1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_inet.h" 41 #include "opt_inet6.h" 42 #include "opt_ipsec.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/domain.h> 48 #include <sys/eventhandler.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/sdt.h> 58 #include <sys/signalvar.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sx.h> 62 #include <sys/sysctl.h> 63 #include <sys/syslog.h> 64 #include <sys/systm.h> 65 66 #include <vm/uma.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip.h> 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #endif 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/ip_options.h> 88 #ifdef INET6 89 #include <netinet6/ip6_var.h> 90 #endif 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 #include <netinet/udplite.h> 94 #include <netinet/in_rss.h> 95 96 #include <netipsec/ipsec_support.h> 97 98 #include <machine/in_cksum.h> 99 100 #include <security/mac/mac_framework.h> 101 102 /* 103 * UDP and UDP-Lite protocols implementation. 104 * Per RFC 768, August, 1980. 105 * Per RFC 3828, July, 2004. 106 */ 107 108 VNET_DEFINE(int, udp_bind_all_fibs) = 1; 109 SYSCTL_INT(_net_inet_udp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN, 110 &VNET_NAME(udp_bind_all_fibs), 0, 111 "Bound sockets receive traffic from all FIBs"); 112 113 /* 114 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 115 * removes the only data integrity mechanism for packets and malformed 116 * packets that would otherwise be discarded due to bad checksums, and may 117 * cause problems (especially for NFS data blocks). 118 */ 119 VNET_DEFINE(int, udp_cksum) = 1; 120 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 121 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 122 123 VNET_DEFINE(int, udp_log_in_vain) = 0; 124 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 125 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 126 127 VNET_DEFINE(int, udp_blackhole) = 0; 128 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 129 &VNET_NAME(udp_blackhole), 0, 130 "Do not send port unreachables for refused connects"); 131 VNET_DEFINE(bool, udp_blackhole_local) = false; 132 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 133 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 134 "Enforce net.inet.udp.blackhole for locally originated packets"); 135 136 u_long udp_sendspace = 9216; /* really max datagram size */ 137 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 138 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 139 140 u_long udp_recvspace = 40 * (1024 + 141 #ifdef INET6 142 sizeof(struct sockaddr_in6) 143 #else 144 sizeof(struct sockaddr_in) 145 #endif 146 ); /* 40 1K datagrams */ 147 148 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 149 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 150 151 VNET_DEFINE(struct inpcbinfo, udbinfo); 152 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 153 154 #ifndef UDBHASHSIZE 155 #define UDBHASHSIZE 128 156 #endif 157 158 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 159 VNET_PCPUSTAT_SYSINIT(udpstat); 160 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 161 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 162 163 #ifdef VIMAGE 164 VNET_PCPUSTAT_SYSUNINIT(udpstat); 165 #endif /* VIMAGE */ 166 #ifdef INET 167 static void udp_detach(struct socket *so); 168 #endif 169 170 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash"); 171 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb", 172 "udplite", "udplitehash"); 173 174 static void 175 udp_vnet_init(void *arg __unused) 176 { 177 178 /* 179 * For now default to 2-tuple UDP hashing - until the fragment 180 * reassembly code can also update the flowid. 181 * 182 * Once we can calculate the flowid that way and re-establish 183 * a 4-tuple, flip this to 4-tuple. 184 */ 185 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 186 /* Additional pcbinfo for UDP-Lite */ 187 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 188 UDBHASHSIZE); 189 } 190 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 191 udp_vnet_init, NULL); 192 193 /* 194 * Kernel module interface for updating udpstat. The argument is an index 195 * into udpstat treated as an array of u_long. While this encodes the 196 * general layout of udpstat into the caller, it doesn't encode its location, 197 * so that future changes to add, for example, per-CPU stats support won't 198 * cause binary compatibility problems for kernel modules. 199 */ 200 void 201 kmod_udpstat_inc(int statnum) 202 { 203 204 counter_u64_add(VNET(udpstat)[statnum], 1); 205 } 206 207 #ifdef VIMAGE 208 static void 209 udp_destroy(void *unused __unused) 210 { 211 212 in_pcbinfo_destroy(&V_udbinfo); 213 in_pcbinfo_destroy(&V_ulitecbinfo); 214 } 215 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 216 #endif 217 218 #ifdef INET 219 /* 220 * Subroutine of udp_input(), which appends the provided mbuf chain to the 221 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 222 * contains the source address. If the socket ends up being an IPv6 socket, 223 * udp_append() will convert to a sockaddr_in6 before passing the address 224 * into the socket code. 225 * 226 * In the normal case udp_append() will return 0, indicating that you 227 * must unlock the inp. However if a tunneling protocol is in place we increment 228 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 229 * then decrement the reference count. If the inp_rele returns 1, indicating the 230 * inp is gone, we return that to the caller to tell them *not* to unlock 231 * the inp. In the case of multi-cast this will cause the distribution 232 * to stop (though most tunneling protocols known currently do *not* use 233 * multicast). 234 */ 235 static int 236 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 237 struct sockaddr_in *udp_in) 238 { 239 struct sockaddr *append_sa; 240 struct socket *so; 241 struct mbuf *tmpopts, *opts = NULL; 242 #ifdef INET6 243 struct sockaddr_in6 udp_in6; 244 #endif 245 struct udpcb *up; 246 247 INP_LOCK_ASSERT(inp); 248 249 /* 250 * Engage the tunneling protocol. 251 */ 252 up = intoudpcb(inp); 253 if (up->u_tun_func != NULL) { 254 bool filtered; 255 256 in_pcbref(inp); 257 INP_RUNLOCK(inp); 258 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 259 up->u_tun_ctx); 260 INP_RLOCK(inp); 261 if (in_pcbrele_rlocked(inp)) 262 return (1); 263 if (filtered) { 264 INP_RUNLOCK(inp); 265 return (1); 266 } 267 } 268 269 off += sizeof(struct udphdr); 270 271 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 272 /* Check AH/ESP integrity. */ 273 if (IPSEC_ENABLED(ipv4) && 274 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 275 m_freem(n); 276 return (0); 277 } 278 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 279 if (IPSEC_ENABLED(ipv4) && 280 UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0) 281 return (0); /* Consumed. */ 282 } 283 #endif /* IPSEC */ 284 #ifdef MAC 285 if (mac_inpcb_check_deliver(inp, n) != 0) { 286 m_freem(n); 287 return (0); 288 } 289 #endif /* MAC */ 290 if (inp->inp_flags & INP_CONTROLOPTS || 291 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 292 #ifdef INET6 293 if (inp->inp_vflag & INP_IPV6) 294 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 295 else 296 #endif /* INET6 */ 297 ip_savecontrol(inp, &opts, ip, n); 298 } 299 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 300 tmpopts = sbcreatecontrol(&udp_in[1], 301 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 302 M_NOWAIT); 303 if (tmpopts) { 304 if (opts) { 305 tmpopts->m_next = opts; 306 opts = tmpopts; 307 } else 308 opts = tmpopts; 309 } 310 } 311 #ifdef INET6 312 if (inp->inp_vflag & INP_IPV6) { 313 bzero(&udp_in6, sizeof(udp_in6)); 314 udp_in6.sin6_len = sizeof(udp_in6); 315 udp_in6.sin6_family = AF_INET6; 316 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 317 append_sa = (struct sockaddr *)&udp_in6; 318 } else 319 #endif /* INET6 */ 320 append_sa = (struct sockaddr *)&udp_in[0]; 321 m_adj(n, off); 322 323 so = inp->inp_socket; 324 SOCKBUF_LOCK(&so->so_rcv); 325 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 326 soroverflow_locked(so); 327 m_freem(n); 328 if (opts) 329 m_freem(opts); 330 UDPSTAT_INC(udps_fullsock); 331 } else 332 sorwakeup_locked(so); 333 return (0); 334 } 335 336 static bool 337 udp_multi_match(const struct inpcb *inp, void *v) 338 { 339 struct ip *ip = v; 340 struct udphdr *uh = (struct udphdr *)(ip + 1); 341 342 if (inp->inp_lport != uh->uh_dport) 343 return (false); 344 #ifdef INET6 345 if ((inp->inp_vflag & INP_IPV4) == 0) 346 return (false); 347 #endif 348 if (inp->inp_laddr.s_addr != INADDR_ANY && 349 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 350 return (false); 351 if (inp->inp_faddr.s_addr != INADDR_ANY && 352 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 353 return (false); 354 if (inp->inp_fport != 0 && 355 inp->inp_fport != uh->uh_sport) 356 return (false); 357 358 return (true); 359 } 360 361 static int 362 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 363 { 364 struct ip *ip = mtod(m, struct ip *); 365 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 366 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 367 #ifdef KDTRACE_HOOKS 368 struct udphdr *uh = (struct udphdr *)(ip + 1); 369 #endif 370 struct inpcb *inp; 371 struct mbuf *n; 372 int appends = 0, fib; 373 374 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 375 376 fib = M_GETFIB(m); 377 378 while ((inp = inp_next(&inpi)) != NULL) { 379 /* 380 * XXXRW: Because we weren't holding either the inpcb 381 * or the hash lock when we checked for a match 382 * before, we should probably recheck now that the 383 * inpcb lock is held. 384 */ 385 386 if (V_udp_bind_all_fibs == 0 && fib != inp->inp_inc.inc_fibnum) 387 /* 388 * Sockets bound to a specific FIB can only receive 389 * packets from that FIB. 390 */ 391 continue; 392 393 /* 394 * Handle socket delivery policy for any-source 395 * and source-specific multicast. [RFC3678] 396 */ 397 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 398 struct ip_moptions *imo; 399 struct sockaddr_in group; 400 int blocked; 401 402 imo = inp->inp_moptions; 403 if (imo == NULL) 404 continue; 405 bzero(&group, sizeof(struct sockaddr_in)); 406 group.sin_len = sizeof(struct sockaddr_in); 407 group.sin_family = AF_INET; 408 group.sin_addr = ip->ip_dst; 409 410 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 411 (struct sockaddr *)&group, 412 (struct sockaddr *)&udp_in[0]); 413 if (blocked != MCAST_PASS) { 414 if (blocked == MCAST_NOTGMEMBER) 415 IPSTAT_INC(ips_notmember); 416 if (blocked == MCAST_NOTSMEMBER || 417 blocked == MCAST_MUTED) 418 UDPSTAT_INC(udps_filtermcast); 419 continue; 420 } 421 } 422 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 423 if (proto == IPPROTO_UDPLITE) 424 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 425 else 426 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 427 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 428 break; 429 } else 430 appends++; 431 } 432 /* 433 * Don't look for additional matches if this one does 434 * not have either the SO_REUSEPORT or SO_REUSEADDR 435 * socket options set. This heuristic avoids 436 * searching through all pcbs in the common case of a 437 * non-shared port. It assumes that an application 438 * will never clear these options after setting them. 439 */ 440 if ((inp->inp_socket->so_options & 441 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 442 INP_RUNLOCK(inp); 443 break; 444 } 445 } 446 447 if (appends == 0) { 448 /* 449 * No matching pcb found; discard datagram. (No need 450 * to send an ICMP Port Unreachable for a broadcast 451 * or multicast datgram.) 452 */ 453 UDPSTAT_INC(udps_noport); 454 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 455 UDPSTAT_INC(udps_noportmcast); 456 else 457 UDPSTAT_INC(udps_noportbcast); 458 } 459 m_freem(m); 460 461 return (IPPROTO_DONE); 462 } 463 464 static int 465 udp_input(struct mbuf **mp, int *offp, int proto) 466 { 467 struct ip *ip; 468 struct udphdr *uh; 469 struct ifnet *ifp; 470 struct inpcb *inp; 471 uint16_t len, ip_len; 472 struct inpcbinfo *pcbinfo; 473 struct sockaddr_in udp_in[2]; 474 struct mbuf *m; 475 struct m_tag *fwd_tag; 476 int cscov_partial, iphlen, lookupflags; 477 478 m = *mp; 479 iphlen = *offp; 480 ifp = m->m_pkthdr.rcvif; 481 *mp = NULL; 482 UDPSTAT_INC(udps_ipackets); 483 484 /* 485 * Strip IP options, if any; should skip this, make available to 486 * user, and use on returned packets, but we don't yet have a way to 487 * check the checksum with options still present. 488 */ 489 if (iphlen > sizeof (struct ip)) { 490 ip_stripoptions(m); 491 iphlen = sizeof(struct ip); 492 } 493 494 /* 495 * Get IP and UDP header together in first mbuf. 496 */ 497 if (m->m_len < iphlen + sizeof(struct udphdr)) { 498 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 499 UDPSTAT_INC(udps_hdrops); 500 return (IPPROTO_DONE); 501 } 502 } 503 ip = mtod(m, struct ip *); 504 uh = (struct udphdr *)((caddr_t)ip + iphlen); 505 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 506 507 /* 508 * Destination port of 0 is illegal, based on RFC768. 509 */ 510 if (uh->uh_dport == 0) 511 goto badunlocked; 512 513 /* 514 * Construct sockaddr format source address. Stuff source address 515 * and datagram in user buffer. 516 */ 517 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 518 udp_in[0].sin_len = sizeof(struct sockaddr_in); 519 udp_in[0].sin_family = AF_INET; 520 udp_in[0].sin_port = uh->uh_sport; 521 udp_in[0].sin_addr = ip->ip_src; 522 udp_in[1].sin_len = sizeof(struct sockaddr_in); 523 udp_in[1].sin_family = AF_INET; 524 udp_in[1].sin_port = uh->uh_dport; 525 udp_in[1].sin_addr = ip->ip_dst; 526 527 /* 528 * Make mbuf data length reflect UDP length. If not enough data to 529 * reflect UDP length, drop. 530 */ 531 len = ntohs((u_short)uh->uh_ulen); 532 ip_len = ntohs(ip->ip_len) - iphlen; 533 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 534 /* Zero means checksum over the complete packet. */ 535 if (len == 0) 536 len = ip_len; 537 cscov_partial = 0; 538 } 539 if (ip_len != len) { 540 if (len > ip_len || len < sizeof(struct udphdr)) { 541 UDPSTAT_INC(udps_badlen); 542 goto badunlocked; 543 } 544 if (proto == IPPROTO_UDP) 545 m_adj(m, len - ip_len); 546 } 547 548 /* 549 * Checksum extended UDP header and data. 550 */ 551 if (uh->uh_sum) { 552 u_short uh_sum; 553 554 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 555 !cscov_partial) { 556 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 557 uh_sum = m->m_pkthdr.csum_data; 558 else 559 uh_sum = in_pseudo(ip->ip_src.s_addr, 560 ip->ip_dst.s_addr, htonl((u_short)len + 561 m->m_pkthdr.csum_data + proto)); 562 uh_sum ^= 0xffff; 563 } else if (m->m_pkthdr.csum_flags & CSUM_IP_UDP) { 564 /* 565 * Packet from local host (maybe from a VM). 566 * Checksum not required. 567 */ 568 uh_sum = 0; 569 } else { 570 char b[offsetof(struct ipovly, ih_src)]; 571 struct ipovly *ipov = (struct ipovly *)ip; 572 573 memcpy(b, ipov, sizeof(b)); 574 bzero(ipov, sizeof(ipov->ih_x1)); 575 ipov->ih_len = (proto == IPPROTO_UDP) ? 576 uh->uh_ulen : htons(ip_len); 577 uh_sum = in_cksum(m, len + sizeof (struct ip)); 578 memcpy(ipov, b, sizeof(b)); 579 } 580 if (uh_sum) { 581 UDPSTAT_INC(udps_badsum); 582 m_freem(m); 583 return (IPPROTO_DONE); 584 } 585 } else { 586 if (proto == IPPROTO_UDP) { 587 UDPSTAT_INC(udps_nosum); 588 } else { 589 /* UDPLite requires a checksum */ 590 /* XXX: What is the right UDPLite MIB counter here? */ 591 m_freem(m); 592 return (IPPROTO_DONE); 593 } 594 } 595 596 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 597 in_ifnet_broadcast(ip->ip_dst, ifp)) 598 return (udp_multi_input(m, proto, udp_in)); 599 600 pcbinfo = udp_get_inpcbinfo(proto); 601 602 /* 603 * Locate pcb for datagram. 604 */ 605 lookupflags = INPLOOKUP_RLOCKPCB | 606 (V_udp_bind_all_fibs ? 0 : INPLOOKUP_FIB); 607 608 /* 609 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 610 */ 611 if ((m->m_flags & M_IP_NEXTHOP) && 612 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 613 struct sockaddr_in *next_hop; 614 615 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 616 617 /* 618 * Transparently forwarded. Pretend to be the destination. 619 * Already got one like this? 620 */ 621 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 622 ip->ip_dst, uh->uh_dport, lookupflags, ifp, m); 623 if (!inp) { 624 /* 625 * It's new. Try to find the ambushing socket. 626 * Because we've rewritten the destination address, 627 * any hardware-generated hash is ignored. 628 */ 629 inp = in_pcblookup(pcbinfo, ip->ip_src, 630 uh->uh_sport, next_hop->sin_addr, 631 next_hop->sin_port ? htons(next_hop->sin_port) : 632 uh->uh_dport, INPLOOKUP_WILDCARD | lookupflags, 633 ifp); 634 } 635 /* Remove the tag from the packet. We don't need it anymore. */ 636 m_tag_delete(m, fwd_tag); 637 m->m_flags &= ~M_IP_NEXTHOP; 638 } else 639 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 640 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 641 lookupflags, ifp, m); 642 if (inp == NULL) { 643 if (V_udp_log_in_vain) { 644 char src[INET_ADDRSTRLEN]; 645 char dst[INET_ADDRSTRLEN]; 646 647 log(LOG_INFO, 648 "Connection attempt to UDP %s:%d from %s:%d\n", 649 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 650 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 651 } 652 if (proto == IPPROTO_UDPLITE) 653 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 654 else 655 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 656 UDPSTAT_INC(udps_noport); 657 if (m->m_flags & (M_BCAST | M_MCAST)) { 658 UDPSTAT_INC(udps_noportbcast); 659 goto badunlocked; 660 } 661 if (V_udp_blackhole && (V_udp_blackhole_local || 662 !in_localip(ip->ip_src))) 663 goto badunlocked; 664 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 665 goto badunlocked; 666 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 667 return (IPPROTO_DONE); 668 } 669 670 /* 671 * Check the minimum TTL for socket. 672 */ 673 INP_RLOCK_ASSERT(inp); 674 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 675 if (proto == IPPROTO_UDPLITE) 676 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 677 else 678 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 679 INP_RUNLOCK(inp); 680 m_freem(m); 681 return (IPPROTO_DONE); 682 } 683 if (cscov_partial) { 684 struct udpcb *up; 685 686 up = intoudpcb(inp); 687 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 688 INP_RUNLOCK(inp); 689 m_freem(m); 690 return (IPPROTO_DONE); 691 } 692 } 693 694 if (proto == IPPROTO_UDPLITE) 695 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 696 else 697 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 698 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 699 INP_RUNLOCK(inp); 700 return (IPPROTO_DONE); 701 702 badunlocked: 703 m_freem(m); 704 return (IPPROTO_DONE); 705 } 706 #endif /* INET */ 707 708 /* 709 * Notify a udp user of an asynchronous error; just wake up so that they can 710 * collect error status. 711 */ 712 struct inpcb * 713 udp_notify(struct inpcb *inp, int errno) 714 { 715 716 INP_WLOCK_ASSERT(inp); 717 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 718 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 719 NH_FREE(inp->inp_route.ro_nh); 720 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 721 } 722 723 inp->inp_socket->so_error = errno; 724 sorwakeup(inp->inp_socket); 725 sowwakeup(inp->inp_socket); 726 return (inp); 727 } 728 729 #ifdef INET 730 static void 731 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) 732 { 733 struct ip *ip = &icmp->icmp_ip; 734 struct udphdr *uh; 735 struct inpcb *inp; 736 737 if (icmp_errmap(icmp) == 0) 738 return; 739 740 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 741 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, 742 uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 743 if (inp != NULL) { 744 INP_WLOCK_ASSERT(inp); 745 if (inp->inp_socket != NULL) 746 udp_notify(inp, icmp_errmap(icmp)); 747 INP_WUNLOCK(inp); 748 } else { 749 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, 750 ip->ip_src, uh->uh_sport, 751 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 752 if (inp != NULL) { 753 struct udpcb *up; 754 udp_tun_icmp_t *func; 755 756 up = intoudpcb(inp); 757 func = up->u_icmp_func; 758 INP_RUNLOCK(inp); 759 if (func != NULL) 760 func(icmp); 761 } 762 } 763 } 764 765 static void 766 udp_ctlinput(struct icmp *icmp) 767 { 768 769 return (udp_common_ctlinput(icmp, &V_udbinfo)); 770 } 771 772 static void 773 udplite_ctlinput(struct icmp *icmp) 774 { 775 776 return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); 777 } 778 #endif /* INET */ 779 780 static int 781 udp_pcblist(SYSCTL_HANDLER_ARGS) 782 { 783 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 784 INPLOOKUP_RLOCKPCB); 785 struct xinpgen xig; 786 struct inpcb *inp; 787 int error; 788 789 if (req->newptr != 0) 790 return (EPERM); 791 792 if (req->oldptr == 0) { 793 int n; 794 795 n = V_udbinfo.ipi_count; 796 n += imax(n / 8, 10); 797 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 798 return (0); 799 } 800 801 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 802 return (error); 803 804 bzero(&xig, sizeof(xig)); 805 xig.xig_len = sizeof xig; 806 xig.xig_count = V_udbinfo.ipi_count; 807 xig.xig_gen = V_udbinfo.ipi_gencnt; 808 xig.xig_sogen = so_gencnt; 809 error = SYSCTL_OUT(req, &xig, sizeof xig); 810 if (error) 811 return (error); 812 813 while ((inp = inp_next(&inpi)) != NULL) { 814 if (inp->inp_gencnt <= xig.xig_gen && 815 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 816 struct xinpcb xi; 817 818 in_pcbtoxinpcb(inp, &xi); 819 error = SYSCTL_OUT(req, &xi, sizeof xi); 820 if (error) { 821 INP_RUNLOCK(inp); 822 break; 823 } 824 } 825 } 826 827 if (!error) { 828 /* 829 * Give the user an updated idea of our state. If the 830 * generation differs from what we told her before, she knows 831 * that something happened while we were processing this 832 * request, and it might be necessary to retry. 833 */ 834 xig.xig_gen = V_udbinfo.ipi_gencnt; 835 xig.xig_sogen = so_gencnt; 836 xig.xig_count = V_udbinfo.ipi_count; 837 error = SYSCTL_OUT(req, &xig, sizeof xig); 838 } 839 840 return (error); 841 } 842 843 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 844 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 845 udp_pcblist, "S,xinpcb", 846 "List of active UDP sockets"); 847 848 #ifdef INET 849 static int 850 udp_getcred(SYSCTL_HANDLER_ARGS) 851 { 852 struct xucred xuc; 853 struct sockaddr_in addrs[2]; 854 struct epoch_tracker et; 855 struct inpcb *inp; 856 int error; 857 858 if (req->newptr == NULL) 859 return (EINVAL); 860 error = priv_check(req->td, PRIV_NETINET_GETCRED); 861 if (error) 862 return (error); 863 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 864 if (error) 865 return (error); 866 NET_EPOCH_ENTER(et); 867 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 868 addrs[0].sin_addr, addrs[0].sin_port, 869 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 870 NET_EPOCH_EXIT(et); 871 if (inp != NULL) { 872 INP_RLOCK_ASSERT(inp); 873 if (inp->inp_socket == NULL) 874 error = ENOENT; 875 if (error == 0) 876 error = cr_canseeinpcb(req->td->td_ucred, inp); 877 if (error == 0) 878 cru2x(inp->inp_cred, &xuc); 879 INP_RUNLOCK(inp); 880 } else 881 error = ENOENT; 882 if (error == 0) 883 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 884 return (error); 885 } 886 887 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 888 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 889 0, 0, udp_getcred, "S,xucred", 890 "Get the xucred of a UDP connection"); 891 #endif /* INET */ 892 893 int 894 udp_ctloutput(struct socket *so, struct sockopt *sopt) 895 { 896 struct inpcb *inp; 897 struct udpcb *up; 898 int isudplite, error, optval; 899 900 error = 0; 901 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 902 inp = sotoinpcb(so); 903 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 904 INP_WLOCK(inp); 905 if (sopt->sopt_level != so->so_proto->pr_protocol) { 906 #ifdef INET6 907 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 908 INP_WUNLOCK(inp); 909 error = ip6_ctloutput(so, sopt); 910 } 911 #endif 912 #if defined(INET) && defined(INET6) 913 else 914 #endif 915 #ifdef INET 916 { 917 INP_WUNLOCK(inp); 918 error = ip_ctloutput(so, sopt); 919 } 920 #endif 921 return (error); 922 } 923 924 switch (sopt->sopt_dir) { 925 case SOPT_SET: 926 switch (sopt->sopt_name) { 927 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 928 #if defined(INET) || defined(INET6) 929 case UDP_ENCAP: 930 #ifdef INET 931 if (INP_SOCKAF(so) == AF_INET) { 932 if (!IPSEC_ENABLED(ipv4)) { 933 INP_WUNLOCK(inp); 934 return (ENOPROTOOPT); 935 } 936 error = UDPENCAP_PCBCTL(ipv4, inp, sopt); 937 break; 938 } 939 #endif /* INET */ 940 #ifdef INET6 941 if (INP_SOCKAF(so) == AF_INET6) { 942 if (!IPSEC_ENABLED(ipv6)) { 943 INP_WUNLOCK(inp); 944 return (ENOPROTOOPT); 945 } 946 error = UDPENCAP_PCBCTL(ipv6, inp, sopt); 947 break; 948 } 949 #endif /* INET6 */ 950 INP_WUNLOCK(inp); 951 return (EINVAL); 952 #endif /* INET || INET6 */ 953 954 #endif /* IPSEC */ 955 case UDPLITE_SEND_CSCOV: 956 case UDPLITE_RECV_CSCOV: 957 if (!isudplite) { 958 INP_WUNLOCK(inp); 959 error = ENOPROTOOPT; 960 break; 961 } 962 INP_WUNLOCK(inp); 963 error = sooptcopyin(sopt, &optval, sizeof(optval), 964 sizeof(optval)); 965 if (error != 0) 966 break; 967 inp = sotoinpcb(so); 968 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 969 INP_WLOCK(inp); 970 up = intoudpcb(inp); 971 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 972 if ((optval != 0 && optval < 8) || (optval > 65535)) { 973 INP_WUNLOCK(inp); 974 error = EINVAL; 975 break; 976 } 977 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 978 up->u_txcslen = optval; 979 else 980 up->u_rxcslen = optval; 981 INP_WUNLOCK(inp); 982 break; 983 default: 984 INP_WUNLOCK(inp); 985 error = ENOPROTOOPT; 986 break; 987 } 988 break; 989 case SOPT_GET: 990 switch (sopt->sopt_name) { 991 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 992 #if defined(INET) || defined(INET6) 993 case UDP_ENCAP: 994 #ifdef INET 995 if (INP_SOCKAF(so) == AF_INET) { 996 if (!IPSEC_ENABLED(ipv4)) { 997 INP_WUNLOCK(inp); 998 return (ENOPROTOOPT); 999 } 1000 error = UDPENCAP_PCBCTL(ipv4, inp, sopt); 1001 break; 1002 } 1003 #endif /* INET */ 1004 #ifdef INET6 1005 if (INP_SOCKAF(so) == AF_INET6) { 1006 if (!IPSEC_ENABLED(ipv6)) { 1007 INP_WUNLOCK(inp); 1008 return (ENOPROTOOPT); 1009 } 1010 error = UDPENCAP_PCBCTL(ipv6, inp, sopt); 1011 break; 1012 } 1013 #endif /* INET6 */ 1014 INP_WUNLOCK(inp); 1015 return (EINVAL); 1016 #endif /* INET || INET6 */ 1017 1018 #endif /* IPSEC */ 1019 case UDPLITE_SEND_CSCOV: 1020 case UDPLITE_RECV_CSCOV: 1021 if (!isudplite) { 1022 INP_WUNLOCK(inp); 1023 error = ENOPROTOOPT; 1024 break; 1025 } 1026 up = intoudpcb(inp); 1027 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1028 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1029 optval = up->u_txcslen; 1030 else 1031 optval = up->u_rxcslen; 1032 INP_WUNLOCK(inp); 1033 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1034 break; 1035 default: 1036 INP_WUNLOCK(inp); 1037 error = ENOPROTOOPT; 1038 break; 1039 } 1040 break; 1041 } 1042 return (error); 1043 } 1044 1045 #ifdef INET 1046 #ifdef INET6 1047 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1048 static int 1049 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1050 struct inpcb *inp, int flags) 1051 { 1052 struct ifnet *ifp; 1053 struct in6_pktinfo *pktinfo; 1054 struct in_addr ia; 1055 1056 NET_EPOCH_ASSERT(); 1057 1058 if ((flags & PRUS_IPV6) == 0) 1059 return (0); 1060 1061 if (cm->cmsg_level != IPPROTO_IPV6) 1062 return (0); 1063 1064 if (cm->cmsg_type != IPV6_2292PKTINFO && 1065 cm->cmsg_type != IPV6_PKTINFO) 1066 return (0); 1067 1068 if (cm->cmsg_len != 1069 CMSG_LEN(sizeof(struct in6_pktinfo))) 1070 return (EINVAL); 1071 1072 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1073 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1074 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1075 return (EINVAL); 1076 1077 /* Validate the interface index if specified. */ 1078 if (pktinfo->ipi6_ifindex) { 1079 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1080 if (ifp == NULL) 1081 return (ENXIO); 1082 } else 1083 ifp = NULL; 1084 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1085 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1086 if (!in_ifhasaddr(ifp, ia)) 1087 return (EADDRNOTAVAIL); 1088 } 1089 1090 bzero(src, sizeof(*src)); 1091 src->sin_family = AF_INET; 1092 src->sin_len = sizeof(*src); 1093 src->sin_port = inp->inp_lport; 1094 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1095 1096 return (0); 1097 } 1098 #endif /* INET6 */ 1099 1100 int 1101 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1102 struct mbuf *control, struct thread *td) 1103 { 1104 struct inpcb *inp; 1105 struct udpiphdr *ui; 1106 int len, error = 0; 1107 struct in_addr faddr, laddr; 1108 struct cmsghdr *cm; 1109 struct inpcbinfo *pcbinfo; 1110 struct sockaddr_in *sin, src; 1111 struct epoch_tracker et; 1112 int cscov_partial = 0; 1113 int ipflags = 0; 1114 u_short fport, lport; 1115 u_char tos, vflagsav; 1116 uint8_t pr; 1117 uint16_t cscov = 0; 1118 uint32_t flowid = 0; 1119 uint8_t flowtype = M_HASHTYPE_NONE; 1120 bool use_cached_route; 1121 1122 inp = sotoinpcb(so); 1123 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1124 1125 if (addr != NULL) { 1126 if (addr->sa_family != AF_INET) 1127 error = EAFNOSUPPORT; 1128 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1129 error = EINVAL; 1130 if (__predict_false(error != 0)) { 1131 m_freem(control); 1132 m_freem(m); 1133 return (error); 1134 } 1135 } 1136 1137 len = m->m_pkthdr.len; 1138 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1139 if (control) 1140 m_freem(control); 1141 m_freem(m); 1142 return (EMSGSIZE); 1143 } 1144 1145 src.sin_family = 0; 1146 sin = (struct sockaddr_in *)addr; 1147 1148 /* 1149 * udp_send() may need to bind the current inpcb. As such, we don't 1150 * know up front whether we will need the pcbinfo lock or not. Do any 1151 * work to decide what is needed up front before acquiring any locks. 1152 * 1153 * We will need network epoch in either case, to safely lookup into 1154 * pcb hash. 1155 */ 1156 use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0); 1157 if (use_cached_route || (flags & PRUS_IPV6) != 0) 1158 INP_WLOCK(inp); 1159 else 1160 INP_RLOCK(inp); 1161 NET_EPOCH_ENTER(et); 1162 tos = inp->inp_ip_tos; 1163 if (control != NULL) { 1164 /* 1165 * XXX: Currently, we assume all the optional information is 1166 * stored in a single mbuf. 1167 */ 1168 if (control->m_next) { 1169 m_freem(control); 1170 error = EINVAL; 1171 goto release; 1172 } 1173 for (; control->m_len > 0; 1174 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1175 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1176 cm = mtod(control, struct cmsghdr *); 1177 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1178 || cm->cmsg_len > control->m_len) { 1179 error = EINVAL; 1180 break; 1181 } 1182 #ifdef INET6 1183 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1184 if (error != 0) 1185 break; 1186 #endif 1187 if (cm->cmsg_level != IPPROTO_IP) 1188 continue; 1189 1190 switch (cm->cmsg_type) { 1191 case IP_SENDSRCADDR: 1192 if (cm->cmsg_len != 1193 CMSG_LEN(sizeof(struct in_addr))) { 1194 error = EINVAL; 1195 break; 1196 } 1197 bzero(&src, sizeof(src)); 1198 src.sin_family = AF_INET; 1199 src.sin_len = sizeof(src); 1200 src.sin_port = inp->inp_lport; 1201 src.sin_addr = 1202 *(struct in_addr *)CMSG_DATA(cm); 1203 break; 1204 1205 case IP_TOS: 1206 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1207 error = EINVAL; 1208 break; 1209 } 1210 tos = *(u_char *)CMSG_DATA(cm); 1211 break; 1212 1213 case IP_FLOWID: 1214 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1215 error = EINVAL; 1216 break; 1217 } 1218 flowid = *(uint32_t *) CMSG_DATA(cm); 1219 break; 1220 1221 case IP_FLOWTYPE: 1222 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1223 error = EINVAL; 1224 break; 1225 } 1226 flowtype = *(uint32_t *) CMSG_DATA(cm); 1227 break; 1228 1229 #ifdef RSS 1230 case IP_RSSBUCKETID: 1231 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1232 error = EINVAL; 1233 break; 1234 } 1235 /* This is just a placeholder for now */ 1236 break; 1237 #endif /* RSS */ 1238 default: 1239 error = ENOPROTOOPT; 1240 break; 1241 } 1242 if (error) 1243 break; 1244 } 1245 m_freem(control); 1246 control = NULL; 1247 } 1248 if (error) 1249 goto release; 1250 1251 pr = inp->inp_socket->so_proto->pr_protocol; 1252 pcbinfo = udp_get_inpcbinfo(pr); 1253 1254 /* 1255 * If the IP_SENDSRCADDR control message was specified, override the 1256 * source address for this datagram. Its use is invalidated if the 1257 * address thus specified is incomplete or clobbers other inpcbs. 1258 */ 1259 laddr = inp->inp_laddr; 1260 lport = inp->inp_lport; 1261 if (src.sin_family == AF_INET) { 1262 if ((lport == 0) || 1263 (laddr.s_addr == INADDR_ANY && 1264 src.sin_addr.s_addr == INADDR_ANY)) { 1265 error = EINVAL; 1266 goto release; 1267 } 1268 if ((flags & PRUS_IPV6) != 0) { 1269 vflagsav = inp->inp_vflag; 1270 inp->inp_vflag |= INP_IPV4; 1271 inp->inp_vflag &= ~INP_IPV6; 1272 } 1273 INP_HASH_WLOCK(pcbinfo); 1274 error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport, 1275 V_udp_bind_all_fibs ? 0 : INPBIND_FIB, td->td_ucred); 1276 INP_HASH_WUNLOCK(pcbinfo); 1277 if ((flags & PRUS_IPV6) != 0) 1278 inp->inp_vflag = vflagsav; 1279 if (error) 1280 goto release; 1281 } 1282 1283 /* 1284 * If a UDP socket has been connected, then a local address/port will 1285 * have been selected and bound. 1286 * 1287 * If a UDP socket has not been connected to, then an explicit 1288 * destination address must be used, in which case a local 1289 * address/port may not have been selected and bound. 1290 */ 1291 if (sin != NULL) { 1292 INP_LOCK_ASSERT(inp); 1293 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1294 error = EISCONN; 1295 goto release; 1296 } 1297 1298 /* 1299 * Jail may rewrite the destination address, so let it do 1300 * that before we use it. 1301 */ 1302 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1303 if (error) 1304 goto release; 1305 /* 1306 * sendto(2) on unconnected UDP socket results in implicit 1307 * binding to INADDR_ANY and anonymous port. This has two 1308 * side effects: 1309 * 1) after first sendto(2) the socket will receive datagrams 1310 * destined to the selected port. 1311 * 2) subsequent sendto(2) calls will use the same source port. 1312 */ 1313 if (inp->inp_lport == 0) { 1314 struct sockaddr_in wild = { 1315 .sin_family = AF_INET, 1316 .sin_len = sizeof(struct sockaddr_in), 1317 }; 1318 1319 INP_HASH_WLOCK(pcbinfo); 1320 error = in_pcbbind(inp, &wild, V_udp_bind_all_fibs ? 1321 0 : INPBIND_FIB, td->td_ucred); 1322 INP_HASH_WUNLOCK(pcbinfo); 1323 if (error) 1324 goto release; 1325 lport = inp->inp_lport; 1326 laddr = inp->inp_laddr; 1327 } 1328 if (laddr.s_addr == INADDR_ANY) { 1329 error = in_pcbladdr(inp, &sin->sin_addr, &laddr, 1330 td->td_ucred); 1331 if (error) 1332 goto release; 1333 } 1334 faddr = sin->sin_addr; 1335 fport = sin->sin_port; 1336 } else { 1337 INP_LOCK_ASSERT(inp); 1338 faddr = inp->inp_faddr; 1339 fport = inp->inp_fport; 1340 if (faddr.s_addr == INADDR_ANY) { 1341 error = ENOTCONN; 1342 goto release; 1343 } 1344 } 1345 1346 /* 1347 * Calculate data length and get a mbuf for UDP, IP, and possible 1348 * link-layer headers. Immediate slide the data pointer back forward 1349 * since we won't use that space at this layer. 1350 */ 1351 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1352 if (m == NULL) { 1353 error = ENOBUFS; 1354 goto release; 1355 } 1356 m->m_data += max_linkhdr; 1357 m->m_len -= max_linkhdr; 1358 m->m_pkthdr.len -= max_linkhdr; 1359 1360 /* 1361 * Fill in mbuf with extended UDP header and addresses and length put 1362 * into network format. 1363 */ 1364 ui = mtod(m, struct udpiphdr *); 1365 /* 1366 * Filling only those fields of udpiphdr that participate in the 1367 * checksum calculation. The rest must be zeroed and will be filled 1368 * later. 1369 */ 1370 bzero(ui->ui_x1, sizeof(ui->ui_x1)); 1371 ui->ui_pr = pr; 1372 ui->ui_src = laddr; 1373 ui->ui_dst = faddr; 1374 ui->ui_sport = lport; 1375 ui->ui_dport = fport; 1376 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1377 if (pr == IPPROTO_UDPLITE) { 1378 struct udpcb *up; 1379 uint16_t plen; 1380 1381 up = intoudpcb(inp); 1382 cscov = up->u_txcslen; 1383 plen = (u_short)len + sizeof(struct udphdr); 1384 if (cscov >= plen) 1385 cscov = 0; 1386 ui->ui_len = htons(plen); 1387 ui->ui_ulen = htons(cscov); 1388 /* 1389 * For UDP-Lite, checksum coverage length of zero means 1390 * the entire UDPLite packet is covered by the checksum. 1391 */ 1392 cscov_partial = (cscov == 0) ? 0 : 1; 1393 } 1394 1395 if (inp->inp_socket->so_options & SO_DONTROUTE) 1396 ipflags |= IP_ROUTETOIF; 1397 if (inp->inp_socket->so_options & SO_BROADCAST) 1398 ipflags |= IP_ALLOWBROADCAST; 1399 if (inp->inp_flags & INP_ONESBCAST) 1400 ipflags |= IP_SENDONES; 1401 1402 #ifdef MAC 1403 mac_inpcb_create_mbuf(inp, m); 1404 #endif 1405 1406 /* 1407 * Set up checksum and output datagram. 1408 */ 1409 ui->ui_sum = 0; 1410 if (pr == IPPROTO_UDPLITE) { 1411 if (inp->inp_flags & INP_ONESBCAST) 1412 faddr.s_addr = INADDR_BROADCAST; 1413 if (cscov_partial) { 1414 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1415 ui->ui_sum = 0xffff; 1416 } else { 1417 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1418 ui->ui_sum = 0xffff; 1419 } 1420 } else if (V_udp_cksum) { 1421 if (inp->inp_flags & INP_ONESBCAST) 1422 faddr.s_addr = INADDR_BROADCAST; 1423 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1424 htons((u_short)len + sizeof(struct udphdr) + pr)); 1425 m->m_pkthdr.csum_flags = CSUM_UDP; 1426 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1427 } 1428 /* 1429 * After finishing the checksum computation, fill the remaining fields 1430 * of udpiphdr. 1431 */ 1432 ((struct ip *)ui)->ip_v = IPVERSION; 1433 ((struct ip *)ui)->ip_tos = tos; 1434 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1435 if (inp->inp_flags & INP_DONTFRAG) 1436 ((struct ip *)ui)->ip_off |= htons(IP_DF); 1437 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; 1438 UDPSTAT_INC(udps_opackets); 1439 1440 /* 1441 * Setup flowid / RSS information for outbound socket. 1442 * 1443 * Once the UDP code decides to set a flowid some other way, 1444 * this allows the flowid to be overridden by userland. 1445 */ 1446 if (flowtype != M_HASHTYPE_NONE) { 1447 m->m_pkthdr.flowid = flowid; 1448 M_HASHTYPE_SET(m, flowtype); 1449 } 1450 #if defined(ROUTE_MPATH) || defined(RSS) 1451 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1452 uint32_t hash_val, hash_type; 1453 1454 hash_val = fib4_calc_packet_hash(laddr, faddr, 1455 lport, fport, pr, &hash_type); 1456 m->m_pkthdr.flowid = hash_val; 1457 M_HASHTYPE_SET(m, hash_type); 1458 } 1459 1460 /* 1461 * Don't override with the inp cached flowid value. 1462 * 1463 * Depending upon the kind of send being done, the inp 1464 * flowid/flowtype values may actually not be appropriate 1465 * for this particular socket send. 1466 * 1467 * We should either leave the flowid at zero (which is what is 1468 * currently done) or set it to some software generated 1469 * hash value based on the packet contents. 1470 */ 1471 ipflags |= IP_NODEFAULTFLOWID; 1472 #endif /* RSS */ 1473 1474 if (pr == IPPROTO_UDPLITE) 1475 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1476 else 1477 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1478 error = ip_output(m, inp->inp_options, 1479 use_cached_route ? &inp->inp_route : NULL, ipflags, 1480 inp->inp_moptions, inp); 1481 INP_UNLOCK(inp); 1482 NET_EPOCH_EXIT(et); 1483 return (error); 1484 1485 release: 1486 INP_UNLOCK(inp); 1487 NET_EPOCH_EXIT(et); 1488 m_freem(m); 1489 return (error); 1490 } 1491 1492 void 1493 udp_abort(struct socket *so) 1494 { 1495 struct inpcb *inp; 1496 struct inpcbinfo *pcbinfo; 1497 1498 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1499 inp = sotoinpcb(so); 1500 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1501 INP_WLOCK(inp); 1502 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1503 INP_HASH_WLOCK(pcbinfo); 1504 in_pcbdisconnect(inp); 1505 INP_HASH_WUNLOCK(pcbinfo); 1506 soisdisconnected(so); 1507 } 1508 INP_WUNLOCK(inp); 1509 } 1510 1511 static int 1512 udp_attach(struct socket *so, int proto, struct thread *td) 1513 { 1514 static uint32_t udp_flowid; 1515 struct inpcbinfo *pcbinfo; 1516 struct inpcb *inp; 1517 struct udpcb *up; 1518 int error; 1519 1520 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1521 inp = sotoinpcb(so); 1522 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1523 error = soreserve(so, udp_sendspace, udp_recvspace); 1524 if (error) 1525 return (error); 1526 error = in_pcballoc(so, pcbinfo); 1527 if (error) 1528 return (error); 1529 1530 inp = sotoinpcb(so); 1531 inp->inp_ip_ttl = V_ip_defttl; 1532 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1533 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1534 up = intoudpcb(inp); 1535 bzero(&up->u_start_zero, u_zero_size); 1536 INP_WUNLOCK(inp); 1537 1538 return (0); 1539 } 1540 #endif /* INET */ 1541 1542 int 1543 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1544 { 1545 struct inpcb *inp; 1546 struct udpcb *up; 1547 1548 KASSERT(so->so_type == SOCK_DGRAM, 1549 ("udp_set_kernel_tunneling: !dgram")); 1550 inp = sotoinpcb(so); 1551 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1552 INP_WLOCK(inp); 1553 up = intoudpcb(inp); 1554 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1555 (up->u_icmp_func != NULL))) { 1556 INP_WUNLOCK(inp); 1557 return (EBUSY); 1558 } 1559 up->u_tun_func = f; 1560 up->u_icmp_func = i; 1561 up->u_tun_ctx = ctx; 1562 INP_WUNLOCK(inp); 1563 return (0); 1564 } 1565 1566 #ifdef INET 1567 static int 1568 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1569 { 1570 struct inpcb *inp; 1571 struct inpcbinfo *pcbinfo; 1572 struct sockaddr_in *sinp; 1573 int error; 1574 1575 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1576 inp = sotoinpcb(so); 1577 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1578 1579 sinp = (struct sockaddr_in *)nam; 1580 if (nam->sa_family != AF_INET) { 1581 /* 1582 * Preserve compatibility with old programs. 1583 */ 1584 if (nam->sa_family != AF_UNSPEC || 1585 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1586 sinp->sin_addr.s_addr != INADDR_ANY) 1587 return (EAFNOSUPPORT); 1588 nam->sa_family = AF_INET; 1589 } 1590 if (nam->sa_len != sizeof(struct sockaddr_in)) 1591 return (EINVAL); 1592 1593 INP_WLOCK(inp); 1594 INP_HASH_WLOCK(pcbinfo); 1595 error = in_pcbbind(inp, sinp, V_udp_bind_all_fibs ? 0 : INPBIND_FIB, 1596 td->td_ucred); 1597 INP_HASH_WUNLOCK(pcbinfo); 1598 INP_WUNLOCK(inp); 1599 return (error); 1600 } 1601 1602 static void 1603 udp_close(struct socket *so) 1604 { 1605 struct inpcb *inp; 1606 struct inpcbinfo *pcbinfo; 1607 1608 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1609 inp = sotoinpcb(so); 1610 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1611 INP_WLOCK(inp); 1612 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1613 INP_HASH_WLOCK(pcbinfo); 1614 in_pcbdisconnect(inp); 1615 INP_HASH_WUNLOCK(pcbinfo); 1616 soisdisconnected(so); 1617 } 1618 INP_WUNLOCK(inp); 1619 } 1620 1621 static int 1622 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1623 { 1624 struct epoch_tracker et; 1625 struct inpcb *inp; 1626 struct inpcbinfo *pcbinfo; 1627 struct sockaddr_in *sin; 1628 int error; 1629 1630 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1631 inp = sotoinpcb(so); 1632 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1633 1634 sin = (struct sockaddr_in *)nam; 1635 if (sin->sin_family != AF_INET) 1636 return (EAFNOSUPPORT); 1637 if (sin->sin_len != sizeof(*sin)) 1638 return (EINVAL); 1639 1640 INP_WLOCK(inp); 1641 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1642 INP_WUNLOCK(inp); 1643 return (EISCONN); 1644 } 1645 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1646 if (error != 0) { 1647 INP_WUNLOCK(inp); 1648 return (error); 1649 } 1650 NET_EPOCH_ENTER(et); 1651 INP_HASH_WLOCK(pcbinfo); 1652 error = in_pcbconnect(inp, sin, td->td_ucred); 1653 INP_HASH_WUNLOCK(pcbinfo); 1654 NET_EPOCH_EXIT(et); 1655 if (error == 0) 1656 soisconnected(so); 1657 INP_WUNLOCK(inp); 1658 return (error); 1659 } 1660 1661 static void 1662 udp_detach(struct socket *so) 1663 { 1664 struct inpcb *inp; 1665 1666 inp = sotoinpcb(so); 1667 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1668 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1669 ("udp_detach: not disconnected")); 1670 INP_WLOCK(inp); 1671 in_pcbfree(inp); 1672 } 1673 1674 int 1675 udp_disconnect(struct socket *so) 1676 { 1677 struct inpcb *inp; 1678 struct inpcbinfo *pcbinfo; 1679 1680 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1681 inp = sotoinpcb(so); 1682 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1683 INP_WLOCK(inp); 1684 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1685 INP_WUNLOCK(inp); 1686 return (ENOTCONN); 1687 } 1688 INP_HASH_WLOCK(pcbinfo); 1689 in_pcbdisconnect(inp); 1690 INP_HASH_WUNLOCK(pcbinfo); 1691 SOCK_LOCK(so); 1692 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1693 SOCK_UNLOCK(so); 1694 INP_WUNLOCK(inp); 1695 return (0); 1696 } 1697 #endif /* INET */ 1698 1699 int 1700 udp_shutdown(struct socket *so, enum shutdown_how how) 1701 { 1702 int error; 1703 1704 SOCK_LOCK(so); 1705 if (!(so->so_state & SS_ISCONNECTED)) 1706 /* 1707 * POSIX mandates us to just return ENOTCONN when shutdown(2) is 1708 * invoked on a datagram sockets, however historically we would 1709 * actually tear socket down. This is known to be leveraged by 1710 * some applications to unblock process waiting in recv(2) by 1711 * other process that it shares that socket with. Try to meet 1712 * both backward-compatibility and POSIX requirements by forcing 1713 * ENOTCONN but still flushing buffers and performing wakeup(9). 1714 * 1715 * XXXGL: it remains unknown what applications expect this 1716 * behavior and is this isolated to unix/dgram or inet/dgram or 1717 * both. See: D10351, D3039. 1718 */ 1719 error = ENOTCONN; 1720 else 1721 error = 0; 1722 SOCK_UNLOCK(so); 1723 1724 switch (how) { 1725 case SHUT_RD: 1726 sorflush(so); 1727 break; 1728 case SHUT_RDWR: 1729 sorflush(so); 1730 /* FALLTHROUGH */ 1731 case SHUT_WR: 1732 socantsendmore(so); 1733 } 1734 1735 return (error); 1736 } 1737 1738 #ifdef INET 1739 #define UDP_PROTOSW \ 1740 .pr_type = SOCK_DGRAM, \ 1741 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ 1742 .pr_ctloutput = udp_ctloutput, \ 1743 .pr_abort = udp_abort, \ 1744 .pr_attach = udp_attach, \ 1745 .pr_bind = udp_bind, \ 1746 .pr_connect = udp_connect, \ 1747 .pr_control = in_control, \ 1748 .pr_detach = udp_detach, \ 1749 .pr_disconnect = udp_disconnect, \ 1750 .pr_peeraddr = in_getpeeraddr, \ 1751 .pr_send = udp_send, \ 1752 .pr_soreceive = soreceive_dgram, \ 1753 .pr_sosend = sosend_dgram, \ 1754 .pr_shutdown = udp_shutdown, \ 1755 .pr_sockaddr = in_getsockaddr, \ 1756 .pr_sosetlabel = in_pcbsosetlabel, \ 1757 .pr_close = udp_close 1758 1759 struct protosw udp_protosw = { 1760 .pr_protocol = IPPROTO_UDP, 1761 UDP_PROTOSW 1762 }; 1763 1764 struct protosw udplite_protosw = { 1765 .pr_protocol = IPPROTO_UDPLITE, 1766 UDP_PROTOSW 1767 }; 1768 1769 static void 1770 udp_init(void *arg __unused) 1771 { 1772 1773 IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); 1774 IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); 1775 } 1776 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 1777 #endif /* INET */ 1778