1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_route.h" 48 #include "opt_rss.h" 49 50 #include <sys/param.h> 51 #include <sys/domain.h> 52 #include <sys/eventhandler.h> 53 #include <sys/jail.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/protosw.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sx.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/systm.h> 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/route.h> 75 #include <net/route/nhop.h> 76 #include <net/rss_config.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #ifdef INET6 86 #include <netinet/ip6.h> 87 #endif 88 #include <netinet/ip_icmp.h> 89 #include <netinet/icmp_var.h> 90 #include <netinet/ip_var.h> 91 #include <netinet/ip_options.h> 92 #ifdef INET6 93 #include <netinet6/ip6_var.h> 94 #endif 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 #include <netinet/udplite.h> 98 #include <netinet/in_rss.h> 99 100 #include <netipsec/ipsec_support.h> 101 102 #include <machine/in_cksum.h> 103 104 #include <security/mac/mac_framework.h> 105 106 /* 107 * UDP and UDP-Lite protocols implementation. 108 * Per RFC 768, August, 1980. 109 * Per RFC 3828, July, 2004. 110 */ 111 112 /* 113 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 114 * removes the only data integrity mechanism for packets and malformed 115 * packets that would otherwise be discarded due to bad checksums, and may 116 * cause problems (especially for NFS data blocks). 117 */ 118 VNET_DEFINE(int, udp_cksum) = 1; 119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 120 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 121 122 VNET_DEFINE(int, udp_log_in_vain) = 0; 123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 124 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 125 126 VNET_DEFINE(int, udp_blackhole) = 0; 127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 128 &VNET_NAME(udp_blackhole), 0, 129 "Do not send port unreachables for refused connects"); 130 131 u_long udp_sendspace = 9216; /* really max datagram size */ 132 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 133 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 134 135 u_long udp_recvspace = 40 * (1024 + 136 #ifdef INET6 137 sizeof(struct sockaddr_in6) 138 #else 139 sizeof(struct sockaddr_in) 140 #endif 141 ); /* 40 1K datagrams */ 142 143 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 144 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 145 146 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 147 VNET_DEFINE(struct inpcbinfo, udbinfo); 148 VNET_DEFINE(struct inpcbhead, ulitecb); 149 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 150 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone); 151 #define V_udpcb_zone VNET(udpcb_zone) 152 153 #ifndef UDBHASHSIZE 154 #define UDBHASHSIZE 128 155 #endif 156 157 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 158 VNET_PCPUSTAT_SYSINIT(udpstat); 159 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 160 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 161 162 #ifdef VIMAGE 163 VNET_PCPUSTAT_SYSUNINIT(udpstat); 164 #endif /* VIMAGE */ 165 #ifdef INET 166 static void udp_detach(struct socket *so); 167 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 168 struct mbuf *, struct thread *, int); 169 #endif 170 171 static void 172 udp_zone_change(void *tag) 173 { 174 175 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 176 uma_zone_set_max(V_udpcb_zone, maxsockets); 177 } 178 179 static int 180 udp_inpcb_init(void *mem, int size, int flags) 181 { 182 struct inpcb *inp; 183 184 inp = mem; 185 INP_LOCK_INIT(inp, "inp", "udpinp"); 186 return (0); 187 } 188 189 static int 190 udplite_inpcb_init(void *mem, int size, int flags) 191 { 192 struct inpcb *inp; 193 194 inp = mem; 195 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 196 return (0); 197 } 198 199 void 200 udp_init(void) 201 { 202 203 /* 204 * For now default to 2-tuple UDP hashing - until the fragment 205 * reassembly code can also update the flowid. 206 * 207 * Once we can calculate the flowid that way and re-establish 208 * a 4-tuple, flip this to 4-tuple. 209 */ 210 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 211 "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE); 212 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 214 uma_zone_set_max(V_udpcb_zone, maxsockets); 215 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 216 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 217 EVENTHANDLER_PRI_ANY); 218 } 219 220 void 221 udplite_init(void) 222 { 223 224 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 225 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, 226 IPI_HASHFIELDS_2TUPLE); 227 } 228 229 /* 230 * Kernel module interface for updating udpstat. The argument is an index 231 * into udpstat treated as an array of u_long. While this encodes the 232 * general layout of udpstat into the caller, it doesn't encode its location, 233 * so that future changes to add, for example, per-CPU stats support won't 234 * cause binary compatibility problems for kernel modules. 235 */ 236 void 237 kmod_udpstat_inc(int statnum) 238 { 239 240 counter_u64_add(VNET(udpstat)[statnum], 1); 241 } 242 243 int 244 udp_newudpcb(struct inpcb *inp) 245 { 246 struct udpcb *up; 247 248 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 249 if (up == NULL) 250 return (ENOBUFS); 251 inp->inp_ppcb = up; 252 return (0); 253 } 254 255 void 256 udp_discardcb(struct udpcb *up) 257 { 258 259 uma_zfree(V_udpcb_zone, up); 260 } 261 262 #ifdef VIMAGE 263 static void 264 udp_destroy(void *unused __unused) 265 { 266 267 in_pcbinfo_destroy(&V_udbinfo); 268 uma_zdestroy(V_udpcb_zone); 269 } 270 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 271 272 static void 273 udplite_destroy(void *unused __unused) 274 { 275 276 in_pcbinfo_destroy(&V_ulitecbinfo); 277 } 278 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 279 NULL); 280 #endif 281 282 #ifdef INET 283 /* 284 * Subroutine of udp_input(), which appends the provided mbuf chain to the 285 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 286 * contains the source address. If the socket ends up being an IPv6 socket, 287 * udp_append() will convert to a sockaddr_in6 before passing the address 288 * into the socket code. 289 * 290 * In the normal case udp_append() will return 0, indicating that you 291 * must unlock the inp. However if a tunneling protocol is in place we increment 292 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 293 * then decrement the reference count. If the inp_rele returns 1, indicating the 294 * inp is gone, we return that to the caller to tell them *not* to unlock 295 * the inp. In the case of multi-cast this will cause the distribution 296 * to stop (though most tunneling protocols known currently do *not* use 297 * multicast). 298 */ 299 static int 300 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 301 struct sockaddr_in *udp_in) 302 { 303 struct sockaddr *append_sa; 304 struct socket *so; 305 struct mbuf *tmpopts, *opts = NULL; 306 #ifdef INET6 307 struct sockaddr_in6 udp_in6; 308 #endif 309 struct udpcb *up; 310 311 INP_LOCK_ASSERT(inp); 312 313 /* 314 * Engage the tunneling protocol. 315 */ 316 up = intoudpcb(inp); 317 if (up->u_tun_func != NULL) { 318 in_pcbref(inp); 319 INP_RUNLOCK(inp); 320 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 321 up->u_tun_ctx); 322 INP_RLOCK(inp); 323 return (in_pcbrele_rlocked(inp)); 324 } 325 326 off += sizeof(struct udphdr); 327 328 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 329 /* Check AH/ESP integrity. */ 330 if (IPSEC_ENABLED(ipv4) && 331 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 332 m_freem(n); 333 return (0); 334 } 335 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 336 if (IPSEC_ENABLED(ipv4) && 337 UDPENCAP_INPUT(n, off, AF_INET) != 0) 338 return (0); /* Consumed. */ 339 } 340 #endif /* IPSEC */ 341 #ifdef MAC 342 if (mac_inpcb_check_deliver(inp, n) != 0) { 343 m_freem(n); 344 return (0); 345 } 346 #endif /* MAC */ 347 if (inp->inp_flags & INP_CONTROLOPTS || 348 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 349 #ifdef INET6 350 if (inp->inp_vflag & INP_IPV6) 351 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 352 else 353 #endif /* INET6 */ 354 ip_savecontrol(inp, &opts, ip, n); 355 } 356 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 357 tmpopts = sbcreatecontrol((caddr_t)&udp_in[1], 358 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP); 359 if (tmpopts) { 360 if (opts) { 361 tmpopts->m_next = opts; 362 opts = tmpopts; 363 } else 364 opts = tmpopts; 365 } 366 } 367 #ifdef INET6 368 if (inp->inp_vflag & INP_IPV6) { 369 bzero(&udp_in6, sizeof(udp_in6)); 370 udp_in6.sin6_len = sizeof(udp_in6); 371 udp_in6.sin6_family = AF_INET6; 372 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 373 append_sa = (struct sockaddr *)&udp_in6; 374 } else 375 #endif /* INET6 */ 376 append_sa = (struct sockaddr *)&udp_in[0]; 377 m_adj(n, off); 378 379 so = inp->inp_socket; 380 SOCKBUF_LOCK(&so->so_rcv); 381 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 382 SOCKBUF_UNLOCK(&so->so_rcv); 383 m_freem(n); 384 if (opts) 385 m_freem(opts); 386 UDPSTAT_INC(udps_fullsock); 387 } else 388 sorwakeup_locked(so); 389 return (0); 390 } 391 392 int 393 udp_input(struct mbuf **mp, int *offp, int proto) 394 { 395 struct ip *ip; 396 struct udphdr *uh; 397 struct ifnet *ifp; 398 struct inpcb *inp; 399 uint16_t len, ip_len; 400 struct inpcbinfo *pcbinfo; 401 struct ip save_ip; 402 struct sockaddr_in udp_in[2]; 403 struct mbuf *m; 404 struct m_tag *fwd_tag; 405 int cscov_partial, iphlen; 406 407 m = *mp; 408 iphlen = *offp; 409 ifp = m->m_pkthdr.rcvif; 410 *mp = NULL; 411 UDPSTAT_INC(udps_ipackets); 412 413 /* 414 * Strip IP options, if any; should skip this, make available to 415 * user, and use on returned packets, but we don't yet have a way to 416 * check the checksum with options still present. 417 */ 418 if (iphlen > sizeof (struct ip)) { 419 ip_stripoptions(m); 420 iphlen = sizeof(struct ip); 421 } 422 423 /* 424 * Get IP and UDP header together in first mbuf. 425 */ 426 if (m->m_len < iphlen + sizeof(struct udphdr)) { 427 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 428 UDPSTAT_INC(udps_hdrops); 429 return (IPPROTO_DONE); 430 } 431 } 432 ip = mtod(m, struct ip *); 433 uh = (struct udphdr *)((caddr_t)ip + iphlen); 434 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 435 436 /* 437 * Destination port of 0 is illegal, based on RFC768. 438 */ 439 if (uh->uh_dport == 0) 440 goto badunlocked; 441 442 /* 443 * Construct sockaddr format source address. Stuff source address 444 * and datagram in user buffer. 445 */ 446 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 447 udp_in[0].sin_len = sizeof(struct sockaddr_in); 448 udp_in[0].sin_family = AF_INET; 449 udp_in[0].sin_port = uh->uh_sport; 450 udp_in[0].sin_addr = ip->ip_src; 451 udp_in[1].sin_len = sizeof(struct sockaddr_in); 452 udp_in[1].sin_family = AF_INET; 453 udp_in[1].sin_port = uh->uh_dport; 454 udp_in[1].sin_addr = ip->ip_dst; 455 456 /* 457 * Make mbuf data length reflect UDP length. If not enough data to 458 * reflect UDP length, drop. 459 */ 460 len = ntohs((u_short)uh->uh_ulen); 461 ip_len = ntohs(ip->ip_len) - iphlen; 462 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 463 /* Zero means checksum over the complete packet. */ 464 if (len == 0) 465 len = ip_len; 466 cscov_partial = 0; 467 } 468 if (ip_len != len) { 469 if (len > ip_len || len < sizeof(struct udphdr)) { 470 UDPSTAT_INC(udps_badlen); 471 goto badunlocked; 472 } 473 if (proto == IPPROTO_UDP) 474 m_adj(m, len - ip_len); 475 } 476 477 /* 478 * Save a copy of the IP header in case we want restore it for 479 * sending an ICMP error message in response. 480 */ 481 if (!V_udp_blackhole) 482 save_ip = *ip; 483 else 484 memset(&save_ip, 0, sizeof(save_ip)); 485 486 /* 487 * Checksum extended UDP header and data. 488 */ 489 if (uh->uh_sum) { 490 u_short uh_sum; 491 492 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 493 !cscov_partial) { 494 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 495 uh_sum = m->m_pkthdr.csum_data; 496 else 497 uh_sum = in_pseudo(ip->ip_src.s_addr, 498 ip->ip_dst.s_addr, htonl((u_short)len + 499 m->m_pkthdr.csum_data + proto)); 500 uh_sum ^= 0xffff; 501 } else { 502 char b[9]; 503 504 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 505 bzero(((struct ipovly *)ip)->ih_x1, 9); 506 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 507 uh->uh_ulen : htons(ip_len); 508 uh_sum = in_cksum(m, len + sizeof (struct ip)); 509 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 510 } 511 if (uh_sum) { 512 UDPSTAT_INC(udps_badsum); 513 m_freem(m); 514 return (IPPROTO_DONE); 515 } 516 } else { 517 if (proto == IPPROTO_UDP) { 518 UDPSTAT_INC(udps_nosum); 519 } else { 520 /* UDPLite requires a checksum */ 521 /* XXX: What is the right UDPLite MIB counter here? */ 522 m_freem(m); 523 return (IPPROTO_DONE); 524 } 525 } 526 527 pcbinfo = udp_get_inpcbinfo(proto); 528 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 529 in_broadcast(ip->ip_dst, ifp)) { 530 struct inpcb *last; 531 struct inpcbhead *pcblist; 532 533 NET_EPOCH_ASSERT(); 534 535 pcblist = udp_get_pcblist(proto); 536 last = NULL; 537 CK_LIST_FOREACH(inp, pcblist, inp_list) { 538 if (inp->inp_lport != uh->uh_dport) 539 continue; 540 #ifdef INET6 541 if ((inp->inp_vflag & INP_IPV4) == 0) 542 continue; 543 #endif 544 if (inp->inp_laddr.s_addr != INADDR_ANY && 545 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 546 continue; 547 if (inp->inp_faddr.s_addr != INADDR_ANY && 548 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 549 continue; 550 if (inp->inp_fport != 0 && 551 inp->inp_fport != uh->uh_sport) 552 continue; 553 554 INP_RLOCK(inp); 555 556 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 557 INP_RUNLOCK(inp); 558 continue; 559 } 560 561 /* 562 * XXXRW: Because we weren't holding either the inpcb 563 * or the hash lock when we checked for a match 564 * before, we should probably recheck now that the 565 * inpcb lock is held. 566 */ 567 568 /* 569 * Handle socket delivery policy for any-source 570 * and source-specific multicast. [RFC3678] 571 */ 572 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 573 struct ip_moptions *imo; 574 struct sockaddr_in group; 575 int blocked; 576 577 imo = inp->inp_moptions; 578 if (imo == NULL) { 579 INP_RUNLOCK(inp); 580 continue; 581 } 582 bzero(&group, sizeof(struct sockaddr_in)); 583 group.sin_len = sizeof(struct sockaddr_in); 584 group.sin_family = AF_INET; 585 group.sin_addr = ip->ip_dst; 586 587 blocked = imo_multi_filter(imo, ifp, 588 (struct sockaddr *)&group, 589 (struct sockaddr *)&udp_in[0]); 590 if (blocked != MCAST_PASS) { 591 if (blocked == MCAST_NOTGMEMBER) 592 IPSTAT_INC(ips_notmember); 593 if (blocked == MCAST_NOTSMEMBER || 594 blocked == MCAST_MUTED) 595 UDPSTAT_INC(udps_filtermcast); 596 INP_RUNLOCK(inp); 597 continue; 598 } 599 } 600 if (last != NULL) { 601 struct mbuf *n; 602 603 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != 604 NULL) { 605 if (proto == IPPROTO_UDPLITE) 606 UDPLITE_PROBE(receive, NULL, last, ip, 607 last, uh); 608 else 609 UDP_PROBE(receive, NULL, last, ip, last, 610 uh); 611 if (udp_append(last, ip, n, iphlen, 612 udp_in)) { 613 INP_RUNLOCK(inp); 614 goto badunlocked; 615 } 616 } 617 /* Release PCB lock taken on previous pass. */ 618 INP_RUNLOCK(last); 619 } 620 last = inp; 621 /* 622 * Don't look for additional matches if this one does 623 * not have either the SO_REUSEPORT or SO_REUSEADDR 624 * socket options set. This heuristic avoids 625 * searching through all pcbs in the common case of a 626 * non-shared port. It assumes that an application 627 * will never clear these options after setting them. 628 */ 629 if ((last->inp_socket->so_options & 630 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) 631 break; 632 } 633 634 if (last == NULL) { 635 /* 636 * No matching pcb found; discard datagram. (No need 637 * to send an ICMP Port Unreachable for a broadcast 638 * or multicast datgram.) 639 */ 640 UDPSTAT_INC(udps_noport); 641 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 642 UDPSTAT_INC(udps_noportmcast); 643 else 644 UDPSTAT_INC(udps_noportbcast); 645 goto badunlocked; 646 } 647 if (proto == IPPROTO_UDPLITE) 648 UDPLITE_PROBE(receive, NULL, last, ip, last, uh); 649 else 650 UDP_PROBE(receive, NULL, last, ip, last, uh); 651 if (udp_append(last, ip, m, iphlen, udp_in) == 0) 652 INP_RUNLOCK(last); 653 return (IPPROTO_DONE); 654 } 655 656 /* 657 * Locate pcb for datagram. 658 */ 659 660 /* 661 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 662 */ 663 if ((m->m_flags & M_IP_NEXTHOP) && 664 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 665 struct sockaddr_in *next_hop; 666 667 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 668 669 /* 670 * Transparently forwarded. Pretend to be the destination. 671 * Already got one like this? 672 */ 673 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 674 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 675 if (!inp) { 676 /* 677 * It's new. Try to find the ambushing socket. 678 * Because we've rewritten the destination address, 679 * any hardware-generated hash is ignored. 680 */ 681 inp = in_pcblookup(pcbinfo, ip->ip_src, 682 uh->uh_sport, next_hop->sin_addr, 683 next_hop->sin_port ? htons(next_hop->sin_port) : 684 uh->uh_dport, INPLOOKUP_WILDCARD | 685 INPLOOKUP_RLOCKPCB, ifp); 686 } 687 /* Remove the tag from the packet. We don't need it anymore. */ 688 m_tag_delete(m, fwd_tag); 689 m->m_flags &= ~M_IP_NEXTHOP; 690 } else 691 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 692 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 693 INPLOOKUP_RLOCKPCB, ifp, m); 694 if (inp == NULL) { 695 if (V_udp_log_in_vain) { 696 char src[INET_ADDRSTRLEN]; 697 char dst[INET_ADDRSTRLEN]; 698 699 log(LOG_INFO, 700 "Connection attempt to UDP %s:%d from %s:%d\n", 701 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 702 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 703 } 704 if (proto == IPPROTO_UDPLITE) 705 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 706 else 707 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 708 UDPSTAT_INC(udps_noport); 709 if (m->m_flags & (M_BCAST | M_MCAST)) { 710 UDPSTAT_INC(udps_noportbcast); 711 goto badunlocked; 712 } 713 if (V_udp_blackhole) 714 goto badunlocked; 715 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 716 goto badunlocked; 717 *ip = save_ip; 718 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 719 return (IPPROTO_DONE); 720 } 721 722 /* 723 * Check the minimum TTL for socket. 724 */ 725 INP_RLOCK_ASSERT(inp); 726 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 727 if (proto == IPPROTO_UDPLITE) 728 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 729 else 730 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 731 INP_RUNLOCK(inp); 732 m_freem(m); 733 return (IPPROTO_DONE); 734 } 735 if (cscov_partial) { 736 struct udpcb *up; 737 738 up = intoudpcb(inp); 739 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 740 INP_RUNLOCK(inp); 741 m_freem(m); 742 return (IPPROTO_DONE); 743 } 744 } 745 746 if (proto == IPPROTO_UDPLITE) 747 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 748 else 749 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 750 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 751 INP_RUNLOCK(inp); 752 return (IPPROTO_DONE); 753 754 badunlocked: 755 m_freem(m); 756 return (IPPROTO_DONE); 757 } 758 #endif /* INET */ 759 760 /* 761 * Notify a udp user of an asynchronous error; just wake up so that they can 762 * collect error status. 763 */ 764 struct inpcb * 765 udp_notify(struct inpcb *inp, int errno) 766 { 767 768 INP_WLOCK_ASSERT(inp); 769 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 770 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 771 NH_FREE(inp->inp_route.ro_nh); 772 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 773 } 774 775 inp->inp_socket->so_error = errno; 776 sorwakeup(inp->inp_socket); 777 sowwakeup(inp->inp_socket); 778 return (inp); 779 } 780 781 #ifdef INET 782 static void 783 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 784 struct inpcbinfo *pcbinfo) 785 { 786 struct ip *ip = vip; 787 struct udphdr *uh; 788 struct in_addr faddr; 789 struct inpcb *inp; 790 791 faddr = ((struct sockaddr_in *)sa)->sin_addr; 792 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 793 return; 794 795 if (PRC_IS_REDIRECT(cmd)) { 796 /* signal EHOSTDOWN, as it flushes the cached route */ 797 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); 798 return; 799 } 800 801 /* 802 * Hostdead is ugly because it goes linearly through all PCBs. 803 * 804 * XXX: We never get this from ICMP, otherwise it makes an excellent 805 * DoS attack on machines with many connections. 806 */ 807 if (cmd == PRC_HOSTDEAD) 808 ip = NULL; 809 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 810 return; 811 if (ip != NULL) { 812 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 813 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 814 ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 815 if (inp != NULL) { 816 INP_WLOCK_ASSERT(inp); 817 if (inp->inp_socket != NULL) { 818 udp_notify(inp, inetctlerrmap[cmd]); 819 } 820 INP_WUNLOCK(inp); 821 } else { 822 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 823 ip->ip_src, uh->uh_sport, 824 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 825 if (inp != NULL) { 826 struct udpcb *up; 827 void *ctx; 828 udp_tun_icmp_t func; 829 830 up = intoudpcb(inp); 831 ctx = up->u_tun_ctx; 832 func = up->u_icmp_func; 833 INP_RUNLOCK(inp); 834 if (func != NULL) 835 (*func)(cmd, sa, vip, ctx); 836 } 837 } 838 } else 839 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 840 udp_notify); 841 } 842 void 843 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 844 { 845 846 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 847 } 848 849 void 850 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 851 { 852 853 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 854 } 855 #endif /* INET */ 856 857 static int 858 udp_pcblist(SYSCTL_HANDLER_ARGS) 859 { 860 struct xinpgen xig; 861 struct epoch_tracker et; 862 struct inpcb *inp; 863 int error; 864 865 if (req->newptr != 0) 866 return (EPERM); 867 868 if (req->oldptr == 0) { 869 int n; 870 871 n = V_udbinfo.ipi_count; 872 n += imax(n / 8, 10); 873 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 874 return (0); 875 } 876 877 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 878 return (error); 879 880 bzero(&xig, sizeof(xig)); 881 xig.xig_len = sizeof xig; 882 xig.xig_count = V_udbinfo.ipi_count; 883 xig.xig_gen = V_udbinfo.ipi_gencnt; 884 xig.xig_sogen = so_gencnt; 885 error = SYSCTL_OUT(req, &xig, sizeof xig); 886 if (error) 887 return (error); 888 889 NET_EPOCH_ENTER(et); 890 for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead); 891 inp != NULL; 892 inp = CK_LIST_NEXT(inp, inp_list)) { 893 INP_RLOCK(inp); 894 if (inp->inp_gencnt <= xig.xig_gen && 895 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 896 struct xinpcb xi; 897 898 in_pcbtoxinpcb(inp, &xi); 899 INP_RUNLOCK(inp); 900 error = SYSCTL_OUT(req, &xi, sizeof xi); 901 if (error) 902 break; 903 } else 904 INP_RUNLOCK(inp); 905 } 906 NET_EPOCH_EXIT(et); 907 908 if (!error) { 909 /* 910 * Give the user an updated idea of our state. If the 911 * generation differs from what we told her before, she knows 912 * that something happened while we were processing this 913 * request, and it might be necessary to retry. 914 */ 915 xig.xig_gen = V_udbinfo.ipi_gencnt; 916 xig.xig_sogen = so_gencnt; 917 xig.xig_count = V_udbinfo.ipi_count; 918 error = SYSCTL_OUT(req, &xig, sizeof xig); 919 } 920 921 return (error); 922 } 923 924 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 925 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 926 udp_pcblist, "S,xinpcb", 927 "List of active UDP sockets"); 928 929 #ifdef INET 930 static int 931 udp_getcred(SYSCTL_HANDLER_ARGS) 932 { 933 struct xucred xuc; 934 struct sockaddr_in addrs[2]; 935 struct epoch_tracker et; 936 struct inpcb *inp; 937 int error; 938 939 error = priv_check(req->td, PRIV_NETINET_GETCRED); 940 if (error) 941 return (error); 942 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 943 if (error) 944 return (error); 945 NET_EPOCH_ENTER(et); 946 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 947 addrs[0].sin_addr, addrs[0].sin_port, 948 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 949 NET_EPOCH_EXIT(et); 950 if (inp != NULL) { 951 INP_RLOCK_ASSERT(inp); 952 if (inp->inp_socket == NULL) 953 error = ENOENT; 954 if (error == 0) 955 error = cr_canseeinpcb(req->td->td_ucred, inp); 956 if (error == 0) 957 cru2x(inp->inp_cred, &xuc); 958 INP_RUNLOCK(inp); 959 } else 960 error = ENOENT; 961 if (error == 0) 962 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 963 return (error); 964 } 965 966 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 967 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 968 0, 0, udp_getcred, "S,xucred", 969 "Get the xucred of a UDP connection"); 970 #endif /* INET */ 971 972 int 973 udp_ctloutput(struct socket *so, struct sockopt *sopt) 974 { 975 struct inpcb *inp; 976 struct udpcb *up; 977 int isudplite, error, optval; 978 979 error = 0; 980 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 981 inp = sotoinpcb(so); 982 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 983 INP_WLOCK(inp); 984 if (sopt->sopt_level != so->so_proto->pr_protocol) { 985 #ifdef INET6 986 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 987 INP_WUNLOCK(inp); 988 error = ip6_ctloutput(so, sopt); 989 } 990 #endif 991 #if defined(INET) && defined(INET6) 992 else 993 #endif 994 #ifdef INET 995 { 996 INP_WUNLOCK(inp); 997 error = ip_ctloutput(so, sopt); 998 } 999 #endif 1000 return (error); 1001 } 1002 1003 switch (sopt->sopt_dir) { 1004 case SOPT_SET: 1005 switch (sopt->sopt_name) { 1006 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1007 #ifdef INET 1008 case UDP_ENCAP: 1009 if (!IPSEC_ENABLED(ipv4)) { 1010 INP_WUNLOCK(inp); 1011 return (ENOPROTOOPT); 1012 } 1013 error = UDPENCAP_PCBCTL(inp, sopt); 1014 break; 1015 #endif /* INET */ 1016 #endif /* IPSEC */ 1017 case UDPLITE_SEND_CSCOV: 1018 case UDPLITE_RECV_CSCOV: 1019 if (!isudplite) { 1020 INP_WUNLOCK(inp); 1021 error = ENOPROTOOPT; 1022 break; 1023 } 1024 INP_WUNLOCK(inp); 1025 error = sooptcopyin(sopt, &optval, sizeof(optval), 1026 sizeof(optval)); 1027 if (error != 0) 1028 break; 1029 inp = sotoinpcb(so); 1030 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1031 INP_WLOCK(inp); 1032 up = intoudpcb(inp); 1033 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1034 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1035 INP_WUNLOCK(inp); 1036 error = EINVAL; 1037 break; 1038 } 1039 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1040 up->u_txcslen = optval; 1041 else 1042 up->u_rxcslen = optval; 1043 INP_WUNLOCK(inp); 1044 break; 1045 default: 1046 INP_WUNLOCK(inp); 1047 error = ENOPROTOOPT; 1048 break; 1049 } 1050 break; 1051 case SOPT_GET: 1052 switch (sopt->sopt_name) { 1053 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1054 #ifdef INET 1055 case UDP_ENCAP: 1056 if (!IPSEC_ENABLED(ipv4)) { 1057 INP_WUNLOCK(inp); 1058 return (ENOPROTOOPT); 1059 } 1060 error = UDPENCAP_PCBCTL(inp, sopt); 1061 break; 1062 #endif /* INET */ 1063 #endif /* IPSEC */ 1064 case UDPLITE_SEND_CSCOV: 1065 case UDPLITE_RECV_CSCOV: 1066 if (!isudplite) { 1067 INP_WUNLOCK(inp); 1068 error = ENOPROTOOPT; 1069 break; 1070 } 1071 up = intoudpcb(inp); 1072 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1073 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1074 optval = up->u_txcslen; 1075 else 1076 optval = up->u_rxcslen; 1077 INP_WUNLOCK(inp); 1078 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1079 break; 1080 default: 1081 INP_WUNLOCK(inp); 1082 error = ENOPROTOOPT; 1083 break; 1084 } 1085 break; 1086 } 1087 return (error); 1088 } 1089 1090 #ifdef INET 1091 #ifdef INET6 1092 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1093 static int 1094 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1095 struct inpcb *inp, int flags) 1096 { 1097 struct ifnet *ifp; 1098 struct in6_pktinfo *pktinfo; 1099 struct in_addr ia; 1100 1101 if ((flags & PRUS_IPV6) == 0) 1102 return (0); 1103 1104 if (cm->cmsg_level != IPPROTO_IPV6) 1105 return (0); 1106 1107 if (cm->cmsg_type != IPV6_2292PKTINFO && 1108 cm->cmsg_type != IPV6_PKTINFO) 1109 return (0); 1110 1111 if (cm->cmsg_len != 1112 CMSG_LEN(sizeof(struct in6_pktinfo))) 1113 return (EINVAL); 1114 1115 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1116 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1117 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1118 return (EINVAL); 1119 1120 /* Validate the interface index if specified. */ 1121 if (pktinfo->ipi6_ifindex > V_if_index) 1122 return (ENXIO); 1123 1124 ifp = NULL; 1125 if (pktinfo->ipi6_ifindex) { 1126 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1127 if (ifp == NULL) 1128 return (ENXIO); 1129 } 1130 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1131 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1132 if (in_ifhasaddr(ifp, ia) == 0) 1133 return (EADDRNOTAVAIL); 1134 } 1135 1136 bzero(src, sizeof(*src)); 1137 src->sin_family = AF_INET; 1138 src->sin_len = sizeof(*src); 1139 src->sin_port = inp->inp_lport; 1140 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1141 1142 return (0); 1143 } 1144 #endif 1145 1146 static int 1147 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1148 struct mbuf *control, struct thread *td, int flags) 1149 { 1150 struct udpiphdr *ui; 1151 int len = m->m_pkthdr.len; 1152 struct in_addr faddr, laddr; 1153 struct cmsghdr *cm; 1154 struct inpcbinfo *pcbinfo; 1155 struct sockaddr_in *sin, src; 1156 struct epoch_tracker et; 1157 int cscov_partial = 0; 1158 int error = 0; 1159 int ipflags = 0; 1160 u_short fport, lport; 1161 u_char tos; 1162 uint8_t pr; 1163 uint16_t cscov = 0; 1164 uint32_t flowid = 0; 1165 uint8_t flowtype = M_HASHTYPE_NONE; 1166 1167 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1168 if (control) 1169 m_freem(control); 1170 m_freem(m); 1171 return (EMSGSIZE); 1172 } 1173 1174 src.sin_family = 0; 1175 sin = (struct sockaddr_in *)addr; 1176 1177 /* 1178 * udp_output() may need to temporarily bind or connect the current 1179 * inpcb. As such, we don't know up front whether we will need the 1180 * pcbinfo lock or not. Do any work to decide what is needed up 1181 * front before acquiring any locks. 1182 * 1183 * We will need network epoch in either case, to safely lookup into 1184 * pcb hash. 1185 */ 1186 if (sin == NULL || 1187 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) 1188 INP_WLOCK(inp); 1189 else 1190 INP_RLOCK(inp); 1191 NET_EPOCH_ENTER(et); 1192 tos = inp->inp_ip_tos; 1193 if (control != NULL) { 1194 /* 1195 * XXX: Currently, we assume all the optional information is 1196 * stored in a single mbuf. 1197 */ 1198 if (control->m_next) { 1199 m_freem(control); 1200 error = EINVAL; 1201 goto release; 1202 } 1203 for (; control->m_len > 0; 1204 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1205 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1206 cm = mtod(control, struct cmsghdr *); 1207 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1208 || cm->cmsg_len > control->m_len) { 1209 error = EINVAL; 1210 break; 1211 } 1212 #ifdef INET6 1213 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1214 if (error != 0) 1215 break; 1216 #endif 1217 if (cm->cmsg_level != IPPROTO_IP) 1218 continue; 1219 1220 switch (cm->cmsg_type) { 1221 case IP_SENDSRCADDR: 1222 if (cm->cmsg_len != 1223 CMSG_LEN(sizeof(struct in_addr))) { 1224 error = EINVAL; 1225 break; 1226 } 1227 bzero(&src, sizeof(src)); 1228 src.sin_family = AF_INET; 1229 src.sin_len = sizeof(src); 1230 src.sin_port = inp->inp_lport; 1231 src.sin_addr = 1232 *(struct in_addr *)CMSG_DATA(cm); 1233 break; 1234 1235 case IP_TOS: 1236 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1237 error = EINVAL; 1238 break; 1239 } 1240 tos = *(u_char *)CMSG_DATA(cm); 1241 break; 1242 1243 case IP_FLOWID: 1244 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1245 error = EINVAL; 1246 break; 1247 } 1248 flowid = *(uint32_t *) CMSG_DATA(cm); 1249 break; 1250 1251 case IP_FLOWTYPE: 1252 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1253 error = EINVAL; 1254 break; 1255 } 1256 flowtype = *(uint32_t *) CMSG_DATA(cm); 1257 break; 1258 1259 #ifdef RSS 1260 case IP_RSSBUCKETID: 1261 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1262 error = EINVAL; 1263 break; 1264 } 1265 /* This is just a placeholder for now */ 1266 break; 1267 #endif /* RSS */ 1268 default: 1269 error = ENOPROTOOPT; 1270 break; 1271 } 1272 if (error) 1273 break; 1274 } 1275 m_freem(control); 1276 } 1277 if (error) 1278 goto release; 1279 1280 pr = inp->inp_socket->so_proto->pr_protocol; 1281 pcbinfo = udp_get_inpcbinfo(pr); 1282 1283 /* 1284 * If the IP_SENDSRCADDR control message was specified, override the 1285 * source address for this datagram. Its use is invalidated if the 1286 * address thus specified is incomplete or clobbers other inpcbs. 1287 */ 1288 laddr = inp->inp_laddr; 1289 lport = inp->inp_lport; 1290 if (src.sin_family == AF_INET) { 1291 INP_HASH_LOCK_ASSERT(pcbinfo); 1292 if ((lport == 0) || 1293 (laddr.s_addr == INADDR_ANY && 1294 src.sin_addr.s_addr == INADDR_ANY)) { 1295 error = EINVAL; 1296 goto release; 1297 } 1298 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1299 &laddr.s_addr, &lport, td->td_ucred); 1300 if (error) 1301 goto release; 1302 } 1303 1304 /* 1305 * If a UDP socket has been connected, then a local address/port will 1306 * have been selected and bound. 1307 * 1308 * If a UDP socket has not been connected to, then an explicit 1309 * destination address must be used, in which case a local 1310 * address/port may not have been selected and bound. 1311 */ 1312 if (sin != NULL) { 1313 INP_LOCK_ASSERT(inp); 1314 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1315 error = EISCONN; 1316 goto release; 1317 } 1318 1319 /* 1320 * Jail may rewrite the destination address, so let it do 1321 * that before we use it. 1322 */ 1323 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1324 if (error) 1325 goto release; 1326 1327 /* 1328 * If a local address or port hasn't yet been selected, or if 1329 * the destination address needs to be rewritten due to using 1330 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1331 * to do the heavy lifting. Once a port is selected, we 1332 * commit the binding back to the socket; we also commit the 1333 * binding of the address if in jail. 1334 * 1335 * If we already have a valid binding and we're not 1336 * requesting a destination address rewrite, use a fast path. 1337 */ 1338 if (inp->inp_laddr.s_addr == INADDR_ANY || 1339 inp->inp_lport == 0 || 1340 sin->sin_addr.s_addr == INADDR_ANY || 1341 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1342 INP_HASH_LOCK_ASSERT(pcbinfo); 1343 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1344 &lport, &faddr.s_addr, &fport, NULL, 1345 td->td_ucred); 1346 if (error) 1347 goto release; 1348 1349 /* 1350 * XXXRW: Why not commit the port if the address is 1351 * !INADDR_ANY? 1352 */ 1353 /* Commit the local port if newly assigned. */ 1354 if (inp->inp_laddr.s_addr == INADDR_ANY && 1355 inp->inp_lport == 0) { 1356 INP_WLOCK_ASSERT(inp); 1357 /* 1358 * Remember addr if jailed, to prevent 1359 * rebinding. 1360 */ 1361 if (prison_flag(td->td_ucred, PR_IP4)) 1362 inp->inp_laddr = laddr; 1363 inp->inp_lport = lport; 1364 INP_HASH_WLOCK(pcbinfo); 1365 error = in_pcbinshash(inp); 1366 INP_HASH_WUNLOCK(pcbinfo); 1367 if (error != 0) { 1368 inp->inp_lport = 0; 1369 error = EAGAIN; 1370 goto release; 1371 } 1372 inp->inp_flags |= INP_ANONPORT; 1373 } 1374 } else { 1375 faddr = sin->sin_addr; 1376 fport = sin->sin_port; 1377 } 1378 } else { 1379 INP_LOCK_ASSERT(inp); 1380 faddr = inp->inp_faddr; 1381 fport = inp->inp_fport; 1382 if (faddr.s_addr == INADDR_ANY) { 1383 error = ENOTCONN; 1384 goto release; 1385 } 1386 } 1387 1388 /* 1389 * Calculate data length and get a mbuf for UDP, IP, and possible 1390 * link-layer headers. Immediate slide the data pointer back forward 1391 * since we won't use that space at this layer. 1392 */ 1393 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1394 if (m == NULL) { 1395 error = ENOBUFS; 1396 goto release; 1397 } 1398 m->m_data += max_linkhdr; 1399 m->m_len -= max_linkhdr; 1400 m->m_pkthdr.len -= max_linkhdr; 1401 1402 /* 1403 * Fill in mbuf with extended UDP header and addresses and length put 1404 * into network format. 1405 */ 1406 ui = mtod(m, struct udpiphdr *); 1407 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1408 ui->ui_v = IPVERSION << 4; 1409 ui->ui_pr = pr; 1410 ui->ui_src = laddr; 1411 ui->ui_dst = faddr; 1412 ui->ui_sport = lport; 1413 ui->ui_dport = fport; 1414 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1415 if (pr == IPPROTO_UDPLITE) { 1416 struct udpcb *up; 1417 uint16_t plen; 1418 1419 up = intoudpcb(inp); 1420 cscov = up->u_txcslen; 1421 plen = (u_short)len + sizeof(struct udphdr); 1422 if (cscov >= plen) 1423 cscov = 0; 1424 ui->ui_len = htons(plen); 1425 ui->ui_ulen = htons(cscov); 1426 /* 1427 * For UDP-Lite, checksum coverage length of zero means 1428 * the entire UDPLite packet is covered by the checksum. 1429 */ 1430 cscov_partial = (cscov == 0) ? 0 : 1; 1431 } 1432 1433 /* 1434 * Set the Don't Fragment bit in the IP header. 1435 */ 1436 if (inp->inp_flags & INP_DONTFRAG) { 1437 struct ip *ip; 1438 1439 ip = (struct ip *)&ui->ui_i; 1440 ip->ip_off |= htons(IP_DF); 1441 } 1442 1443 if (inp->inp_socket->so_options & SO_DONTROUTE) 1444 ipflags |= IP_ROUTETOIF; 1445 if (inp->inp_socket->so_options & SO_BROADCAST) 1446 ipflags |= IP_ALLOWBROADCAST; 1447 if (inp->inp_flags & INP_ONESBCAST) 1448 ipflags |= IP_SENDONES; 1449 1450 #ifdef MAC 1451 mac_inpcb_create_mbuf(inp, m); 1452 #endif 1453 1454 /* 1455 * Set up checksum and output datagram. 1456 */ 1457 ui->ui_sum = 0; 1458 if (pr == IPPROTO_UDPLITE) { 1459 if (inp->inp_flags & INP_ONESBCAST) 1460 faddr.s_addr = INADDR_BROADCAST; 1461 if (cscov_partial) { 1462 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1463 ui->ui_sum = 0xffff; 1464 } else { 1465 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1466 ui->ui_sum = 0xffff; 1467 } 1468 } else if (V_udp_cksum) { 1469 if (inp->inp_flags & INP_ONESBCAST) 1470 faddr.s_addr = INADDR_BROADCAST; 1471 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1472 htons((u_short)len + sizeof(struct udphdr) + pr)); 1473 m->m_pkthdr.csum_flags = CSUM_UDP; 1474 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1475 } 1476 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1477 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1478 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1479 UDPSTAT_INC(udps_opackets); 1480 1481 /* 1482 * Setup flowid / RSS information for outbound socket. 1483 * 1484 * Once the UDP code decides to set a flowid some other way, 1485 * this allows the flowid to be overridden by userland. 1486 */ 1487 if (flowtype != M_HASHTYPE_NONE) { 1488 m->m_pkthdr.flowid = flowid; 1489 M_HASHTYPE_SET(m, flowtype); 1490 } 1491 #if defined(ROUTE_MPATH) || defined(RSS) 1492 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1493 uint32_t hash_val, hash_type; 1494 1495 hash_val = fib4_calc_packet_hash(laddr, faddr, 1496 lport, fport, pr, &hash_type); 1497 m->m_pkthdr.flowid = hash_val; 1498 M_HASHTYPE_SET(m, hash_type); 1499 } 1500 1501 /* 1502 * Don't override with the inp cached flowid value. 1503 * 1504 * Depending upon the kind of send being done, the inp 1505 * flowid/flowtype values may actually not be appropriate 1506 * for this particular socket send. 1507 * 1508 * We should either leave the flowid at zero (which is what is 1509 * currently done) or set it to some software generated 1510 * hash value based on the packet contents. 1511 */ 1512 ipflags |= IP_NODEFAULTFLOWID; 1513 #endif /* RSS */ 1514 1515 if (pr == IPPROTO_UDPLITE) 1516 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1517 else 1518 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1519 error = ip_output(m, inp->inp_options, 1520 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1521 inp->inp_moptions, inp); 1522 INP_UNLOCK(inp); 1523 NET_EPOCH_EXIT(et); 1524 return (error); 1525 1526 release: 1527 INP_UNLOCK(inp); 1528 NET_EPOCH_EXIT(et); 1529 m_freem(m); 1530 return (error); 1531 } 1532 1533 static void 1534 udp_abort(struct socket *so) 1535 { 1536 struct inpcb *inp; 1537 struct inpcbinfo *pcbinfo; 1538 1539 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1540 inp = sotoinpcb(so); 1541 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1542 INP_WLOCK(inp); 1543 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1544 INP_HASH_WLOCK(pcbinfo); 1545 in_pcbdisconnect(inp); 1546 inp->inp_laddr.s_addr = INADDR_ANY; 1547 INP_HASH_WUNLOCK(pcbinfo); 1548 soisdisconnected(so); 1549 } 1550 INP_WUNLOCK(inp); 1551 } 1552 1553 static int 1554 udp_attach(struct socket *so, int proto, struct thread *td) 1555 { 1556 static uint32_t udp_flowid; 1557 struct inpcb *inp; 1558 struct inpcbinfo *pcbinfo; 1559 int error; 1560 1561 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1562 inp = sotoinpcb(so); 1563 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1564 error = soreserve(so, udp_sendspace, udp_recvspace); 1565 if (error) 1566 return (error); 1567 INP_INFO_WLOCK(pcbinfo); 1568 error = in_pcballoc(so, pcbinfo); 1569 if (error) { 1570 INP_INFO_WUNLOCK(pcbinfo); 1571 return (error); 1572 } 1573 1574 inp = sotoinpcb(so); 1575 inp->inp_vflag |= INP_IPV4; 1576 inp->inp_ip_ttl = V_ip_defttl; 1577 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1578 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1579 1580 error = udp_newudpcb(inp); 1581 if (error) { 1582 in_pcbdetach(inp); 1583 in_pcbfree(inp); 1584 INP_INFO_WUNLOCK(pcbinfo); 1585 return (error); 1586 } 1587 1588 INP_WUNLOCK(inp); 1589 INP_INFO_WUNLOCK(pcbinfo); 1590 return (0); 1591 } 1592 #endif /* INET */ 1593 1594 int 1595 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1596 { 1597 struct inpcb *inp; 1598 struct udpcb *up; 1599 1600 KASSERT(so->so_type == SOCK_DGRAM, 1601 ("udp_set_kernel_tunneling: !dgram")); 1602 inp = sotoinpcb(so); 1603 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1604 INP_WLOCK(inp); 1605 up = intoudpcb(inp); 1606 if ((up->u_tun_func != NULL) || 1607 (up->u_icmp_func != NULL)) { 1608 INP_WUNLOCK(inp); 1609 return (EBUSY); 1610 } 1611 up->u_tun_func = f; 1612 up->u_icmp_func = i; 1613 up->u_tun_ctx = ctx; 1614 INP_WUNLOCK(inp); 1615 return (0); 1616 } 1617 1618 #ifdef INET 1619 static int 1620 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1621 { 1622 struct inpcb *inp; 1623 struct inpcbinfo *pcbinfo; 1624 int error; 1625 1626 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1627 inp = sotoinpcb(so); 1628 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1629 INP_WLOCK(inp); 1630 INP_HASH_WLOCK(pcbinfo); 1631 error = in_pcbbind(inp, nam, td->td_ucred); 1632 INP_HASH_WUNLOCK(pcbinfo); 1633 INP_WUNLOCK(inp); 1634 return (error); 1635 } 1636 1637 static void 1638 udp_close(struct socket *so) 1639 { 1640 struct inpcb *inp; 1641 struct inpcbinfo *pcbinfo; 1642 1643 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1644 inp = sotoinpcb(so); 1645 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1646 INP_WLOCK(inp); 1647 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1648 INP_HASH_WLOCK(pcbinfo); 1649 in_pcbdisconnect(inp); 1650 inp->inp_laddr.s_addr = INADDR_ANY; 1651 INP_HASH_WUNLOCK(pcbinfo); 1652 soisdisconnected(so); 1653 } 1654 INP_WUNLOCK(inp); 1655 } 1656 1657 static int 1658 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1659 { 1660 struct epoch_tracker et; 1661 struct inpcb *inp; 1662 struct inpcbinfo *pcbinfo; 1663 struct sockaddr_in *sin; 1664 int error; 1665 1666 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1667 inp = sotoinpcb(so); 1668 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1669 INP_WLOCK(inp); 1670 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1671 INP_WUNLOCK(inp); 1672 return (EISCONN); 1673 } 1674 sin = (struct sockaddr_in *)nam; 1675 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1676 if (error != 0) { 1677 INP_WUNLOCK(inp); 1678 return (error); 1679 } 1680 NET_EPOCH_ENTER(et); 1681 INP_HASH_WLOCK(pcbinfo); 1682 error = in_pcbconnect(inp, nam, td->td_ucred); 1683 INP_HASH_WUNLOCK(pcbinfo); 1684 NET_EPOCH_EXIT(et); 1685 if (error == 0) 1686 soisconnected(so); 1687 INP_WUNLOCK(inp); 1688 return (error); 1689 } 1690 1691 static void 1692 udp_detach(struct socket *so) 1693 { 1694 struct inpcb *inp; 1695 struct inpcbinfo *pcbinfo; 1696 struct udpcb *up; 1697 1698 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1699 inp = sotoinpcb(so); 1700 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1701 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1702 ("udp_detach: not disconnected")); 1703 INP_INFO_WLOCK(pcbinfo); 1704 INP_WLOCK(inp); 1705 up = intoudpcb(inp); 1706 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1707 inp->inp_ppcb = NULL; 1708 in_pcbdetach(inp); 1709 in_pcbfree(inp); 1710 INP_INFO_WUNLOCK(pcbinfo); 1711 udp_discardcb(up); 1712 } 1713 1714 static int 1715 udp_disconnect(struct socket *so) 1716 { 1717 struct inpcb *inp; 1718 struct inpcbinfo *pcbinfo; 1719 1720 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1721 inp = sotoinpcb(so); 1722 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1723 INP_WLOCK(inp); 1724 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1725 INP_WUNLOCK(inp); 1726 return (ENOTCONN); 1727 } 1728 INP_HASH_WLOCK(pcbinfo); 1729 in_pcbdisconnect(inp); 1730 inp->inp_laddr.s_addr = INADDR_ANY; 1731 INP_HASH_WUNLOCK(pcbinfo); 1732 SOCK_LOCK(so); 1733 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1734 SOCK_UNLOCK(so); 1735 INP_WUNLOCK(inp); 1736 return (0); 1737 } 1738 1739 static int 1740 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1741 struct mbuf *control, struct thread *td) 1742 { 1743 struct inpcb *inp; 1744 1745 inp = sotoinpcb(so); 1746 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1747 return (udp_output(inp, m, addr, control, td, flags)); 1748 } 1749 #endif /* INET */ 1750 1751 int 1752 udp_shutdown(struct socket *so) 1753 { 1754 struct inpcb *inp; 1755 1756 inp = sotoinpcb(so); 1757 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1758 INP_WLOCK(inp); 1759 socantsendmore(so); 1760 INP_WUNLOCK(inp); 1761 return (0); 1762 } 1763 1764 #ifdef INET 1765 struct pr_usrreqs udp_usrreqs = { 1766 .pru_abort = udp_abort, 1767 .pru_attach = udp_attach, 1768 .pru_bind = udp_bind, 1769 .pru_connect = udp_connect, 1770 .pru_control = in_control, 1771 .pru_detach = udp_detach, 1772 .pru_disconnect = udp_disconnect, 1773 .pru_peeraddr = in_getpeeraddr, 1774 .pru_send = udp_send, 1775 .pru_soreceive = soreceive_dgram, 1776 .pru_sosend = sosend_dgram, 1777 .pru_shutdown = udp_shutdown, 1778 .pru_sockaddr = in_getsockaddr, 1779 .pru_sosetlabel = in_pcbsosetlabel, 1780 .pru_close = udp_close, 1781 }; 1782 #endif /* INET */ 1783