xref: /freebsd/sys/netinet/udp_usrreq.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * Copyright (c) 2014 Kevin Lo
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Robert N. M. Watson under
10  * contract to Juniper Networks, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45 #include "opt_rss.h"
46 
47 #include <sys/param.h>
48 #include <sys/domain.h>
49 #include <sys/eventhandler.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/protosw.h>
58 #include <sys/sdt.h>
59 #include <sys/signalvar.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sx.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/systm.h>
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/route.h>
72 #include <net/rss_config.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #endif
83 #include <netinet/ip_icmp.h>
84 #include <netinet/icmp_var.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/ip_options.h>
87 #ifdef INET6
88 #include <netinet6/ip6_var.h>
89 #endif
90 #include <netinet/udp.h>
91 #include <netinet/udp_var.h>
92 #include <netinet/udplite.h>
93 #include <netinet/in_rss.h>
94 
95 #include <netipsec/ipsec_support.h>
96 
97 #include <machine/in_cksum.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 /*
102  * UDP and UDP-Lite protocols implementation.
103  * Per RFC 768, August, 1980.
104  * Per RFC 3828, July, 2004.
105  */
106 
107 /*
108  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
109  * removes the only data integrity mechanism for packets and malformed
110  * packets that would otherwise be discarded due to bad checksums, and may
111  * cause problems (especially for NFS data blocks).
112  */
113 VNET_DEFINE(int, udp_cksum) = 1;
114 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
116 
117 int	udp_log_in_vain = 0;
118 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
119     &udp_log_in_vain, 0, "Log all incoming UDP packets");
120 
121 VNET_DEFINE(int, udp_blackhole) = 0;
122 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(udp_blackhole), 0,
124     "Do not send port unreachables for refused connects");
125 
126 u_long	udp_sendspace = 9216;		/* really max datagram size */
127 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
128     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
129 
130 u_long	udp_recvspace = 40 * (1024 +
131 #ifdef INET6
132 				      sizeof(struct sockaddr_in6)
133 #else
134 				      sizeof(struct sockaddr_in)
135 #endif
136 				      );	/* 40 1K datagrams */
137 
138 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
139     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
140 
141 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
142 VNET_DEFINE(struct inpcbinfo, udbinfo);
143 VNET_DEFINE(struct inpcbhead, ulitecb);
144 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
145 static VNET_DEFINE(uma_zone_t, udpcb_zone);
146 #define	V_udpcb_zone			VNET(udpcb_zone)
147 
148 #ifndef UDBHASHSIZE
149 #define	UDBHASHSIZE	128
150 #endif
151 
152 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
153 VNET_PCPUSTAT_SYSINIT(udpstat);
154 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
155     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
156 
157 #ifdef VIMAGE
158 VNET_PCPUSTAT_SYSUNINIT(udpstat);
159 #endif /* VIMAGE */
160 #ifdef INET
161 static void	udp_detach(struct socket *so);
162 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
163 		    struct mbuf *, struct thread *);
164 #endif
165 
166 static void
167 udp_zone_change(void *tag)
168 {
169 
170 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
171 	uma_zone_set_max(V_udpcb_zone, maxsockets);
172 }
173 
174 static int
175 udp_inpcb_init(void *mem, int size, int flags)
176 {
177 	struct inpcb *inp;
178 
179 	inp = mem;
180 	INP_LOCK_INIT(inp, "inp", "udpinp");
181 	return (0);
182 }
183 
184 static int
185 udplite_inpcb_init(void *mem, int size, int flags)
186 {
187 	struct inpcb *inp;
188 
189 	inp = mem;
190 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
191 	return (0);
192 }
193 
194 void
195 udp_init(void)
196 {
197 
198 	/*
199 	 * For now default to 2-tuple UDP hashing - until the fragment
200 	 * reassembly code can also update the flowid.
201 	 *
202 	 * Once we can calculate the flowid that way and re-establish
203 	 * a 4-tuple, flip this to 4-tuple.
204 	 */
205 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
206 	    "udp_inpcb", udp_inpcb_init, NULL, 0,
207 	    IPI_HASHFIELDS_2TUPLE);
208 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
210 	uma_zone_set_max(V_udpcb_zone, maxsockets);
211 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
212 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
213 	    EVENTHANDLER_PRI_ANY);
214 }
215 
216 void
217 udplite_init(void)
218 {
219 
220 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
221 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
222 	    0, IPI_HASHFIELDS_2TUPLE);
223 }
224 
225 /*
226  * Kernel module interface for updating udpstat.  The argument is an index
227  * into udpstat treated as an array of u_long.  While this encodes the
228  * general layout of udpstat into the caller, it doesn't encode its location,
229  * so that future changes to add, for example, per-CPU stats support won't
230  * cause binary compatibility problems for kernel modules.
231  */
232 void
233 kmod_udpstat_inc(int statnum)
234 {
235 
236 	counter_u64_add(VNET(udpstat)[statnum], 1);
237 }
238 
239 int
240 udp_newudpcb(struct inpcb *inp)
241 {
242 	struct udpcb *up;
243 
244 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
245 	if (up == NULL)
246 		return (ENOBUFS);
247 	inp->inp_ppcb = up;
248 	return (0);
249 }
250 
251 void
252 udp_discardcb(struct udpcb *up)
253 {
254 
255 	uma_zfree(V_udpcb_zone, up);
256 }
257 
258 #ifdef VIMAGE
259 static void
260 udp_destroy(void *unused __unused)
261 {
262 
263 	in_pcbinfo_destroy(&V_udbinfo);
264 	uma_zdestroy(V_udpcb_zone);
265 }
266 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
267 
268 static void
269 udplite_destroy(void *unused __unused)
270 {
271 
272 	in_pcbinfo_destroy(&V_ulitecbinfo);
273 }
274 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
275     NULL);
276 #endif
277 
278 #ifdef INET
279 /*
280  * Subroutine of udp_input(), which appends the provided mbuf chain to the
281  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
282  * contains the source address.  If the socket ends up being an IPv6 socket,
283  * udp_append() will convert to a sockaddr_in6 before passing the address
284  * into the socket code.
285  *
286  * In the normal case udp_append() will return 0, indicating that you
287  * must unlock the inp. However if a tunneling protocol is in place we increment
288  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
289  * then decrement the reference count. If the inp_rele returns 1, indicating the
290  * inp is gone, we return that to the caller to tell them *not* to unlock
291  * the inp. In the case of multi-cast this will cause the distribution
292  * to stop (though most tunneling protocols known currently do *not* use
293  * multicast).
294  */
295 static int
296 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
297     struct sockaddr_in *udp_in)
298 {
299 	struct sockaddr *append_sa;
300 	struct socket *so;
301 	struct mbuf *tmpopts, *opts = NULL;
302 #ifdef INET6
303 	struct sockaddr_in6 udp_in6;
304 #endif
305 	struct udpcb *up;
306 
307 	INP_LOCK_ASSERT(inp);
308 
309 	/*
310 	 * Engage the tunneling protocol.
311 	 */
312 	up = intoudpcb(inp);
313 	if (up->u_tun_func != NULL) {
314 		in_pcbref(inp);
315 		INP_RUNLOCK(inp);
316 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
317 		    up->u_tun_ctx);
318 		INP_RLOCK(inp);
319 		return (in_pcbrele_rlocked(inp));
320 	}
321 
322 	off += sizeof(struct udphdr);
323 
324 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
325 	/* Check AH/ESP integrity. */
326 	if (IPSEC_ENABLED(ipv4) &&
327 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
328 		m_freem(n);
329 		return (0);
330 	}
331 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
332 		if (IPSEC_ENABLED(ipv4) &&
333 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
334 			return (0);	/* Consumed. */
335 	}
336 #endif /* IPSEC */
337 #ifdef MAC
338 	if (mac_inpcb_check_deliver(inp, n) != 0) {
339 		m_freem(n);
340 		return (0);
341 	}
342 #endif /* MAC */
343 	if (inp->inp_flags & INP_CONTROLOPTS ||
344 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
345 #ifdef INET6
346 		if (inp->inp_vflag & INP_IPV6)
347 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
348 		else
349 #endif /* INET6 */
350 			ip_savecontrol(inp, &opts, ip, n);
351 	}
352 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
353 		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
354 			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
355 		if (tmpopts) {
356 			if (opts) {
357 				tmpopts->m_next = opts;
358 				opts = tmpopts;
359 			} else
360 				opts = tmpopts;
361 		}
362 	}
363 #ifdef INET6
364 	if (inp->inp_vflag & INP_IPV6) {
365 		bzero(&udp_in6, sizeof(udp_in6));
366 		udp_in6.sin6_len = sizeof(udp_in6);
367 		udp_in6.sin6_family = AF_INET6;
368 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
369 		append_sa = (struct sockaddr *)&udp_in6;
370 	} else
371 #endif /* INET6 */
372 		append_sa = (struct sockaddr *)&udp_in[0];
373 	m_adj(n, off);
374 
375 	so = inp->inp_socket;
376 	SOCKBUF_LOCK(&so->so_rcv);
377 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
378 		SOCKBUF_UNLOCK(&so->so_rcv);
379 		m_freem(n);
380 		if (opts)
381 			m_freem(opts);
382 		UDPSTAT_INC(udps_fullsock);
383 	} else
384 		sorwakeup_locked(so);
385 	return (0);
386 }
387 
388 int
389 udp_input(struct mbuf **mp, int *offp, int proto)
390 {
391 	struct ip *ip;
392 	struct udphdr *uh;
393 	struct ifnet *ifp;
394 	struct inpcb *inp;
395 	uint16_t len, ip_len;
396 	struct inpcbinfo *pcbinfo;
397 	struct ip save_ip;
398 	struct sockaddr_in udp_in[2];
399 	struct mbuf *m;
400 	struct m_tag *fwd_tag;
401 	int cscov_partial, iphlen;
402 
403 	m = *mp;
404 	iphlen = *offp;
405 	ifp = m->m_pkthdr.rcvif;
406 	*mp = NULL;
407 	UDPSTAT_INC(udps_ipackets);
408 
409 	/*
410 	 * Strip IP options, if any; should skip this, make available to
411 	 * user, and use on returned packets, but we don't yet have a way to
412 	 * check the checksum with options still present.
413 	 */
414 	if (iphlen > sizeof (struct ip)) {
415 		ip_stripoptions(m);
416 		iphlen = sizeof(struct ip);
417 	}
418 
419 	/*
420 	 * Get IP and UDP header together in first mbuf.
421 	 */
422 	ip = mtod(m, struct ip *);
423 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
424 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
425 			UDPSTAT_INC(udps_hdrops);
426 			return (IPPROTO_DONE);
427 		}
428 		ip = mtod(m, struct ip *);
429 	}
430 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
431 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
432 
433 	/*
434 	 * Destination port of 0 is illegal, based on RFC768.
435 	 */
436 	if (uh->uh_dport == 0)
437 		goto badunlocked;
438 
439 	/*
440 	 * Construct sockaddr format source address.  Stuff source address
441 	 * and datagram in user buffer.
442 	 */
443 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
444 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
445 	udp_in[0].sin_family = AF_INET;
446 	udp_in[0].sin_port = uh->uh_sport;
447 	udp_in[0].sin_addr = ip->ip_src;
448 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
449 	udp_in[1].sin_family = AF_INET;
450 	udp_in[1].sin_port = uh->uh_dport;
451 	udp_in[1].sin_addr = ip->ip_dst;
452 
453 	/*
454 	 * Make mbuf data length reflect UDP length.  If not enough data to
455 	 * reflect UDP length, drop.
456 	 */
457 	len = ntohs((u_short)uh->uh_ulen);
458 	ip_len = ntohs(ip->ip_len) - iphlen;
459 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
460 		/* Zero means checksum over the complete packet. */
461 		if (len == 0)
462 			len = ip_len;
463 		cscov_partial = 0;
464 	}
465 	if (ip_len != len) {
466 		if (len > ip_len || len < sizeof(struct udphdr)) {
467 			UDPSTAT_INC(udps_badlen);
468 			goto badunlocked;
469 		}
470 		if (proto == IPPROTO_UDP)
471 			m_adj(m, len - ip_len);
472 	}
473 
474 	/*
475 	 * Save a copy of the IP header in case we want restore it for
476 	 * sending an ICMP error message in response.
477 	 */
478 	if (!V_udp_blackhole)
479 		save_ip = *ip;
480 	else
481 		memset(&save_ip, 0, sizeof(save_ip));
482 
483 	/*
484 	 * Checksum extended UDP header and data.
485 	 */
486 	if (uh->uh_sum) {
487 		u_short uh_sum;
488 
489 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
490 		    !cscov_partial) {
491 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
492 				uh_sum = m->m_pkthdr.csum_data;
493 			else
494 				uh_sum = in_pseudo(ip->ip_src.s_addr,
495 				    ip->ip_dst.s_addr, htonl((u_short)len +
496 				    m->m_pkthdr.csum_data + proto));
497 			uh_sum ^= 0xffff;
498 		} else {
499 			char b[9];
500 
501 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
502 			bzero(((struct ipovly *)ip)->ih_x1, 9);
503 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
504 			    uh->uh_ulen : htons(ip_len);
505 			uh_sum = in_cksum(m, len + sizeof (struct ip));
506 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
507 		}
508 		if (uh_sum) {
509 			UDPSTAT_INC(udps_badsum);
510 			m_freem(m);
511 			return (IPPROTO_DONE);
512 		}
513 	} else {
514 		if (proto == IPPROTO_UDP) {
515 			UDPSTAT_INC(udps_nosum);
516 		} else {
517 			/* UDPLite requires a checksum */
518 			/* XXX: What is the right UDPLite MIB counter here? */
519 			m_freem(m);
520 			return (IPPROTO_DONE);
521 		}
522 	}
523 
524 	pcbinfo = udp_get_inpcbinfo(proto);
525 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
526 	    in_broadcast(ip->ip_dst, ifp)) {
527 		struct inpcb *last;
528 		struct inpcbhead *pcblist;
529 		struct ip_moptions *imo;
530 
531 		INP_INFO_RLOCK(pcbinfo);
532 		pcblist = udp_get_pcblist(proto);
533 		last = NULL;
534 		LIST_FOREACH(inp, pcblist, inp_list) {
535 			if (inp->inp_lport != uh->uh_dport)
536 				continue;
537 #ifdef INET6
538 			if ((inp->inp_vflag & INP_IPV4) == 0)
539 				continue;
540 #endif
541 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
542 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
543 				continue;
544 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
545 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
546 				continue;
547 			if (inp->inp_fport != 0 &&
548 			    inp->inp_fport != uh->uh_sport)
549 				continue;
550 
551 			INP_RLOCK(inp);
552 
553 			/*
554 			 * XXXRW: Because we weren't holding either the inpcb
555 			 * or the hash lock when we checked for a match
556 			 * before, we should probably recheck now that the
557 			 * inpcb lock is held.
558 			 */
559 
560 			/*
561 			 * Handle socket delivery policy for any-source
562 			 * and source-specific multicast. [RFC3678]
563 			 */
564 			imo = inp->inp_moptions;
565 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
566 				struct sockaddr_in	 group;
567 				int			 blocked;
568 				if (imo == NULL) {
569 					INP_RUNLOCK(inp);
570 					continue;
571 				}
572 				bzero(&group, sizeof(struct sockaddr_in));
573 				group.sin_len = sizeof(struct sockaddr_in);
574 				group.sin_family = AF_INET;
575 				group.sin_addr = ip->ip_dst;
576 
577 				blocked = imo_multi_filter(imo, ifp,
578 					(struct sockaddr *)&group,
579 					(struct sockaddr *)&udp_in[0]);
580 				if (blocked != MCAST_PASS) {
581 					if (blocked == MCAST_NOTGMEMBER)
582 						IPSTAT_INC(ips_notmember);
583 					if (blocked == MCAST_NOTSMEMBER ||
584 					    blocked == MCAST_MUTED)
585 						UDPSTAT_INC(udps_filtermcast);
586 					INP_RUNLOCK(inp);
587 					continue;
588 				}
589 			}
590 			if (last != NULL) {
591 				struct mbuf *n;
592 
593 				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
594 				    NULL) {
595 					UDP_PROBE(receive, NULL, last, ip,
596 					    last, uh);
597 					if (udp_append(last, ip, n, iphlen,
598 						udp_in)) {
599 						goto inp_lost;
600 					}
601 				}
602 				INP_RUNLOCK(last);
603 			}
604 			last = inp;
605 			/*
606 			 * Don't look for additional matches if this one does
607 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
608 			 * socket options set.  This heuristic avoids
609 			 * searching through all pcbs in the common case of a
610 			 * non-shared port.  It assumes that an application
611 			 * will never clear these options after setting them.
612 			 */
613 			if ((last->inp_socket->so_options &
614 			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
615 				break;
616 		}
617 
618 		if (last == NULL) {
619 			/*
620 			 * No matching pcb found; discard datagram.  (No need
621 			 * to send an ICMP Port Unreachable for a broadcast
622 			 * or multicast datgram.)
623 			 */
624 			UDPSTAT_INC(udps_noportbcast);
625 			if (inp)
626 				INP_RUNLOCK(inp);
627 			INP_INFO_RUNLOCK(pcbinfo);
628 			goto badunlocked;
629 		}
630 		UDP_PROBE(receive, NULL, last, ip, last, uh);
631 		if (udp_append(last, ip, m, iphlen, udp_in) == 0)
632 			INP_RUNLOCK(last);
633 	inp_lost:
634 		INP_INFO_RUNLOCK(pcbinfo);
635 		return (IPPROTO_DONE);
636 	}
637 
638 	/*
639 	 * Locate pcb for datagram.
640 	 */
641 
642 	/*
643 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
644 	 */
645 	if ((m->m_flags & M_IP_NEXTHOP) &&
646 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
647 		struct sockaddr_in *next_hop;
648 
649 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
650 
651 		/*
652 		 * Transparently forwarded. Pretend to be the destination.
653 		 * Already got one like this?
654 		 */
655 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
656 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
657 		if (!inp) {
658 			/*
659 			 * It's new.  Try to find the ambushing socket.
660 			 * Because we've rewritten the destination address,
661 			 * any hardware-generated hash is ignored.
662 			 */
663 			inp = in_pcblookup(pcbinfo, ip->ip_src,
664 			    uh->uh_sport, next_hop->sin_addr,
665 			    next_hop->sin_port ? htons(next_hop->sin_port) :
666 			    uh->uh_dport, INPLOOKUP_WILDCARD |
667 			    INPLOOKUP_RLOCKPCB, ifp);
668 		}
669 		/* Remove the tag from the packet. We don't need it anymore. */
670 		m_tag_delete(m, fwd_tag);
671 		m->m_flags &= ~M_IP_NEXTHOP;
672 	} else
673 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
674 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
675 		    INPLOOKUP_RLOCKPCB, ifp, m);
676 	if (inp == NULL) {
677 		if (udp_log_in_vain) {
678 			char src[INET_ADDRSTRLEN];
679 			char dst[INET_ADDRSTRLEN];
680 
681 			log(LOG_INFO,
682 			    "Connection attempt to UDP %s:%d from %s:%d\n",
683 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
684 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
685 		}
686 		UDPSTAT_INC(udps_noport);
687 		if (m->m_flags & (M_BCAST | M_MCAST)) {
688 			UDPSTAT_INC(udps_noportbcast);
689 			goto badunlocked;
690 		}
691 		if (V_udp_blackhole)
692 			goto badunlocked;
693 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
694 			goto badunlocked;
695 		*ip = save_ip;
696 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
697 		return (IPPROTO_DONE);
698 	}
699 
700 	/*
701 	 * Check the minimum TTL for socket.
702 	 */
703 	INP_RLOCK_ASSERT(inp);
704 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
705 		INP_RUNLOCK(inp);
706 		m_freem(m);
707 		return (IPPROTO_DONE);
708 	}
709 	if (cscov_partial) {
710 		struct udpcb *up;
711 
712 		up = intoudpcb(inp);
713 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
714 			INP_RUNLOCK(inp);
715 			m_freem(m);
716 			return (IPPROTO_DONE);
717 		}
718 	}
719 
720 	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
721 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
722 		INP_RUNLOCK(inp);
723 	return (IPPROTO_DONE);
724 
725 badunlocked:
726 	m_freem(m);
727 	return (IPPROTO_DONE);
728 }
729 #endif /* INET */
730 
731 /*
732  * Notify a udp user of an asynchronous error; just wake up so that they can
733  * collect error status.
734  */
735 struct inpcb *
736 udp_notify(struct inpcb *inp, int errno)
737 {
738 
739 	/*
740 	 * While udp_ctlinput() always calls udp_notify() with a read lock
741 	 * when invoking it directly, in_pcbnotifyall() currently uses write
742 	 * locks due to sharing code with TCP.  For now, accept either a read
743 	 * or a write lock, but a read lock is sufficient.
744 	 */
745 	INP_LOCK_ASSERT(inp);
746 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
747 	     errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
748 		RTFREE(inp->inp_route.ro_rt);
749 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
750 	}
751 
752 	inp->inp_socket->so_error = errno;
753 	sorwakeup(inp->inp_socket);
754 	sowwakeup(inp->inp_socket);
755 	return (inp);
756 }
757 
758 #ifdef INET
759 static void
760 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
761     struct inpcbinfo *pcbinfo)
762 {
763 	struct ip *ip = vip;
764 	struct udphdr *uh;
765 	struct in_addr faddr;
766 	struct inpcb *inp;
767 
768 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
769 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
770 		return;
771 
772 	if (PRC_IS_REDIRECT(cmd)) {
773 		/* signal EHOSTDOWN, as it flushes the cached route */
774 		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
775 		return;
776 	}
777 
778 	/*
779 	 * Hostdead is ugly because it goes linearly through all PCBs.
780 	 *
781 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
782 	 * DoS attack on machines with many connections.
783 	 */
784 	if (cmd == PRC_HOSTDEAD)
785 		ip = NULL;
786 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
787 		return;
788 	if (ip != NULL) {
789 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
790 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
791 		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
792 		if (inp != NULL) {
793 			INP_RLOCK_ASSERT(inp);
794 			if (inp->inp_socket != NULL) {
795 				udp_notify(inp, inetctlerrmap[cmd]);
796 			}
797 			INP_RUNLOCK(inp);
798 		} else {
799 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
800 					   ip->ip_src, uh->uh_sport,
801 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
802 			if (inp != NULL) {
803 				struct udpcb *up;
804 
805 				up = intoudpcb(inp);
806 				if (up->u_icmp_func != NULL) {
807 					INP_RUNLOCK(inp);
808 					(*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx);
809 				} else {
810 					INP_RUNLOCK(inp);
811 				}
812 			}
813 		}
814 	} else
815 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
816 		    udp_notify);
817 }
818 void
819 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
820 {
821 
822 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
823 }
824 
825 void
826 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
827 {
828 
829 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
830 }
831 #endif /* INET */
832 
833 static int
834 udp_pcblist(SYSCTL_HANDLER_ARGS)
835 {
836 	int error, i, n;
837 	struct inpcb *inp, **inp_list;
838 	inp_gen_t gencnt;
839 	struct xinpgen xig;
840 
841 	/*
842 	 * The process of preparing the PCB list is too time-consuming and
843 	 * resource-intensive to repeat twice on every request.
844 	 */
845 	if (req->oldptr == 0) {
846 		n = V_udbinfo.ipi_count;
847 		n += imax(n / 8, 10);
848 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
849 		return (0);
850 	}
851 
852 	if (req->newptr != 0)
853 		return (EPERM);
854 
855 	/*
856 	 * OK, now we're committed to doing something.
857 	 */
858 	INP_INFO_RLOCK(&V_udbinfo);
859 	gencnt = V_udbinfo.ipi_gencnt;
860 	n = V_udbinfo.ipi_count;
861 	INP_INFO_RUNLOCK(&V_udbinfo);
862 
863 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
864 		+ n * sizeof(struct xinpcb));
865 	if (error != 0)
866 		return (error);
867 
868 	xig.xig_len = sizeof xig;
869 	xig.xig_count = n;
870 	xig.xig_gen = gencnt;
871 	xig.xig_sogen = so_gencnt;
872 	error = SYSCTL_OUT(req, &xig, sizeof xig);
873 	if (error)
874 		return (error);
875 
876 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
877 	if (inp_list == NULL)
878 		return (ENOMEM);
879 
880 	INP_INFO_RLOCK(&V_udbinfo);
881 	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
882 	     inp = LIST_NEXT(inp, inp_list)) {
883 		INP_WLOCK(inp);
884 		if (inp->inp_gencnt <= gencnt &&
885 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
886 			in_pcbref(inp);
887 			inp_list[i++] = inp;
888 		}
889 		INP_WUNLOCK(inp);
890 	}
891 	INP_INFO_RUNLOCK(&V_udbinfo);
892 	n = i;
893 
894 	error = 0;
895 	for (i = 0; i < n; i++) {
896 		inp = inp_list[i];
897 		INP_RLOCK(inp);
898 		if (inp->inp_gencnt <= gencnt) {
899 			struct xinpcb xi;
900 
901 			in_pcbtoxinpcb(inp, &xi);
902 			INP_RUNLOCK(inp);
903 			error = SYSCTL_OUT(req, &xi, sizeof xi);
904 		} else
905 			INP_RUNLOCK(inp);
906 	}
907 	INP_INFO_WLOCK(&V_udbinfo);
908 	for (i = 0; i < n; i++) {
909 		inp = inp_list[i];
910 		INP_RLOCK(inp);
911 		if (!in_pcbrele_rlocked(inp))
912 			INP_RUNLOCK(inp);
913 	}
914 	INP_INFO_WUNLOCK(&V_udbinfo);
915 
916 	if (!error) {
917 		/*
918 		 * Give the user an updated idea of our state.  If the
919 		 * generation differs from what we told her before, she knows
920 		 * that something happened while we were processing this
921 		 * request, and it might be necessary to retry.
922 		 */
923 		INP_INFO_RLOCK(&V_udbinfo);
924 		xig.xig_gen = V_udbinfo.ipi_gencnt;
925 		xig.xig_sogen = so_gencnt;
926 		xig.xig_count = V_udbinfo.ipi_count;
927 		INP_INFO_RUNLOCK(&V_udbinfo);
928 		error = SYSCTL_OUT(req, &xig, sizeof xig);
929 	}
930 	free(inp_list, M_TEMP);
931 	return (error);
932 }
933 
934 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
935     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
936     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
937 
938 #ifdef INET
939 static int
940 udp_getcred(SYSCTL_HANDLER_ARGS)
941 {
942 	struct xucred xuc;
943 	struct sockaddr_in addrs[2];
944 	struct inpcb *inp;
945 	int error;
946 
947 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
948 	if (error)
949 		return (error);
950 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
951 	if (error)
952 		return (error);
953 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
954 	    addrs[0].sin_addr, addrs[0].sin_port,
955 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
956 	if (inp != NULL) {
957 		INP_RLOCK_ASSERT(inp);
958 		if (inp->inp_socket == NULL)
959 			error = ENOENT;
960 		if (error == 0)
961 			error = cr_canseeinpcb(req->td->td_ucred, inp);
962 		if (error == 0)
963 			cru2x(inp->inp_cred, &xuc);
964 		INP_RUNLOCK(inp);
965 	} else
966 		error = ENOENT;
967 	if (error == 0)
968 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
969 	return (error);
970 }
971 
972 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
973     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
974     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
975 #endif /* INET */
976 
977 int
978 udp_ctloutput(struct socket *so, struct sockopt *sopt)
979 {
980 	struct inpcb *inp;
981 	struct udpcb *up;
982 	int isudplite, error, optval;
983 
984 	error = 0;
985 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
986 	inp = sotoinpcb(so);
987 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
988 	INP_WLOCK(inp);
989 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
990 #ifdef INET6
991 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
992 			INP_WUNLOCK(inp);
993 			error = ip6_ctloutput(so, sopt);
994 		}
995 #endif
996 #if defined(INET) && defined(INET6)
997 		else
998 #endif
999 #ifdef INET
1000 		{
1001 			INP_WUNLOCK(inp);
1002 			error = ip_ctloutput(so, sopt);
1003 		}
1004 #endif
1005 		return (error);
1006 	}
1007 
1008 	switch (sopt->sopt_dir) {
1009 	case SOPT_SET:
1010 		switch (sopt->sopt_name) {
1011 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1012 #ifdef INET
1013 		case UDP_ENCAP:
1014 			if (!IPSEC_ENABLED(ipv4)) {
1015 				INP_WUNLOCK(inp);
1016 				return (ENOPROTOOPT);
1017 			}
1018 			error = UDPENCAP_PCBCTL(inp, sopt);
1019 			break;
1020 #endif /* INET */
1021 #endif /* IPSEC */
1022 		case UDPLITE_SEND_CSCOV:
1023 		case UDPLITE_RECV_CSCOV:
1024 			if (!isudplite) {
1025 				INP_WUNLOCK(inp);
1026 				error = ENOPROTOOPT;
1027 				break;
1028 			}
1029 			INP_WUNLOCK(inp);
1030 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1031 			    sizeof(optval));
1032 			if (error != 0)
1033 				break;
1034 			inp = sotoinpcb(so);
1035 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1036 			INP_WLOCK(inp);
1037 			up = intoudpcb(inp);
1038 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1039 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1040 				INP_WUNLOCK(inp);
1041 				error = EINVAL;
1042 				break;
1043 			}
1044 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1045 				up->u_txcslen = optval;
1046 			else
1047 				up->u_rxcslen = optval;
1048 			INP_WUNLOCK(inp);
1049 			break;
1050 		default:
1051 			INP_WUNLOCK(inp);
1052 			error = ENOPROTOOPT;
1053 			break;
1054 		}
1055 		break;
1056 	case SOPT_GET:
1057 		switch (sopt->sopt_name) {
1058 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1059 #ifdef INET
1060 		case UDP_ENCAP:
1061 			if (!IPSEC_ENABLED(ipv4)) {
1062 				INP_WUNLOCK(inp);
1063 				return (ENOPROTOOPT);
1064 			}
1065 			error = UDPENCAP_PCBCTL(inp, sopt);
1066 			break;
1067 #endif /* INET */
1068 #endif /* IPSEC */
1069 		case UDPLITE_SEND_CSCOV:
1070 		case UDPLITE_RECV_CSCOV:
1071 			if (!isudplite) {
1072 				INP_WUNLOCK(inp);
1073 				error = ENOPROTOOPT;
1074 				break;
1075 			}
1076 			up = intoudpcb(inp);
1077 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1078 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1079 				optval = up->u_txcslen;
1080 			else
1081 				optval = up->u_rxcslen;
1082 			INP_WUNLOCK(inp);
1083 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1084 			break;
1085 		default:
1086 			INP_WUNLOCK(inp);
1087 			error = ENOPROTOOPT;
1088 			break;
1089 		}
1090 		break;
1091 	}
1092 	return (error);
1093 }
1094 
1095 #ifdef INET
1096 #define	UH_WLOCKED	2
1097 #define	UH_RLOCKED	1
1098 #define	UH_UNLOCKED	0
1099 static int
1100 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1101     struct mbuf *control, struct thread *td)
1102 {
1103 	struct udpiphdr *ui;
1104 	int len = m->m_pkthdr.len;
1105 	struct in_addr faddr, laddr;
1106 	struct cmsghdr *cm;
1107 	struct inpcbinfo *pcbinfo;
1108 	struct sockaddr_in *sin, src;
1109 	int cscov_partial = 0;
1110 	int error = 0;
1111 	int ipflags;
1112 	u_short fport, lport;
1113 	int unlock_udbinfo, unlock_inp;
1114 	u_char tos;
1115 	uint8_t pr;
1116 	uint16_t cscov = 0;
1117 	uint32_t flowid = 0;
1118 	uint8_t flowtype = M_HASHTYPE_NONE;
1119 
1120 	/*
1121 	 * udp_output() may need to temporarily bind or connect the current
1122 	 * inpcb.  As such, we don't know up front whether we will need the
1123 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1124 	 * front before acquiring any locks.
1125 	 */
1126 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1127 		if (control)
1128 			m_freem(control);
1129 		m_freem(m);
1130 		return (EMSGSIZE);
1131 	}
1132 
1133 	src.sin_family = 0;
1134 	sin = (struct sockaddr_in *)addr;
1135 	if (sin == NULL ||
1136 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1137 		INP_WLOCK(inp);
1138 		unlock_inp = UH_WLOCKED;
1139 	} else {
1140 		INP_RLOCK(inp);
1141 		unlock_inp = UH_RLOCKED;
1142 	}
1143 	tos = inp->inp_ip_tos;
1144 	if (control != NULL) {
1145 		/*
1146 		 * XXX: Currently, we assume all the optional information is
1147 		 * stored in a single mbuf.
1148 		 */
1149 		if (control->m_next) {
1150 			if (unlock_inp == UH_WLOCKED)
1151 				INP_WUNLOCK(inp);
1152 			else
1153 				INP_RUNLOCK(inp);
1154 			m_freem(control);
1155 			m_freem(m);
1156 			return (EINVAL);
1157 		}
1158 		for (; control->m_len > 0;
1159 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1160 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1161 			cm = mtod(control, struct cmsghdr *);
1162 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1163 			    || cm->cmsg_len > control->m_len) {
1164 				error = EINVAL;
1165 				break;
1166 			}
1167 			if (cm->cmsg_level != IPPROTO_IP)
1168 				continue;
1169 
1170 			switch (cm->cmsg_type) {
1171 			case IP_SENDSRCADDR:
1172 				if (cm->cmsg_len !=
1173 				    CMSG_LEN(sizeof(struct in_addr))) {
1174 					error = EINVAL;
1175 					break;
1176 				}
1177 				bzero(&src, sizeof(src));
1178 				src.sin_family = AF_INET;
1179 				src.sin_len = sizeof(src);
1180 				src.sin_port = inp->inp_lport;
1181 				src.sin_addr =
1182 				    *(struct in_addr *)CMSG_DATA(cm);
1183 				break;
1184 
1185 			case IP_TOS:
1186 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1187 					error = EINVAL;
1188 					break;
1189 				}
1190 				tos = *(u_char *)CMSG_DATA(cm);
1191 				break;
1192 
1193 			case IP_FLOWID:
1194 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1195 					error = EINVAL;
1196 					break;
1197 				}
1198 				flowid = *(uint32_t *) CMSG_DATA(cm);
1199 				break;
1200 
1201 			case IP_FLOWTYPE:
1202 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1203 					error = EINVAL;
1204 					break;
1205 				}
1206 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1207 				break;
1208 
1209 #ifdef	RSS
1210 			case IP_RSSBUCKETID:
1211 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1212 					error = EINVAL;
1213 					break;
1214 				}
1215 				/* This is just a placeholder for now */
1216 				break;
1217 #endif	/* RSS */
1218 			default:
1219 				error = ENOPROTOOPT;
1220 				break;
1221 			}
1222 			if (error)
1223 				break;
1224 		}
1225 		m_freem(control);
1226 	}
1227 	if (error) {
1228 		if (unlock_inp == UH_WLOCKED)
1229 			INP_WUNLOCK(inp);
1230 		else
1231 			INP_RUNLOCK(inp);
1232 		m_freem(m);
1233 		return (error);
1234 	}
1235 
1236 	/*
1237 	 * Depending on whether or not the application has bound or connected
1238 	 * the socket, we may have to do varying levels of work.  The optimal
1239 	 * case is for a connected UDP socket, as a global lock isn't
1240 	 * required at all.
1241 	 *
1242 	 * In order to decide which we need, we require stability of the
1243 	 * inpcb binding, which we ensure by acquiring a read lock on the
1244 	 * inpcb.  This doesn't strictly follow the lock order, so we play
1245 	 * the trylock and retry game; note that we may end up with more
1246 	 * conservative locks than required the second time around, so later
1247 	 * assertions have to accept that.  Further analysis of the number of
1248 	 * misses under contention is required.
1249 	 *
1250 	 * XXXRW: Check that hash locking update here is correct.
1251 	 */
1252 	pr = inp->inp_socket->so_proto->pr_protocol;
1253 	pcbinfo = udp_get_inpcbinfo(pr);
1254 	sin = (struct sockaddr_in *)addr;
1255 	if (sin != NULL &&
1256 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1257 		INP_HASH_WLOCK(pcbinfo);
1258 		unlock_udbinfo = UH_WLOCKED;
1259 	} else if ((sin != NULL && (
1260 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1261 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1262 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1263 	    (inp->inp_lport == 0))) ||
1264 	    (src.sin_family == AF_INET)) {
1265 		INP_HASH_RLOCK(pcbinfo);
1266 		unlock_udbinfo = UH_RLOCKED;
1267 	} else
1268 		unlock_udbinfo = UH_UNLOCKED;
1269 
1270 	/*
1271 	 * If the IP_SENDSRCADDR control message was specified, override the
1272 	 * source address for this datagram.  Its use is invalidated if the
1273 	 * address thus specified is incomplete or clobbers other inpcbs.
1274 	 */
1275 	laddr = inp->inp_laddr;
1276 	lport = inp->inp_lport;
1277 	if (src.sin_family == AF_INET) {
1278 		INP_HASH_LOCK_ASSERT(pcbinfo);
1279 		if ((lport == 0) ||
1280 		    (laddr.s_addr == INADDR_ANY &&
1281 		     src.sin_addr.s_addr == INADDR_ANY)) {
1282 			error = EINVAL;
1283 			goto release;
1284 		}
1285 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1286 		    &laddr.s_addr, &lport, td->td_ucred);
1287 		if (error)
1288 			goto release;
1289 	}
1290 
1291 	/*
1292 	 * If a UDP socket has been connected, then a local address/port will
1293 	 * have been selected and bound.
1294 	 *
1295 	 * If a UDP socket has not been connected to, then an explicit
1296 	 * destination address must be used, in which case a local
1297 	 * address/port may not have been selected and bound.
1298 	 */
1299 	if (sin != NULL) {
1300 		INP_LOCK_ASSERT(inp);
1301 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1302 			error = EISCONN;
1303 			goto release;
1304 		}
1305 
1306 		/*
1307 		 * Jail may rewrite the destination address, so let it do
1308 		 * that before we use it.
1309 		 */
1310 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1311 		if (error)
1312 			goto release;
1313 
1314 		/*
1315 		 * If a local address or port hasn't yet been selected, or if
1316 		 * the destination address needs to be rewritten due to using
1317 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1318 		 * to do the heavy lifting.  Once a port is selected, we
1319 		 * commit the binding back to the socket; we also commit the
1320 		 * binding of the address if in jail.
1321 		 *
1322 		 * If we already have a valid binding and we're not
1323 		 * requesting a destination address rewrite, use a fast path.
1324 		 */
1325 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1326 		    inp->inp_lport == 0 ||
1327 		    sin->sin_addr.s_addr == INADDR_ANY ||
1328 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1329 			INP_HASH_LOCK_ASSERT(pcbinfo);
1330 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1331 			    &lport, &faddr.s_addr, &fport, NULL,
1332 			    td->td_ucred);
1333 			if (error)
1334 				goto release;
1335 
1336 			/*
1337 			 * XXXRW: Why not commit the port if the address is
1338 			 * !INADDR_ANY?
1339 			 */
1340 			/* Commit the local port if newly assigned. */
1341 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1342 			    inp->inp_lport == 0) {
1343 				INP_WLOCK_ASSERT(inp);
1344 				INP_HASH_WLOCK_ASSERT(pcbinfo);
1345 				/*
1346 				 * Remember addr if jailed, to prevent
1347 				 * rebinding.
1348 				 */
1349 				if (prison_flag(td->td_ucred, PR_IP4))
1350 					inp->inp_laddr = laddr;
1351 				inp->inp_lport = lport;
1352 				if (in_pcbinshash(inp) != 0) {
1353 					inp->inp_lport = 0;
1354 					error = EAGAIN;
1355 					goto release;
1356 				}
1357 				inp->inp_flags |= INP_ANONPORT;
1358 			}
1359 		} else {
1360 			faddr = sin->sin_addr;
1361 			fport = sin->sin_port;
1362 		}
1363 	} else {
1364 		INP_LOCK_ASSERT(inp);
1365 		faddr = inp->inp_faddr;
1366 		fport = inp->inp_fport;
1367 		if (faddr.s_addr == INADDR_ANY) {
1368 			error = ENOTCONN;
1369 			goto release;
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1375 	 * link-layer headers.  Immediate slide the data pointer back forward
1376 	 * since we won't use that space at this layer.
1377 	 */
1378 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1379 	if (m == NULL) {
1380 		error = ENOBUFS;
1381 		goto release;
1382 	}
1383 	m->m_data += max_linkhdr;
1384 	m->m_len -= max_linkhdr;
1385 	m->m_pkthdr.len -= max_linkhdr;
1386 
1387 	/*
1388 	 * Fill in mbuf with extended UDP header and addresses and length put
1389 	 * into network format.
1390 	 */
1391 	ui = mtod(m, struct udpiphdr *);
1392 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1393 	ui->ui_pr = pr;
1394 	ui->ui_src = laddr;
1395 	ui->ui_dst = faddr;
1396 	ui->ui_sport = lport;
1397 	ui->ui_dport = fport;
1398 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1399 	if (pr == IPPROTO_UDPLITE) {
1400 		struct udpcb *up;
1401 		uint16_t plen;
1402 
1403 		up = intoudpcb(inp);
1404 		cscov = up->u_txcslen;
1405 		plen = (u_short)len + sizeof(struct udphdr);
1406 		if (cscov >= plen)
1407 			cscov = 0;
1408 		ui->ui_len = htons(plen);
1409 		ui->ui_ulen = htons(cscov);
1410 		/*
1411 		 * For UDP-Lite, checksum coverage length of zero means
1412 		 * the entire UDPLite packet is covered by the checksum.
1413 		 */
1414 		cscov_partial = (cscov == 0) ? 0 : 1;
1415 	} else
1416 		ui->ui_v = IPVERSION << 4;
1417 
1418 	/*
1419 	 * Set the Don't Fragment bit in the IP header.
1420 	 */
1421 	if (inp->inp_flags & INP_DONTFRAG) {
1422 		struct ip *ip;
1423 
1424 		ip = (struct ip *)&ui->ui_i;
1425 		ip->ip_off |= htons(IP_DF);
1426 	}
1427 
1428 	ipflags = 0;
1429 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1430 		ipflags |= IP_ROUTETOIF;
1431 	if (inp->inp_socket->so_options & SO_BROADCAST)
1432 		ipflags |= IP_ALLOWBROADCAST;
1433 	if (inp->inp_flags & INP_ONESBCAST)
1434 		ipflags |= IP_SENDONES;
1435 
1436 #ifdef MAC
1437 	mac_inpcb_create_mbuf(inp, m);
1438 #endif
1439 
1440 	/*
1441 	 * Set up checksum and output datagram.
1442 	 */
1443 	ui->ui_sum = 0;
1444 	if (pr == IPPROTO_UDPLITE) {
1445 		if (inp->inp_flags & INP_ONESBCAST)
1446 			faddr.s_addr = INADDR_BROADCAST;
1447 		if (cscov_partial) {
1448 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1449 				ui->ui_sum = 0xffff;
1450 		} else {
1451 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1452 				ui->ui_sum = 0xffff;
1453 		}
1454 	} else if (V_udp_cksum) {
1455 		if (inp->inp_flags & INP_ONESBCAST)
1456 			faddr.s_addr = INADDR_BROADCAST;
1457 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1458 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1459 		m->m_pkthdr.csum_flags = CSUM_UDP;
1460 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1461 	}
1462 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1463 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1464 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1465 	UDPSTAT_INC(udps_opackets);
1466 
1467 	/*
1468 	 * Setup flowid / RSS information for outbound socket.
1469 	 *
1470 	 * Once the UDP code decides to set a flowid some other way,
1471 	 * this allows the flowid to be overridden by userland.
1472 	 */
1473 	if (flowtype != M_HASHTYPE_NONE) {
1474 		m->m_pkthdr.flowid = flowid;
1475 		M_HASHTYPE_SET(m, flowtype);
1476 #ifdef	RSS
1477 	} else {
1478 		uint32_t hash_val, hash_type;
1479 		/*
1480 		 * Calculate an appropriate RSS hash for UDP and
1481 		 * UDP Lite.
1482 		 *
1483 		 * The called function will take care of figuring out
1484 		 * whether a 2-tuple or 4-tuple hash is required based
1485 		 * on the currently configured scheme.
1486 		 *
1487 		 * Later later on connected socket values should be
1488 		 * cached in the inpcb and reused, rather than constantly
1489 		 * re-calculating it.
1490 		 *
1491 		 * UDP Lite is a different protocol number and will
1492 		 * likely end up being hashed as a 2-tuple until
1493 		 * RSS / NICs grow UDP Lite protocol awareness.
1494 		 */
1495 		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1496 		    pr, &hash_val, &hash_type) == 0) {
1497 			m->m_pkthdr.flowid = hash_val;
1498 			M_HASHTYPE_SET(m, hash_type);
1499 		}
1500 #endif
1501 	}
1502 
1503 #ifdef	RSS
1504 	/*
1505 	 * Don't override with the inp cached flowid value.
1506 	 *
1507 	 * Depending upon the kind of send being done, the inp
1508 	 * flowid/flowtype values may actually not be appropriate
1509 	 * for this particular socket send.
1510 	 *
1511 	 * We should either leave the flowid at zero (which is what is
1512 	 * currently done) or set it to some software generated
1513 	 * hash value based on the packet contents.
1514 	 */
1515 	ipflags |= IP_NODEFAULTFLOWID;
1516 #endif	/* RSS */
1517 
1518 	if (unlock_udbinfo == UH_WLOCKED)
1519 		INP_HASH_WUNLOCK(pcbinfo);
1520 	else if (unlock_udbinfo == UH_RLOCKED)
1521 		INP_HASH_RUNLOCK(pcbinfo);
1522 	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1523 	error = ip_output(m, inp->inp_options,
1524 	    (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1525 	    inp->inp_moptions, inp);
1526 	if (unlock_inp == UH_WLOCKED)
1527 		INP_WUNLOCK(inp);
1528 	else
1529 		INP_RUNLOCK(inp);
1530 	return (error);
1531 
1532 release:
1533 	if (unlock_udbinfo == UH_WLOCKED) {
1534 		KASSERT(unlock_inp == UH_WLOCKED,
1535 		    ("%s: excl udbinfo lock, shared inp lock", __func__));
1536 		INP_HASH_WUNLOCK(pcbinfo);
1537 		INP_WUNLOCK(inp);
1538 	} else if (unlock_udbinfo == UH_RLOCKED) {
1539 		KASSERT(unlock_inp == UH_RLOCKED,
1540 		    ("%s: shared udbinfo lock, excl inp lock", __func__));
1541 		INP_HASH_RUNLOCK(pcbinfo);
1542 		INP_RUNLOCK(inp);
1543 	} else if (unlock_inp == UH_WLOCKED)
1544 		INP_WUNLOCK(inp);
1545 	else
1546 		INP_RUNLOCK(inp);
1547 	m_freem(m);
1548 	return (error);
1549 }
1550 
1551 static void
1552 udp_abort(struct socket *so)
1553 {
1554 	struct inpcb *inp;
1555 	struct inpcbinfo *pcbinfo;
1556 
1557 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1558 	inp = sotoinpcb(so);
1559 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1560 	INP_WLOCK(inp);
1561 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1562 		INP_HASH_WLOCK(pcbinfo);
1563 		in_pcbdisconnect(inp);
1564 		inp->inp_laddr.s_addr = INADDR_ANY;
1565 		INP_HASH_WUNLOCK(pcbinfo);
1566 		soisdisconnected(so);
1567 	}
1568 	INP_WUNLOCK(inp);
1569 }
1570 
1571 static int
1572 udp_attach(struct socket *so, int proto, struct thread *td)
1573 {
1574 	struct inpcb *inp;
1575 	struct inpcbinfo *pcbinfo;
1576 	int error;
1577 
1578 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1579 	inp = sotoinpcb(so);
1580 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1581 	error = soreserve(so, udp_sendspace, udp_recvspace);
1582 	if (error)
1583 		return (error);
1584 	INP_INFO_WLOCK(pcbinfo);
1585 	error = in_pcballoc(so, pcbinfo);
1586 	if (error) {
1587 		INP_INFO_WUNLOCK(pcbinfo);
1588 		return (error);
1589 	}
1590 
1591 	inp = sotoinpcb(so);
1592 	inp->inp_vflag |= INP_IPV4;
1593 	inp->inp_ip_ttl = V_ip_defttl;
1594 
1595 	error = udp_newudpcb(inp);
1596 	if (error) {
1597 		in_pcbdetach(inp);
1598 		in_pcbfree(inp);
1599 		INP_INFO_WUNLOCK(pcbinfo);
1600 		return (error);
1601 	}
1602 
1603 	INP_WUNLOCK(inp);
1604 	INP_INFO_WUNLOCK(pcbinfo);
1605 	return (0);
1606 }
1607 #endif /* INET */
1608 
1609 int
1610 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1611 {
1612 	struct inpcb *inp;
1613 	struct udpcb *up;
1614 
1615 	KASSERT(so->so_type == SOCK_DGRAM,
1616 	    ("udp_set_kernel_tunneling: !dgram"));
1617 	inp = sotoinpcb(so);
1618 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1619 	INP_WLOCK(inp);
1620 	up = intoudpcb(inp);
1621 	if ((up->u_tun_func != NULL) ||
1622 	    (up->u_icmp_func != NULL)) {
1623 		INP_WUNLOCK(inp);
1624 		return (EBUSY);
1625 	}
1626 	up->u_tun_func = f;
1627 	up->u_icmp_func = i;
1628 	up->u_tun_ctx = ctx;
1629 	INP_WUNLOCK(inp);
1630 	return (0);
1631 }
1632 
1633 #ifdef INET
1634 static int
1635 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1636 {
1637 	struct inpcb *inp;
1638 	struct inpcbinfo *pcbinfo;
1639 	int error;
1640 
1641 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1642 	inp = sotoinpcb(so);
1643 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1644 	INP_WLOCK(inp);
1645 	INP_HASH_WLOCK(pcbinfo);
1646 	error = in_pcbbind(inp, nam, td->td_ucred);
1647 	INP_HASH_WUNLOCK(pcbinfo);
1648 	INP_WUNLOCK(inp);
1649 	return (error);
1650 }
1651 
1652 static void
1653 udp_close(struct socket *so)
1654 {
1655 	struct inpcb *inp;
1656 	struct inpcbinfo *pcbinfo;
1657 
1658 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1659 	inp = sotoinpcb(so);
1660 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1661 	INP_WLOCK(inp);
1662 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1663 		INP_HASH_WLOCK(pcbinfo);
1664 		in_pcbdisconnect(inp);
1665 		inp->inp_laddr.s_addr = INADDR_ANY;
1666 		INP_HASH_WUNLOCK(pcbinfo);
1667 		soisdisconnected(so);
1668 	}
1669 	INP_WUNLOCK(inp);
1670 }
1671 
1672 static int
1673 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1674 {
1675 	struct inpcb *inp;
1676 	struct inpcbinfo *pcbinfo;
1677 	struct sockaddr_in *sin;
1678 	int error;
1679 
1680 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1681 	inp = sotoinpcb(so);
1682 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1683 	INP_WLOCK(inp);
1684 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1685 		INP_WUNLOCK(inp);
1686 		return (EISCONN);
1687 	}
1688 	sin = (struct sockaddr_in *)nam;
1689 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1690 	if (error != 0) {
1691 		INP_WUNLOCK(inp);
1692 		return (error);
1693 	}
1694 	INP_HASH_WLOCK(pcbinfo);
1695 	error = in_pcbconnect(inp, nam, td->td_ucred);
1696 	INP_HASH_WUNLOCK(pcbinfo);
1697 	if (error == 0)
1698 		soisconnected(so);
1699 	INP_WUNLOCK(inp);
1700 	return (error);
1701 }
1702 
1703 static void
1704 udp_detach(struct socket *so)
1705 {
1706 	struct inpcb *inp;
1707 	struct inpcbinfo *pcbinfo;
1708 	struct udpcb *up;
1709 
1710 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1711 	inp = sotoinpcb(so);
1712 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1713 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1714 	    ("udp_detach: not disconnected"));
1715 	INP_INFO_WLOCK(pcbinfo);
1716 	INP_WLOCK(inp);
1717 	up = intoudpcb(inp);
1718 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1719 	inp->inp_ppcb = NULL;
1720 	in_pcbdetach(inp);
1721 	in_pcbfree(inp);
1722 	INP_INFO_WUNLOCK(pcbinfo);
1723 	udp_discardcb(up);
1724 }
1725 
1726 static int
1727 udp_disconnect(struct socket *so)
1728 {
1729 	struct inpcb *inp;
1730 	struct inpcbinfo *pcbinfo;
1731 
1732 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1733 	inp = sotoinpcb(so);
1734 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1735 	INP_WLOCK(inp);
1736 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1737 		INP_WUNLOCK(inp);
1738 		return (ENOTCONN);
1739 	}
1740 	INP_HASH_WLOCK(pcbinfo);
1741 	in_pcbdisconnect(inp);
1742 	inp->inp_laddr.s_addr = INADDR_ANY;
1743 	INP_HASH_WUNLOCK(pcbinfo);
1744 	SOCK_LOCK(so);
1745 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1746 	SOCK_UNLOCK(so);
1747 	INP_WUNLOCK(inp);
1748 	return (0);
1749 }
1750 
1751 static int
1752 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1753     struct mbuf *control, struct thread *td)
1754 {
1755 	struct inpcb *inp;
1756 
1757 	inp = sotoinpcb(so);
1758 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1759 	return (udp_output(inp, m, addr, control, td));
1760 }
1761 #endif /* INET */
1762 
1763 int
1764 udp_shutdown(struct socket *so)
1765 {
1766 	struct inpcb *inp;
1767 
1768 	inp = sotoinpcb(so);
1769 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1770 	INP_WLOCK(inp);
1771 	socantsendmore(so);
1772 	INP_WUNLOCK(inp);
1773 	return (0);
1774 }
1775 
1776 #ifdef INET
1777 struct pr_usrreqs udp_usrreqs = {
1778 	.pru_abort =		udp_abort,
1779 	.pru_attach =		udp_attach,
1780 	.pru_bind =		udp_bind,
1781 	.pru_connect =		udp_connect,
1782 	.pru_control =		in_control,
1783 	.pru_detach =		udp_detach,
1784 	.pru_disconnect =	udp_disconnect,
1785 	.pru_peeraddr =		in_getpeeraddr,
1786 	.pru_send =		udp_send,
1787 	.pru_soreceive =	soreceive_dgram,
1788 	.pru_sosend =		sosend_dgram,
1789 	.pru_shutdown =		udp_shutdown,
1790 	.pru_sockaddr =		in_getsockaddr,
1791 	.pru_sosetlabel =	in_pcbsosetlabel,
1792 	.pru_close =		udp_close,
1793 };
1794 #endif /* INET */
1795