xref: /freebsd/sys/netinet/udp_usrreq.c (revision df347c8a2e8ac08df4c1a6058c12b9f01c289cff)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_rss.h"
48 
49 #include <sys/param.h>
50 #include <sys/domain.h>
51 #include <sys/eventhandler.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/protosw.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/systm.h>
68 
69 #include <vm/uma.h>
70 
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/route.h>
74 #include <net/rss_config.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_kdtrace.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #endif
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/ip_options.h>
89 #ifdef INET6
90 #include <netinet6/ip6_var.h>
91 #endif
92 #include <netinet/udp.h>
93 #include <netinet/udp_var.h>
94 #include <netinet/udplite.h>
95 #include <netinet/in_rss.h>
96 
97 #include <netipsec/ipsec_support.h>
98 
99 #include <machine/in_cksum.h>
100 
101 #include <security/mac/mac_framework.h>
102 
103 /*
104  * UDP and UDP-Lite protocols implementation.
105  * Per RFC 768, August, 1980.
106  * Per RFC 3828, July, 2004.
107  */
108 
109 /*
110  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
111  * removes the only data integrity mechanism for packets and malformed
112  * packets that would otherwise be discarded due to bad checksums, and may
113  * cause problems (especially for NFS data blocks).
114  */
115 VNET_DEFINE(int, udp_cksum) = 1;
116 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
117     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
118 
119 int	udp_log_in_vain = 0;
120 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
121     &udp_log_in_vain, 0, "Log all incoming UDP packets");
122 
123 VNET_DEFINE(int, udp_blackhole) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
125     &VNET_NAME(udp_blackhole), 0,
126     "Do not send port unreachables for refused connects");
127 
128 u_long	udp_sendspace = 9216;		/* really max datagram size */
129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131 
132 u_long	udp_recvspace = 40 * (1024 +
133 #ifdef INET6
134 				      sizeof(struct sockaddr_in6)
135 #else
136 				      sizeof(struct sockaddr_in)
137 #endif
138 				      );	/* 40 1K datagrams */
139 
140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142 
143 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
144 VNET_DEFINE(struct inpcbinfo, udbinfo);
145 VNET_DEFINE(struct inpcbhead, ulitecb);
146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
148 #define	V_udpcb_zone			VNET(udpcb_zone)
149 
150 #ifndef UDBHASHSIZE
151 #define	UDBHASHSIZE	128
152 #endif
153 
154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
155 VNET_PCPUSTAT_SYSINIT(udpstat);
156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158 
159 #ifdef VIMAGE
160 VNET_PCPUSTAT_SYSUNINIT(udpstat);
161 #endif /* VIMAGE */
162 #ifdef INET
163 static void	udp_detach(struct socket *so);
164 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165 		    struct mbuf *, struct thread *);
166 #endif
167 
168 static void
169 udp_zone_change(void *tag)
170 {
171 
172 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
173 	uma_zone_set_max(V_udpcb_zone, maxsockets);
174 }
175 
176 static int
177 udp_inpcb_init(void *mem, int size, int flags)
178 {
179 	struct inpcb *inp;
180 
181 	inp = mem;
182 	INP_LOCK_INIT(inp, "inp", "udpinp");
183 	return (0);
184 }
185 
186 static int
187 udplite_inpcb_init(void *mem, int size, int flags)
188 {
189 	struct inpcb *inp;
190 
191 	inp = mem;
192 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
193 	return (0);
194 }
195 
196 void
197 udp_init(void)
198 {
199 
200 	/*
201 	 * For now default to 2-tuple UDP hashing - until the fragment
202 	 * reassembly code can also update the flowid.
203 	 *
204 	 * Once we can calculate the flowid that way and re-establish
205 	 * a 4-tuple, flip this to 4-tuple.
206 	 */
207 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
208 	    "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
209 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
211 	uma_zone_set_max(V_udpcb_zone, maxsockets);
212 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
213 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
214 	    EVENTHANDLER_PRI_ANY);
215 }
216 
217 void
218 udplite_init(void)
219 {
220 
221 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
222 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
223 	    IPI_HASHFIELDS_2TUPLE);
224 }
225 
226 /*
227  * Kernel module interface for updating udpstat.  The argument is an index
228  * into udpstat treated as an array of u_long.  While this encodes the
229  * general layout of udpstat into the caller, it doesn't encode its location,
230  * so that future changes to add, for example, per-CPU stats support won't
231  * cause binary compatibility problems for kernel modules.
232  */
233 void
234 kmod_udpstat_inc(int statnum)
235 {
236 
237 	counter_u64_add(VNET(udpstat)[statnum], 1);
238 }
239 
240 int
241 udp_newudpcb(struct inpcb *inp)
242 {
243 	struct udpcb *up;
244 
245 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
246 	if (up == NULL)
247 		return (ENOBUFS);
248 	inp->inp_ppcb = up;
249 	return (0);
250 }
251 
252 void
253 udp_discardcb(struct udpcb *up)
254 {
255 
256 	uma_zfree(V_udpcb_zone, up);
257 }
258 
259 #ifdef VIMAGE
260 static void
261 udp_destroy(void *unused __unused)
262 {
263 
264 	in_pcbinfo_destroy(&V_udbinfo);
265 	uma_zdestroy(V_udpcb_zone);
266 }
267 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
268 
269 static void
270 udplite_destroy(void *unused __unused)
271 {
272 
273 	in_pcbinfo_destroy(&V_ulitecbinfo);
274 }
275 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
276     NULL);
277 #endif
278 
279 #ifdef INET
280 /*
281  * Subroutine of udp_input(), which appends the provided mbuf chain to the
282  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
283  * contains the source address.  If the socket ends up being an IPv6 socket,
284  * udp_append() will convert to a sockaddr_in6 before passing the address
285  * into the socket code.
286  *
287  * In the normal case udp_append() will return 0, indicating that you
288  * must unlock the inp. However if a tunneling protocol is in place we increment
289  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
290  * then decrement the reference count. If the inp_rele returns 1, indicating the
291  * inp is gone, we return that to the caller to tell them *not* to unlock
292  * the inp. In the case of multi-cast this will cause the distribution
293  * to stop (though most tunneling protocols known currently do *not* use
294  * multicast).
295  */
296 static int
297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
298     struct sockaddr_in *udp_in)
299 {
300 	struct sockaddr *append_sa;
301 	struct socket *so;
302 	struct mbuf *tmpopts, *opts = NULL;
303 #ifdef INET6
304 	struct sockaddr_in6 udp_in6;
305 #endif
306 	struct udpcb *up;
307 
308 	INP_LOCK_ASSERT(inp);
309 
310 	/*
311 	 * Engage the tunneling protocol.
312 	 */
313 	up = intoudpcb(inp);
314 	if (up->u_tun_func != NULL) {
315 		in_pcbref(inp);
316 		INP_RUNLOCK(inp);
317 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
318 		    up->u_tun_ctx);
319 		INP_RLOCK(inp);
320 		return (in_pcbrele_rlocked(inp));
321 	}
322 
323 	off += sizeof(struct udphdr);
324 
325 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
326 	/* Check AH/ESP integrity. */
327 	if (IPSEC_ENABLED(ipv4) &&
328 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
329 		m_freem(n);
330 		return (0);
331 	}
332 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
333 		if (IPSEC_ENABLED(ipv4) &&
334 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
335 			return (0);	/* Consumed. */
336 	}
337 #endif /* IPSEC */
338 #ifdef MAC
339 	if (mac_inpcb_check_deliver(inp, n) != 0) {
340 		m_freem(n);
341 		return (0);
342 	}
343 #endif /* MAC */
344 	if (inp->inp_flags & INP_CONTROLOPTS ||
345 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
346 #ifdef INET6
347 		if (inp->inp_vflag & INP_IPV6)
348 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
349 		else
350 #endif /* INET6 */
351 			ip_savecontrol(inp, &opts, ip, n);
352 	}
353 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
354 		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
355 			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
356 		if (tmpopts) {
357 			if (opts) {
358 				tmpopts->m_next = opts;
359 				opts = tmpopts;
360 			} else
361 				opts = tmpopts;
362 		}
363 	}
364 #ifdef INET6
365 	if (inp->inp_vflag & INP_IPV6) {
366 		bzero(&udp_in6, sizeof(udp_in6));
367 		udp_in6.sin6_len = sizeof(udp_in6);
368 		udp_in6.sin6_family = AF_INET6;
369 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
370 		append_sa = (struct sockaddr *)&udp_in6;
371 	} else
372 #endif /* INET6 */
373 		append_sa = (struct sockaddr *)&udp_in[0];
374 	m_adj(n, off);
375 
376 	so = inp->inp_socket;
377 	SOCKBUF_LOCK(&so->so_rcv);
378 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
379 		SOCKBUF_UNLOCK(&so->so_rcv);
380 		m_freem(n);
381 		if (opts)
382 			m_freem(opts);
383 		UDPSTAT_INC(udps_fullsock);
384 	} else
385 		sorwakeup_locked(so);
386 	return (0);
387 }
388 
389 int
390 udp_input(struct mbuf **mp, int *offp, int proto)
391 {
392 	struct ip *ip;
393 	struct udphdr *uh;
394 	struct ifnet *ifp;
395 	struct inpcb *inp;
396 	uint16_t len, ip_len;
397 	struct inpcbinfo *pcbinfo;
398 	struct ip save_ip;
399 	struct sockaddr_in udp_in[2];
400 	struct mbuf *m;
401 	struct m_tag *fwd_tag;
402 	struct epoch_tracker et;
403 	int cscov_partial, iphlen;
404 
405 	m = *mp;
406 	iphlen = *offp;
407 	ifp = m->m_pkthdr.rcvif;
408 	*mp = NULL;
409 	UDPSTAT_INC(udps_ipackets);
410 
411 	/*
412 	 * Strip IP options, if any; should skip this, make available to
413 	 * user, and use on returned packets, but we don't yet have a way to
414 	 * check the checksum with options still present.
415 	 */
416 	if (iphlen > sizeof (struct ip)) {
417 		ip_stripoptions(m);
418 		iphlen = sizeof(struct ip);
419 	}
420 
421 	/*
422 	 * Get IP and UDP header together in first mbuf.
423 	 */
424 	ip = mtod(m, struct ip *);
425 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
426 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
427 			UDPSTAT_INC(udps_hdrops);
428 			return (IPPROTO_DONE);
429 		}
430 		ip = mtod(m, struct ip *);
431 	}
432 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
433 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
434 
435 	/*
436 	 * Destination port of 0 is illegal, based on RFC768.
437 	 */
438 	if (uh->uh_dport == 0)
439 		goto badunlocked;
440 
441 	/*
442 	 * Construct sockaddr format source address.  Stuff source address
443 	 * and datagram in user buffer.
444 	 */
445 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
446 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
447 	udp_in[0].sin_family = AF_INET;
448 	udp_in[0].sin_port = uh->uh_sport;
449 	udp_in[0].sin_addr = ip->ip_src;
450 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
451 	udp_in[1].sin_family = AF_INET;
452 	udp_in[1].sin_port = uh->uh_dport;
453 	udp_in[1].sin_addr = ip->ip_dst;
454 
455 	/*
456 	 * Make mbuf data length reflect UDP length.  If not enough data to
457 	 * reflect UDP length, drop.
458 	 */
459 	len = ntohs((u_short)uh->uh_ulen);
460 	ip_len = ntohs(ip->ip_len) - iphlen;
461 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
462 		/* Zero means checksum over the complete packet. */
463 		if (len == 0)
464 			len = ip_len;
465 		cscov_partial = 0;
466 	}
467 	if (ip_len != len) {
468 		if (len > ip_len || len < sizeof(struct udphdr)) {
469 			UDPSTAT_INC(udps_badlen);
470 			goto badunlocked;
471 		}
472 		if (proto == IPPROTO_UDP)
473 			m_adj(m, len - ip_len);
474 	}
475 
476 	/*
477 	 * Save a copy of the IP header in case we want restore it for
478 	 * sending an ICMP error message in response.
479 	 */
480 	if (!V_udp_blackhole)
481 		save_ip = *ip;
482 	else
483 		memset(&save_ip, 0, sizeof(save_ip));
484 
485 	/*
486 	 * Checksum extended UDP header and data.
487 	 */
488 	if (uh->uh_sum) {
489 		u_short uh_sum;
490 
491 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
492 		    !cscov_partial) {
493 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
494 				uh_sum = m->m_pkthdr.csum_data;
495 			else
496 				uh_sum = in_pseudo(ip->ip_src.s_addr,
497 				    ip->ip_dst.s_addr, htonl((u_short)len +
498 				    m->m_pkthdr.csum_data + proto));
499 			uh_sum ^= 0xffff;
500 		} else {
501 			char b[9];
502 
503 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
504 			bzero(((struct ipovly *)ip)->ih_x1, 9);
505 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
506 			    uh->uh_ulen : htons(ip_len);
507 			uh_sum = in_cksum(m, len + sizeof (struct ip));
508 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
509 		}
510 		if (uh_sum) {
511 			UDPSTAT_INC(udps_badsum);
512 			m_freem(m);
513 			return (IPPROTO_DONE);
514 		}
515 	} else {
516 		if (proto == IPPROTO_UDP) {
517 			UDPSTAT_INC(udps_nosum);
518 		} else {
519 			/* UDPLite requires a checksum */
520 			/* XXX: What is the right UDPLite MIB counter here? */
521 			m_freem(m);
522 			return (IPPROTO_DONE);
523 		}
524 	}
525 
526 	pcbinfo = udp_get_inpcbinfo(proto);
527 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
528 	    in_broadcast(ip->ip_dst, ifp)) {
529 		struct inpcb *last;
530 		struct inpcbhead *pcblist;
531 
532 		INP_INFO_RLOCK_ET(pcbinfo, et);
533 		pcblist = udp_get_pcblist(proto);
534 		last = NULL;
535 		CK_LIST_FOREACH(inp, pcblist, inp_list) {
536 			if (inp->inp_lport != uh->uh_dport)
537 				continue;
538 #ifdef INET6
539 			if ((inp->inp_vflag & INP_IPV4) == 0)
540 				continue;
541 #endif
542 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
543 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
544 				continue;
545 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
546 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
547 				continue;
548 			if (inp->inp_fport != 0 &&
549 			    inp->inp_fport != uh->uh_sport)
550 				continue;
551 
552 			INP_RLOCK(inp);
553 
554 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
555 				INP_RUNLOCK(inp);
556 				continue;
557 			}
558 
559 			/*
560 			 * XXXRW: Because we weren't holding either the inpcb
561 			 * or the hash lock when we checked for a match
562 			 * before, we should probably recheck now that the
563 			 * inpcb lock is held.
564 			 */
565 
566 			/*
567 			 * Handle socket delivery policy for any-source
568 			 * and source-specific multicast. [RFC3678]
569 			 */
570 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
571 				struct ip_moptions	*imo;
572 				struct sockaddr_in	 group;
573 				int			 blocked;
574 
575 				imo = inp->inp_moptions;
576 				if (imo == NULL) {
577 					INP_RUNLOCK(inp);
578 					continue;
579 				}
580 				bzero(&group, sizeof(struct sockaddr_in));
581 				group.sin_len = sizeof(struct sockaddr_in);
582 				group.sin_family = AF_INET;
583 				group.sin_addr = ip->ip_dst;
584 
585 				blocked = imo_multi_filter(imo, ifp,
586 					(struct sockaddr *)&group,
587 					(struct sockaddr *)&udp_in[0]);
588 				if (blocked != MCAST_PASS) {
589 					if (blocked == MCAST_NOTGMEMBER)
590 						IPSTAT_INC(ips_notmember);
591 					if (blocked == MCAST_NOTSMEMBER ||
592 					    blocked == MCAST_MUTED)
593 						UDPSTAT_INC(udps_filtermcast);
594 					INP_RUNLOCK(inp);
595 					continue;
596 				}
597 			}
598 			if (last != NULL) {
599 				struct mbuf *n;
600 
601 				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
602 				    NULL) {
603 					if (proto == IPPROTO_UDPLITE)
604 						UDPLITE_PROBE(receive, NULL, last, ip,
605 						    last, uh);
606 					else
607 						UDP_PROBE(receive, NULL, last, ip, last,
608 						    uh);
609 					if (udp_append(last, ip, n, iphlen,
610 						udp_in)) {
611 						goto inp_lost;
612 					}
613 				}
614 				INP_RUNLOCK(last);
615 			}
616 			last = inp;
617 			/*
618 			 * Don't look for additional matches if this one does
619 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
620 			 * socket options set.  This heuristic avoids
621 			 * searching through all pcbs in the common case of a
622 			 * non-shared port.  It assumes that an application
623 			 * will never clear these options after setting them.
624 			 */
625 			if ((last->inp_socket->so_options &
626 			    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0)
627 				break;
628 		}
629 
630 		if (last == NULL) {
631 			/*
632 			 * No matching pcb found; discard datagram.  (No need
633 			 * to send an ICMP Port Unreachable for a broadcast
634 			 * or multicast datgram.)
635 			 */
636 			UDPSTAT_INC(udps_noportbcast);
637 			if (inp)
638 				INP_RUNLOCK(inp);
639 			INP_INFO_RUNLOCK_ET(pcbinfo, et);
640 			goto badunlocked;
641 		}
642 		if (proto == IPPROTO_UDPLITE)
643 			UDPLITE_PROBE(receive, NULL, last, ip, last, uh);
644 		else
645 			UDP_PROBE(receive, NULL, last, ip, last, uh);
646 		if (udp_append(last, ip, m, iphlen, udp_in) == 0)
647 			INP_RUNLOCK(last);
648 	inp_lost:
649 		INP_INFO_RUNLOCK_ET(pcbinfo, et);
650 		return (IPPROTO_DONE);
651 	}
652 
653 	/*
654 	 * Locate pcb for datagram.
655 	 */
656 
657 	/*
658 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
659 	 */
660 	if ((m->m_flags & M_IP_NEXTHOP) &&
661 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
662 		struct sockaddr_in *next_hop;
663 
664 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
665 
666 		/*
667 		 * Transparently forwarded. Pretend to be the destination.
668 		 * Already got one like this?
669 		 */
670 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
671 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
672 		if (!inp) {
673 			/*
674 			 * It's new.  Try to find the ambushing socket.
675 			 * Because we've rewritten the destination address,
676 			 * any hardware-generated hash is ignored.
677 			 */
678 			inp = in_pcblookup(pcbinfo, ip->ip_src,
679 			    uh->uh_sport, next_hop->sin_addr,
680 			    next_hop->sin_port ? htons(next_hop->sin_port) :
681 			    uh->uh_dport, INPLOOKUP_WILDCARD |
682 			    INPLOOKUP_RLOCKPCB, ifp);
683 		}
684 		/* Remove the tag from the packet. We don't need it anymore. */
685 		m_tag_delete(m, fwd_tag);
686 		m->m_flags &= ~M_IP_NEXTHOP;
687 	} else
688 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
689 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
690 		    INPLOOKUP_RLOCKPCB, ifp, m);
691 	if (inp == NULL) {
692 		if (udp_log_in_vain) {
693 			char src[INET_ADDRSTRLEN];
694 			char dst[INET_ADDRSTRLEN];
695 
696 			log(LOG_INFO,
697 			    "Connection attempt to UDP %s:%d from %s:%d\n",
698 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
699 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
700 		}
701 		if (proto == IPPROTO_UDPLITE)
702 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
703 		else
704 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
705 		UDPSTAT_INC(udps_noport);
706 		if (m->m_flags & (M_BCAST | M_MCAST)) {
707 			UDPSTAT_INC(udps_noportbcast);
708 			goto badunlocked;
709 		}
710 		if (V_udp_blackhole)
711 			goto badunlocked;
712 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
713 			goto badunlocked;
714 		*ip = save_ip;
715 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
716 		return (IPPROTO_DONE);
717 	}
718 
719 	/*
720 	 * Check the minimum TTL for socket.
721 	 */
722 	INP_RLOCK_ASSERT(inp);
723 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
724 		if (proto == IPPROTO_UDPLITE)
725 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
726 		else
727 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
728 		INP_RUNLOCK(inp);
729 		m_freem(m);
730 		return (IPPROTO_DONE);
731 	}
732 	if (cscov_partial) {
733 		struct udpcb *up;
734 
735 		up = intoudpcb(inp);
736 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
737 			INP_RUNLOCK(inp);
738 			m_freem(m);
739 			return (IPPROTO_DONE);
740 		}
741 	}
742 
743 	if (proto == IPPROTO_UDPLITE)
744 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
745 	else
746 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
747 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
748 		INP_RUNLOCK(inp);
749 	return (IPPROTO_DONE);
750 
751 badunlocked:
752 	m_freem(m);
753 	return (IPPROTO_DONE);
754 }
755 #endif /* INET */
756 
757 /*
758  * Notify a udp user of an asynchronous error; just wake up so that they can
759  * collect error status.
760  */
761 struct inpcb *
762 udp_notify(struct inpcb *inp, int errno)
763 {
764 
765 	INP_WLOCK_ASSERT(inp);
766 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
767 	     errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
768 		RTFREE(inp->inp_route.ro_rt);
769 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
770 	}
771 
772 	inp->inp_socket->so_error = errno;
773 	sorwakeup(inp->inp_socket);
774 	sowwakeup(inp->inp_socket);
775 	return (inp);
776 }
777 
778 #ifdef INET
779 static void
780 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
781     struct inpcbinfo *pcbinfo)
782 {
783 	struct ip *ip = vip;
784 	struct udphdr *uh;
785 	struct in_addr faddr;
786 	struct inpcb *inp;
787 
788 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
789 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
790 		return;
791 
792 	if (PRC_IS_REDIRECT(cmd)) {
793 		/* signal EHOSTDOWN, as it flushes the cached route */
794 		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
795 		return;
796 	}
797 
798 	/*
799 	 * Hostdead is ugly because it goes linearly through all PCBs.
800 	 *
801 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
802 	 * DoS attack on machines with many connections.
803 	 */
804 	if (cmd == PRC_HOSTDEAD)
805 		ip = NULL;
806 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
807 		return;
808 	if (ip != NULL) {
809 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
810 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
811 		    ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
812 		if (inp != NULL) {
813 			INP_WLOCK_ASSERT(inp);
814 			if (inp->inp_socket != NULL) {
815 				udp_notify(inp, inetctlerrmap[cmd]);
816 			}
817 			INP_WUNLOCK(inp);
818 		} else {
819 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
820 					   ip->ip_src, uh->uh_sport,
821 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
822 			if (inp != NULL) {
823 				struct udpcb *up;
824 				void *ctx;
825 				udp_tun_icmp_t func;
826 
827 				up = intoudpcb(inp);
828 				ctx = up->u_tun_ctx;
829 				func = up->u_icmp_func;
830 				INP_RUNLOCK(inp);
831 				if (func != NULL)
832 					(*func)(cmd, sa, vip, ctx);
833 			}
834 		}
835 	} else
836 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
837 		    udp_notify);
838 }
839 void
840 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
841 {
842 
843 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
844 }
845 
846 void
847 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
848 {
849 
850 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
851 }
852 #endif /* INET */
853 
854 static int
855 udp_pcblist(SYSCTL_HANDLER_ARGS)
856 {
857 	int error, i, n;
858 	struct inpcb *inp, **inp_list;
859 	inp_gen_t gencnt;
860 	struct xinpgen xig;
861 	struct epoch_tracker et;
862 
863 	/*
864 	 * The process of preparing the PCB list is too time-consuming and
865 	 * resource-intensive to repeat twice on every request.
866 	 */
867 	if (req->oldptr == 0) {
868 		n = V_udbinfo.ipi_count;
869 		n += imax(n / 8, 10);
870 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
871 		return (0);
872 	}
873 
874 	if (req->newptr != 0)
875 		return (EPERM);
876 
877 	/*
878 	 * OK, now we're committed to doing something.
879 	 */
880 	INP_INFO_RLOCK_ET(&V_udbinfo, et);
881 	gencnt = V_udbinfo.ipi_gencnt;
882 	n = V_udbinfo.ipi_count;
883 	INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
884 
885 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
886 		+ n * sizeof(struct xinpcb));
887 	if (error != 0)
888 		return (error);
889 
890 	bzero(&xig, sizeof(xig));
891 	xig.xig_len = sizeof xig;
892 	xig.xig_count = n;
893 	xig.xig_gen = gencnt;
894 	xig.xig_sogen = so_gencnt;
895 	error = SYSCTL_OUT(req, &xig, sizeof xig);
896 	if (error)
897 		return (error);
898 
899 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
900 	if (inp_list == NULL)
901 		return (ENOMEM);
902 
903 	INP_INFO_RLOCK_ET(&V_udbinfo, et);
904 	for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
905 	     inp = CK_LIST_NEXT(inp, inp_list)) {
906 		INP_WLOCK(inp);
907 		if (inp->inp_gencnt <= gencnt &&
908 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
909 			in_pcbref(inp);
910 			inp_list[i++] = inp;
911 		}
912 		INP_WUNLOCK(inp);
913 	}
914 	INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
915 	n = i;
916 
917 	error = 0;
918 	for (i = 0; i < n; i++) {
919 		inp = inp_list[i];
920 		INP_RLOCK(inp);
921 		if (inp->inp_gencnt <= gencnt) {
922 			struct xinpcb xi;
923 
924 			in_pcbtoxinpcb(inp, &xi);
925 			INP_RUNLOCK(inp);
926 			error = SYSCTL_OUT(req, &xi, sizeof xi);
927 		} else
928 			INP_RUNLOCK(inp);
929 	}
930 	INP_INFO_WLOCK(&V_udbinfo);
931 	for (i = 0; i < n; i++) {
932 		inp = inp_list[i];
933 		INP_RLOCK(inp);
934 		if (!in_pcbrele_rlocked(inp))
935 			INP_RUNLOCK(inp);
936 	}
937 	INP_INFO_WUNLOCK(&V_udbinfo);
938 
939 	if (!error) {
940 		/*
941 		 * Give the user an updated idea of our state.  If the
942 		 * generation differs from what we told her before, she knows
943 		 * that something happened while we were processing this
944 		 * request, and it might be necessary to retry.
945 		 */
946 		INP_INFO_RLOCK_ET(&V_udbinfo, et);
947 		xig.xig_gen = V_udbinfo.ipi_gencnt;
948 		xig.xig_sogen = so_gencnt;
949 		xig.xig_count = V_udbinfo.ipi_count;
950 		INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
951 		error = SYSCTL_OUT(req, &xig, sizeof xig);
952 	}
953 	free(inp_list, M_TEMP);
954 	return (error);
955 }
956 
957 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
958     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
959     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
960 
961 #ifdef INET
962 static int
963 udp_getcred(SYSCTL_HANDLER_ARGS)
964 {
965 	struct xucred xuc;
966 	struct sockaddr_in addrs[2];
967 	struct inpcb *inp;
968 	int error;
969 
970 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
971 	if (error)
972 		return (error);
973 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
974 	if (error)
975 		return (error);
976 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
977 	    addrs[0].sin_addr, addrs[0].sin_port,
978 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
979 	if (inp != NULL) {
980 		INP_RLOCK_ASSERT(inp);
981 		if (inp->inp_socket == NULL)
982 			error = ENOENT;
983 		if (error == 0)
984 			error = cr_canseeinpcb(req->td->td_ucred, inp);
985 		if (error == 0)
986 			cru2x(inp->inp_cred, &xuc);
987 		INP_RUNLOCK(inp);
988 	} else
989 		error = ENOENT;
990 	if (error == 0)
991 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
992 	return (error);
993 }
994 
995 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
996     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
997     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
998 #endif /* INET */
999 
1000 int
1001 udp_ctloutput(struct socket *so, struct sockopt *sopt)
1002 {
1003 	struct inpcb *inp;
1004 	struct udpcb *up;
1005 	int isudplite, error, optval;
1006 
1007 	error = 0;
1008 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
1009 	inp = sotoinpcb(so);
1010 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1011 	INP_WLOCK(inp);
1012 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
1013 #ifdef INET6
1014 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
1015 			INP_WUNLOCK(inp);
1016 			error = ip6_ctloutput(so, sopt);
1017 		}
1018 #endif
1019 #if defined(INET) && defined(INET6)
1020 		else
1021 #endif
1022 #ifdef INET
1023 		{
1024 			INP_WUNLOCK(inp);
1025 			error = ip_ctloutput(so, sopt);
1026 		}
1027 #endif
1028 		return (error);
1029 	}
1030 
1031 	switch (sopt->sopt_dir) {
1032 	case SOPT_SET:
1033 		switch (sopt->sopt_name) {
1034 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1035 #ifdef INET
1036 		case UDP_ENCAP:
1037 			if (!IPSEC_ENABLED(ipv4)) {
1038 				INP_WUNLOCK(inp);
1039 				return (ENOPROTOOPT);
1040 			}
1041 			error = UDPENCAP_PCBCTL(inp, sopt);
1042 			break;
1043 #endif /* INET */
1044 #endif /* IPSEC */
1045 		case UDPLITE_SEND_CSCOV:
1046 		case UDPLITE_RECV_CSCOV:
1047 			if (!isudplite) {
1048 				INP_WUNLOCK(inp);
1049 				error = ENOPROTOOPT;
1050 				break;
1051 			}
1052 			INP_WUNLOCK(inp);
1053 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1054 			    sizeof(optval));
1055 			if (error != 0)
1056 				break;
1057 			inp = sotoinpcb(so);
1058 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1059 			INP_WLOCK(inp);
1060 			up = intoudpcb(inp);
1061 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1062 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1063 				INP_WUNLOCK(inp);
1064 				error = EINVAL;
1065 				break;
1066 			}
1067 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1068 				up->u_txcslen = optval;
1069 			else
1070 				up->u_rxcslen = optval;
1071 			INP_WUNLOCK(inp);
1072 			break;
1073 		default:
1074 			INP_WUNLOCK(inp);
1075 			error = ENOPROTOOPT;
1076 			break;
1077 		}
1078 		break;
1079 	case SOPT_GET:
1080 		switch (sopt->sopt_name) {
1081 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1082 #ifdef INET
1083 		case UDP_ENCAP:
1084 			if (!IPSEC_ENABLED(ipv4)) {
1085 				INP_WUNLOCK(inp);
1086 				return (ENOPROTOOPT);
1087 			}
1088 			error = UDPENCAP_PCBCTL(inp, sopt);
1089 			break;
1090 #endif /* INET */
1091 #endif /* IPSEC */
1092 		case UDPLITE_SEND_CSCOV:
1093 		case UDPLITE_RECV_CSCOV:
1094 			if (!isudplite) {
1095 				INP_WUNLOCK(inp);
1096 				error = ENOPROTOOPT;
1097 				break;
1098 			}
1099 			up = intoudpcb(inp);
1100 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1101 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1102 				optval = up->u_txcslen;
1103 			else
1104 				optval = up->u_rxcslen;
1105 			INP_WUNLOCK(inp);
1106 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1107 			break;
1108 		default:
1109 			INP_WUNLOCK(inp);
1110 			error = ENOPROTOOPT;
1111 			break;
1112 		}
1113 		break;
1114 	}
1115 	return (error);
1116 }
1117 
1118 #ifdef INET
1119 #define	UH_WLOCKED	2
1120 #define	UH_RLOCKED	1
1121 #define	UH_UNLOCKED	0
1122 static int
1123 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1124     struct mbuf *control, struct thread *td)
1125 {
1126 	struct udpiphdr *ui;
1127 	int len = m->m_pkthdr.len;
1128 	struct in_addr faddr, laddr;
1129 	struct cmsghdr *cm;
1130 	struct inpcbinfo *pcbinfo;
1131 	struct sockaddr_in *sin, src;
1132 	struct epoch_tracker et;
1133 	int cscov_partial = 0;
1134 	int error = 0;
1135 	int ipflags;
1136 	u_short fport, lport;
1137 	int unlock_udbinfo, unlock_inp;
1138 	u_char tos;
1139 	uint8_t pr;
1140 	uint16_t cscov = 0;
1141 	uint32_t flowid = 0;
1142 	uint8_t flowtype = M_HASHTYPE_NONE;
1143 
1144 	/*
1145 	 * udp_output() may need to temporarily bind or connect the current
1146 	 * inpcb.  As such, we don't know up front whether we will need the
1147 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1148 	 * front before acquiring any locks.
1149 	 */
1150 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1151 		if (control)
1152 			m_freem(control);
1153 		m_freem(m);
1154 		return (EMSGSIZE);
1155 	}
1156 
1157 	src.sin_family = 0;
1158 	sin = (struct sockaddr_in *)addr;
1159 retry:
1160 	if (sin == NULL ||
1161 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1162 		INP_WLOCK(inp);
1163 		/*
1164 		 * In case we lost a race and another thread bound addr/port
1165 		 * on the inp we cannot keep the wlock (which still would be
1166 		 * fine) as further down, based on these values we make
1167 		 * decisions for the pcbinfo lock.  If the locks are not in
1168 		 * synch the assertions on unlock will fire, hence we go for
1169 		 * one retry loop.
1170 		 */
1171 		if (sin != NULL && (inp->inp_laddr.s_addr != INADDR_ANY ||
1172 		    inp->inp_lport != 0)) {
1173 			INP_WUNLOCK(inp);
1174 			goto retry;
1175 		}
1176 		unlock_inp = UH_WLOCKED;
1177 	} else {
1178 		INP_RLOCK(inp);
1179 		unlock_inp = UH_RLOCKED;
1180 	}
1181 	tos = inp->inp_ip_tos;
1182 	if (control != NULL) {
1183 		/*
1184 		 * XXX: Currently, we assume all the optional information is
1185 		 * stored in a single mbuf.
1186 		 */
1187 		if (control->m_next) {
1188 			if (unlock_inp == UH_WLOCKED)
1189 				INP_WUNLOCK(inp);
1190 			else
1191 				INP_RUNLOCK(inp);
1192 			m_freem(control);
1193 			m_freem(m);
1194 			return (EINVAL);
1195 		}
1196 		for (; control->m_len > 0;
1197 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1198 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1199 			cm = mtod(control, struct cmsghdr *);
1200 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1201 			    || cm->cmsg_len > control->m_len) {
1202 				error = EINVAL;
1203 				break;
1204 			}
1205 			if (cm->cmsg_level != IPPROTO_IP)
1206 				continue;
1207 
1208 			switch (cm->cmsg_type) {
1209 			case IP_SENDSRCADDR:
1210 				if (cm->cmsg_len !=
1211 				    CMSG_LEN(sizeof(struct in_addr))) {
1212 					error = EINVAL;
1213 					break;
1214 				}
1215 				bzero(&src, sizeof(src));
1216 				src.sin_family = AF_INET;
1217 				src.sin_len = sizeof(src);
1218 				src.sin_port = inp->inp_lport;
1219 				src.sin_addr =
1220 				    *(struct in_addr *)CMSG_DATA(cm);
1221 				break;
1222 
1223 			case IP_TOS:
1224 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1225 					error = EINVAL;
1226 					break;
1227 				}
1228 				tos = *(u_char *)CMSG_DATA(cm);
1229 				break;
1230 
1231 			case IP_FLOWID:
1232 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1233 					error = EINVAL;
1234 					break;
1235 				}
1236 				flowid = *(uint32_t *) CMSG_DATA(cm);
1237 				break;
1238 
1239 			case IP_FLOWTYPE:
1240 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1241 					error = EINVAL;
1242 					break;
1243 				}
1244 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1245 				break;
1246 
1247 #ifdef	RSS
1248 			case IP_RSSBUCKETID:
1249 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1250 					error = EINVAL;
1251 					break;
1252 				}
1253 				/* This is just a placeholder for now */
1254 				break;
1255 #endif	/* RSS */
1256 			default:
1257 				error = ENOPROTOOPT;
1258 				break;
1259 			}
1260 			if (error)
1261 				break;
1262 		}
1263 		m_freem(control);
1264 	}
1265 	if (error) {
1266 		if (unlock_inp == UH_WLOCKED)
1267 			INP_WUNLOCK(inp);
1268 		else
1269 			INP_RUNLOCK(inp);
1270 		m_freem(m);
1271 		return (error);
1272 	}
1273 
1274 	/*
1275 	 * In the old days, depending on whether or not the application had
1276 	 * bound or connected the socket, we had to do varying levels of work.
1277 	 * The optimal case was for a connected UDP socket, as a global lock
1278 	 * wasn't required at all.
1279 	 * In order to decide which we need, we required stability of the
1280 	 * inpcb binding, which we ensured by acquiring a read lock on the
1281 	 * inpcb.  This didn't strictly follow the lock order, so we played
1282 	 * the trylock and retry game.
1283 	 * With the re-introduction of the route-cache in some cases, we started
1284 	 * to acquire an early inp wlock and a possible race during re-lock
1285 	 * went away.  With the introduction of epoch(9) some read locking
1286 	 * became epoch(9) and the lock-order issues also went away.
1287 	 * Due to route-cache we may now hold more conservative locks than
1288 	 * otherwise required and have split up the 2nd case in case 2 and 3
1289 	 * in order to keep the udpinfo lock level in sync with the inp one
1290 	 * for the IP_SENDSRCADDR case below.
1291 	 */
1292 	pr = inp->inp_socket->so_proto->pr_protocol;
1293 	pcbinfo = udp_get_inpcbinfo(pr);
1294 	if (sin != NULL &&
1295 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1296 		INP_HASH_WLOCK(pcbinfo);
1297 		unlock_udbinfo = UH_WLOCKED;
1298 	} else if (sin != NULL &&
1299 	    (sin->sin_addr.s_addr == INADDR_ANY ||
1300 	    sin->sin_addr.s_addr == INADDR_BROADCAST ||
1301 	    inp->inp_laddr.s_addr == INADDR_ANY ||
1302 	    inp->inp_lport == 0)) {
1303 		INP_HASH_RLOCK_ET(pcbinfo, et);
1304 		unlock_udbinfo = UH_RLOCKED;
1305 	} else if (src.sin_family == AF_INET) {
1306 		if (unlock_inp == UH_WLOCKED) {
1307 			INP_HASH_WLOCK(pcbinfo);
1308 			unlock_udbinfo = UH_WLOCKED;
1309 		} else {
1310 			INP_HASH_RLOCK_ET(pcbinfo, et);
1311 			unlock_udbinfo = UH_RLOCKED;
1312 		}
1313 	} else
1314 		unlock_udbinfo = UH_UNLOCKED;
1315 
1316 	/*
1317 	 * If the IP_SENDSRCADDR control message was specified, override the
1318 	 * source address for this datagram.  Its use is invalidated if the
1319 	 * address thus specified is incomplete or clobbers other inpcbs.
1320 	 */
1321 	laddr = inp->inp_laddr;
1322 	lport = inp->inp_lport;
1323 	if (src.sin_family == AF_INET) {
1324 		INP_HASH_LOCK_ASSERT(pcbinfo);
1325 		if ((lport == 0) ||
1326 		    (laddr.s_addr == INADDR_ANY &&
1327 		     src.sin_addr.s_addr == INADDR_ANY)) {
1328 			error = EINVAL;
1329 			goto release;
1330 		}
1331 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1332 		    &laddr.s_addr, &lport, td->td_ucred);
1333 		if (error)
1334 			goto release;
1335 	}
1336 
1337 	/*
1338 	 * If a UDP socket has been connected, then a local address/port will
1339 	 * have been selected and bound.
1340 	 *
1341 	 * If a UDP socket has not been connected to, then an explicit
1342 	 * destination address must be used, in which case a local
1343 	 * address/port may not have been selected and bound.
1344 	 */
1345 	if (sin != NULL) {
1346 		INP_LOCK_ASSERT(inp);
1347 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1348 			error = EISCONN;
1349 			goto release;
1350 		}
1351 
1352 		/*
1353 		 * Jail may rewrite the destination address, so let it do
1354 		 * that before we use it.
1355 		 */
1356 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1357 		if (error)
1358 			goto release;
1359 
1360 		/*
1361 		 * If a local address or port hasn't yet been selected, or if
1362 		 * the destination address needs to be rewritten due to using
1363 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1364 		 * to do the heavy lifting.  Once a port is selected, we
1365 		 * commit the binding back to the socket; we also commit the
1366 		 * binding of the address if in jail.
1367 		 *
1368 		 * If we already have a valid binding and we're not
1369 		 * requesting a destination address rewrite, use a fast path.
1370 		 */
1371 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1372 		    inp->inp_lport == 0 ||
1373 		    sin->sin_addr.s_addr == INADDR_ANY ||
1374 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1375 			INP_HASH_LOCK_ASSERT(pcbinfo);
1376 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1377 			    &lport, &faddr.s_addr, &fport, NULL,
1378 			    td->td_ucred);
1379 			if (error)
1380 				goto release;
1381 
1382 			/*
1383 			 * XXXRW: Why not commit the port if the address is
1384 			 * !INADDR_ANY?
1385 			 */
1386 			/* Commit the local port if newly assigned. */
1387 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1388 			    inp->inp_lport == 0) {
1389 				INP_WLOCK_ASSERT(inp);
1390 				INP_HASH_WLOCK_ASSERT(pcbinfo);
1391 				/*
1392 				 * Remember addr if jailed, to prevent
1393 				 * rebinding.
1394 				 */
1395 				if (prison_flag(td->td_ucred, PR_IP4))
1396 					inp->inp_laddr = laddr;
1397 				inp->inp_lport = lport;
1398 				if (in_pcbinshash(inp) != 0) {
1399 					inp->inp_lport = 0;
1400 					error = EAGAIN;
1401 					goto release;
1402 				}
1403 				inp->inp_flags |= INP_ANONPORT;
1404 			}
1405 		} else {
1406 			faddr = sin->sin_addr;
1407 			fport = sin->sin_port;
1408 		}
1409 	} else {
1410 		INP_LOCK_ASSERT(inp);
1411 		faddr = inp->inp_faddr;
1412 		fport = inp->inp_fport;
1413 		if (faddr.s_addr == INADDR_ANY) {
1414 			error = ENOTCONN;
1415 			goto release;
1416 		}
1417 	}
1418 
1419 	/*
1420 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1421 	 * link-layer headers.  Immediate slide the data pointer back forward
1422 	 * since we won't use that space at this layer.
1423 	 */
1424 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1425 	if (m == NULL) {
1426 		error = ENOBUFS;
1427 		goto release;
1428 	}
1429 	m->m_data += max_linkhdr;
1430 	m->m_len -= max_linkhdr;
1431 	m->m_pkthdr.len -= max_linkhdr;
1432 
1433 	/*
1434 	 * Fill in mbuf with extended UDP header and addresses and length put
1435 	 * into network format.
1436 	 */
1437 	ui = mtod(m, struct udpiphdr *);
1438 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1439 	ui->ui_v = IPVERSION << 4;
1440 	ui->ui_pr = pr;
1441 	ui->ui_src = laddr;
1442 	ui->ui_dst = faddr;
1443 	ui->ui_sport = lport;
1444 	ui->ui_dport = fport;
1445 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1446 	if (pr == IPPROTO_UDPLITE) {
1447 		struct udpcb *up;
1448 		uint16_t plen;
1449 
1450 		up = intoudpcb(inp);
1451 		cscov = up->u_txcslen;
1452 		plen = (u_short)len + sizeof(struct udphdr);
1453 		if (cscov >= plen)
1454 			cscov = 0;
1455 		ui->ui_len = htons(plen);
1456 		ui->ui_ulen = htons(cscov);
1457 		/*
1458 		 * For UDP-Lite, checksum coverage length of zero means
1459 		 * the entire UDPLite packet is covered by the checksum.
1460 		 */
1461 		cscov_partial = (cscov == 0) ? 0 : 1;
1462 	}
1463 
1464 	/*
1465 	 * Set the Don't Fragment bit in the IP header.
1466 	 */
1467 	if (inp->inp_flags & INP_DONTFRAG) {
1468 		struct ip *ip;
1469 
1470 		ip = (struct ip *)&ui->ui_i;
1471 		ip->ip_off |= htons(IP_DF);
1472 	}
1473 
1474 	ipflags = 0;
1475 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1476 		ipflags |= IP_ROUTETOIF;
1477 	if (inp->inp_socket->so_options & SO_BROADCAST)
1478 		ipflags |= IP_ALLOWBROADCAST;
1479 	if (inp->inp_flags & INP_ONESBCAST)
1480 		ipflags |= IP_SENDONES;
1481 
1482 #ifdef MAC
1483 	mac_inpcb_create_mbuf(inp, m);
1484 #endif
1485 
1486 	/*
1487 	 * Set up checksum and output datagram.
1488 	 */
1489 	ui->ui_sum = 0;
1490 	if (pr == IPPROTO_UDPLITE) {
1491 		if (inp->inp_flags & INP_ONESBCAST)
1492 			faddr.s_addr = INADDR_BROADCAST;
1493 		if (cscov_partial) {
1494 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1495 				ui->ui_sum = 0xffff;
1496 		} else {
1497 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1498 				ui->ui_sum = 0xffff;
1499 		}
1500 	} else if (V_udp_cksum) {
1501 		if (inp->inp_flags & INP_ONESBCAST)
1502 			faddr.s_addr = INADDR_BROADCAST;
1503 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1504 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1505 		m->m_pkthdr.csum_flags = CSUM_UDP;
1506 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1507 	}
1508 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1509 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1510 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1511 	UDPSTAT_INC(udps_opackets);
1512 
1513 	/*
1514 	 * Setup flowid / RSS information for outbound socket.
1515 	 *
1516 	 * Once the UDP code decides to set a flowid some other way,
1517 	 * this allows the flowid to be overridden by userland.
1518 	 */
1519 	if (flowtype != M_HASHTYPE_NONE) {
1520 		m->m_pkthdr.flowid = flowid;
1521 		M_HASHTYPE_SET(m, flowtype);
1522 	}
1523 #ifdef	RSS
1524 	else {
1525 		uint32_t hash_val, hash_type;
1526 		/*
1527 		 * Calculate an appropriate RSS hash for UDP and
1528 		 * UDP Lite.
1529 		 *
1530 		 * The called function will take care of figuring out
1531 		 * whether a 2-tuple or 4-tuple hash is required based
1532 		 * on the currently configured scheme.
1533 		 *
1534 		 * Later later on connected socket values should be
1535 		 * cached in the inpcb and reused, rather than constantly
1536 		 * re-calculating it.
1537 		 *
1538 		 * UDP Lite is a different protocol number and will
1539 		 * likely end up being hashed as a 2-tuple until
1540 		 * RSS / NICs grow UDP Lite protocol awareness.
1541 		 */
1542 		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1543 		    pr, &hash_val, &hash_type) == 0) {
1544 			m->m_pkthdr.flowid = hash_val;
1545 			M_HASHTYPE_SET(m, hash_type);
1546 		}
1547 	}
1548 
1549 	/*
1550 	 * Don't override with the inp cached flowid value.
1551 	 *
1552 	 * Depending upon the kind of send being done, the inp
1553 	 * flowid/flowtype values may actually not be appropriate
1554 	 * for this particular socket send.
1555 	 *
1556 	 * We should either leave the flowid at zero (which is what is
1557 	 * currently done) or set it to some software generated
1558 	 * hash value based on the packet contents.
1559 	 */
1560 	ipflags |= IP_NODEFAULTFLOWID;
1561 #endif	/* RSS */
1562 
1563 	if (unlock_udbinfo == UH_WLOCKED)
1564 		INP_HASH_WUNLOCK(pcbinfo);
1565 	else if (unlock_udbinfo == UH_RLOCKED)
1566 		INP_HASH_RUNLOCK_ET(pcbinfo, et);
1567 	if (pr == IPPROTO_UDPLITE)
1568 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1569 	else
1570 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1571 	error = ip_output(m, inp->inp_options,
1572 	    (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1573 	    inp->inp_moptions, inp);
1574 	if (unlock_inp == UH_WLOCKED)
1575 		INP_WUNLOCK(inp);
1576 	else
1577 		INP_RUNLOCK(inp);
1578 	return (error);
1579 
1580 release:
1581 	if (unlock_udbinfo == UH_WLOCKED) {
1582 		KASSERT(unlock_inp == UH_WLOCKED,
1583 		    ("%s: excl udbinfo lock %#03x, shared inp lock %#03x, "
1584 		    "sin %p daddr %#010x inp %p laddr %#010x lport %#06x "
1585 		    "src fam %#04x",
1586 		    __func__, unlock_udbinfo, unlock_inp, sin,
1587 		    (sin != NULL) ? sin->sin_addr.s_addr : 0xfefefefe, inp,
1588 		    inp->inp_laddr.s_addr, inp->inp_lport, src.sin_family));
1589 		INP_HASH_WUNLOCK(pcbinfo);
1590 		INP_WUNLOCK(inp);
1591 	} else if (unlock_udbinfo == UH_RLOCKED) {
1592 		KASSERT(unlock_inp == UH_RLOCKED,
1593 		    ("%s: shared udbinfo lock %#03x, excl inp lock %#03x, "
1594 		    "sin %p daddr %#010x inp %p laddr %#010x lport %#06x "
1595 		    "src fam %#04x",
1596 		    __func__, unlock_udbinfo, unlock_inp, sin,
1597 		    (sin != NULL) ? sin->sin_addr.s_addr : 0xfefefefe, inp,
1598 		    inp->inp_laddr.s_addr, inp->inp_lport, src.sin_family));
1599 		INP_HASH_RUNLOCK_ET(pcbinfo, et);
1600 		INP_RUNLOCK(inp);
1601 	} else if (unlock_inp == UH_WLOCKED)
1602 		INP_WUNLOCK(inp);
1603 	else
1604 		INP_RUNLOCK(inp);
1605 	m_freem(m);
1606 	return (error);
1607 }
1608 
1609 static void
1610 udp_abort(struct socket *so)
1611 {
1612 	struct inpcb *inp;
1613 	struct inpcbinfo *pcbinfo;
1614 
1615 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1616 	inp = sotoinpcb(so);
1617 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1618 	INP_WLOCK(inp);
1619 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1620 		INP_HASH_WLOCK(pcbinfo);
1621 		in_pcbdisconnect(inp);
1622 		inp->inp_laddr.s_addr = INADDR_ANY;
1623 		INP_HASH_WUNLOCK(pcbinfo);
1624 		soisdisconnected(so);
1625 	}
1626 	INP_WUNLOCK(inp);
1627 }
1628 
1629 static int
1630 udp_attach(struct socket *so, int proto, struct thread *td)
1631 {
1632 	static uint32_t udp_flowid;
1633 	struct inpcb *inp;
1634 	struct inpcbinfo *pcbinfo;
1635 	int error;
1636 
1637 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1638 	inp = sotoinpcb(so);
1639 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1640 	error = soreserve(so, udp_sendspace, udp_recvspace);
1641 	if (error)
1642 		return (error);
1643 	INP_INFO_WLOCK(pcbinfo);
1644 	error = in_pcballoc(so, pcbinfo);
1645 	if (error) {
1646 		INP_INFO_WUNLOCK(pcbinfo);
1647 		return (error);
1648 	}
1649 
1650 	inp = sotoinpcb(so);
1651 	inp->inp_vflag |= INP_IPV4;
1652 	inp->inp_ip_ttl = V_ip_defttl;
1653 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1654 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1655 
1656 	error = udp_newudpcb(inp);
1657 	if (error) {
1658 		in_pcbdetach(inp);
1659 		in_pcbfree(inp);
1660 		INP_INFO_WUNLOCK(pcbinfo);
1661 		return (error);
1662 	}
1663 
1664 	INP_WUNLOCK(inp);
1665 	INP_INFO_WUNLOCK(pcbinfo);
1666 	return (0);
1667 }
1668 #endif /* INET */
1669 
1670 int
1671 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1672 {
1673 	struct inpcb *inp;
1674 	struct udpcb *up;
1675 
1676 	KASSERT(so->so_type == SOCK_DGRAM,
1677 	    ("udp_set_kernel_tunneling: !dgram"));
1678 	inp = sotoinpcb(so);
1679 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1680 	INP_WLOCK(inp);
1681 	up = intoudpcb(inp);
1682 	if ((up->u_tun_func != NULL) ||
1683 	    (up->u_icmp_func != NULL)) {
1684 		INP_WUNLOCK(inp);
1685 		return (EBUSY);
1686 	}
1687 	up->u_tun_func = f;
1688 	up->u_icmp_func = i;
1689 	up->u_tun_ctx = ctx;
1690 	INP_WUNLOCK(inp);
1691 	return (0);
1692 }
1693 
1694 #ifdef INET
1695 static int
1696 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1697 {
1698 	struct inpcb *inp;
1699 	struct inpcbinfo *pcbinfo;
1700 	int error;
1701 
1702 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1703 	inp = sotoinpcb(so);
1704 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1705 	INP_WLOCK(inp);
1706 	INP_HASH_WLOCK(pcbinfo);
1707 	error = in_pcbbind(inp, nam, td->td_ucred);
1708 	INP_HASH_WUNLOCK(pcbinfo);
1709 	INP_WUNLOCK(inp);
1710 	return (error);
1711 }
1712 
1713 static void
1714 udp_close(struct socket *so)
1715 {
1716 	struct inpcb *inp;
1717 	struct inpcbinfo *pcbinfo;
1718 
1719 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1720 	inp = sotoinpcb(so);
1721 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1722 	INP_WLOCK(inp);
1723 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1724 		INP_HASH_WLOCK(pcbinfo);
1725 		in_pcbdisconnect(inp);
1726 		inp->inp_laddr.s_addr = INADDR_ANY;
1727 		INP_HASH_WUNLOCK(pcbinfo);
1728 		soisdisconnected(so);
1729 	}
1730 	INP_WUNLOCK(inp);
1731 }
1732 
1733 static int
1734 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1735 {
1736 	struct inpcb *inp;
1737 	struct inpcbinfo *pcbinfo;
1738 	struct sockaddr_in *sin;
1739 	int error;
1740 
1741 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1742 	inp = sotoinpcb(so);
1743 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1744 	INP_WLOCK(inp);
1745 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1746 		INP_WUNLOCK(inp);
1747 		return (EISCONN);
1748 	}
1749 	sin = (struct sockaddr_in *)nam;
1750 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1751 	if (error != 0) {
1752 		INP_WUNLOCK(inp);
1753 		return (error);
1754 	}
1755 	INP_HASH_WLOCK(pcbinfo);
1756 	error = in_pcbconnect(inp, nam, td->td_ucred);
1757 	INP_HASH_WUNLOCK(pcbinfo);
1758 	if (error == 0)
1759 		soisconnected(so);
1760 	INP_WUNLOCK(inp);
1761 	return (error);
1762 }
1763 
1764 static void
1765 udp_detach(struct socket *so)
1766 {
1767 	struct inpcb *inp;
1768 	struct inpcbinfo *pcbinfo;
1769 	struct udpcb *up;
1770 
1771 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1772 	inp = sotoinpcb(so);
1773 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1774 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1775 	    ("udp_detach: not disconnected"));
1776 	INP_INFO_WLOCK(pcbinfo);
1777 	INP_WLOCK(inp);
1778 	up = intoudpcb(inp);
1779 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1780 	inp->inp_ppcb = NULL;
1781 	in_pcbdetach(inp);
1782 	in_pcbfree(inp);
1783 	INP_INFO_WUNLOCK(pcbinfo);
1784 	udp_discardcb(up);
1785 }
1786 
1787 static int
1788 udp_disconnect(struct socket *so)
1789 {
1790 	struct inpcb *inp;
1791 	struct inpcbinfo *pcbinfo;
1792 
1793 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1794 	inp = sotoinpcb(so);
1795 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1796 	INP_WLOCK(inp);
1797 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1798 		INP_WUNLOCK(inp);
1799 		return (ENOTCONN);
1800 	}
1801 	INP_HASH_WLOCK(pcbinfo);
1802 	in_pcbdisconnect(inp);
1803 	inp->inp_laddr.s_addr = INADDR_ANY;
1804 	INP_HASH_WUNLOCK(pcbinfo);
1805 	SOCK_LOCK(so);
1806 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1807 	SOCK_UNLOCK(so);
1808 	INP_WUNLOCK(inp);
1809 	return (0);
1810 }
1811 
1812 static int
1813 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1814     struct mbuf *control, struct thread *td)
1815 {
1816 	struct inpcb *inp;
1817 
1818 	inp = sotoinpcb(so);
1819 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1820 	return (udp_output(inp, m, addr, control, td));
1821 }
1822 #endif /* INET */
1823 
1824 int
1825 udp_shutdown(struct socket *so)
1826 {
1827 	struct inpcb *inp;
1828 
1829 	inp = sotoinpcb(so);
1830 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1831 	INP_WLOCK(inp);
1832 	socantsendmore(so);
1833 	INP_WUNLOCK(inp);
1834 	return (0);
1835 }
1836 
1837 #ifdef INET
1838 struct pr_usrreqs udp_usrreqs = {
1839 	.pru_abort =		udp_abort,
1840 	.pru_attach =		udp_attach,
1841 	.pru_bind =		udp_bind,
1842 	.pru_connect =		udp_connect,
1843 	.pru_control =		in_control,
1844 	.pru_detach =		udp_detach,
1845 	.pru_disconnect =	udp_disconnect,
1846 	.pru_peeraddr =		in_getpeeraddr,
1847 	.pru_send =		udp_send,
1848 	.pru_soreceive =	soreceive_dgram,
1849 	.pru_sosend =		sosend_dgram,
1850 	.pru_shutdown =		udp_shutdown,
1851 	.pru_sockaddr =		in_getsockaddr,
1852 	.pru_sosetlabel =	in_pcbsosetlabel,
1853 	.pru_close =		udp_close,
1854 };
1855 #endif /* INET */
1856