xref: /freebsd/sys/netinet/udp_usrreq.c (revision efe014e6b177ba1b0d70f7df751f5066d4eafe9b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_route.h"
48 #include "opt_rss.h"
49 
50 #include <sys/param.h>
51 #include <sys/domain.h>
52 #include <sys/eventhandler.h>
53 #include <sys/jail.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/protosw.h>
61 #include <sys/sdt.h>
62 #include <sys/signalvar.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sx.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/systm.h>
69 
70 #include <vm/uma.h>
71 
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/route.h>
75 #include <net/route/nhop.h>
76 #include <net/rss_config.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_kdtrace.h>
80 #include <netinet/in_fib.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #endif
88 #include <netinet/ip_icmp.h>
89 #include <netinet/icmp_var.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/ip_options.h>
92 #ifdef INET6
93 #include <netinet6/ip6_var.h>
94 #endif
95 #include <netinet/udp.h>
96 #include <netinet/udp_var.h>
97 #include <netinet/udplite.h>
98 #include <netinet/in_rss.h>
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 /*
107  * UDP and UDP-Lite protocols implementation.
108  * Per RFC 768, August, 1980.
109  * Per RFC 3828, July, 2004.
110  */
111 
112 /*
113  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
114  * removes the only data integrity mechanism for packets and malformed
115  * packets that would otherwise be discarded due to bad checksums, and may
116  * cause problems (especially for NFS data blocks).
117  */
118 VNET_DEFINE(int, udp_cksum) = 1;
119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
120     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
121 
122 VNET_DEFINE(int, udp_log_in_vain) = 0;
123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
124     &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
125 
126 VNET_DEFINE(int, udp_blackhole) = 0;
127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
128     &VNET_NAME(udp_blackhole), 0,
129     "Do not send port unreachables for refused connects");
130 
131 u_long	udp_sendspace = 9216;		/* really max datagram size */
132 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
133     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
134 
135 u_long	udp_recvspace = 40 * (1024 +
136 #ifdef INET6
137 				      sizeof(struct sockaddr_in6)
138 #else
139 				      sizeof(struct sockaddr_in)
140 #endif
141 				      );	/* 40 1K datagrams */
142 
143 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
144     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
145 
146 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
147 VNET_DEFINE(struct inpcbinfo, udbinfo);
148 VNET_DEFINE(struct inpcbhead, ulitecb);
149 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
150 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
151 #define	V_udpcb_zone			VNET(udpcb_zone)
152 
153 #ifndef UDBHASHSIZE
154 #define	UDBHASHSIZE	128
155 #endif
156 
157 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
158 VNET_PCPUSTAT_SYSINIT(udpstat);
159 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
160     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
161 
162 #ifdef VIMAGE
163 VNET_PCPUSTAT_SYSUNINIT(udpstat);
164 #endif /* VIMAGE */
165 #ifdef INET
166 static void	udp_detach(struct socket *so);
167 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
168 		    struct mbuf *, struct thread *, int);
169 #endif
170 
171 static void
172 udp_zone_change(void *tag)
173 {
174 
175 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
176 	uma_zone_set_max(V_udpcb_zone, maxsockets);
177 }
178 
179 static int
180 udp_inpcb_init(void *mem, int size, int flags)
181 {
182 	struct inpcb *inp;
183 
184 	inp = mem;
185 	INP_LOCK_INIT(inp, "inp", "udpinp");
186 	return (0);
187 }
188 
189 static int
190 udplite_inpcb_init(void *mem, int size, int flags)
191 {
192 	struct inpcb *inp;
193 
194 	inp = mem;
195 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
196 	return (0);
197 }
198 
199 void
200 udp_init(void)
201 {
202 
203 	/*
204 	 * For now default to 2-tuple UDP hashing - until the fragment
205 	 * reassembly code can also update the flowid.
206 	 *
207 	 * Once we can calculate the flowid that way and re-establish
208 	 * a 4-tuple, flip this to 4-tuple.
209 	 */
210 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
211 	    "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
212 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214 	uma_zone_set_max(V_udpcb_zone, maxsockets);
215 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
216 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
217 	    EVENTHANDLER_PRI_ANY);
218 }
219 
220 void
221 udplite_init(void)
222 {
223 
224 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
225 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
226 	    IPI_HASHFIELDS_2TUPLE);
227 }
228 
229 /*
230  * Kernel module interface for updating udpstat.  The argument is an index
231  * into udpstat treated as an array of u_long.  While this encodes the
232  * general layout of udpstat into the caller, it doesn't encode its location,
233  * so that future changes to add, for example, per-CPU stats support won't
234  * cause binary compatibility problems for kernel modules.
235  */
236 void
237 kmod_udpstat_inc(int statnum)
238 {
239 
240 	counter_u64_add(VNET(udpstat)[statnum], 1);
241 }
242 
243 int
244 udp_newudpcb(struct inpcb *inp)
245 {
246 	struct udpcb *up;
247 
248 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
249 	if (up == NULL)
250 		return (ENOBUFS);
251 	inp->inp_ppcb = up;
252 	return (0);
253 }
254 
255 void
256 udp_discardcb(struct udpcb *up)
257 {
258 
259 	uma_zfree(V_udpcb_zone, up);
260 }
261 
262 #ifdef VIMAGE
263 static void
264 udp_destroy(void *unused __unused)
265 {
266 
267 	in_pcbinfo_destroy(&V_udbinfo);
268 	uma_zdestroy(V_udpcb_zone);
269 }
270 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
271 
272 static void
273 udplite_destroy(void *unused __unused)
274 {
275 
276 	in_pcbinfo_destroy(&V_ulitecbinfo);
277 }
278 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
279     NULL);
280 #endif
281 
282 #ifdef INET
283 /*
284  * Subroutine of udp_input(), which appends the provided mbuf chain to the
285  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
286  * contains the source address.  If the socket ends up being an IPv6 socket,
287  * udp_append() will convert to a sockaddr_in6 before passing the address
288  * into the socket code.
289  *
290  * In the normal case udp_append() will return 0, indicating that you
291  * must unlock the inp. However if a tunneling protocol is in place we increment
292  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
293  * then decrement the reference count. If the inp_rele returns 1, indicating the
294  * inp is gone, we return that to the caller to tell them *not* to unlock
295  * the inp. In the case of multi-cast this will cause the distribution
296  * to stop (though most tunneling protocols known currently do *not* use
297  * multicast).
298  */
299 static int
300 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
301     struct sockaddr_in *udp_in)
302 {
303 	struct sockaddr *append_sa;
304 	struct socket *so;
305 	struct mbuf *tmpopts, *opts = NULL;
306 #ifdef INET6
307 	struct sockaddr_in6 udp_in6;
308 #endif
309 	struct udpcb *up;
310 
311 	INP_LOCK_ASSERT(inp);
312 
313 	/*
314 	 * Engage the tunneling protocol.
315 	 */
316 	up = intoudpcb(inp);
317 	if (up->u_tun_func != NULL) {
318 		in_pcbref(inp);
319 		INP_RUNLOCK(inp);
320 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
321 		    up->u_tun_ctx);
322 		INP_RLOCK(inp);
323 		return (in_pcbrele_rlocked(inp));
324 	}
325 
326 	off += sizeof(struct udphdr);
327 
328 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
329 	/* Check AH/ESP integrity. */
330 	if (IPSEC_ENABLED(ipv4) &&
331 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
332 		m_freem(n);
333 		return (0);
334 	}
335 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
336 		if (IPSEC_ENABLED(ipv4) &&
337 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
338 			return (0);	/* Consumed. */
339 	}
340 #endif /* IPSEC */
341 #ifdef MAC
342 	if (mac_inpcb_check_deliver(inp, n) != 0) {
343 		m_freem(n);
344 		return (0);
345 	}
346 #endif /* MAC */
347 	if (inp->inp_flags & INP_CONTROLOPTS ||
348 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
349 #ifdef INET6
350 		if (inp->inp_vflag & INP_IPV6)
351 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
352 		else
353 #endif /* INET6 */
354 			ip_savecontrol(inp, &opts, ip, n);
355 	}
356 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
357 		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
358 			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
359 		if (tmpopts) {
360 			if (opts) {
361 				tmpopts->m_next = opts;
362 				opts = tmpopts;
363 			} else
364 				opts = tmpopts;
365 		}
366 	}
367 #ifdef INET6
368 	if (inp->inp_vflag & INP_IPV6) {
369 		bzero(&udp_in6, sizeof(udp_in6));
370 		udp_in6.sin6_len = sizeof(udp_in6);
371 		udp_in6.sin6_family = AF_INET6;
372 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
373 		append_sa = (struct sockaddr *)&udp_in6;
374 	} else
375 #endif /* INET6 */
376 		append_sa = (struct sockaddr *)&udp_in[0];
377 	m_adj(n, off);
378 
379 	so = inp->inp_socket;
380 	SOCKBUF_LOCK(&so->so_rcv);
381 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
382 		soroverflow_locked(so);
383 		m_freem(n);
384 		if (opts)
385 			m_freem(opts);
386 		UDPSTAT_INC(udps_fullsock);
387 	} else
388 		sorwakeup_locked(so);
389 	return (0);
390 }
391 
392 int
393 udp_input(struct mbuf **mp, int *offp, int proto)
394 {
395 	struct ip *ip;
396 	struct udphdr *uh;
397 	struct ifnet *ifp;
398 	struct inpcb *inp;
399 	uint16_t len, ip_len;
400 	struct inpcbinfo *pcbinfo;
401 	struct ip save_ip;
402 	struct sockaddr_in udp_in[2];
403 	struct mbuf *m;
404 	struct m_tag *fwd_tag;
405 	int cscov_partial, iphlen;
406 
407 	m = *mp;
408 	iphlen = *offp;
409 	ifp = m->m_pkthdr.rcvif;
410 	*mp = NULL;
411 	UDPSTAT_INC(udps_ipackets);
412 
413 	/*
414 	 * Strip IP options, if any; should skip this, make available to
415 	 * user, and use on returned packets, but we don't yet have a way to
416 	 * check the checksum with options still present.
417 	 */
418 	if (iphlen > sizeof (struct ip)) {
419 		ip_stripoptions(m);
420 		iphlen = sizeof(struct ip);
421 	}
422 
423 	/*
424 	 * Get IP and UDP header together in first mbuf.
425 	 */
426 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
427 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
428 			UDPSTAT_INC(udps_hdrops);
429 			return (IPPROTO_DONE);
430 		}
431 	}
432 	ip = mtod(m, struct ip *);
433 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
434 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
435 
436 	/*
437 	 * Destination port of 0 is illegal, based on RFC768.
438 	 */
439 	if (uh->uh_dport == 0)
440 		goto badunlocked;
441 
442 	/*
443 	 * Construct sockaddr format source address.  Stuff source address
444 	 * and datagram in user buffer.
445 	 */
446 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
447 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
448 	udp_in[0].sin_family = AF_INET;
449 	udp_in[0].sin_port = uh->uh_sport;
450 	udp_in[0].sin_addr = ip->ip_src;
451 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
452 	udp_in[1].sin_family = AF_INET;
453 	udp_in[1].sin_port = uh->uh_dport;
454 	udp_in[1].sin_addr = ip->ip_dst;
455 
456 	/*
457 	 * Make mbuf data length reflect UDP length.  If not enough data to
458 	 * reflect UDP length, drop.
459 	 */
460 	len = ntohs((u_short)uh->uh_ulen);
461 	ip_len = ntohs(ip->ip_len) - iphlen;
462 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
463 		/* Zero means checksum over the complete packet. */
464 		if (len == 0)
465 			len = ip_len;
466 		cscov_partial = 0;
467 	}
468 	if (ip_len != len) {
469 		if (len > ip_len || len < sizeof(struct udphdr)) {
470 			UDPSTAT_INC(udps_badlen);
471 			goto badunlocked;
472 		}
473 		if (proto == IPPROTO_UDP)
474 			m_adj(m, len - ip_len);
475 	}
476 
477 	/*
478 	 * Save a copy of the IP header in case we want restore it for
479 	 * sending an ICMP error message in response.
480 	 */
481 	if (!V_udp_blackhole)
482 		save_ip = *ip;
483 	else
484 		memset(&save_ip, 0, sizeof(save_ip));
485 
486 	/*
487 	 * Checksum extended UDP header and data.
488 	 */
489 	if (uh->uh_sum) {
490 		u_short uh_sum;
491 
492 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
493 		    !cscov_partial) {
494 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
495 				uh_sum = m->m_pkthdr.csum_data;
496 			else
497 				uh_sum = in_pseudo(ip->ip_src.s_addr,
498 				    ip->ip_dst.s_addr, htonl((u_short)len +
499 				    m->m_pkthdr.csum_data + proto));
500 			uh_sum ^= 0xffff;
501 		} else {
502 			char b[9];
503 
504 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
505 			bzero(((struct ipovly *)ip)->ih_x1, 9);
506 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
507 			    uh->uh_ulen : htons(ip_len);
508 			uh_sum = in_cksum(m, len + sizeof (struct ip));
509 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
510 		}
511 		if (uh_sum) {
512 			UDPSTAT_INC(udps_badsum);
513 			m_freem(m);
514 			return (IPPROTO_DONE);
515 		}
516 	} else {
517 		if (proto == IPPROTO_UDP) {
518 			UDPSTAT_INC(udps_nosum);
519 		} else {
520 			/* UDPLite requires a checksum */
521 			/* XXX: What is the right UDPLite MIB counter here? */
522 			m_freem(m);
523 			return (IPPROTO_DONE);
524 		}
525 	}
526 
527 	pcbinfo = udp_get_inpcbinfo(proto);
528 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
529 	    in_broadcast(ip->ip_dst, ifp)) {
530 		struct inpcb *last;
531 		struct inpcbhead *pcblist;
532 
533 		NET_EPOCH_ASSERT();
534 
535 		pcblist = udp_get_pcblist(proto);
536 		last = NULL;
537 		CK_LIST_FOREACH(inp, pcblist, inp_list) {
538 			if (inp->inp_lport != uh->uh_dport)
539 				continue;
540 #ifdef INET6
541 			if ((inp->inp_vflag & INP_IPV4) == 0)
542 				continue;
543 #endif
544 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
545 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
546 				continue;
547 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
548 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
549 				continue;
550 			if (inp->inp_fport != 0 &&
551 			    inp->inp_fport != uh->uh_sport)
552 				continue;
553 
554 			INP_RLOCK(inp);
555 
556 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
557 				INP_RUNLOCK(inp);
558 				continue;
559 			}
560 
561 			/*
562 			 * XXXRW: Because we weren't holding either the inpcb
563 			 * or the hash lock when we checked for a match
564 			 * before, we should probably recheck now that the
565 			 * inpcb lock is held.
566 			 */
567 
568 			/*
569 			 * Handle socket delivery policy for any-source
570 			 * and source-specific multicast. [RFC3678]
571 			 */
572 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
573 				struct ip_moptions	*imo;
574 				struct sockaddr_in	 group;
575 				int			 blocked;
576 
577 				imo = inp->inp_moptions;
578 				if (imo == NULL) {
579 					INP_RUNLOCK(inp);
580 					continue;
581 				}
582 				bzero(&group, sizeof(struct sockaddr_in));
583 				group.sin_len = sizeof(struct sockaddr_in);
584 				group.sin_family = AF_INET;
585 				group.sin_addr = ip->ip_dst;
586 
587 				blocked = imo_multi_filter(imo, ifp,
588 					(struct sockaddr *)&group,
589 					(struct sockaddr *)&udp_in[0]);
590 				if (blocked != MCAST_PASS) {
591 					if (blocked == MCAST_NOTGMEMBER)
592 						IPSTAT_INC(ips_notmember);
593 					if (blocked == MCAST_NOTSMEMBER ||
594 					    blocked == MCAST_MUTED)
595 						UDPSTAT_INC(udps_filtermcast);
596 					INP_RUNLOCK(inp);
597 					continue;
598 				}
599 			}
600 			if (last != NULL) {
601 				struct mbuf *n;
602 
603 				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
604 				    NULL) {
605 					if (proto == IPPROTO_UDPLITE)
606 						UDPLITE_PROBE(receive, NULL, last, ip,
607 						    last, uh);
608 					else
609 						UDP_PROBE(receive, NULL, last, ip, last,
610 						    uh);
611 					if (udp_append(last, ip, n, iphlen,
612 						udp_in)) {
613 						INP_RUNLOCK(inp);
614 						goto badunlocked;
615 					}
616 				}
617 				/* Release PCB lock taken on previous pass. */
618 				INP_RUNLOCK(last);
619 			}
620 			last = inp;
621 			/*
622 			 * Don't look for additional matches if this one does
623 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
624 			 * socket options set.  This heuristic avoids
625 			 * searching through all pcbs in the common case of a
626 			 * non-shared port.  It assumes that an application
627 			 * will never clear these options after setting them.
628 			 */
629 			if ((last->inp_socket->so_options &
630 			    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0)
631 				break;
632 		}
633 
634 		if (last == NULL) {
635 			/*
636 			 * No matching pcb found; discard datagram.  (No need
637 			 * to send an ICMP Port Unreachable for a broadcast
638 			 * or multicast datgram.)
639 			 */
640 			UDPSTAT_INC(udps_noport);
641 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
642 				UDPSTAT_INC(udps_noportmcast);
643 			else
644 				UDPSTAT_INC(udps_noportbcast);
645 			goto badunlocked;
646 		}
647 		if (proto == IPPROTO_UDPLITE)
648 			UDPLITE_PROBE(receive, NULL, last, ip, last, uh);
649 		else
650 			UDP_PROBE(receive, NULL, last, ip, last, uh);
651 		if (udp_append(last, ip, m, iphlen, udp_in) == 0)
652 			INP_RUNLOCK(last);
653 		return (IPPROTO_DONE);
654 	}
655 
656 	/*
657 	 * Locate pcb for datagram.
658 	 */
659 
660 	/*
661 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
662 	 */
663 	if ((m->m_flags & M_IP_NEXTHOP) &&
664 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
665 		struct sockaddr_in *next_hop;
666 
667 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
668 
669 		/*
670 		 * Transparently forwarded. Pretend to be the destination.
671 		 * Already got one like this?
672 		 */
673 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
674 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
675 		if (!inp) {
676 			/*
677 			 * It's new.  Try to find the ambushing socket.
678 			 * Because we've rewritten the destination address,
679 			 * any hardware-generated hash is ignored.
680 			 */
681 			inp = in_pcblookup(pcbinfo, ip->ip_src,
682 			    uh->uh_sport, next_hop->sin_addr,
683 			    next_hop->sin_port ? htons(next_hop->sin_port) :
684 			    uh->uh_dport, INPLOOKUP_WILDCARD |
685 			    INPLOOKUP_RLOCKPCB, ifp);
686 		}
687 		/* Remove the tag from the packet. We don't need it anymore. */
688 		m_tag_delete(m, fwd_tag);
689 		m->m_flags &= ~M_IP_NEXTHOP;
690 	} else
691 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
692 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
693 		    INPLOOKUP_RLOCKPCB, ifp, m);
694 	if (inp == NULL) {
695 		if (V_udp_log_in_vain) {
696 			char src[INET_ADDRSTRLEN];
697 			char dst[INET_ADDRSTRLEN];
698 
699 			log(LOG_INFO,
700 			    "Connection attempt to UDP %s:%d from %s:%d\n",
701 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
702 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
703 		}
704 		if (proto == IPPROTO_UDPLITE)
705 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
706 		else
707 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
708 		UDPSTAT_INC(udps_noport);
709 		if (m->m_flags & (M_BCAST | M_MCAST)) {
710 			UDPSTAT_INC(udps_noportbcast);
711 			goto badunlocked;
712 		}
713 		if (V_udp_blackhole)
714 			goto badunlocked;
715 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
716 			goto badunlocked;
717 		*ip = save_ip;
718 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
719 		return (IPPROTO_DONE);
720 	}
721 
722 	/*
723 	 * Check the minimum TTL for socket.
724 	 */
725 	INP_RLOCK_ASSERT(inp);
726 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
727 		if (proto == IPPROTO_UDPLITE)
728 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
729 		else
730 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
731 		INP_RUNLOCK(inp);
732 		m_freem(m);
733 		return (IPPROTO_DONE);
734 	}
735 	if (cscov_partial) {
736 		struct udpcb *up;
737 
738 		up = intoudpcb(inp);
739 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
740 			INP_RUNLOCK(inp);
741 			m_freem(m);
742 			return (IPPROTO_DONE);
743 		}
744 	}
745 
746 	if (proto == IPPROTO_UDPLITE)
747 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
748 	else
749 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
750 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
751 		INP_RUNLOCK(inp);
752 	return (IPPROTO_DONE);
753 
754 badunlocked:
755 	m_freem(m);
756 	return (IPPROTO_DONE);
757 }
758 #endif /* INET */
759 
760 /*
761  * Notify a udp user of an asynchronous error; just wake up so that they can
762  * collect error status.
763  */
764 struct inpcb *
765 udp_notify(struct inpcb *inp, int errno)
766 {
767 
768 	INP_WLOCK_ASSERT(inp);
769 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
770 	     errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
771 		NH_FREE(inp->inp_route.ro_nh);
772 		inp->inp_route.ro_nh = (struct nhop_object *)NULL;
773 	}
774 
775 	inp->inp_socket->so_error = errno;
776 	sorwakeup(inp->inp_socket);
777 	sowwakeup(inp->inp_socket);
778 	return (inp);
779 }
780 
781 #ifdef INET
782 static void
783 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
784     struct inpcbinfo *pcbinfo)
785 {
786 	struct ip *ip = vip;
787 	struct udphdr *uh;
788 	struct in_addr faddr;
789 	struct inpcb *inp;
790 
791 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
792 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
793 		return;
794 
795 	if (PRC_IS_REDIRECT(cmd)) {
796 		/* signal EHOSTDOWN, as it flushes the cached route */
797 		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
798 		return;
799 	}
800 
801 	/*
802 	 * Hostdead is ugly because it goes linearly through all PCBs.
803 	 *
804 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
805 	 * DoS attack on machines with many connections.
806 	 */
807 	if (cmd == PRC_HOSTDEAD)
808 		ip = NULL;
809 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
810 		return;
811 	if (ip != NULL) {
812 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
813 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
814 		    ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
815 		if (inp != NULL) {
816 			INP_WLOCK_ASSERT(inp);
817 			if (inp->inp_socket != NULL) {
818 				udp_notify(inp, inetctlerrmap[cmd]);
819 			}
820 			INP_WUNLOCK(inp);
821 		} else {
822 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
823 					   ip->ip_src, uh->uh_sport,
824 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
825 			if (inp != NULL) {
826 				struct udpcb *up;
827 				void *ctx;
828 				udp_tun_icmp_t func;
829 
830 				up = intoudpcb(inp);
831 				ctx = up->u_tun_ctx;
832 				func = up->u_icmp_func;
833 				INP_RUNLOCK(inp);
834 				if (func != NULL)
835 					(*func)(cmd, sa, vip, ctx);
836 			}
837 		}
838 	} else
839 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
840 		    udp_notify);
841 }
842 void
843 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
844 {
845 
846 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
847 }
848 
849 void
850 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
851 {
852 
853 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
854 }
855 #endif /* INET */
856 
857 static int
858 udp_pcblist(SYSCTL_HANDLER_ARGS)
859 {
860 	struct xinpgen xig;
861 	struct epoch_tracker et;
862 	struct inpcb *inp;
863 	int error;
864 
865 	if (req->newptr != 0)
866 		return (EPERM);
867 
868 	if (req->oldptr == 0) {
869 		int n;
870 
871 		n = V_udbinfo.ipi_count;
872 		n += imax(n / 8, 10);
873 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
874 		return (0);
875 	}
876 
877 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
878 		return (error);
879 
880 	bzero(&xig, sizeof(xig));
881 	xig.xig_len = sizeof xig;
882 	xig.xig_count = V_udbinfo.ipi_count;
883 	xig.xig_gen = V_udbinfo.ipi_gencnt;
884 	xig.xig_sogen = so_gencnt;
885 	error = SYSCTL_OUT(req, &xig, sizeof xig);
886 	if (error)
887 		return (error);
888 
889 	NET_EPOCH_ENTER(et);
890 	for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead);
891 	    inp != NULL;
892 	    inp = CK_LIST_NEXT(inp, inp_list)) {
893 		INP_RLOCK(inp);
894 		if (inp->inp_gencnt <= xig.xig_gen &&
895 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
896 			struct xinpcb xi;
897 
898 			in_pcbtoxinpcb(inp, &xi);
899 			INP_RUNLOCK(inp);
900 			error = SYSCTL_OUT(req, &xi, sizeof xi);
901 			if (error)
902 				break;
903 		} else
904 			INP_RUNLOCK(inp);
905 	}
906 	NET_EPOCH_EXIT(et);
907 
908 	if (!error) {
909 		/*
910 		 * Give the user an updated idea of our state.  If the
911 		 * generation differs from what we told her before, she knows
912 		 * that something happened while we were processing this
913 		 * request, and it might be necessary to retry.
914 		 */
915 		xig.xig_gen = V_udbinfo.ipi_gencnt;
916 		xig.xig_sogen = so_gencnt;
917 		xig.xig_count = V_udbinfo.ipi_count;
918 		error = SYSCTL_OUT(req, &xig, sizeof xig);
919 	}
920 
921 	return (error);
922 }
923 
924 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
925     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
926     udp_pcblist, "S,xinpcb",
927     "List of active UDP sockets");
928 
929 #ifdef INET
930 static int
931 udp_getcred(SYSCTL_HANDLER_ARGS)
932 {
933 	struct xucred xuc;
934 	struct sockaddr_in addrs[2];
935 	struct epoch_tracker et;
936 	struct inpcb *inp;
937 	int error;
938 
939 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
940 	if (error)
941 		return (error);
942 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
943 	if (error)
944 		return (error);
945 	NET_EPOCH_ENTER(et);
946 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
947 	    addrs[0].sin_addr, addrs[0].sin_port,
948 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
949 	NET_EPOCH_EXIT(et);
950 	if (inp != NULL) {
951 		INP_RLOCK_ASSERT(inp);
952 		if (inp->inp_socket == NULL)
953 			error = ENOENT;
954 		if (error == 0)
955 			error = cr_canseeinpcb(req->td->td_ucred, inp);
956 		if (error == 0)
957 			cru2x(inp->inp_cred, &xuc);
958 		INP_RUNLOCK(inp);
959 	} else
960 		error = ENOENT;
961 	if (error == 0)
962 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
963 	return (error);
964 }
965 
966 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
967     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
968     0, 0, udp_getcred, "S,xucred",
969     "Get the xucred of a UDP connection");
970 #endif /* INET */
971 
972 int
973 udp_ctloutput(struct socket *so, struct sockopt *sopt)
974 {
975 	struct inpcb *inp;
976 	struct udpcb *up;
977 	int isudplite, error, optval;
978 
979 	error = 0;
980 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
981 	inp = sotoinpcb(so);
982 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
983 	INP_WLOCK(inp);
984 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
985 #ifdef INET6
986 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
987 			INP_WUNLOCK(inp);
988 			error = ip6_ctloutput(so, sopt);
989 		}
990 #endif
991 #if defined(INET) && defined(INET6)
992 		else
993 #endif
994 #ifdef INET
995 		{
996 			INP_WUNLOCK(inp);
997 			error = ip_ctloutput(so, sopt);
998 		}
999 #endif
1000 		return (error);
1001 	}
1002 
1003 	switch (sopt->sopt_dir) {
1004 	case SOPT_SET:
1005 		switch (sopt->sopt_name) {
1006 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1007 #ifdef INET
1008 		case UDP_ENCAP:
1009 			if (!IPSEC_ENABLED(ipv4)) {
1010 				INP_WUNLOCK(inp);
1011 				return (ENOPROTOOPT);
1012 			}
1013 			error = UDPENCAP_PCBCTL(inp, sopt);
1014 			break;
1015 #endif /* INET */
1016 #endif /* IPSEC */
1017 		case UDPLITE_SEND_CSCOV:
1018 		case UDPLITE_RECV_CSCOV:
1019 			if (!isudplite) {
1020 				INP_WUNLOCK(inp);
1021 				error = ENOPROTOOPT;
1022 				break;
1023 			}
1024 			INP_WUNLOCK(inp);
1025 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1026 			    sizeof(optval));
1027 			if (error != 0)
1028 				break;
1029 			inp = sotoinpcb(so);
1030 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1031 			INP_WLOCK(inp);
1032 			up = intoudpcb(inp);
1033 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1034 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1035 				INP_WUNLOCK(inp);
1036 				error = EINVAL;
1037 				break;
1038 			}
1039 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1040 				up->u_txcslen = optval;
1041 			else
1042 				up->u_rxcslen = optval;
1043 			INP_WUNLOCK(inp);
1044 			break;
1045 		default:
1046 			INP_WUNLOCK(inp);
1047 			error = ENOPROTOOPT;
1048 			break;
1049 		}
1050 		break;
1051 	case SOPT_GET:
1052 		switch (sopt->sopt_name) {
1053 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1054 #ifdef INET
1055 		case UDP_ENCAP:
1056 			if (!IPSEC_ENABLED(ipv4)) {
1057 				INP_WUNLOCK(inp);
1058 				return (ENOPROTOOPT);
1059 			}
1060 			error = UDPENCAP_PCBCTL(inp, sopt);
1061 			break;
1062 #endif /* INET */
1063 #endif /* IPSEC */
1064 		case UDPLITE_SEND_CSCOV:
1065 		case UDPLITE_RECV_CSCOV:
1066 			if (!isudplite) {
1067 				INP_WUNLOCK(inp);
1068 				error = ENOPROTOOPT;
1069 				break;
1070 			}
1071 			up = intoudpcb(inp);
1072 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1073 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1074 				optval = up->u_txcslen;
1075 			else
1076 				optval = up->u_rxcslen;
1077 			INP_WUNLOCK(inp);
1078 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1079 			break;
1080 		default:
1081 			INP_WUNLOCK(inp);
1082 			error = ENOPROTOOPT;
1083 			break;
1084 		}
1085 		break;
1086 	}
1087 	return (error);
1088 }
1089 
1090 #ifdef INET
1091 #ifdef INET6
1092 /* The logic here is derived from ip6_setpktopt(). See comments there. */
1093 static int
1094 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
1095     struct inpcb *inp, int flags)
1096 {
1097 	struct ifnet *ifp;
1098 	struct in6_pktinfo *pktinfo;
1099 	struct in_addr ia;
1100 
1101 	if ((flags & PRUS_IPV6) == 0)
1102 		return (0);
1103 
1104 	if (cm->cmsg_level != IPPROTO_IPV6)
1105 		return (0);
1106 
1107 	if  (cm->cmsg_type != IPV6_2292PKTINFO &&
1108 	    cm->cmsg_type != IPV6_PKTINFO)
1109 		return (0);
1110 
1111 	if (cm->cmsg_len !=
1112 	    CMSG_LEN(sizeof(struct in6_pktinfo)))
1113 		return (EINVAL);
1114 
1115 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1116 	if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
1117 	    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
1118 		return (EINVAL);
1119 
1120 	/* Validate the interface index if specified. */
1121 	if (pktinfo->ipi6_ifindex > V_if_index)
1122 		return (ENXIO);
1123 
1124 	ifp = NULL;
1125 	if (pktinfo->ipi6_ifindex) {
1126 		ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
1127 		if (ifp == NULL)
1128 			return (ENXIO);
1129 	}
1130 	if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
1131 		ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1132 		if (in_ifhasaddr(ifp, ia) == 0)
1133 			return (EADDRNOTAVAIL);
1134 	}
1135 
1136 	bzero(src, sizeof(*src));
1137 	src->sin_family = AF_INET;
1138 	src->sin_len = sizeof(*src);
1139 	src->sin_port = inp->inp_lport;
1140 	src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1141 
1142 	return (0);
1143 }
1144 #endif
1145 
1146 static int
1147 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1148     struct mbuf *control, struct thread *td, int flags)
1149 {
1150 	struct udpiphdr *ui;
1151 	int len = m->m_pkthdr.len;
1152 	struct in_addr faddr, laddr;
1153 	struct cmsghdr *cm;
1154 	struct inpcbinfo *pcbinfo;
1155 	struct sockaddr_in *sin, src;
1156 	struct epoch_tracker et;
1157 	int cscov_partial = 0;
1158 	int error = 0;
1159 	int ipflags = 0;
1160 	u_short fport, lport;
1161 	u_char tos;
1162 	uint8_t pr;
1163 	uint16_t cscov = 0;
1164 	uint32_t flowid = 0;
1165 	uint8_t flowtype = M_HASHTYPE_NONE;
1166 
1167 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1168 		if (control)
1169 			m_freem(control);
1170 		m_freem(m);
1171 		return (EMSGSIZE);
1172 	}
1173 
1174 	src.sin_family = 0;
1175 	sin = (struct sockaddr_in *)addr;
1176 
1177 	/*
1178 	 * udp_output() may need to temporarily bind or connect the current
1179 	 * inpcb.  As such, we don't know up front whether we will need the
1180 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1181 	 * front before acquiring any locks.
1182 	 *
1183 	 * We will need network epoch in either case, to safely lookup into
1184 	 * pcb hash.
1185 	 */
1186 	if (sin == NULL ||
1187 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0))
1188 		INP_WLOCK(inp);
1189 	else
1190 		INP_RLOCK(inp);
1191 	NET_EPOCH_ENTER(et);
1192 	tos = inp->inp_ip_tos;
1193 	if (control != NULL) {
1194 		/*
1195 		 * XXX: Currently, we assume all the optional information is
1196 		 * stored in a single mbuf.
1197 		 */
1198 		if (control->m_next) {
1199 			m_freem(control);
1200 			error = EINVAL;
1201 			goto release;
1202 		}
1203 		for (; control->m_len > 0;
1204 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1205 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1206 			cm = mtod(control, struct cmsghdr *);
1207 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1208 			    || cm->cmsg_len > control->m_len) {
1209 				error = EINVAL;
1210 				break;
1211 			}
1212 #ifdef INET6
1213 			error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
1214 			if (error != 0)
1215 				break;
1216 #endif
1217 			if (cm->cmsg_level != IPPROTO_IP)
1218 				continue;
1219 
1220 			switch (cm->cmsg_type) {
1221 			case IP_SENDSRCADDR:
1222 				if (cm->cmsg_len !=
1223 				    CMSG_LEN(sizeof(struct in_addr))) {
1224 					error = EINVAL;
1225 					break;
1226 				}
1227 				bzero(&src, sizeof(src));
1228 				src.sin_family = AF_INET;
1229 				src.sin_len = sizeof(src);
1230 				src.sin_port = inp->inp_lport;
1231 				src.sin_addr =
1232 				    *(struct in_addr *)CMSG_DATA(cm);
1233 				break;
1234 
1235 			case IP_TOS:
1236 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1237 					error = EINVAL;
1238 					break;
1239 				}
1240 				tos = *(u_char *)CMSG_DATA(cm);
1241 				break;
1242 
1243 			case IP_FLOWID:
1244 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1245 					error = EINVAL;
1246 					break;
1247 				}
1248 				flowid = *(uint32_t *) CMSG_DATA(cm);
1249 				break;
1250 
1251 			case IP_FLOWTYPE:
1252 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1253 					error = EINVAL;
1254 					break;
1255 				}
1256 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1257 				break;
1258 
1259 #ifdef	RSS
1260 			case IP_RSSBUCKETID:
1261 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1262 					error = EINVAL;
1263 					break;
1264 				}
1265 				/* This is just a placeholder for now */
1266 				break;
1267 #endif	/* RSS */
1268 			default:
1269 				error = ENOPROTOOPT;
1270 				break;
1271 			}
1272 			if (error)
1273 				break;
1274 		}
1275 		m_freem(control);
1276 		control = NULL;
1277 	}
1278 	if (error)
1279 		goto release;
1280 
1281 	pr = inp->inp_socket->so_proto->pr_protocol;
1282 	pcbinfo = udp_get_inpcbinfo(pr);
1283 
1284 	/*
1285 	 * If the IP_SENDSRCADDR control message was specified, override the
1286 	 * source address for this datagram.  Its use is invalidated if the
1287 	 * address thus specified is incomplete or clobbers other inpcbs.
1288 	 */
1289 	laddr = inp->inp_laddr;
1290 	lport = inp->inp_lport;
1291 	if (src.sin_family == AF_INET) {
1292 		INP_HASH_LOCK_ASSERT(pcbinfo);
1293 		if ((lport == 0) ||
1294 		    (laddr.s_addr == INADDR_ANY &&
1295 		     src.sin_addr.s_addr == INADDR_ANY)) {
1296 			error = EINVAL;
1297 			goto release;
1298 		}
1299 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1300 		    &laddr.s_addr, &lport, td->td_ucred);
1301 		if (error)
1302 			goto release;
1303 	}
1304 
1305 	/*
1306 	 * If a UDP socket has been connected, then a local address/port will
1307 	 * have been selected and bound.
1308 	 *
1309 	 * If a UDP socket has not been connected to, then an explicit
1310 	 * destination address must be used, in which case a local
1311 	 * address/port may not have been selected and bound.
1312 	 */
1313 	if (sin != NULL) {
1314 		INP_LOCK_ASSERT(inp);
1315 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1316 			error = EISCONN;
1317 			goto release;
1318 		}
1319 
1320 		/*
1321 		 * Jail may rewrite the destination address, so let it do
1322 		 * that before we use it.
1323 		 */
1324 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1325 		if (error)
1326 			goto release;
1327 
1328 		/*
1329 		 * If a local address or port hasn't yet been selected, or if
1330 		 * the destination address needs to be rewritten due to using
1331 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1332 		 * to do the heavy lifting.  Once a port is selected, we
1333 		 * commit the binding back to the socket; we also commit the
1334 		 * binding of the address if in jail.
1335 		 *
1336 		 * If we already have a valid binding and we're not
1337 		 * requesting a destination address rewrite, use a fast path.
1338 		 */
1339 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1340 		    inp->inp_lport == 0 ||
1341 		    sin->sin_addr.s_addr == INADDR_ANY ||
1342 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1343 			INP_HASH_LOCK_ASSERT(pcbinfo);
1344 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1345 			    &lport, &faddr.s_addr, &fport, NULL,
1346 			    td->td_ucred);
1347 			if (error)
1348 				goto release;
1349 
1350 			/*
1351 			 * XXXRW: Why not commit the port if the address is
1352 			 * !INADDR_ANY?
1353 			 */
1354 			/* Commit the local port if newly assigned. */
1355 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1356 			    inp->inp_lport == 0) {
1357 				INP_WLOCK_ASSERT(inp);
1358 				/*
1359 				 * Remember addr if jailed, to prevent
1360 				 * rebinding.
1361 				 */
1362 				if (prison_flag(td->td_ucred, PR_IP4))
1363 					inp->inp_laddr = laddr;
1364 				inp->inp_lport = lport;
1365 				INP_HASH_WLOCK(pcbinfo);
1366 				error = in_pcbinshash(inp);
1367 				INP_HASH_WUNLOCK(pcbinfo);
1368 				if (error != 0) {
1369 					inp->inp_lport = 0;
1370 					error = EAGAIN;
1371 					goto release;
1372 				}
1373 				inp->inp_flags |= INP_ANONPORT;
1374 			}
1375 		} else {
1376 			faddr = sin->sin_addr;
1377 			fport = sin->sin_port;
1378 		}
1379 	} else {
1380 		INP_LOCK_ASSERT(inp);
1381 		faddr = inp->inp_faddr;
1382 		fport = inp->inp_fport;
1383 		if (faddr.s_addr == INADDR_ANY) {
1384 			error = ENOTCONN;
1385 			goto release;
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1391 	 * link-layer headers.  Immediate slide the data pointer back forward
1392 	 * since we won't use that space at this layer.
1393 	 */
1394 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1395 	if (m == NULL) {
1396 		error = ENOBUFS;
1397 		goto release;
1398 	}
1399 	m->m_data += max_linkhdr;
1400 	m->m_len -= max_linkhdr;
1401 	m->m_pkthdr.len -= max_linkhdr;
1402 
1403 	/*
1404 	 * Fill in mbuf with extended UDP header and addresses and length put
1405 	 * into network format.
1406 	 */
1407 	ui = mtod(m, struct udpiphdr *);
1408 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1409 	ui->ui_v = IPVERSION << 4;
1410 	ui->ui_pr = pr;
1411 	ui->ui_src = laddr;
1412 	ui->ui_dst = faddr;
1413 	ui->ui_sport = lport;
1414 	ui->ui_dport = fport;
1415 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1416 	if (pr == IPPROTO_UDPLITE) {
1417 		struct udpcb *up;
1418 		uint16_t plen;
1419 
1420 		up = intoudpcb(inp);
1421 		cscov = up->u_txcslen;
1422 		plen = (u_short)len + sizeof(struct udphdr);
1423 		if (cscov >= plen)
1424 			cscov = 0;
1425 		ui->ui_len = htons(plen);
1426 		ui->ui_ulen = htons(cscov);
1427 		/*
1428 		 * For UDP-Lite, checksum coverage length of zero means
1429 		 * the entire UDPLite packet is covered by the checksum.
1430 		 */
1431 		cscov_partial = (cscov == 0) ? 0 : 1;
1432 	}
1433 
1434 	/*
1435 	 * Set the Don't Fragment bit in the IP header.
1436 	 */
1437 	if (inp->inp_flags & INP_DONTFRAG) {
1438 		struct ip *ip;
1439 
1440 		ip = (struct ip *)&ui->ui_i;
1441 		ip->ip_off |= htons(IP_DF);
1442 	}
1443 
1444 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1445 		ipflags |= IP_ROUTETOIF;
1446 	if (inp->inp_socket->so_options & SO_BROADCAST)
1447 		ipflags |= IP_ALLOWBROADCAST;
1448 	if (inp->inp_flags & INP_ONESBCAST)
1449 		ipflags |= IP_SENDONES;
1450 
1451 #ifdef MAC
1452 	mac_inpcb_create_mbuf(inp, m);
1453 #endif
1454 
1455 	/*
1456 	 * Set up checksum and output datagram.
1457 	 */
1458 	ui->ui_sum = 0;
1459 	if (pr == IPPROTO_UDPLITE) {
1460 		if (inp->inp_flags & INP_ONESBCAST)
1461 			faddr.s_addr = INADDR_BROADCAST;
1462 		if (cscov_partial) {
1463 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1464 				ui->ui_sum = 0xffff;
1465 		} else {
1466 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1467 				ui->ui_sum = 0xffff;
1468 		}
1469 	} else if (V_udp_cksum) {
1470 		if (inp->inp_flags & INP_ONESBCAST)
1471 			faddr.s_addr = INADDR_BROADCAST;
1472 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1473 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1474 		m->m_pkthdr.csum_flags = CSUM_UDP;
1475 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1476 	}
1477 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1478 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1479 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1480 	UDPSTAT_INC(udps_opackets);
1481 
1482 	/*
1483 	 * Setup flowid / RSS information for outbound socket.
1484 	 *
1485 	 * Once the UDP code decides to set a flowid some other way,
1486 	 * this allows the flowid to be overridden by userland.
1487 	 */
1488 	if (flowtype != M_HASHTYPE_NONE) {
1489 		m->m_pkthdr.flowid = flowid;
1490 		M_HASHTYPE_SET(m, flowtype);
1491 	}
1492 #if defined(ROUTE_MPATH) || defined(RSS)
1493 	else if (CALC_FLOWID_OUTBOUND_SENDTO) {
1494 		uint32_t hash_val, hash_type;
1495 
1496 		hash_val = fib4_calc_packet_hash(laddr, faddr,
1497 		    lport, fport, pr, &hash_type);
1498 		m->m_pkthdr.flowid = hash_val;
1499 		M_HASHTYPE_SET(m, hash_type);
1500 	}
1501 
1502 	/*
1503 	 * Don't override with the inp cached flowid value.
1504 	 *
1505 	 * Depending upon the kind of send being done, the inp
1506 	 * flowid/flowtype values may actually not be appropriate
1507 	 * for this particular socket send.
1508 	 *
1509 	 * We should either leave the flowid at zero (which is what is
1510 	 * currently done) or set it to some software generated
1511 	 * hash value based on the packet contents.
1512 	 */
1513 	ipflags |= IP_NODEFAULTFLOWID;
1514 #endif	/* RSS */
1515 
1516 	if (pr == IPPROTO_UDPLITE)
1517 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1518 	else
1519 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1520 	error = ip_output(m, inp->inp_options,
1521 	    INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags,
1522 	    inp->inp_moptions, inp);
1523 	INP_UNLOCK(inp);
1524 	NET_EPOCH_EXIT(et);
1525 	return (error);
1526 
1527 release:
1528 	INP_UNLOCK(inp);
1529 	NET_EPOCH_EXIT(et);
1530 	m_freem(m);
1531 	return (error);
1532 }
1533 
1534 static void
1535 udp_abort(struct socket *so)
1536 {
1537 	struct inpcb *inp;
1538 	struct inpcbinfo *pcbinfo;
1539 
1540 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1541 	inp = sotoinpcb(so);
1542 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1543 	INP_WLOCK(inp);
1544 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1545 		INP_HASH_WLOCK(pcbinfo);
1546 		in_pcbdisconnect(inp);
1547 		inp->inp_laddr.s_addr = INADDR_ANY;
1548 		INP_HASH_WUNLOCK(pcbinfo);
1549 		soisdisconnected(so);
1550 	}
1551 	INP_WUNLOCK(inp);
1552 }
1553 
1554 static int
1555 udp_attach(struct socket *so, int proto, struct thread *td)
1556 {
1557 	static uint32_t udp_flowid;
1558 	struct inpcb *inp;
1559 	struct inpcbinfo *pcbinfo;
1560 	int error;
1561 
1562 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1563 	inp = sotoinpcb(so);
1564 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1565 	error = soreserve(so, udp_sendspace, udp_recvspace);
1566 	if (error)
1567 		return (error);
1568 	INP_INFO_WLOCK(pcbinfo);
1569 	error = in_pcballoc(so, pcbinfo);
1570 	if (error) {
1571 		INP_INFO_WUNLOCK(pcbinfo);
1572 		return (error);
1573 	}
1574 
1575 	inp = sotoinpcb(so);
1576 	inp->inp_vflag |= INP_IPV4;
1577 	inp->inp_ip_ttl = V_ip_defttl;
1578 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1579 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1580 
1581 	error = udp_newudpcb(inp);
1582 	if (error) {
1583 		in_pcbdetach(inp);
1584 		in_pcbfree(inp);
1585 		INP_INFO_WUNLOCK(pcbinfo);
1586 		return (error);
1587 	}
1588 
1589 	INP_WUNLOCK(inp);
1590 	INP_INFO_WUNLOCK(pcbinfo);
1591 	return (0);
1592 }
1593 #endif /* INET */
1594 
1595 int
1596 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1597 {
1598 	struct inpcb *inp;
1599 	struct udpcb *up;
1600 
1601 	KASSERT(so->so_type == SOCK_DGRAM,
1602 	    ("udp_set_kernel_tunneling: !dgram"));
1603 	inp = sotoinpcb(so);
1604 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1605 	INP_WLOCK(inp);
1606 	up = intoudpcb(inp);
1607 	if ((up->u_tun_func != NULL) ||
1608 	    (up->u_icmp_func != NULL)) {
1609 		INP_WUNLOCK(inp);
1610 		return (EBUSY);
1611 	}
1612 	up->u_tun_func = f;
1613 	up->u_icmp_func = i;
1614 	up->u_tun_ctx = ctx;
1615 	INP_WUNLOCK(inp);
1616 	return (0);
1617 }
1618 
1619 #ifdef INET
1620 static int
1621 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1622 {
1623 	struct inpcb *inp;
1624 	struct inpcbinfo *pcbinfo;
1625 	struct sockaddr_in *sinp;
1626 	int error;
1627 
1628 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1629 	inp = sotoinpcb(so);
1630 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1631 
1632 	sinp = (struct sockaddr_in *)nam;
1633 	if (nam->sa_family != AF_INET) {
1634 		/*
1635 		 * Preserve compatibility with old programs.
1636 		 */
1637 		if (nam->sa_family != AF_UNSPEC ||
1638 		    nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
1639 		    sinp->sin_addr.s_addr != INADDR_ANY)
1640 			return (EAFNOSUPPORT);
1641 		nam->sa_family = AF_INET;
1642 	}
1643 	if (nam->sa_len != sizeof(struct sockaddr_in))
1644 		return (EINVAL);
1645 
1646 	INP_WLOCK(inp);
1647 	INP_HASH_WLOCK(pcbinfo);
1648 	error = in_pcbbind(inp, nam, td->td_ucred);
1649 	INP_HASH_WUNLOCK(pcbinfo);
1650 	INP_WUNLOCK(inp);
1651 	return (error);
1652 }
1653 
1654 static void
1655 udp_close(struct socket *so)
1656 {
1657 	struct inpcb *inp;
1658 	struct inpcbinfo *pcbinfo;
1659 
1660 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1661 	inp = sotoinpcb(so);
1662 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1663 	INP_WLOCK(inp);
1664 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1665 		INP_HASH_WLOCK(pcbinfo);
1666 		in_pcbdisconnect(inp);
1667 		inp->inp_laddr.s_addr = INADDR_ANY;
1668 		INP_HASH_WUNLOCK(pcbinfo);
1669 		soisdisconnected(so);
1670 	}
1671 	INP_WUNLOCK(inp);
1672 }
1673 
1674 static int
1675 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1676 {
1677 	struct epoch_tracker et;
1678 	struct inpcb *inp;
1679 	struct inpcbinfo *pcbinfo;
1680 	struct sockaddr_in *sin;
1681 	int error;
1682 
1683 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1684 	inp = sotoinpcb(so);
1685 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1686 
1687 	sin = (struct sockaddr_in *)nam;
1688 	if (sin->sin_family != AF_INET)
1689 		return (EAFNOSUPPORT);
1690 	if (sin->sin_len != sizeof(*sin))
1691 		return (EINVAL);
1692 
1693 	INP_WLOCK(inp);
1694 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1695 		INP_WUNLOCK(inp);
1696 		return (EISCONN);
1697 	}
1698 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1699 	if (error != 0) {
1700 		INP_WUNLOCK(inp);
1701 		return (error);
1702 	}
1703 	NET_EPOCH_ENTER(et);
1704 	INP_HASH_WLOCK(pcbinfo);
1705 	error = in_pcbconnect(inp, nam, td->td_ucred);
1706 	INP_HASH_WUNLOCK(pcbinfo);
1707 	NET_EPOCH_EXIT(et);
1708 	if (error == 0)
1709 		soisconnected(so);
1710 	INP_WUNLOCK(inp);
1711 	return (error);
1712 }
1713 
1714 static void
1715 udp_detach(struct socket *so)
1716 {
1717 	struct inpcb *inp;
1718 	struct inpcbinfo *pcbinfo;
1719 	struct udpcb *up;
1720 
1721 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1722 	inp = sotoinpcb(so);
1723 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1724 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1725 	    ("udp_detach: not disconnected"));
1726 	INP_INFO_WLOCK(pcbinfo);
1727 	INP_WLOCK(inp);
1728 	up = intoudpcb(inp);
1729 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1730 	inp->inp_ppcb = NULL;
1731 	in_pcbdetach(inp);
1732 	in_pcbfree(inp);
1733 	INP_INFO_WUNLOCK(pcbinfo);
1734 	udp_discardcb(up);
1735 }
1736 
1737 static int
1738 udp_disconnect(struct socket *so)
1739 {
1740 	struct inpcb *inp;
1741 	struct inpcbinfo *pcbinfo;
1742 
1743 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1744 	inp = sotoinpcb(so);
1745 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1746 	INP_WLOCK(inp);
1747 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1748 		INP_WUNLOCK(inp);
1749 		return (ENOTCONN);
1750 	}
1751 	INP_HASH_WLOCK(pcbinfo);
1752 	in_pcbdisconnect(inp);
1753 	inp->inp_laddr.s_addr = INADDR_ANY;
1754 	INP_HASH_WUNLOCK(pcbinfo);
1755 	SOCK_LOCK(so);
1756 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1757 	SOCK_UNLOCK(so);
1758 	INP_WUNLOCK(inp);
1759 	return (0);
1760 }
1761 
1762 static int
1763 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1764     struct mbuf *control, struct thread *td)
1765 {
1766 	struct inpcb *inp;
1767 	int error;
1768 
1769 	inp = sotoinpcb(so);
1770 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1771 
1772 	if (addr != NULL) {
1773 		error = 0;
1774 		if (addr->sa_family != AF_INET)
1775 			error = EAFNOSUPPORT;
1776 		else if (addr->sa_len != sizeof(struct sockaddr_in))
1777 			error = EINVAL;
1778 		if (__predict_false(error != 0)) {
1779 			m_freem(control);
1780 			m_freem(m);
1781 			return (error);
1782 		}
1783 	}
1784 	return (udp_output(inp, m, addr, control, td, flags));
1785 }
1786 #endif /* INET */
1787 
1788 int
1789 udp_shutdown(struct socket *so)
1790 {
1791 	struct inpcb *inp;
1792 
1793 	inp = sotoinpcb(so);
1794 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1795 	INP_WLOCK(inp);
1796 	socantsendmore(so);
1797 	INP_WUNLOCK(inp);
1798 	return (0);
1799 }
1800 
1801 #ifdef INET
1802 struct pr_usrreqs udp_usrreqs = {
1803 	.pru_abort =		udp_abort,
1804 	.pru_attach =		udp_attach,
1805 	.pru_bind =		udp_bind,
1806 	.pru_connect =		udp_connect,
1807 	.pru_control =		in_control,
1808 	.pru_detach =		udp_detach,
1809 	.pru_disconnect =	udp_disconnect,
1810 	.pru_peeraddr =		in_getpeeraddr,
1811 	.pru_send =		udp_send,
1812 	.pru_soreceive =	soreceive_dgram,
1813 	.pru_sosend =		sosend_dgram,
1814 	.pru_shutdown =		udp_shutdown,
1815 	.pru_sockaddr =		in_getsockaddr,
1816 	.pru_sosetlabel =	in_pcbsosetlabel,
1817 	.pru_close =		udp_close,
1818 };
1819 #endif /* INET */
1820