 	INP_WLOCK(inp);
1417 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1418 		INP_HASH_WLOCK(&V_udbinfo);
1419 		in_pcbdisconnect(inp);
1420 		inp->inp_laddr.s_addr = INADDR_ANY;
1421 		INP_HASH_WUNLOCK(&V_udbinfo);
1422 		soisdisconnected(so);
1423 	}
1424 	INP_WUNLOCK(inp);
1425 }
1426 
1427 static int
1428 udp_attach(struct socket *so, int proto, struct thread *td)
1429 {
1430 	struct inpcb *inp;
1431 	int error;
1432 
1433 	inp = sotoinpcb(so);
1434 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1435 	error = soreserve(so, udp_sendspace, udp_recvspace);
1436 	if (error)
1437 		return (error);
1438 	INP_INFO_WLOCK(&V_udbinfo);
1439 	error = in_pcballoc(so, &V_udbinfo);
1440 	if (error) {
1441 		INP_INFO_WUNLOCK(&V_udbinfo);
1442 		return (error);
1443 	}
1444 
1445 	inp = sotoinpcb(so);
1446 	inp->inp_vflag |= INP_IPV4;
1447 	inp->inp_ip_ttl = V_ip_defttl;
1448 
1449 	error = udp_newudpcb(inp);
1450 	if (error) {
1451 		in_pcbdetach(inp);
1452 		in_pcbfree(inp);
1453 		INP_INFO_WUNLOCK(&V_udbinfo);
1454 		return (error);
1455 	}
1456 
1457 	INP_WUNLOCK(inp);
1458 	INP_INFO_WUNLOCK(&V_udbinfo);
1459 	return (0);
1460 }
1461 #endif /* INET */
1462 
1463 int
1464 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
1465 {
1466 	struct inpcb *inp;
1467 	struct udpcb *up;
1468 
1469 	KASSERT(so->so_type == SOCK_DGRAM,
1470 	    ("udp_set_kernel_tunneling: !dgram"));
1471 	inp = sotoinpcb(so);
1472 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1473 	INP_WLOCK(inp);
1474 	up = intoudpcb(inp);
1475 	if (up->u_tun_func != NULL) {
1476 		INP_WUNLOCK(inp);
1477 		return (EBUSY);
1478 	}
1479 	up->u_tun_func = f;
1480 	INP_WUNLOCK(inp);
1481 	return (0);
1482 }
1483 
1484 #ifdef INET
1485 static int
1486 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1487 {
1488 	struct inpcb *inp;
1489 	int error;
1490 
1491 	inp = sotoinpcb(so);
1492 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1493 	INP_WLOCK(inp);
1494 	INP_HASH_WLOCK(&V_udbinfo);
1495 	error = in_pcbbind(inp, nam, td->td_ucred);
1496 	INP_HASH_WUNLOCK(&V_udbinfo);
1497 	INP_WUNLOCK(inp);
1498 	return (error);
1499 }
1500 
1501 static void
1502 udp_close(struct socket *so)
1503 {
1504 	struct inpcb *inp;
1505 
1506 	inp = sotoinpcb(so);
1507 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1508 	INP_WLOCK(inp);
1509 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1510 		INP_HASH_WLOCK(&V_udbinfo);
1511 		in_pcbdisconnect(inp);
1512 		inp->inp_laddr.s_addr = INADDR_ANY;
1513 		INP_HASH_WUNLOCK(&V_udbinfo);
1514 		soisdisconnected(so);
1515 	}
1516 	INP_WUNLOCK(inp);
1517 }
1518 
1519 static int
1520 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1521 {
1522 	struct inpcb *inp;
1523 	int error;
1524 	struct sockaddr_in *sin;
1525 
1526 	inp = sotoinpcb(so);
1527 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1528 	INP_WLOCK(inp);
1529 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1530 		INP_WUNLOCK(inp);
1531 		return (EISCONN);
1532 	}
1533 	sin = (struct sockaddr_in *)nam;
1534 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1535 	if (error != 0) {
1536 		INP_WUNLOCK(inp);
1537 		return (error);
1538 	}
1539 	INP_HASH_WLOCK(&V_udbinfo);
1540 	error = in_pcbconnect(inp, nam, td->td_ucred);
1541 	INP_HASH_WUNLOCK(&V_udbinfo);
1542 	if (error == 0)
1543 		soisconnected(so);
1544 	INP_WUNLOCK(inp);
1545 	return (error);
1546 }
1547 
1548 static void
1549 udp_detach(struct socket *so)
1550 {
1551 	struct inpcb *inp;
1552 	struct udpcb *up;
1553 
1554 	inp = sotoinpcb(so);
1555 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1556 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1557 	    ("udp_detach: not disconnected"));
1558 	INP_INFO_WLOCK(&V_udbinfo);
1559 	INP_WLOCK(inp);
1560 	up = intoudpcb(inp);
1561 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1562 	inp->inp_ppcb = NULL;
1563 	in_pcbdetach(inp);
1564 	in_pcbfree(inp);
1565 	INP_INFO_WUNLOCK(&V_udbinfo);
1566 	udp_discardcb(up);
1567 }
1568 
1569 static int
1570 udp_disconnect(struct socket *so)
1571 {
1572 	struct inpcb *inp;
1573 
1574 	inp = sotoinpcb(so);
1575 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1576 	INP_WLOCK(inp);
1577 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1578 		INP_WUNLOCK(inp);
1579 		return (ENOTCONN);
1580 	}
1581 	INP_HASH_WLOCK(&V_udbinfo);
1582 	in_pcbdisconnect(inp);
1583 	inp->inp_laddr.s_addr = INADDR_ANY;
1584 	INP_HASH_WUNLOCK(&V_udbinfo);
1585 	SOCK_LOCK(so);
1586 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1587 	SOCK_UNLOCK(so);
1588 	INP_WUNLOCK(inp);
1589 	return (0);
1590 }
1591 
1592 static int
1593 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1594     struct mbuf *control, struct thread *td)
1595 {
1596 	struct inpcb *inp;
1597 
1598 	inp = sotoinpcb(so);
1599 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1600 	return (udp_output(inp, m, addr, control, td));
1601 }
1602 #endif /* INET */
1603 
1604 int
1605 udp_shutdown(struct socket *so)
1606 {
1607 	struct inpcb *inp;
1608 
1609 	inp = sotoinpcb(so);
1610 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1611 	INP_WLOCK(inp);
1612 	socantsendmore(so);
1613 	INP_WUNLOCK(inp);
1614 	return (0);
1615 }
1616 
1617 #ifdef INET
1618 struct pr_usrreqs udp_usrreqs = {
1619 	.pru_abort =		udp_abort,
1620 	.pru_attach =		udp_attach,
1621 	.pru_bind =		udp_bind,
1622 	.pru_connect =		udp_connect,
1623 	.pru_control =		in_control,
1624 	.pru_detach =		udp_detach,
1625 	.pru_disconnect =	udp_disconnect,
1626 	.pru_peeraddr =		in_getpeeraddr,
1627 	.pru_send =		udp_send,
1628 	.pru_soreceive =	soreceive_dgram,
1629 	.pru_sosend =		sosend_dgram,
1630 	.pru_shutdown =		udp_shutdown,
1631 	.pru_sockaddr =		in_getsockaddr,
1632 	.pru_sosetlabel =	in_pcbsosetlabel,
1633 	.pru_close =		udp_close,
1634 };
1635 #endif /* INET */
1636