xref: /freebsd/sys/netinet/udp_usrreq.c (revision d3d381b2b194b4d24853e92eecef55f262688d1a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_rss.h"
48 
49 #include <sys/param.h>
50 #include <sys/domain.h>
51 #include <sys/eventhandler.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/protosw.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/systm.h>
68 
69 #include <vm/uma.h>
70 
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/route.h>
74 #include <net/rss_config.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_kdtrace.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #endif
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/ip_options.h>
89 #ifdef INET6
90 #include <netinet6/ip6_var.h>
91 #endif
92 #include <netinet/udp.h>
93 #include <netinet/udp_var.h>
94 #include <netinet/udplite.h>
95 #include <netinet/in_rss.h>
96 
97 #include <netipsec/ipsec_support.h>
98 
99 #include <machine/in_cksum.h>
100 
101 #include <security/mac/mac_framework.h>
102 
103 /*
104  * UDP and UDP-Lite protocols implementation.
105  * Per RFC 768, August, 1980.
106  * Per RFC 3828, July, 2004.
107  */
108 
109 /*
110  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
111  * removes the only data integrity mechanism for packets and malformed
112  * packets that would otherwise be discarded due to bad checksums, and may
113  * cause problems (especially for NFS data blocks).
114  */
115 VNET_DEFINE(int, udp_cksum) = 1;
116 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
117     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
118 
119 int	udp_log_in_vain = 0;
120 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
121     &udp_log_in_vain, 0, "Log all incoming UDP packets");
122 
123 VNET_DEFINE(int, udp_blackhole) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
125     &VNET_NAME(udp_blackhole), 0,
126     "Do not send port unreachables for refused connects");
127 
128 u_long	udp_sendspace = 9216;		/* really max datagram size */
129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131 
132 u_long	udp_recvspace = 40 * (1024 +
133 #ifdef INET6
134 				      sizeof(struct sockaddr_in6)
135 #else
136 				      sizeof(struct sockaddr_in)
137 #endif
138 				      );	/* 40 1K datagrams */
139 
140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142 
143 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
144 VNET_DEFINE(struct inpcbinfo, udbinfo);
145 VNET_DEFINE(struct inpcbhead, ulitecb);
146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
148 #define	V_udpcb_zone			VNET(udpcb_zone)
149 
150 #ifndef UDBHASHSIZE
151 #define	UDBHASHSIZE	128
152 #endif
153 
154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
155 VNET_PCPUSTAT_SYSINIT(udpstat);
156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158 
159 #ifdef VIMAGE
160 VNET_PCPUSTAT_SYSUNINIT(udpstat);
161 #endif /* VIMAGE */
162 #ifdef INET
163 static void	udp_detach(struct socket *so);
164 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165 		    struct mbuf *, struct thread *);
166 #endif
167 
168 static void
169 udp_zone_change(void *tag)
170 {
171 
172 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
173 	uma_zone_set_max(V_udpcb_zone, maxsockets);
174 }
175 
176 static int
177 udp_inpcb_init(void *mem, int size, int flags)
178 {
179 	struct inpcb *inp;
180 
181 	inp = mem;
182 	INP_LOCK_INIT(inp, "inp", "udpinp");
183 	return (0);
184 }
185 
186 static int
187 udplite_inpcb_init(void *mem, int size, int flags)
188 {
189 	struct inpcb *inp;
190 
191 	inp = mem;
192 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
193 	return (0);
194 }
195 
196 void
197 udp_init(void)
198 {
199 
200 	/*
201 	 * For now default to 2-tuple UDP hashing - until the fragment
202 	 * reassembly code can also update the flowid.
203 	 *
204 	 * Once we can calculate the flowid that way and re-establish
205 	 * a 4-tuple, flip this to 4-tuple.
206 	 */
207 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
208 	    "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
209 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
211 	uma_zone_set_max(V_udpcb_zone, maxsockets);
212 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
213 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
214 	    EVENTHANDLER_PRI_ANY);
215 }
216 
217 void
218 udplite_init(void)
219 {
220 
221 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
222 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
223 	    IPI_HASHFIELDS_2TUPLE);
224 }
225 
226 /*
227  * Kernel module interface for updating udpstat.  The argument is an index
228  * into udpstat treated as an array of u_long.  While this encodes the
229  * general layout of udpstat into the caller, it doesn't encode its location,
230  * so that future changes to add, for example, per-CPU stats support won't
231  * cause binary compatibility problems for kernel modules.
232  */
233 void
234 kmod_udpstat_inc(int statnum)
235 {
236 
237 	counter_u64_add(VNET(udpstat)[statnum], 1);
238 }
239 
240 int
241 udp_newudpcb(struct inpcb *inp)
242 {
243 	struct udpcb *up;
244 
245 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
246 	if (up == NULL)
247 		return (ENOBUFS);
248 	inp->inp_ppcb = up;
249 	return (0);
250 }
251 
252 void
253 udp_discardcb(struct udpcb *up)
254 {
255 
256 	uma_zfree(V_udpcb_zone, up);
257 }
258 
259 #ifdef VIMAGE
260 static void
261 udp_destroy(void *unused __unused)
262 {
263 
264 	in_pcbinfo_destroy(&V_udbinfo);
265 	uma_zdestroy(V_udpcb_zone);
266 }
267 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
268 
269 static void
270 udplite_destroy(void *unused __unused)
271 {
272 
273 	in_pcbinfo_destroy(&V_ulitecbinfo);
274 }
275 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
276     NULL);
277 #endif
278 
279 #ifdef INET
280 /*
281  * Subroutine of udp_input(), which appends the provided mbuf chain to the
282  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
283  * contains the source address.  If the socket ends up being an IPv6 socket,
284  * udp_append() will convert to a sockaddr_in6 before passing the address
285  * into the socket code.
286  *
287  * In the normal case udp_append() will return 0, indicating that you
288  * must unlock the inp. However if a tunneling protocol is in place we increment
289  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
290  * then decrement the reference count. If the inp_rele returns 1, indicating the
291  * inp is gone, we return that to the caller to tell them *not* to unlock
292  * the inp. In the case of multi-cast this will cause the distribution
293  * to stop (though most tunneling protocols known currently do *not* use
294  * multicast).
295  */
296 static int
297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
298     struct sockaddr_in *udp_in)
299 {
300 	struct sockaddr *append_sa;
301 	struct socket *so;
302 	struct mbuf *tmpopts, *opts = NULL;
303 #ifdef INET6
304 	struct sockaddr_in6 udp_in6;
305 #endif
306 	struct udpcb *up;
307 
308 	INP_LOCK_ASSERT(inp);
309 
310 	/*
311 	 * Engage the tunneling protocol.
312 	 */
313 	up = intoudpcb(inp);
314 	if (up->u_tun_func != NULL) {
315 		in_pcbref(inp);
316 		INP_RUNLOCK(inp);
317 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
318 		    up->u_tun_ctx);
319 		INP_RLOCK(inp);
320 		return (in_pcbrele_rlocked(inp));
321 	}
322 
323 	off += sizeof(struct udphdr);
324 
325 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
326 	/* Check AH/ESP integrity. */
327 	if (IPSEC_ENABLED(ipv4) &&
328 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
329 		m_freem(n);
330 		return (0);
331 	}
332 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
333 		if (IPSEC_ENABLED(ipv4) &&
334 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
335 			return (0);	/* Consumed. */
336 	}
337 #endif /* IPSEC */
338 #ifdef MAC
339 	if (mac_inpcb_check_deliver(inp, n) != 0) {
340 		m_freem(n);
341 		return (0);
342 	}
343 #endif /* MAC */
344 	if (inp->inp_flags & INP_CONTROLOPTS ||
345 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
346 #ifdef INET6
347 		if (inp->inp_vflag & INP_IPV6)
348 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
349 		else
350 #endif /* INET6 */
351 			ip_savecontrol(inp, &opts, ip, n);
352 	}
353 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
354 		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
355 			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
356 		if (tmpopts) {
357 			if (opts) {
358 				tmpopts->m_next = opts;
359 				opts = tmpopts;
360 			} else
361 				opts = tmpopts;
362 		}
363 	}
364 #ifdef INET6
365 	if (inp->inp_vflag & INP_IPV6) {
366 		bzero(&udp_in6, sizeof(udp_in6));
367 		udp_in6.sin6_len = sizeof(udp_in6);
368 		udp_in6.sin6_family = AF_INET6;
369 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
370 		append_sa = (struct sockaddr *)&udp_in6;
371 	} else
372 #endif /* INET6 */
373 		append_sa = (struct sockaddr *)&udp_in[0];
374 	m_adj(n, off);
375 
376 	so = inp->inp_socket;
377 	SOCKBUF_LOCK(&so->so_rcv);
378 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
379 		SOCKBUF_UNLOCK(&so->so_rcv);
380 		m_freem(n);
381 		if (opts)
382 			m_freem(opts);
383 		UDPSTAT_INC(udps_fullsock);
384 	} else
385 		sorwakeup_locked(so);
386 	return (0);
387 }
388 
389 int
390 udp_input(struct mbuf **mp, int *offp, int proto)
391 {
392 	struct ip *ip;
393 	struct udphdr *uh;
394 	struct ifnet *ifp;
395 	struct inpcb *inp;
396 	uint16_t len, ip_len;
397 	struct inpcbinfo *pcbinfo;
398 	struct ip save_ip;
399 	struct sockaddr_in udp_in[2];
400 	struct mbuf *m;
401 	struct m_tag *fwd_tag;
402 	struct epoch_tracker et;
403 	int cscov_partial, iphlen;
404 
405 	m = *mp;
406 	iphlen = *offp;
407 	ifp = m->m_pkthdr.rcvif;
408 	*mp = NULL;
409 	UDPSTAT_INC(udps_ipackets);
410 
411 	/*
412 	 * Strip IP options, if any; should skip this, make available to
413 	 * user, and use on returned packets, but we don't yet have a way to
414 	 * check the checksum with options still present.
415 	 */
416 	if (iphlen > sizeof (struct ip)) {
417 		ip_stripoptions(m);
418 		iphlen = sizeof(struct ip);
419 	}
420 
421 	/*
422 	 * Get IP and UDP header together in first mbuf.
423 	 */
424 	ip = mtod(m, struct ip *);
425 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
426 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
427 			UDPSTAT_INC(udps_hdrops);
428 			return (IPPROTO_DONE);
429 		}
430 		ip = mtod(m, struct ip *);
431 	}
432 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
433 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
434 
435 	/*
436 	 * Destination port of 0 is illegal, based on RFC768.
437 	 */
438 	if (uh->uh_dport == 0)
439 		goto badunlocked;
440 
441 	/*
442 	 * Construct sockaddr format source address.  Stuff source address
443 	 * and datagram in user buffer.
444 	 */
445 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
446 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
447 	udp_in[0].sin_family = AF_INET;
448 	udp_in[0].sin_port = uh->uh_sport;
449 	udp_in[0].sin_addr = ip->ip_src;
450 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
451 	udp_in[1].sin_family = AF_INET;
452 	udp_in[1].sin_port = uh->uh_dport;
453 	udp_in[1].sin_addr = ip->ip_dst;
454 
455 	/*
456 	 * Make mbuf data length reflect UDP length.  If not enough data to
457 	 * reflect UDP length, drop.
458 	 */
459 	len = ntohs((u_short)uh->uh_ulen);
460 	ip_len = ntohs(ip->ip_len) - iphlen;
461 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
462 		/* Zero means checksum over the complete packet. */
463 		if (len == 0)
464 			len = ip_len;
465 		cscov_partial = 0;
466 	}
467 	if (ip_len != len) {
468 		if (len > ip_len || len < sizeof(struct udphdr)) {
469 			UDPSTAT_INC(udps_badlen);
470 			goto badunlocked;
471 		}
472 		if (proto == IPPROTO_UDP)
473 			m_adj(m, len - ip_len);
474 	}
475 
476 	/*
477 	 * Save a copy of the IP header in case we want restore it for
478 	 * sending an ICMP error message in response.
479 	 */
480 	if (!V_udp_blackhole)
481 		save_ip = *ip;
482 	else
483 		memset(&save_ip, 0, sizeof(save_ip));
484 
485 	/*
486 	 * Checksum extended UDP header and data.
487 	 */
488 	if (uh->uh_sum) {
489 		u_short uh_sum;
490 
491 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
492 		    !cscov_partial) {
493 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
494 				uh_sum = m->m_pkthdr.csum_data;
495 			else
496 				uh_sum = in_pseudo(ip->ip_src.s_addr,
497 				    ip->ip_dst.s_addr, htonl((u_short)len +
498 				    m->m_pkthdr.csum_data + proto));
499 			uh_sum ^= 0xffff;
500 		} else {
501 			char b[9];
502 
503 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
504 			bzero(((struct ipovly *)ip)->ih_x1, 9);
505 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
506 			    uh->uh_ulen : htons(ip_len);
507 			uh_sum = in_cksum(m, len + sizeof (struct ip));
508 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
509 		}
510 		if (uh_sum) {
511 			UDPSTAT_INC(udps_badsum);
512 			m_freem(m);
513 			return (IPPROTO_DONE);
514 		}
515 	} else {
516 		if (proto == IPPROTO_UDP) {
517 			UDPSTAT_INC(udps_nosum);
518 		} else {
519 			/* UDPLite requires a checksum */
520 			/* XXX: What is the right UDPLite MIB counter here? */
521 			m_freem(m);
522 			return (IPPROTO_DONE);
523 		}
524 	}
525 
526 	pcbinfo = udp_get_inpcbinfo(proto);
527 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
528 	    in_broadcast(ip->ip_dst, ifp)) {
529 		struct inpcb *last;
530 		struct inpcbhead *pcblist;
531 		struct ip_moptions *imo;
532 
533 		INP_INFO_RLOCK_ET(pcbinfo, et);
534 		pcblist = udp_get_pcblist(proto);
535 		last = NULL;
536 		CK_LIST_FOREACH(inp, pcblist, inp_list) {
537 			if (inp->inp_lport != uh->uh_dport)
538 				continue;
539 #ifdef INET6
540 			if ((inp->inp_vflag & INP_IPV4) == 0)
541 				continue;
542 #endif
543 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
544 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
545 				continue;
546 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
547 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
548 				continue;
549 			if (inp->inp_fport != 0 &&
550 			    inp->inp_fport != uh->uh_sport)
551 				continue;
552 
553 			INP_RLOCK(inp);
554 
555 			/*
556 			 * XXXRW: Because we weren't holding either the inpcb
557 			 * or the hash lock when we checked for a match
558 			 * before, we should probably recheck now that the
559 			 * inpcb lock is held.
560 			 */
561 
562 			/*
563 			 * Handle socket delivery policy for any-source
564 			 * and source-specific multicast. [RFC3678]
565 			 */
566 			imo = inp->inp_moptions;
567 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
568 				struct sockaddr_in	 group;
569 				int			 blocked;
570 				if (imo == NULL) {
571 					INP_RUNLOCK(inp);
572 					continue;
573 				}
574 				bzero(&group, sizeof(struct sockaddr_in));
575 				group.sin_len = sizeof(struct sockaddr_in);
576 				group.sin_family = AF_INET;
577 				group.sin_addr = ip->ip_dst;
578 
579 				blocked = imo_multi_filter(imo, ifp,
580 					(struct sockaddr *)&group,
581 					(struct sockaddr *)&udp_in[0]);
582 				if (blocked != MCAST_PASS) {
583 					if (blocked == MCAST_NOTGMEMBER)
584 						IPSTAT_INC(ips_notmember);
585 					if (blocked == MCAST_NOTSMEMBER ||
586 					    blocked == MCAST_MUTED)
587 						UDPSTAT_INC(udps_filtermcast);
588 					INP_RUNLOCK(inp);
589 					continue;
590 				}
591 			}
592 			if (last != NULL) {
593 				struct mbuf *n;
594 
595 				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
596 				    NULL) {
597 					if (proto == IPPROTO_UDPLITE)
598 						UDPLITE_PROBE(receive, NULL, last, ip,
599 						    last, uh);
600 					else
601 						UDP_PROBE(receive, NULL, last, ip, last,
602 						    uh);
603 					if (udp_append(last, ip, n, iphlen,
604 						udp_in)) {
605 						goto inp_lost;
606 					}
607 				}
608 				INP_RUNLOCK(last);
609 			}
610 			last = inp;
611 			/*
612 			 * Don't look for additional matches if this one does
613 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
614 			 * socket options set.  This heuristic avoids
615 			 * searching through all pcbs in the common case of a
616 			 * non-shared port.  It assumes that an application
617 			 * will never clear these options after setting them.
618 			 */
619 			if ((last->inp_socket->so_options &
620 			    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0)
621 				break;
622 		}
623 
624 		if (last == NULL) {
625 			/*
626 			 * No matching pcb found; discard datagram.  (No need
627 			 * to send an ICMP Port Unreachable for a broadcast
628 			 * or multicast datgram.)
629 			 */
630 			UDPSTAT_INC(udps_noportbcast);
631 			if (inp)
632 				INP_RUNLOCK(inp);
633 			INP_INFO_RUNLOCK_ET(pcbinfo, et);
634 			goto badunlocked;
635 		}
636 		if (proto == IPPROTO_UDPLITE)
637 			UDPLITE_PROBE(receive, NULL, last, ip, last, uh);
638 		else
639 			UDP_PROBE(receive, NULL, last, ip, last, uh);
640 		if (udp_append(last, ip, m, iphlen, udp_in) == 0)
641 			INP_RUNLOCK(last);
642 	inp_lost:
643 		INP_INFO_RUNLOCK_ET(pcbinfo, et);
644 		return (IPPROTO_DONE);
645 	}
646 
647 	/*
648 	 * Locate pcb for datagram.
649 	 */
650 
651 	/*
652 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
653 	 */
654 	if ((m->m_flags & M_IP_NEXTHOP) &&
655 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
656 		struct sockaddr_in *next_hop;
657 
658 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
659 
660 		/*
661 		 * Transparently forwarded. Pretend to be the destination.
662 		 * Already got one like this?
663 		 */
664 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
665 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
666 		if (!inp) {
667 			/*
668 			 * It's new.  Try to find the ambushing socket.
669 			 * Because we've rewritten the destination address,
670 			 * any hardware-generated hash is ignored.
671 			 */
672 			inp = in_pcblookup(pcbinfo, ip->ip_src,
673 			    uh->uh_sport, next_hop->sin_addr,
674 			    next_hop->sin_port ? htons(next_hop->sin_port) :
675 			    uh->uh_dport, INPLOOKUP_WILDCARD |
676 			    INPLOOKUP_RLOCKPCB, ifp);
677 		}
678 		/* Remove the tag from the packet. We don't need it anymore. */
679 		m_tag_delete(m, fwd_tag);
680 		m->m_flags &= ~M_IP_NEXTHOP;
681 	} else
682 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
683 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
684 		    INPLOOKUP_RLOCKPCB, ifp, m);
685 	if (inp == NULL) {
686 		if (udp_log_in_vain) {
687 			char src[INET_ADDRSTRLEN];
688 			char dst[INET_ADDRSTRLEN];
689 
690 			log(LOG_INFO,
691 			    "Connection attempt to UDP %s:%d from %s:%d\n",
692 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
693 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
694 		}
695 		if (proto == IPPROTO_UDPLITE)
696 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
697 		else
698 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
699 		UDPSTAT_INC(udps_noport);
700 		if (m->m_flags & (M_BCAST | M_MCAST)) {
701 			UDPSTAT_INC(udps_noportbcast);
702 			goto badunlocked;
703 		}
704 		if (V_udp_blackhole)
705 			goto badunlocked;
706 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
707 			goto badunlocked;
708 		*ip = save_ip;
709 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
710 		return (IPPROTO_DONE);
711 	}
712 
713 	/*
714 	 * Check the minimum TTL for socket.
715 	 */
716 	INP_RLOCK_ASSERT(inp);
717 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
718 		if (proto == IPPROTO_UDPLITE)
719 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
720 		else
721 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
722 		INP_RUNLOCK(inp);
723 		m_freem(m);
724 		return (IPPROTO_DONE);
725 	}
726 	if (cscov_partial) {
727 		struct udpcb *up;
728 
729 		up = intoudpcb(inp);
730 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
731 			INP_RUNLOCK(inp);
732 			m_freem(m);
733 			return (IPPROTO_DONE);
734 		}
735 	}
736 
737 	if (proto == IPPROTO_UDPLITE)
738 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
739 	else
740 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
741 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
742 		INP_RUNLOCK(inp);
743 	return (IPPROTO_DONE);
744 
745 badunlocked:
746 	m_freem(m);
747 	return (IPPROTO_DONE);
748 }
749 #endif /* INET */
750 
751 /*
752  * Notify a udp user of an asynchronous error; just wake up so that they can
753  * collect error status.
754  */
755 struct inpcb *
756 udp_notify(struct inpcb *inp, int errno)
757 {
758 
759 	/*
760 	 * While udp_ctlinput() always calls udp_notify() with a read lock
761 	 * when invoking it directly, in_pcbnotifyall() currently uses write
762 	 * locks due to sharing code with TCP.  For now, accept either a read
763 	 * or a write lock, but a read lock is sufficient.
764 	 */
765 	INP_LOCK_ASSERT(inp);
766 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
767 	     errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
768 		RTFREE(inp->inp_route.ro_rt);
769 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
770 	}
771 
772 	inp->inp_socket->so_error = errno;
773 	sorwakeup(inp->inp_socket);
774 	sowwakeup(inp->inp_socket);
775 	return (inp);
776 }
777 
778 #ifdef INET
779 static void
780 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
781     struct inpcbinfo *pcbinfo)
782 {
783 	struct ip *ip = vip;
784 	struct udphdr *uh;
785 	struct in_addr faddr;
786 	struct inpcb *inp;
787 
788 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
789 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
790 		return;
791 
792 	if (PRC_IS_REDIRECT(cmd)) {
793 		/* signal EHOSTDOWN, as it flushes the cached route */
794 		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
795 		return;
796 	}
797 
798 	/*
799 	 * Hostdead is ugly because it goes linearly through all PCBs.
800 	 *
801 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
802 	 * DoS attack on machines with many connections.
803 	 */
804 	if (cmd == PRC_HOSTDEAD)
805 		ip = NULL;
806 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
807 		return;
808 	if (ip != NULL) {
809 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
810 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
811 		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
812 		if (inp != NULL) {
813 			INP_RLOCK_ASSERT(inp);
814 			if (inp->inp_socket != NULL) {
815 				udp_notify(inp, inetctlerrmap[cmd]);
816 			}
817 			INP_RUNLOCK(inp);
818 		} else {
819 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
820 					   ip->ip_src, uh->uh_sport,
821 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
822 			if (inp != NULL) {
823 				struct udpcb *up;
824 				void *ctx;
825 				udp_tun_icmp_t func;
826 
827 				up = intoudpcb(inp);
828 				ctx = up->u_tun_ctx;
829 				func = up->u_icmp_func;
830 				INP_RUNLOCK(inp);
831 				if (func != NULL)
832 					(*func)(cmd, sa, vip, ctx);
833 			}
834 		}
835 	} else
836 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
837 		    udp_notify);
838 }
839 void
840 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
841 {
842 
843 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
844 }
845 
846 void
847 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
848 {
849 
850 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
851 }
852 #endif /* INET */
853 
854 static int
855 udp_pcblist(SYSCTL_HANDLER_ARGS)
856 {
857 	int error, i, n;
858 	struct inpcb *inp, **inp_list;
859 	inp_gen_t gencnt;
860 	struct xinpgen xig;
861 	struct epoch_tracker et;
862 
863 	/*
864 	 * The process of preparing the PCB list is too time-consuming and
865 	 * resource-intensive to repeat twice on every request.
866 	 */
867 	if (req->oldptr == 0) {
868 		n = V_udbinfo.ipi_count;
869 		n += imax(n / 8, 10);
870 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
871 		return (0);
872 	}
873 
874 	if (req->newptr != 0)
875 		return (EPERM);
876 
877 	/*
878 	 * OK, now we're committed to doing something.
879 	 */
880 	INP_INFO_RLOCK_ET(&V_udbinfo, et);
881 	gencnt = V_udbinfo.ipi_gencnt;
882 	n = V_udbinfo.ipi_count;
883 	INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
884 
885 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
886 		+ n * sizeof(struct xinpcb));
887 	if (error != 0)
888 		return (error);
889 
890 	xig.xig_len = sizeof xig;
891 	xig.xig_count = n;
892 	xig.xig_gen = gencnt;
893 	xig.xig_sogen = so_gencnt;
894 	error = SYSCTL_OUT(req, &xig, sizeof xig);
895 	if (error)
896 		return (error);
897 
898 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
899 	if (inp_list == NULL)
900 		return (ENOMEM);
901 
902 	INP_INFO_RLOCK_ET(&V_udbinfo, et);
903 	for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
904 	     inp = CK_LIST_NEXT(inp, inp_list)) {
905 		INP_WLOCK(inp);
906 		if (inp->inp_gencnt <= gencnt &&
907 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
908 			in_pcbref(inp);
909 			inp_list[i++] = inp;
910 		}
911 		INP_WUNLOCK(inp);
912 	}
913 	INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
914 	n = i;
915 
916 	error = 0;
917 	for (i = 0; i < n; i++) {
918 		inp = inp_list[i];
919 		INP_RLOCK(inp);
920 		if (inp->inp_gencnt <= gencnt) {
921 			struct xinpcb xi;
922 
923 			in_pcbtoxinpcb(inp, &xi);
924 			INP_RUNLOCK(inp);
925 			error = SYSCTL_OUT(req, &xi, sizeof xi);
926 		} else
927 			INP_RUNLOCK(inp);
928 	}
929 	INP_INFO_WLOCK(&V_udbinfo);
930 	for (i = 0; i < n; i++) {
931 		inp = inp_list[i];
932 		INP_RLOCK(inp);
933 		if (!in_pcbrele_rlocked(inp))
934 			INP_RUNLOCK(inp);
935 	}
936 	INP_INFO_WUNLOCK(&V_udbinfo);
937 
938 	if (!error) {
939 		/*
940 		 * Give the user an updated idea of our state.  If the
941 		 * generation differs from what we told her before, she knows
942 		 * that something happened while we were processing this
943 		 * request, and it might be necessary to retry.
944 		 */
945 		INP_INFO_RLOCK_ET(&V_udbinfo, et);
946 		xig.xig_gen = V_udbinfo.ipi_gencnt;
947 		xig.xig_sogen = so_gencnt;
948 		xig.xig_count = V_udbinfo.ipi_count;
949 		INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
950 		error = SYSCTL_OUT(req, &xig, sizeof xig);
951 	}
952 	free(inp_list, M_TEMP);
953 	return (error);
954 }
955 
956 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
957     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
958     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
959 
960 #ifdef INET
961 static int
962 udp_getcred(SYSCTL_HANDLER_ARGS)
963 {
964 	struct xucred xuc;
965 	struct sockaddr_in addrs[2];
966 	struct inpcb *inp;
967 	int error;
968 
969 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
970 	if (error)
971 		return (error);
972 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
973 	if (error)
974 		return (error);
975 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
976 	    addrs[0].sin_addr, addrs[0].sin_port,
977 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
978 	if (inp != NULL) {
979 		INP_RLOCK_ASSERT(inp);
980 		if (inp->inp_socket == NULL)
981 			error = ENOENT;
982 		if (error == 0)
983 			error = cr_canseeinpcb(req->td->td_ucred, inp);
984 		if (error == 0)
985 			cru2x(inp->inp_cred, &xuc);
986 		INP_RUNLOCK(inp);
987 	} else
988 		error = ENOENT;
989 	if (error == 0)
990 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
991 	return (error);
992 }
993 
994 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
995     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
996     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
997 #endif /* INET */
998 
999 int
1000 udp_ctloutput(struct socket *so, struct sockopt *sopt)
1001 {
1002 	struct inpcb *inp;
1003 	struct udpcb *up;
1004 	int isudplite, error, optval;
1005 
1006 	error = 0;
1007 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
1008 	inp = sotoinpcb(so);
1009 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1010 	INP_WLOCK(inp);
1011 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
1012 #ifdef INET6
1013 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
1014 			INP_WUNLOCK(inp);
1015 			error = ip6_ctloutput(so, sopt);
1016 		}
1017 #endif
1018 #if defined(INET) && defined(INET6)
1019 		else
1020 #endif
1021 #ifdef INET
1022 		{
1023 			INP_WUNLOCK(inp);
1024 			error = ip_ctloutput(so, sopt);
1025 		}
1026 #endif
1027 		return (error);
1028 	}
1029 
1030 	switch (sopt->sopt_dir) {
1031 	case SOPT_SET:
1032 		switch (sopt->sopt_name) {
1033 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1034 #ifdef INET
1035 		case UDP_ENCAP:
1036 			if (!IPSEC_ENABLED(ipv4)) {
1037 				INP_WUNLOCK(inp);
1038 				return (ENOPROTOOPT);
1039 			}
1040 			error = UDPENCAP_PCBCTL(inp, sopt);
1041 			break;
1042 #endif /* INET */
1043 #endif /* IPSEC */
1044 		case UDPLITE_SEND_CSCOV:
1045 		case UDPLITE_RECV_CSCOV:
1046 			if (!isudplite) {
1047 				INP_WUNLOCK(inp);
1048 				error = ENOPROTOOPT;
1049 				break;
1050 			}
1051 			INP_WUNLOCK(inp);
1052 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1053 			    sizeof(optval));
1054 			if (error != 0)
1055 				break;
1056 			inp = sotoinpcb(so);
1057 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1058 			INP_WLOCK(inp);
1059 			up = intoudpcb(inp);
1060 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1061 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1062 				INP_WUNLOCK(inp);
1063 				error = EINVAL;
1064 				break;
1065 			}
1066 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1067 				up->u_txcslen = optval;
1068 			else
1069 				up->u_rxcslen = optval;
1070 			INP_WUNLOCK(inp);
1071 			break;
1072 		default:
1073 			INP_WUNLOCK(inp);
1074 			error = ENOPROTOOPT;
1075 			break;
1076 		}
1077 		break;
1078 	case SOPT_GET:
1079 		switch (sopt->sopt_name) {
1080 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1081 #ifdef INET
1082 		case UDP_ENCAP:
1083 			if (!IPSEC_ENABLED(ipv4)) {
1084 				INP_WUNLOCK(inp);
1085 				return (ENOPROTOOPT);
1086 			}
1087 			error = UDPENCAP_PCBCTL(inp, sopt);
1088 			break;
1089 #endif /* INET */
1090 #endif /* IPSEC */
1091 		case UDPLITE_SEND_CSCOV:
1092 		case UDPLITE_RECV_CSCOV:
1093 			if (!isudplite) {
1094 				INP_WUNLOCK(inp);
1095 				error = ENOPROTOOPT;
1096 				break;
1097 			}
1098 			up = intoudpcb(inp);
1099 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1100 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1101 				optval = up->u_txcslen;
1102 			else
1103 				optval = up->u_rxcslen;
1104 			INP_WUNLOCK(inp);
1105 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1106 			break;
1107 		default:
1108 			INP_WUNLOCK(inp);
1109 			error = ENOPROTOOPT;
1110 			break;
1111 		}
1112 		break;
1113 	}
1114 	return (error);
1115 }
1116 
1117 #ifdef INET
1118 #define	UH_WLOCKED	2
1119 #define	UH_RLOCKED	1
1120 #define	UH_UNLOCKED	0
1121 static int
1122 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1123     struct mbuf *control, struct thread *td)
1124 {
1125 	struct udpiphdr *ui;
1126 	int len = m->m_pkthdr.len;
1127 	struct in_addr faddr, laddr;
1128 	struct cmsghdr *cm;
1129 	struct inpcbinfo *pcbinfo;
1130 	struct sockaddr_in *sin, src;
1131 	struct epoch_tracker et;
1132 	int cscov_partial = 0;
1133 	int error = 0;
1134 	int ipflags;
1135 	u_short fport, lport;
1136 	int unlock_udbinfo, unlock_inp;
1137 	u_char tos;
1138 	uint8_t pr;
1139 	uint16_t cscov = 0;
1140 	uint32_t flowid = 0;
1141 	uint8_t flowtype = M_HASHTYPE_NONE;
1142 
1143 	/*
1144 	 * udp_output() may need to temporarily bind or connect the current
1145 	 * inpcb.  As such, we don't know up front whether we will need the
1146 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1147 	 * front before acquiring any locks.
1148 	 */
1149 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1150 		if (control)
1151 			m_freem(control);
1152 		m_freem(m);
1153 		return (EMSGSIZE);
1154 	}
1155 
1156 	src.sin_family = 0;
1157 	sin = (struct sockaddr_in *)addr;
1158 	if (sin == NULL ||
1159 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1160 		INP_WLOCK(inp);
1161 		unlock_inp = UH_WLOCKED;
1162 	} else {
1163 		INP_RLOCK(inp);
1164 		unlock_inp = UH_RLOCKED;
1165 	}
1166 	tos = inp->inp_ip_tos;
1167 	if (control != NULL) {
1168 		/*
1169 		 * XXX: Currently, we assume all the optional information is
1170 		 * stored in a single mbuf.
1171 		 */
1172 		if (control->m_next) {
1173 			if (unlock_inp == UH_WLOCKED)
1174 				INP_WUNLOCK(inp);
1175 			else
1176 				INP_RUNLOCK(inp);
1177 			m_freem(control);
1178 			m_freem(m);
1179 			return (EINVAL);
1180 		}
1181 		for (; control->m_len > 0;
1182 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1183 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1184 			cm = mtod(control, struct cmsghdr *);
1185 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1186 			    || cm->cmsg_len > control->m_len) {
1187 				error = EINVAL;
1188 				break;
1189 			}
1190 			if (cm->cmsg_level != IPPROTO_IP)
1191 				continue;
1192 
1193 			switch (cm->cmsg_type) {
1194 			case IP_SENDSRCADDR:
1195 				if (cm->cmsg_len !=
1196 				    CMSG_LEN(sizeof(struct in_addr))) {
1197 					error = EINVAL;
1198 					break;
1199 				}
1200 				bzero(&src, sizeof(src));
1201 				src.sin_family = AF_INET;
1202 				src.sin_len = sizeof(src);
1203 				src.sin_port = inp->inp_lport;
1204 				src.sin_addr =
1205 				    *(struct in_addr *)CMSG_DATA(cm);
1206 				break;
1207 
1208 			case IP_TOS:
1209 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1210 					error = EINVAL;
1211 					break;
1212 				}
1213 				tos = *(u_char *)CMSG_DATA(cm);
1214 				break;
1215 
1216 			case IP_FLOWID:
1217 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1218 					error = EINVAL;
1219 					break;
1220 				}
1221 				flowid = *(uint32_t *) CMSG_DATA(cm);
1222 				break;
1223 
1224 			case IP_FLOWTYPE:
1225 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1226 					error = EINVAL;
1227 					break;
1228 				}
1229 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1230 				break;
1231 
1232 #ifdef	RSS
1233 			case IP_RSSBUCKETID:
1234 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1235 					error = EINVAL;
1236 					break;
1237 				}
1238 				/* This is just a placeholder for now */
1239 				break;
1240 #endif	/* RSS */
1241 			default:
1242 				error = ENOPROTOOPT;
1243 				break;
1244 			}
1245 			if (error)
1246 				break;
1247 		}
1248 		m_freem(control);
1249 	}
1250 	if (error) {
1251 		if (unlock_inp == UH_WLOCKED)
1252 			INP_WUNLOCK(inp);
1253 		else
1254 			INP_RUNLOCK(inp);
1255 		m_freem(m);
1256 		return (error);
1257 	}
1258 
1259 	/*
1260 	 * Depending on whether or not the application has bound or connected
1261 	 * the socket, we may have to do varying levels of work.  The optimal
1262 	 * case is for a connected UDP socket, as a global lock isn't
1263 	 * required at all.
1264 	 *
1265 	 * In order to decide which we need, we require stability of the
1266 	 * inpcb binding, which we ensure by acquiring a read lock on the
1267 	 * inpcb.  This doesn't strictly follow the lock order, so we play
1268 	 * the trylock and retry game; note that we may end up with more
1269 	 * conservative locks than required the second time around, so later
1270 	 * assertions have to accept that.  Further analysis of the number of
1271 	 * misses under contention is required.
1272 	 *
1273 	 * XXXRW: Check that hash locking update here is correct.
1274 	 */
1275 	pr = inp->inp_socket->so_proto->pr_protocol;
1276 	pcbinfo = udp_get_inpcbinfo(pr);
1277 	sin = (struct sockaddr_in *)addr;
1278 	if (sin != NULL &&
1279 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1280 		INP_HASH_WLOCK(pcbinfo);
1281 		unlock_udbinfo = UH_WLOCKED;
1282 	} else if ((sin != NULL && (
1283 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1284 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1285 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1286 	    (inp->inp_lport == 0))) ||
1287 	    (src.sin_family == AF_INET)) {
1288 		INP_HASH_RLOCK_ET(pcbinfo, et);
1289 		unlock_udbinfo = UH_RLOCKED;
1290 	} else
1291 		unlock_udbinfo = UH_UNLOCKED;
1292 
1293 	/*
1294 	 * If the IP_SENDSRCADDR control message was specified, override the
1295 	 * source address for this datagram.  Its use is invalidated if the
1296 	 * address thus specified is incomplete or clobbers other inpcbs.
1297 	 */
1298 	laddr = inp->inp_laddr;
1299 	lport = inp->inp_lport;
1300 	if (src.sin_family == AF_INET) {
1301 		INP_HASH_LOCK_ASSERT(pcbinfo);
1302 		if ((lport == 0) ||
1303 		    (laddr.s_addr == INADDR_ANY &&
1304 		     src.sin_addr.s_addr == INADDR_ANY)) {
1305 			error = EINVAL;
1306 			goto release;
1307 		}
1308 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1309 		    &laddr.s_addr, &lport, td->td_ucred);
1310 		if (error)
1311 			goto release;
1312 	}
1313 
1314 	/*
1315 	 * If a UDP socket has been connected, then a local address/port will
1316 	 * have been selected and bound.
1317 	 *
1318 	 * If a UDP socket has not been connected to, then an explicit
1319 	 * destination address must be used, in which case a local
1320 	 * address/port may not have been selected and bound.
1321 	 */
1322 	if (sin != NULL) {
1323 		INP_LOCK_ASSERT(inp);
1324 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1325 			error = EISCONN;
1326 			goto release;
1327 		}
1328 
1329 		/*
1330 		 * Jail may rewrite the destination address, so let it do
1331 		 * that before we use it.
1332 		 */
1333 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1334 		if (error)
1335 			goto release;
1336 
1337 		/*
1338 		 * If a local address or port hasn't yet been selected, or if
1339 		 * the destination address needs to be rewritten due to using
1340 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1341 		 * to do the heavy lifting.  Once a port is selected, we
1342 		 * commit the binding back to the socket; we also commit the
1343 		 * binding of the address if in jail.
1344 		 *
1345 		 * If we already have a valid binding and we're not
1346 		 * requesting a destination address rewrite, use a fast path.
1347 		 */
1348 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1349 		    inp->inp_lport == 0 ||
1350 		    sin->sin_addr.s_addr == INADDR_ANY ||
1351 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1352 			INP_HASH_LOCK_ASSERT(pcbinfo);
1353 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1354 			    &lport, &faddr.s_addr, &fport, NULL,
1355 			    td->td_ucred);
1356 			if (error)
1357 				goto release;
1358 
1359 			/*
1360 			 * XXXRW: Why not commit the port if the address is
1361 			 * !INADDR_ANY?
1362 			 */
1363 			/* Commit the local port if newly assigned. */
1364 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1365 			    inp->inp_lport == 0) {
1366 				INP_WLOCK_ASSERT(inp);
1367 				INP_HASH_WLOCK_ASSERT(pcbinfo);
1368 				/*
1369 				 * Remember addr if jailed, to prevent
1370 				 * rebinding.
1371 				 */
1372 				if (prison_flag(td->td_ucred, PR_IP4))
1373 					inp->inp_laddr = laddr;
1374 				inp->inp_lport = lport;
1375 				if (in_pcbinshash(inp) != 0) {
1376 					inp->inp_lport = 0;
1377 					error = EAGAIN;
1378 					goto release;
1379 				}
1380 				inp->inp_flags |= INP_ANONPORT;
1381 			}
1382 		} else {
1383 			faddr = sin->sin_addr;
1384 			fport = sin->sin_port;
1385 		}
1386 	} else {
1387 		INP_LOCK_ASSERT(inp);
1388 		faddr = inp->inp_faddr;
1389 		fport = inp->inp_fport;
1390 		if (faddr.s_addr == INADDR_ANY) {
1391 			error = ENOTCONN;
1392 			goto release;
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1398 	 * link-layer headers.  Immediate slide the data pointer back forward
1399 	 * since we won't use that space at this layer.
1400 	 */
1401 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1402 	if (m == NULL) {
1403 		error = ENOBUFS;
1404 		goto release;
1405 	}
1406 	m->m_data += max_linkhdr;
1407 	m->m_len -= max_linkhdr;
1408 	m->m_pkthdr.len -= max_linkhdr;
1409 
1410 	/*
1411 	 * Fill in mbuf with extended UDP header and addresses and length put
1412 	 * into network format.
1413 	 */
1414 	ui = mtod(m, struct udpiphdr *);
1415 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1416 	ui->ui_v = IPVERSION << 4;
1417 	ui->ui_pr = pr;
1418 	ui->ui_src = laddr;
1419 	ui->ui_dst = faddr;
1420 	ui->ui_sport = lport;
1421 	ui->ui_dport = fport;
1422 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1423 	if (pr == IPPROTO_UDPLITE) {
1424 		struct udpcb *up;
1425 		uint16_t plen;
1426 
1427 		up = intoudpcb(inp);
1428 		cscov = up->u_txcslen;
1429 		plen = (u_short)len + sizeof(struct udphdr);
1430 		if (cscov >= plen)
1431 			cscov = 0;
1432 		ui->ui_len = htons(plen);
1433 		ui->ui_ulen = htons(cscov);
1434 		/*
1435 		 * For UDP-Lite, checksum coverage length of zero means
1436 		 * the entire UDPLite packet is covered by the checksum.
1437 		 */
1438 		cscov_partial = (cscov == 0) ? 0 : 1;
1439 	}
1440 
1441 	/*
1442 	 * Set the Don't Fragment bit in the IP header.
1443 	 */
1444 	if (inp->inp_flags & INP_DONTFRAG) {
1445 		struct ip *ip;
1446 
1447 		ip = (struct ip *)&ui->ui_i;
1448 		ip->ip_off |= htons(IP_DF);
1449 	}
1450 
1451 	ipflags = 0;
1452 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1453 		ipflags |= IP_ROUTETOIF;
1454 	if (inp->inp_socket->so_options & SO_BROADCAST)
1455 		ipflags |= IP_ALLOWBROADCAST;
1456 	if (inp->inp_flags & INP_ONESBCAST)
1457 		ipflags |= IP_SENDONES;
1458 
1459 #ifdef MAC
1460 	mac_inpcb_create_mbuf(inp, m);
1461 #endif
1462 
1463 	/*
1464 	 * Set up checksum and output datagram.
1465 	 */
1466 	ui->ui_sum = 0;
1467 	if (pr == IPPROTO_UDPLITE) {
1468 		if (inp->inp_flags & INP_ONESBCAST)
1469 			faddr.s_addr = INADDR_BROADCAST;
1470 		if (cscov_partial) {
1471 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1472 				ui->ui_sum = 0xffff;
1473 		} else {
1474 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1475 				ui->ui_sum = 0xffff;
1476 		}
1477 	} else if (V_udp_cksum) {
1478 		if (inp->inp_flags & INP_ONESBCAST)
1479 			faddr.s_addr = INADDR_BROADCAST;
1480 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1481 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1482 		m->m_pkthdr.csum_flags = CSUM_UDP;
1483 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1484 	}
1485 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1486 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1487 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1488 	UDPSTAT_INC(udps_opackets);
1489 
1490 	/*
1491 	 * Setup flowid / RSS information for outbound socket.
1492 	 *
1493 	 * Once the UDP code decides to set a flowid some other way,
1494 	 * this allows the flowid to be overridden by userland.
1495 	 */
1496 	if (flowtype != M_HASHTYPE_NONE) {
1497 		m->m_pkthdr.flowid = flowid;
1498 		M_HASHTYPE_SET(m, flowtype);
1499 #ifdef	RSS
1500 	} else {
1501 		uint32_t hash_val, hash_type;
1502 		/*
1503 		 * Calculate an appropriate RSS hash for UDP and
1504 		 * UDP Lite.
1505 		 *
1506 		 * The called function will take care of figuring out
1507 		 * whether a 2-tuple or 4-tuple hash is required based
1508 		 * on the currently configured scheme.
1509 		 *
1510 		 * Later later on connected socket values should be
1511 		 * cached in the inpcb and reused, rather than constantly
1512 		 * re-calculating it.
1513 		 *
1514 		 * UDP Lite is a different protocol number and will
1515 		 * likely end up being hashed as a 2-tuple until
1516 		 * RSS / NICs grow UDP Lite protocol awareness.
1517 		 */
1518 		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1519 		    pr, &hash_val, &hash_type) == 0) {
1520 			m->m_pkthdr.flowid = hash_val;
1521 			M_HASHTYPE_SET(m, hash_type);
1522 		}
1523 #endif
1524 	}
1525 
1526 #ifdef	RSS
1527 	/*
1528 	 * Don't override with the inp cached flowid value.
1529 	 *
1530 	 * Depending upon the kind of send being done, the inp
1531 	 * flowid/flowtype values may actually not be appropriate
1532 	 * for this particular socket send.
1533 	 *
1534 	 * We should either leave the flowid at zero (which is what is
1535 	 * currently done) or set it to some software generated
1536 	 * hash value based on the packet contents.
1537 	 */
1538 	ipflags |= IP_NODEFAULTFLOWID;
1539 #endif	/* RSS */
1540 
1541 	if (unlock_udbinfo == UH_WLOCKED)
1542 		INP_HASH_WUNLOCK(pcbinfo);
1543 	else if (unlock_udbinfo == UH_RLOCKED)
1544 		INP_HASH_RUNLOCK_ET(pcbinfo, et);
1545 	if (pr == IPPROTO_UDPLITE)
1546 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1547 	else
1548 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1549 	error = ip_output(m, inp->inp_options,
1550 	    (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1551 	    inp->inp_moptions, inp);
1552 	if (unlock_inp == UH_WLOCKED)
1553 		INP_WUNLOCK(inp);
1554 	else
1555 		INP_RUNLOCK(inp);
1556 	return (error);
1557 
1558 release:
1559 	if (unlock_udbinfo == UH_WLOCKED) {
1560 		KASSERT(unlock_inp == UH_WLOCKED,
1561 		    ("%s: excl udbinfo lock, shared inp lock", __func__));
1562 		INP_HASH_WUNLOCK(pcbinfo);
1563 		INP_WUNLOCK(inp);
1564 	} else if (unlock_udbinfo == UH_RLOCKED) {
1565 		KASSERT(unlock_inp == UH_RLOCKED,
1566 		    ("%s: shared udbinfo lock, excl inp lock", __func__));
1567 		INP_HASH_RUNLOCK_ET(pcbinfo, et);
1568 		INP_RUNLOCK(inp);
1569 	} else if (unlock_inp == UH_WLOCKED)
1570 		INP_WUNLOCK(inp);
1571 	else
1572 		INP_RUNLOCK(inp);
1573 	m_freem(m);
1574 	return (error);
1575 }
1576 
1577 static void
1578 udp_abort(struct socket *so)
1579 {
1580 	struct inpcb *inp;
1581 	struct inpcbinfo *pcbinfo;
1582 
1583 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1584 	inp = sotoinpcb(so);
1585 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1586 	INP_WLOCK(inp);
1587 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1588 		INP_HASH_WLOCK(pcbinfo);
1589 		in_pcbdisconnect(inp);
1590 		inp->inp_laddr.s_addr = INADDR_ANY;
1591 		INP_HASH_WUNLOCK(pcbinfo);
1592 		soisdisconnected(so);
1593 	}
1594 	INP_WUNLOCK(inp);
1595 }
1596 
1597 static int
1598 udp_attach(struct socket *so, int proto, struct thread *td)
1599 {
1600 	static uint32_t udp_flowid;
1601 	struct inpcb *inp;
1602 	struct inpcbinfo *pcbinfo;
1603 	int error;
1604 
1605 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1606 	inp = sotoinpcb(so);
1607 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1608 	error = soreserve(so, udp_sendspace, udp_recvspace);
1609 	if (error)
1610 		return (error);
1611 	INP_INFO_WLOCK(pcbinfo);
1612 	error = in_pcballoc(so, pcbinfo);
1613 	if (error) {
1614 		INP_INFO_WUNLOCK(pcbinfo);
1615 		return (error);
1616 	}
1617 
1618 	inp = sotoinpcb(so);
1619 	inp->inp_vflag |= INP_IPV4;
1620 	inp->inp_ip_ttl = V_ip_defttl;
1621 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1622 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1623 
1624 	error = udp_newudpcb(inp);
1625 	if (error) {
1626 		in_pcbdetach(inp);
1627 		in_pcbfree(inp);
1628 		INP_INFO_WUNLOCK(pcbinfo);
1629 		return (error);
1630 	}
1631 
1632 	INP_WUNLOCK(inp);
1633 	INP_INFO_WUNLOCK(pcbinfo);
1634 	return (0);
1635 }
1636 #endif /* INET */
1637 
1638 int
1639 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1640 {
1641 	struct inpcb *inp;
1642 	struct udpcb *up;
1643 
1644 	KASSERT(so->so_type == SOCK_DGRAM,
1645 	    ("udp_set_kernel_tunneling: !dgram"));
1646 	inp = sotoinpcb(so);
1647 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1648 	INP_WLOCK(inp);
1649 	up = intoudpcb(inp);
1650 	if ((up->u_tun_func != NULL) ||
1651 	    (up->u_icmp_func != NULL)) {
1652 		INP_WUNLOCK(inp);
1653 		return (EBUSY);
1654 	}
1655 	up->u_tun_func = f;
1656 	up->u_icmp_func = i;
1657 	up->u_tun_ctx = ctx;
1658 	INP_WUNLOCK(inp);
1659 	return (0);
1660 }
1661 
1662 #ifdef INET
1663 static int
1664 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1665 {
1666 	struct inpcb *inp;
1667 	struct inpcbinfo *pcbinfo;
1668 	int error;
1669 
1670 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1671 	inp = sotoinpcb(so);
1672 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1673 	INP_WLOCK(inp);
1674 	INP_HASH_WLOCK(pcbinfo);
1675 	error = in_pcbbind(inp, nam, td->td_ucred);
1676 	INP_HASH_WUNLOCK(pcbinfo);
1677 	INP_WUNLOCK(inp);
1678 	return (error);
1679 }
1680 
1681 static void
1682 udp_close(struct socket *so)
1683 {
1684 	struct inpcb *inp;
1685 	struct inpcbinfo *pcbinfo;
1686 
1687 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1688 	inp = sotoinpcb(so);
1689 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1690 	INP_WLOCK(inp);
1691 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1692 		INP_HASH_WLOCK(pcbinfo);
1693 		in_pcbdisconnect(inp);
1694 		inp->inp_laddr.s_addr = INADDR_ANY;
1695 		INP_HASH_WUNLOCK(pcbinfo);
1696 		soisdisconnected(so);
1697 	}
1698 	INP_WUNLOCK(inp);
1699 }
1700 
1701 static int
1702 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1703 {
1704 	struct inpcb *inp;
1705 	struct inpcbinfo *pcbinfo;
1706 	struct sockaddr_in *sin;
1707 	int error;
1708 
1709 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1710 	inp = sotoinpcb(so);
1711 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1712 	INP_WLOCK(inp);
1713 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1714 		INP_WUNLOCK(inp);
1715 		return (EISCONN);
1716 	}
1717 	sin = (struct sockaddr_in *)nam;
1718 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1719 	if (error != 0) {
1720 		INP_WUNLOCK(inp);
1721 		return (error);
1722 	}
1723 	INP_HASH_WLOCK(pcbinfo);
1724 	error = in_pcbconnect(inp, nam, td->td_ucred);
1725 	INP_HASH_WUNLOCK(pcbinfo);
1726 	if (error == 0)
1727 		soisconnected(so);
1728 	INP_WUNLOCK(inp);
1729 	return (error);
1730 }
1731 
1732 static void
1733 udp_detach(struct socket *so)
1734 {
1735 	struct inpcb *inp;
1736 	struct inpcbinfo *pcbinfo;
1737 	struct udpcb *up;
1738 
1739 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1740 	inp = sotoinpcb(so);
1741 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1742 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1743 	    ("udp_detach: not disconnected"));
1744 	INP_INFO_WLOCK(pcbinfo);
1745 	INP_WLOCK(inp);
1746 	up = intoudpcb(inp);
1747 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1748 	inp->inp_ppcb = NULL;
1749 	in_pcbdetach(inp);
1750 	in_pcbfree(inp);
1751 	INP_INFO_WUNLOCK(pcbinfo);
1752 	udp_discardcb(up);
1753 }
1754 
1755 static int
1756 udp_disconnect(struct socket *so)
1757 {
1758 	struct inpcb *inp;
1759 	struct inpcbinfo *pcbinfo;
1760 
1761 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1762 	inp = sotoinpcb(so);
1763 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1764 	INP_WLOCK(inp);
1765 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1766 		INP_WUNLOCK(inp);
1767 		return (ENOTCONN);
1768 	}
1769 	INP_HASH_WLOCK(pcbinfo);
1770 	in_pcbdisconnect(inp);
1771 	inp->inp_laddr.s_addr = INADDR_ANY;
1772 	INP_HASH_WUNLOCK(pcbinfo);
1773 	SOCK_LOCK(so);
1774 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1775 	SOCK_UNLOCK(so);
1776 	INP_WUNLOCK(inp);
1777 	return (0);
1778 }
1779 
1780 static int
1781 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1782     struct mbuf *control, struct thread *td)
1783 {
1784 	struct inpcb *inp;
1785 
1786 	inp = sotoinpcb(so);
1787 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1788 	return (udp_output(inp, m, addr, control, td));
1789 }
1790 #endif /* INET */
1791 
1792 int
1793 udp_shutdown(struct socket *so)
1794 {
1795 	struct inpcb *inp;
1796 
1797 	inp = sotoinpcb(so);
1798 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1799 	INP_WLOCK(inp);
1800 	socantsendmore(so);
1801 	INP_WUNLOCK(inp);
1802 	return (0);
1803 }
1804 
1805 #ifdef INET
1806 struct pr_usrreqs udp_usrreqs = {
1807 	.pru_abort =		udp_abort,
1808 	.pru_attach =		udp_attach,
1809 	.pru_bind =		udp_bind,
1810 	.pru_connect =		udp_connect,
1811 	.pru_control =		in_control,
1812 	.pru_detach =		udp_detach,
1813 	.pru_disconnect =	udp_disconnect,
1814 	.pru_peeraddr =		in_getpeeraddr,
1815 	.pru_send =		udp_send,
1816 	.pru_soreceive =	soreceive_dgram,
1817 	.pru_sosend =		sosend_dgram,
1818 	.pru_shutdown =		udp_shutdown,
1819 	.pru_sockaddr =		in_getsockaddr,
1820 	.pru_sosetlabel =	in_pcbsosetlabel,
1821 	.pru_close =		udp_close,
1822 };
1823 #endif /* INET */
1824