xref: /freebsd/sys/netinet/udp_usrreq.c (revision cacdd70cc751fb68dec4b86c5e5b8c969b6e26ef)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ipfw.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 
42 #include <sys/param.h>
43 #include <sys/domain.h>
44 #include <sys/eventhandler.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/protosw.h>
53 #include <sys/signalvar.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/systm.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/if.h>
64 #include <net/route.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 #include <netinet/ip_icmp.h>
75 #include <netinet/icmp_var.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_options.h>
78 #ifdef INET6
79 #include <netinet6/ip6_var.h>
80 #endif
81 #include <netinet/udp.h>
82 #include <netinet/udp_var.h>
83 
84 #ifdef IPSEC
85 #include <netipsec/ipsec.h>
86 #endif
87 
88 #include <machine/in_cksum.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 /*
93  * UDP protocol implementation.
94  * Per RFC 768, August, 1980.
95  */
96 
97 /*
98  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
99  * removes the only data integrity mechanism for packets and malformed
100  * packets that would otherwise be discarded due to bad checksums, and may
101  * cause problems (especially for NFS data blocks).
102  */
103 static int	udp_cksum = 1;
104 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udp_cksum,
105     0, "compute udp checksum");
106 
107 int	udp_log_in_vain = 0;
108 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
109     &udp_log_in_vain, 0, "Log all incoming UDP packets");
110 
111 int	udp_blackhole = 0;
112 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW, &udp_blackhole, 0,
113     "Do not send port unreachables for refused connects");
114 
115 u_long	udp_sendspace = 9216;		/* really max datagram size */
116 					/* 40 1K datagrams */
117 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
118     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
119 
120 u_long	udp_recvspace = 40 * (1024 +
121 #ifdef INET6
122 				      sizeof(struct sockaddr_in6)
123 #else
124 				      sizeof(struct sockaddr_in)
125 #endif
126 				      );
127 
128 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
129     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
130 
131 struct inpcbhead	udb;		/* from udp_var.h */
132 struct inpcbinfo	udbinfo;
133 
134 #ifndef UDBHASHSIZE
135 #define	UDBHASHSIZE	128
136 #endif
137 
138 struct udpstat	udpstat;	/* from udp_var.h */
139 SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW, &udpstat,
140     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
141 
142 static void	udp_detach(struct socket *so);
143 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
144 		    struct mbuf *, struct thread *);
145 
146 static void
147 udp_zone_change(void *tag)
148 {
149 
150 	uma_zone_set_max(udbinfo.ipi_zone, maxsockets);
151 }
152 
153 static int
154 udp_inpcb_init(void *mem, int size, int flags)
155 {
156 	struct inpcb *inp;
157 
158 	inp = mem;
159 	INP_LOCK_INIT(inp, "inp", "udpinp");
160 	return (0);
161 }
162 
163 void
164 udp_init(void)
165 {
166 
167 	INP_INFO_LOCK_INIT(&udbinfo, "udp");
168 	LIST_INIT(&udb);
169 	udbinfo.ipi_listhead = &udb;
170 	udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB,
171 	    &udbinfo.ipi_hashmask);
172 	udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB,
173 	    &udbinfo.ipi_porthashmask);
174 	udbinfo.ipi_zone = uma_zcreate("udpcb", sizeof(struct inpcb), NULL,
175 	    NULL, udp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
176 	uma_zone_set_max(udbinfo.ipi_zone, maxsockets);
177 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
178 	    EVENTHANDLER_PRI_ANY);
179 }
180 
181 /*
182  * Subroutine of udp_input(), which appends the provided mbuf chain to the
183  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
184  * contains the source address.  If the socket ends up being an IPv6 socket,
185  * udp_append() will convert to a sockaddr_in6 before passing the address
186  * into the socket code.
187  */
188 static void
189 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
190     struct sockaddr_in *udp_in)
191 {
192 	struct sockaddr *append_sa;
193 	struct socket *so;
194 	struct mbuf *opts = 0;
195 #ifdef INET6
196 	struct sockaddr_in6 udp_in6;
197 #endif
198 
199 	INP_RLOCK_ASSERT(inp);
200 
201 #ifdef IPSEC
202 	/* Check AH/ESP integrity. */
203 	if (ipsec4_in_reject(n, inp)) {
204 		m_freem(n);
205 		ipsec4stat.in_polvio++;
206 		return;
207 	}
208 #endif /* IPSEC */
209 #ifdef MAC
210 	if (mac_inpcb_check_deliver(inp, n) != 0) {
211 		m_freem(n);
212 		return;
213 	}
214 #endif
215 	if (inp->inp_flags & INP_CONTROLOPTS ||
216 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
217 #ifdef INET6
218 		if (inp->inp_vflag & INP_IPV6)
219 			ip6_savecontrol_v4(inp, n, &opts);
220 		else
221 #endif
222 			ip_savecontrol(inp, &opts, ip, n);
223 	}
224 #ifdef INET6
225 	if (inp->inp_vflag & INP_IPV6) {
226 		bzero(&udp_in6, sizeof(udp_in6));
227 		udp_in6.sin6_len = sizeof(udp_in6);
228 		udp_in6.sin6_family = AF_INET6;
229 		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
230 		append_sa = (struct sockaddr *)&udp_in6;
231 	} else
232 #endif
233 		append_sa = (struct sockaddr *)udp_in;
234 	m_adj(n, off);
235 
236 	so = inp->inp_socket;
237 	SOCKBUF_LOCK(&so->so_rcv);
238 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
239 		SOCKBUF_UNLOCK(&so->so_rcv);
240 		m_freem(n);
241 		if (opts)
242 			m_freem(opts);
243 		udpstat.udps_fullsock++;
244 	} else
245 		sorwakeup_locked(so);
246 }
247 
248 void
249 udp_input(struct mbuf *m, int off)
250 {
251 	int iphlen = off;
252 	struct ip *ip;
253 	struct udphdr *uh;
254 	struct ifnet *ifp;
255 	struct inpcb *inp;
256 	int len;
257 	struct ip save_ip;
258 	struct sockaddr_in udp_in;
259 #ifdef IPFIREWALL_FORWARD
260 	struct m_tag *fwd_tag;
261 #endif
262 
263 	ifp = m->m_pkthdr.rcvif;
264 	udpstat.udps_ipackets++;
265 
266 	/*
267 	 * Strip IP options, if any; should skip this, make available to
268 	 * user, and use on returned packets, but we don't yet have a way to
269 	 * check the checksum with options still present.
270 	 */
271 	if (iphlen > sizeof (struct ip)) {
272 		ip_stripoptions(m, (struct mbuf *)0);
273 		iphlen = sizeof(struct ip);
274 	}
275 
276 	/*
277 	 * Get IP and UDP header together in first mbuf.
278 	 */
279 	ip = mtod(m, struct ip *);
280 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
281 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
282 			udpstat.udps_hdrops++;
283 			return;
284 		}
285 		ip = mtod(m, struct ip *);
286 	}
287 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
288 
289 	/*
290 	 * Destination port of 0 is illegal, based on RFC768.
291 	 */
292 	if (uh->uh_dport == 0)
293 		goto badunlocked;
294 
295 	/*
296 	 * Construct sockaddr format source address.  Stuff source address
297 	 * and datagram in user buffer.
298 	 */
299 	bzero(&udp_in, sizeof(udp_in));
300 	udp_in.sin_len = sizeof(udp_in);
301 	udp_in.sin_family = AF_INET;
302 	udp_in.sin_port = uh->uh_sport;
303 	udp_in.sin_addr = ip->ip_src;
304 
305 	/*
306 	 * Make mbuf data length reflect UDP length.  If not enough data to
307 	 * reflect UDP length, drop.
308 	 */
309 	len = ntohs((u_short)uh->uh_ulen);
310 	if (ip->ip_len != len) {
311 		if (len > ip->ip_len || len < sizeof(struct udphdr)) {
312 			udpstat.udps_badlen++;
313 			goto badunlocked;
314 		}
315 		m_adj(m, len - ip->ip_len);
316 		/* ip->ip_len = len; */
317 	}
318 
319 	/*
320 	 * Save a copy of the IP header in case we want restore it for
321 	 * sending an ICMP error message in response.
322 	 */
323 	if (!udp_blackhole)
324 		save_ip = *ip;
325 	else
326 		memset(&save_ip, 0, sizeof(save_ip));
327 
328 	/*
329 	 * Checksum extended UDP header and data.
330 	 */
331 	if (uh->uh_sum) {
332 		u_short uh_sum;
333 
334 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
335 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
336 				uh_sum = m->m_pkthdr.csum_data;
337 			else
338 				uh_sum = in_pseudo(ip->ip_src.s_addr,
339 				    ip->ip_dst.s_addr, htonl((u_short)len +
340 				    m->m_pkthdr.csum_data + IPPROTO_UDP));
341 			uh_sum ^= 0xffff;
342 		} else {
343 			char b[9];
344 
345 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
346 			bzero(((struct ipovly *)ip)->ih_x1, 9);
347 			((struct ipovly *)ip)->ih_len = uh->uh_ulen;
348 			uh_sum = in_cksum(m, len + sizeof (struct ip));
349 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
350 		}
351 		if (uh_sum) {
352 			udpstat.udps_badsum++;
353 			m_freem(m);
354 			return;
355 		}
356 	} else
357 		udpstat.udps_nosum++;
358 
359 #ifdef IPFIREWALL_FORWARD
360 	/*
361 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
362 	 */
363 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
364 	if (fwd_tag != NULL) {
365 		struct sockaddr_in *next_hop;
366 
367 		/*
368 		 * Do the hack.
369 		 */
370 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
371 		ip->ip_dst = next_hop->sin_addr;
372 		uh->uh_dport = ntohs(next_hop->sin_port);
373 
374 		/*
375 		 * Remove the tag from the packet.  We don't need it anymore.
376 		 */
377 		m_tag_delete(m, fwd_tag);
378 	}
379 #endif
380 
381 	INP_INFO_RLOCK(&udbinfo);
382 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
383 	    in_broadcast(ip->ip_dst, ifp)) {
384 		struct inpcb *last;
385 		struct ip_moptions *imo;
386 
387 		last = NULL;
388 		LIST_FOREACH(inp, &udb, inp_list) {
389 			if (inp->inp_lport != uh->uh_dport)
390 				continue;
391 #ifdef INET6
392 			if ((inp->inp_vflag & INP_IPV4) == 0)
393 				continue;
394 #endif
395 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
396 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
397 				continue;
398 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
399 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
400 				continue;
401 			/*
402 			 * XXX: Do not check source port of incoming datagram
403 			 * unless inp_connect() has been called to bind the
404 			 * fport part of the 4-tuple; the source could be
405 			 * trying to talk to us with an ephemeral port.
406 			 */
407 			if (inp->inp_fport != 0 &&
408 			    inp->inp_fport != uh->uh_sport)
409 				continue;
410 
411 			INP_RLOCK(inp);
412 
413 			/*
414 			 * Handle socket delivery policy for any-source
415 			 * and source-specific multicast. [RFC3678]
416 			 */
417 			imo = inp->inp_moptions;
418 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
419 			    imo != NULL) {
420 				struct sockaddr_in	 sin;
421 				struct in_msource	*ims;
422 				int			 blocked, mode;
423 				size_t			 idx;
424 
425 				bzero(&sin, sizeof(struct sockaddr_in));
426 				sin.sin_len = sizeof(struct sockaddr_in);
427 				sin.sin_family = AF_INET;
428 				sin.sin_addr = ip->ip_dst;
429 
430 				blocked = 0;
431 				idx = imo_match_group(imo, ifp,
432 				    (struct sockaddr *)&sin);
433 				if (idx == -1) {
434 					/*
435 					 * No group membership for this socket.
436 					 * Do not bump udps_noportbcast, as
437 					 * this will happen further down.
438 					 */
439 					blocked++;
440 				} else {
441 					/*
442 					 * Check for a multicast source filter
443 					 * entry on this socket for this group.
444 					 * MCAST_EXCLUDE is the default
445 					 * behaviour.  It means default accept;
446 					 * entries, if present, denote sources
447 					 * to be excluded from delivery.
448 					 */
449 					ims = imo_match_source(imo, idx,
450 					    (struct sockaddr *)&udp_in);
451 					mode = imo->imo_mfilters[idx].imf_fmode;
452 					if ((ims != NULL &&
453 					     mode == MCAST_EXCLUDE) ||
454 					    (ims == NULL &&
455 					     mode == MCAST_INCLUDE)) {
456 #ifdef DIAGNOSTIC
457 						if (bootverbose) {
458 							printf("%s: blocked by"
459 							    " source filter\n",
460 							    __func__);
461 						}
462 #endif
463 						udpstat.udps_filtermcast++;
464 						blocked++;
465 					}
466 				}
467 				if (blocked != 0) {
468 					INP_RUNLOCK(inp);
469 					continue;
470 				}
471 			}
472 			if (last != NULL) {
473 				struct mbuf *n;
474 
475 				n = m_copy(m, 0, M_COPYALL);
476 				if (n != NULL)
477 					udp_append(last, ip, n, iphlen +
478 					    sizeof(struct udphdr), &udp_in);
479 				INP_RUNLOCK(last);
480 			}
481 			last = inp;
482 			/*
483 			 * Don't look for additional matches if this one does
484 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
485 			 * socket options set.  This heuristic avoids
486 			 * searching through all pcbs in the common case of a
487 			 * non-shared port.  It assumes that an application
488 			 * will never clear these options after setting them.
489 			 */
490 			if ((last->inp_socket->so_options &
491 			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
492 				break;
493 		}
494 
495 		if (last == NULL) {
496 			/*
497 			 * No matching pcb found; discard datagram.  (No need
498 			 * to send an ICMP Port Unreachable for a broadcast
499 			 * or multicast datgram.)
500 			 */
501 			udpstat.udps_noportbcast++;
502 			goto badheadlocked;
503 		}
504 		udp_append(last, ip, m, iphlen + sizeof(struct udphdr),
505 		    &udp_in);
506 		INP_RUNLOCK(last);
507 		INP_INFO_RUNLOCK(&udbinfo);
508 		return;
509 	}
510 
511 	/*
512 	 * Locate pcb for datagram.
513 	 */
514 	inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport,
515 	    ip->ip_dst, uh->uh_dport, 1, ifp);
516 	if (inp == NULL) {
517 		if (udp_log_in_vain) {
518 			char buf[4*sizeof "123"];
519 
520 			strcpy(buf, inet_ntoa(ip->ip_dst));
521 			log(LOG_INFO,
522 			    "Connection attempt to UDP %s:%d from %s:%d\n",
523 			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
524 			    ntohs(uh->uh_sport));
525 		}
526 		udpstat.udps_noport++;
527 		if (m->m_flags & (M_BCAST | M_MCAST)) {
528 			udpstat.udps_noportbcast++;
529 			goto badheadlocked;
530 		}
531 		if (udp_blackhole)
532 			goto badheadlocked;
533 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
534 			goto badheadlocked;
535 		*ip = save_ip;
536 		ip->ip_len += iphlen;
537 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
538 		INP_INFO_RUNLOCK(&udbinfo);
539 		return;
540 	}
541 
542 	/*
543 	 * Check the minimum TTL for socket.
544 	 */
545 	INP_RLOCK(inp);
546 	INP_INFO_RUNLOCK(&udbinfo);
547 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
548 		INP_RUNLOCK(inp);
549 		goto badunlocked;
550 	}
551 	udp_append(inp, ip, m, iphlen + sizeof(struct udphdr), &udp_in);
552 	INP_RUNLOCK(inp);
553 	return;
554 
555 badheadlocked:
556 	if (inp)
557 		INP_RUNLOCK(inp);
558 	INP_INFO_RUNLOCK(&udbinfo);
559 badunlocked:
560 	m_freem(m);
561 }
562 
563 /*
564  * Notify a udp user of an asynchronous error; just wake up so that they can
565  * collect error status.
566  */
567 struct inpcb *
568 udp_notify(struct inpcb *inp, int errno)
569 {
570 
571 	/*
572 	 * While udp_ctlinput() always calls udp_notify() with a read lock
573 	 * when invoking it directly, in_pcbnotifyall() currently uses write
574 	 * locks due to sharing code with TCP.  For now, accept either a read
575 	 * or a write lock, but a read lock is sufficient.
576 	 */
577 	INP_LOCK_ASSERT(inp);
578 
579 	inp->inp_socket->so_error = errno;
580 	sorwakeup(inp->inp_socket);
581 	sowwakeup(inp->inp_socket);
582 	return (inp);
583 }
584 
585 void
586 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
587 {
588 	struct ip *ip = vip;
589 	struct udphdr *uh;
590 	struct in_addr faddr;
591 	struct inpcb *inp;
592 
593 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
594 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
595 		return;
596 
597 	/*
598 	 * Redirects don't need to be handled up here.
599 	 */
600 	if (PRC_IS_REDIRECT(cmd))
601 		return;
602 
603 	/*
604 	 * Hostdead is ugly because it goes linearly through all PCBs.
605 	 *
606 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
607 	 * DoS attack on machines with many connections.
608 	 */
609 	if (cmd == PRC_HOSTDEAD)
610 		ip = NULL;
611 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
612 		return;
613 	if (ip != NULL) {
614 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
615 		INP_INFO_RLOCK(&udbinfo);
616 		inp = in_pcblookup_hash(&udbinfo, faddr, uh->uh_dport,
617 		    ip->ip_src, uh->uh_sport, 0, NULL);
618 		if (inp != NULL) {
619 			INP_RLOCK(inp);
620 			if (inp->inp_socket != NULL) {
621 				udp_notify(inp, inetctlerrmap[cmd]);
622 			}
623 			INP_RUNLOCK(inp);
624 		}
625 		INP_INFO_RUNLOCK(&udbinfo);
626 	} else
627 		in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd],
628 		    udp_notify);
629 }
630 
631 static int
632 udp_pcblist(SYSCTL_HANDLER_ARGS)
633 {
634 	int error, i, n;
635 	struct inpcb *inp, **inp_list;
636 	inp_gen_t gencnt;
637 	struct xinpgen xig;
638 
639 	/*
640 	 * The process of preparing the PCB list is too time-consuming and
641 	 * resource-intensive to repeat twice on every request.
642 	 */
643 	if (req->oldptr == 0) {
644 		n = udbinfo.ipi_count;
645 		req->oldidx = 2 * (sizeof xig)
646 			+ (n + n/8) * sizeof(struct xinpcb);
647 		return (0);
648 	}
649 
650 	if (req->newptr != 0)
651 		return (EPERM);
652 
653 	/*
654 	 * OK, now we're committed to doing something.
655 	 */
656 	INP_INFO_RLOCK(&udbinfo);
657 	gencnt = udbinfo.ipi_gencnt;
658 	n = udbinfo.ipi_count;
659 	INP_INFO_RUNLOCK(&udbinfo);
660 
661 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
662 		+ n * sizeof(struct xinpcb));
663 	if (error != 0)
664 		return (error);
665 
666 	xig.xig_len = sizeof xig;
667 	xig.xig_count = n;
668 	xig.xig_gen = gencnt;
669 	xig.xig_sogen = so_gencnt;
670 	error = SYSCTL_OUT(req, &xig, sizeof xig);
671 	if (error)
672 		return (error);
673 
674 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
675 	if (inp_list == 0)
676 		return (ENOMEM);
677 
678 	INP_INFO_RLOCK(&udbinfo);
679 	for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n;
680 	     inp = LIST_NEXT(inp, inp_list)) {
681 		INP_RLOCK(inp);
682 		if (inp->inp_gencnt <= gencnt &&
683 		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
684 			inp_list[i++] = inp;
685 		INP_RUNLOCK(inp);
686 	}
687 	INP_INFO_RUNLOCK(&udbinfo);
688 	n = i;
689 
690 	error = 0;
691 	for (i = 0; i < n; i++) {
692 		inp = inp_list[i];
693 		INP_RLOCK(inp);
694 		if (inp->inp_gencnt <= gencnt) {
695 			struct xinpcb xi;
696 			bzero(&xi, sizeof(xi));
697 			xi.xi_len = sizeof xi;
698 			/* XXX should avoid extra copy */
699 			bcopy(inp, &xi.xi_inp, sizeof *inp);
700 			if (inp->inp_socket)
701 				sotoxsocket(inp->inp_socket, &xi.xi_socket);
702 			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
703 			INP_RUNLOCK(inp);
704 			error = SYSCTL_OUT(req, &xi, sizeof xi);
705 		} else
706 			INP_RUNLOCK(inp);
707 	}
708 	if (!error) {
709 		/*
710 		 * Give the user an updated idea of our state.  If the
711 		 * generation differs from what we told her before, she knows
712 		 * that something happened while we were processing this
713 		 * request, and it might be necessary to retry.
714 		 */
715 		INP_INFO_RLOCK(&udbinfo);
716 		xig.xig_gen = udbinfo.ipi_gencnt;
717 		xig.xig_sogen = so_gencnt;
718 		xig.xig_count = udbinfo.ipi_count;
719 		INP_INFO_RUNLOCK(&udbinfo);
720 		error = SYSCTL_OUT(req, &xig, sizeof xig);
721 	}
722 	free(inp_list, M_TEMP);
723 	return (error);
724 }
725 
726 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
727     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
728 
729 static int
730 udp_getcred(SYSCTL_HANDLER_ARGS)
731 {
732 	struct xucred xuc;
733 	struct sockaddr_in addrs[2];
734 	struct inpcb *inp;
735 	int error;
736 
737 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
738 	if (error)
739 		return (error);
740 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
741 	if (error)
742 		return (error);
743 	INP_INFO_RLOCK(&udbinfo);
744 	inp = in_pcblookup_hash(&udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
745 				addrs[0].sin_addr, addrs[0].sin_port, 1, NULL);
746 	if (inp != NULL) {
747 		INP_RLOCK(inp);
748 		INP_INFO_RUNLOCK(&udbinfo);
749 		if (inp->inp_socket == NULL)
750 			error = ENOENT;
751 		if (error == 0)
752 			error = cr_canseesocket(req->td->td_ucred,
753 			    inp->inp_socket);
754 		if (error == 0)
755 			cru2x(inp->inp_socket->so_cred, &xuc);
756 		INP_RUNLOCK(inp);
757 	} else {
758 		INP_INFO_RUNLOCK(&udbinfo);
759 		error = ENOENT;
760 	}
761 	if (error == 0)
762 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
763 	return (error);
764 }
765 
766 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
767     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
768     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
769 
770 static int
771 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
772     struct mbuf *control, struct thread *td)
773 {
774 	struct udpiphdr *ui;
775 	int len = m->m_pkthdr.len;
776 	struct in_addr faddr, laddr;
777 	struct cmsghdr *cm;
778 	struct sockaddr_in *sin, src;
779 	int error = 0;
780 	int ipflags;
781 	u_short fport, lport;
782 	int unlock_udbinfo;
783 
784 	/*
785 	 * udp_output() may need to temporarily bind or connect the current
786 	 * inpcb.  As such, we don't know up front whether we will need the
787 	 * pcbinfo lock or not.  Do any work to decide what is needed up
788 	 * front before acquiring any locks.
789 	 */
790 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
791 		if (control)
792 			m_freem(control);
793 		m_freem(m);
794 		return (EMSGSIZE);
795 	}
796 
797 	src.sin_family = 0;
798 	if (control != NULL) {
799 		/*
800 		 * XXX: Currently, we assume all the optional information is
801 		 * stored in a single mbuf.
802 		 */
803 		if (control->m_next) {
804 			m_freem(control);
805 			m_freem(m);
806 			return (EINVAL);
807 		}
808 		for (; control->m_len > 0;
809 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
810 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
811 			cm = mtod(control, struct cmsghdr *);
812 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
813 			    || cm->cmsg_len > control->m_len) {
814 				error = EINVAL;
815 				break;
816 			}
817 			if (cm->cmsg_level != IPPROTO_IP)
818 				continue;
819 
820 			switch (cm->cmsg_type) {
821 			case IP_SENDSRCADDR:
822 				if (cm->cmsg_len !=
823 				    CMSG_LEN(sizeof(struct in_addr))) {
824 					error = EINVAL;
825 					break;
826 				}
827 				bzero(&src, sizeof(src));
828 				src.sin_family = AF_INET;
829 				src.sin_len = sizeof(src);
830 				src.sin_port = inp->inp_lport;
831 				src.sin_addr =
832 				    *(struct in_addr *)CMSG_DATA(cm);
833 				break;
834 
835 			default:
836 				error = ENOPROTOOPT;
837 				break;
838 			}
839 			if (error)
840 				break;
841 		}
842 		m_freem(control);
843 	}
844 	if (error) {
845 		m_freem(m);
846 		return (error);
847 	}
848 
849 	/*
850 	 * Depending on whether or not the application has bound or connected
851 	 * the socket, we may have to do varying levels of work.  The optimal
852 	 * case is for a connected UDP socket, as a global lock isn't
853 	 * required at all.
854 	 *
855 	 * In order to decide which we need, we require stability of the
856 	 * inpcb binding, which we ensure by acquiring a read lock on the
857 	 * inpcb.  This doesn't strictly follow the lock order, so we play
858 	 * the trylock and retry game; note that we may end up with more
859 	 * conservative locks than required the second time around, so later
860 	 * assertions have to accept that.  Further analysis of the number of
861 	 * misses under contention is required.
862 	 */
863 	sin = (struct sockaddr_in *)addr;
864 	INP_RLOCK(inp);
865 	if (sin != NULL &&
866 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
867 		INP_RUNLOCK(inp);
868 		INP_INFO_WLOCK(&udbinfo);
869 		INP_WLOCK(inp);
870 		unlock_udbinfo = 2;
871 	} else if ((sin != NULL && (
872 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
873 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
874 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
875 	    (inp->inp_lport == 0))) ||
876 	    (src.sin_family == AF_INET)) {
877 		if (!INP_INFO_TRY_RLOCK(&udbinfo)) {
878 			INP_RUNLOCK(inp);
879 			INP_INFO_RLOCK(&udbinfo);
880 			INP_RLOCK(inp);
881 		}
882 		unlock_udbinfo = 1;
883 	} else
884 		unlock_udbinfo = 0;
885 
886 	/*
887 	 * If the IP_SENDSRCADDR control message was specified, override the
888 	 * source address for this datagram.  Its use is invalidated if the
889 	 * address thus specified is incomplete or clobbers other inpcbs.
890 	 */
891 	laddr = inp->inp_laddr;
892 	lport = inp->inp_lport;
893 	if (src.sin_family == AF_INET) {
894 		INP_INFO_LOCK_ASSERT(&udbinfo);
895 		if ((lport == 0) ||
896 		    (laddr.s_addr == INADDR_ANY &&
897 		     src.sin_addr.s_addr == INADDR_ANY)) {
898 			error = EINVAL;
899 			goto release;
900 		}
901 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
902 		    &laddr.s_addr, &lport, td->td_ucred);
903 		if (error)
904 			goto release;
905 	}
906 
907 	/*
908 	 * If a UDP socket has been connected, then a local address/port will
909 	 * have been selected and bound.
910 	 *
911 	 * If a UDP socket has not been connected to, then an explicit
912 	 * destination address must be used, in which case a local
913 	 * address/port may not have been selected and bound.
914 	 */
915 	if (sin != NULL) {
916 		INP_LOCK_ASSERT(inp);
917 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
918 			error = EISCONN;
919 			goto release;
920 		}
921 
922 		/*
923 		 * Jail may rewrite the destination address, so let it do
924 		 * that before we use it.
925 		 */
926 		if (jailed(td->td_ucred))
927 			prison_remote_ip(td->td_ucred, 0,
928 			    &sin->sin_addr.s_addr);
929 
930 		/*
931 		 * If a local address or port hasn't yet been selected, or if
932 		 * the destination address needs to be rewritten due to using
933 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
934 		 * to do the heavy lifting.  Once a port is selected, we
935 		 * commit the binding back to the socket; we also commit the
936 		 * binding of the address if in jail.
937 		 *
938 		 * If we already have a valid binding and we're not
939 		 * requesting a destination address rewrite, use a fast path.
940 		 */
941 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
942 		    inp->inp_lport == 0 ||
943 		    sin->sin_addr.s_addr == INADDR_ANY ||
944 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
945 			INP_INFO_LOCK_ASSERT(&udbinfo);
946 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
947 			    &lport, &faddr.s_addr, &fport, NULL,
948 			    td->td_ucred);
949 			if (error)
950 				goto release;
951 
952 			/*
953 			 * XXXRW: Why not commit the port if the address is
954 			 * !INADDR_ANY?
955 			 */
956 			/* Commit the local port if newly assigned. */
957 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
958 			    inp->inp_lport == 0) {
959 				INP_INFO_WLOCK_ASSERT(&udbinfo);
960 				INP_WLOCK_ASSERT(inp);
961 				/*
962 				 * Remember addr if jailed, to prevent
963 				 * rebinding.
964 				 */
965 				if (jailed(td->td_ucred))
966 					inp->inp_laddr = laddr;
967 				inp->inp_lport = lport;
968 				if (in_pcbinshash(inp) != 0) {
969 					inp->inp_lport = 0;
970 					error = EAGAIN;
971 					goto release;
972 				}
973 				inp->inp_flags |= INP_ANONPORT;
974 			}
975 		} else {
976 			faddr = sin->sin_addr;
977 			fport = sin->sin_port;
978 		}
979 	} else {
980 		INP_LOCK_ASSERT(inp);
981 		faddr = inp->inp_faddr;
982 		fport = inp->inp_fport;
983 		if (faddr.s_addr == INADDR_ANY) {
984 			error = ENOTCONN;
985 			goto release;
986 		}
987 	}
988 
989 	/*
990 	 * Calculate data length and get a mbuf for UDP, IP, and possible
991 	 * link-layer headers.  Immediate slide the data pointer back forward
992 	 * since we won't use that space at this layer.
993 	 */
994 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_DONTWAIT);
995 	if (m == NULL) {
996 		error = ENOBUFS;
997 		goto release;
998 	}
999 	m->m_data += max_linkhdr;
1000 	m->m_len -= max_linkhdr;
1001 	m->m_pkthdr.len -= max_linkhdr;
1002 
1003 	/*
1004 	 * Fill in mbuf with extended UDP header and addresses and length put
1005 	 * into network format.
1006 	 */
1007 	ui = mtod(m, struct udpiphdr *);
1008 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1009 	ui->ui_pr = IPPROTO_UDP;
1010 	ui->ui_src = laddr;
1011 	ui->ui_dst = faddr;
1012 	ui->ui_sport = lport;
1013 	ui->ui_dport = fport;
1014 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1015 
1016 	/*
1017 	 * Set the Don't Fragment bit in the IP header.
1018 	 */
1019 	if (inp->inp_flags & INP_DONTFRAG) {
1020 		struct ip *ip;
1021 
1022 		ip = (struct ip *)&ui->ui_i;
1023 		ip->ip_off |= IP_DF;
1024 	}
1025 
1026 	ipflags = 0;
1027 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1028 		ipflags |= IP_ROUTETOIF;
1029 	if (inp->inp_socket->so_options & SO_BROADCAST)
1030 		ipflags |= IP_ALLOWBROADCAST;
1031 	if (inp->inp_flags & INP_ONESBCAST)
1032 		ipflags |= IP_SENDONES;
1033 
1034 #ifdef MAC
1035 	mac_inpcb_create_mbuf(inp, m);
1036 #endif
1037 
1038 	/*
1039 	 * Set up checksum and output datagram.
1040 	 */
1041 	if (udp_cksum) {
1042 		if (inp->inp_flags & INP_ONESBCAST)
1043 			faddr.s_addr = INADDR_BROADCAST;
1044 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1045 		    htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
1046 		m->m_pkthdr.csum_flags = CSUM_UDP;
1047 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1048 	} else
1049 		ui->ui_sum = 0;
1050 	((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
1051 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1052 	((struct ip *)ui)->ip_tos = inp->inp_ip_tos;	/* XXX */
1053 	udpstat.udps_opackets++;
1054 
1055 	if (unlock_udbinfo == 2)
1056 		INP_INFO_WUNLOCK(&udbinfo);
1057 	else if (unlock_udbinfo == 1)
1058 		INP_INFO_RUNLOCK(&udbinfo);
1059 	error = ip_output(m, inp->inp_options, NULL, ipflags,
1060 	    inp->inp_moptions, inp);
1061 	if (unlock_udbinfo == 2)
1062 		INP_WUNLOCK(inp);
1063 	else
1064 		INP_RUNLOCK(inp);
1065 	return (error);
1066 
1067 release:
1068 	if (unlock_udbinfo == 2) {
1069 		INP_WUNLOCK(inp);
1070 		INP_INFO_WUNLOCK(&udbinfo);
1071 	} else if (unlock_udbinfo == 1) {
1072 		INP_RUNLOCK(inp);
1073 		INP_INFO_RUNLOCK(&udbinfo);
1074 	} else
1075 		INP_RUNLOCK(inp);
1076 	m_freem(m);
1077 	return (error);
1078 }
1079 
1080 static void
1081 udp_abort(struct socket *so)
1082 {
1083 	struct inpcb *inp;
1084 
1085 	inp = sotoinpcb(so);
1086 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1087 	INP_INFO_WLOCK(&udbinfo);
1088 	INP_WLOCK(inp);
1089 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1090 		in_pcbdisconnect(inp);
1091 		inp->inp_laddr.s_addr = INADDR_ANY;
1092 		soisdisconnected(so);
1093 	}
1094 	INP_WUNLOCK(inp);
1095 	INP_INFO_WUNLOCK(&udbinfo);
1096 }
1097 
1098 static int
1099 udp_attach(struct socket *so, int proto, struct thread *td)
1100 {
1101 	struct inpcb *inp;
1102 	int error;
1103 
1104 	inp = sotoinpcb(so);
1105 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1106 	error = soreserve(so, udp_sendspace, udp_recvspace);
1107 	if (error)
1108 		return (error);
1109 	INP_INFO_WLOCK(&udbinfo);
1110 	error = in_pcballoc(so, &udbinfo);
1111 	if (error) {
1112 		INP_INFO_WUNLOCK(&udbinfo);
1113 		return (error);
1114 	}
1115 
1116 	inp = (struct inpcb *)so->so_pcb;
1117 	INP_INFO_WUNLOCK(&udbinfo);
1118 	inp->inp_vflag |= INP_IPV4;
1119 	inp->inp_ip_ttl = ip_defttl;
1120 	INP_WUNLOCK(inp);
1121 	return (0);
1122 }
1123 
1124 static int
1125 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1126 {
1127 	struct inpcb *inp;
1128 	int error;
1129 
1130 	inp = sotoinpcb(so);
1131 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1132 	INP_INFO_WLOCK(&udbinfo);
1133 	INP_WLOCK(inp);
1134 	error = in_pcbbind(inp, nam, td->td_ucred);
1135 	INP_WUNLOCK(inp);
1136 	INP_INFO_WUNLOCK(&udbinfo);
1137 	return (error);
1138 }
1139 
1140 static void
1141 udp_close(struct socket *so)
1142 {
1143 	struct inpcb *inp;
1144 
1145 	inp = sotoinpcb(so);
1146 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1147 	INP_INFO_WLOCK(&udbinfo);
1148 	INP_WLOCK(inp);
1149 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1150 		in_pcbdisconnect(inp);
1151 		inp->inp_laddr.s_addr = INADDR_ANY;
1152 		soisdisconnected(so);
1153 	}
1154 	INP_WUNLOCK(inp);
1155 	INP_INFO_WUNLOCK(&udbinfo);
1156 }
1157 
1158 static int
1159 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1160 {
1161 	struct inpcb *inp;
1162 	int error;
1163 	struct sockaddr_in *sin;
1164 
1165 	inp = sotoinpcb(so);
1166 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1167 	INP_INFO_WLOCK(&udbinfo);
1168 	INP_WLOCK(inp);
1169 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1170 		INP_WUNLOCK(inp);
1171 		INP_INFO_WUNLOCK(&udbinfo);
1172 		return (EISCONN);
1173 	}
1174 	sin = (struct sockaddr_in *)nam;
1175 	if (jailed(td->td_ucred))
1176 		prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr);
1177 	error = in_pcbconnect(inp, nam, td->td_ucred);
1178 	if (error == 0)
1179 		soisconnected(so);
1180 	INP_WUNLOCK(inp);
1181 	INP_INFO_WUNLOCK(&udbinfo);
1182 	return (error);
1183 }
1184 
1185 static void
1186 udp_detach(struct socket *so)
1187 {
1188 	struct inpcb *inp;
1189 
1190 	inp = sotoinpcb(so);
1191 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1192 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1193 	    ("udp_detach: not disconnected"));
1194 	INP_INFO_WLOCK(&udbinfo);
1195 	INP_WLOCK(inp);
1196 	in_pcbdetach(inp);
1197 	in_pcbfree(inp);
1198 	INP_INFO_WUNLOCK(&udbinfo);
1199 }
1200 
1201 static int
1202 udp_disconnect(struct socket *so)
1203 {
1204 	struct inpcb *inp;
1205 
1206 	inp = sotoinpcb(so);
1207 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1208 	INP_INFO_WLOCK(&udbinfo);
1209 	INP_WLOCK(inp);
1210 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1211 		INP_WUNLOCK(inp);
1212 		INP_INFO_WUNLOCK(&udbinfo);
1213 		return (ENOTCONN);
1214 	}
1215 
1216 	in_pcbdisconnect(inp);
1217 	inp->inp_laddr.s_addr = INADDR_ANY;
1218 	SOCK_LOCK(so);
1219 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1220 	SOCK_UNLOCK(so);
1221 	INP_WUNLOCK(inp);
1222 	INP_INFO_WUNLOCK(&udbinfo);
1223 	return (0);
1224 }
1225 
1226 static int
1227 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1228     struct mbuf *control, struct thread *td)
1229 {
1230 	struct inpcb *inp;
1231 
1232 	inp = sotoinpcb(so);
1233 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1234 	return (udp_output(inp, m, addr, control, td));
1235 }
1236 
1237 int
1238 udp_shutdown(struct socket *so)
1239 {
1240 	struct inpcb *inp;
1241 
1242 	inp = sotoinpcb(so);
1243 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1244 	INP_WLOCK(inp);
1245 	socantsendmore(so);
1246 	INP_WUNLOCK(inp);
1247 	return (0);
1248 }
1249 
1250 struct pr_usrreqs udp_usrreqs = {
1251 	.pru_abort =		udp_abort,
1252 	.pru_attach =		udp_attach,
1253 	.pru_bind =		udp_bind,
1254 	.pru_connect =		udp_connect,
1255 	.pru_control =		in_control,
1256 	.pru_detach =		udp_detach,
1257 	.pru_disconnect =	udp_disconnect,
1258 	.pru_peeraddr =		in_getpeeraddr,
1259 	.pru_send =		udp_send,
1260 	.pru_soreceive =	soreceive_dgram,
1261 	.pru_sosend =		sosend_dgram,
1262 	.pru_shutdown =		udp_shutdown,
1263 	.pru_sockaddr =		in_getsockaddr,
1264 	.pru_sosetlabel =	in_pcbsosetlabel,
1265 	.pru_close =		udp_close,
1266 };
1267