1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2008 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * Copyright (c) 2014 Kevin Lo 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Robert N. M. Watson under 10 * contract to Juniper Networks, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ipfw.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ipsec.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/domain.h> 50 #include <sys/eventhandler.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/sdt.h> 60 #include <sys/signalvar.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sx.h> 64 #include <sys/sysctl.h> 65 #include <sys/syslog.h> 66 #include <sys/systm.h> 67 68 #include <vm/uma.h> 69 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/route.h> 73 #include <net/rss_config.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip.h> 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #endif 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/ip_options.h> 88 #ifdef INET6 89 #include <netinet6/ip6_var.h> 90 #endif 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 #include <netinet/udplite.h> 94 #include <netinet/in_rss.h> 95 96 #ifdef IPSEC 97 #include <netipsec/ipsec.h> 98 #include <netipsec/esp.h> 99 #endif 100 101 #include <machine/in_cksum.h> 102 103 #include <security/mac/mac_framework.h> 104 105 /* 106 * UDP and UDP-Lite protocols implementation. 107 * Per RFC 768, August, 1980. 108 * Per RFC 3828, July, 2004. 109 */ 110 111 /* 112 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 113 * removes the only data integrity mechanism for packets and malformed 114 * packets that would otherwise be discarded due to bad checksums, and may 115 * cause problems (especially for NFS data blocks). 116 */ 117 VNET_DEFINE(int, udp_cksum) = 1; 118 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 119 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 120 121 int udp_log_in_vain = 0; 122 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 123 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 124 125 VNET_DEFINE(int, udp_blackhole) = 0; 126 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 127 &VNET_NAME(udp_blackhole), 0, 128 "Do not send port unreachables for refused connects"); 129 130 u_long udp_sendspace = 9216; /* really max datagram size */ 131 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 132 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 133 134 u_long udp_recvspace = 40 * (1024 + 135 #ifdef INET6 136 sizeof(struct sockaddr_in6) 137 #else 138 sizeof(struct sockaddr_in) 139 #endif 140 ); /* 40 1K datagrams */ 141 142 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 143 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 144 145 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 146 VNET_DEFINE(struct inpcbinfo, udbinfo); 147 VNET_DEFINE(struct inpcbhead, ulitecb); 148 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 149 static VNET_DEFINE(uma_zone_t, udpcb_zone); 150 #define V_udpcb_zone VNET(udpcb_zone) 151 152 #ifndef UDBHASHSIZE 153 #define UDBHASHSIZE 128 154 #endif 155 156 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 157 VNET_PCPUSTAT_SYSINIT(udpstat); 158 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 159 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 160 161 #ifdef VIMAGE 162 VNET_PCPUSTAT_SYSUNINIT(udpstat); 163 #endif /* VIMAGE */ 164 #ifdef INET 165 static void udp_detach(struct socket *so); 166 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 167 struct mbuf *, struct thread *); 168 #endif 169 170 #ifdef IPSEC 171 #ifdef IPSEC_NAT_T 172 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP) 173 #ifdef INET 174 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int); 175 #endif 176 #endif /* IPSEC_NAT_T */ 177 #endif /* IPSEC */ 178 179 static void 180 udp_zone_change(void *tag) 181 { 182 183 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 184 uma_zone_set_max(V_udpcb_zone, maxsockets); 185 } 186 187 static int 188 udp_inpcb_init(void *mem, int size, int flags) 189 { 190 struct inpcb *inp; 191 192 inp = mem; 193 INP_LOCK_INIT(inp, "inp", "udpinp"); 194 return (0); 195 } 196 197 static int 198 udplite_inpcb_init(void *mem, int size, int flags) 199 { 200 struct inpcb *inp; 201 202 inp = mem; 203 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 204 return (0); 205 } 206 207 void 208 udp_init(void) 209 { 210 211 /* 212 * For now default to 2-tuple UDP hashing - until the fragment 213 * reassembly code can also update the flowid. 214 * 215 * Once we can calculate the flowid that way and re-establish 216 * a 4-tuple, flip this to 4-tuple. 217 */ 218 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 219 "udp_inpcb", udp_inpcb_init, NULL, 0, 220 IPI_HASHFIELDS_2TUPLE); 221 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 222 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 223 uma_zone_set_max(V_udpcb_zone, maxsockets); 224 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 225 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 226 EVENTHANDLER_PRI_ANY); 227 } 228 229 void 230 udplite_init(void) 231 { 232 233 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 234 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL, 235 0, IPI_HASHFIELDS_2TUPLE); 236 } 237 238 /* 239 * Kernel module interface for updating udpstat. The argument is an index 240 * into udpstat treated as an array of u_long. While this encodes the 241 * general layout of udpstat into the caller, it doesn't encode its location, 242 * so that future changes to add, for example, per-CPU stats support won't 243 * cause binary compatibility problems for kernel modules. 244 */ 245 void 246 kmod_udpstat_inc(int statnum) 247 { 248 249 counter_u64_add(VNET(udpstat)[statnum], 1); 250 } 251 252 int 253 udp_newudpcb(struct inpcb *inp) 254 { 255 struct udpcb *up; 256 257 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 258 if (up == NULL) 259 return (ENOBUFS); 260 inp->inp_ppcb = up; 261 return (0); 262 } 263 264 void 265 udp_discardcb(struct udpcb *up) 266 { 267 268 uma_zfree(V_udpcb_zone, up); 269 } 270 271 #ifdef VIMAGE 272 void 273 udp_destroy(void) 274 { 275 276 in_pcbinfo_destroy(&V_udbinfo); 277 uma_zdestroy(V_udpcb_zone); 278 } 279 280 void 281 udplite_destroy(void) 282 { 283 284 in_pcbinfo_destroy(&V_ulitecbinfo); 285 } 286 #endif 287 288 #ifdef INET 289 /* 290 * Subroutine of udp_input(), which appends the provided mbuf chain to the 291 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 292 * contains the source address. If the socket ends up being an IPv6 socket, 293 * udp_append() will convert to a sockaddr_in6 before passing the address 294 * into the socket code. 295 * 296 * In the normal case udp_append() will return 0, indicating that you 297 * must unlock the inp. However if a tunneling protocol is in place we increment 298 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 299 * then decrement the reference count. If the inp_rele returns 1, indicating the 300 * inp is gone, we return that to the caller to tell them *not* to unlock 301 * the inp. In the case of multi-cast this will cause the distribution 302 * to stop (though most tunneling protocols known currently do *not* use 303 * multicast). 304 */ 305 static int 306 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 307 struct sockaddr_in *udp_in) 308 { 309 struct sockaddr *append_sa; 310 struct socket *so; 311 struct mbuf *opts = 0; 312 #ifdef INET6 313 struct sockaddr_in6 udp_in6; 314 #endif 315 struct udpcb *up; 316 317 INP_LOCK_ASSERT(inp); 318 319 /* 320 * Engage the tunneling protocol. 321 */ 322 up = intoudpcb(inp); 323 if (up->u_tun_func != NULL) { 324 in_pcbref(inp); 325 INP_RUNLOCK(inp); 326 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in, 327 up->u_tun_ctx); 328 INP_RLOCK(inp); 329 return (in_pcbrele_rlocked(inp)); 330 } 331 332 off += sizeof(struct udphdr); 333 334 #ifdef IPSEC 335 /* Check AH/ESP integrity. */ 336 if (ipsec4_in_reject(n, inp)) { 337 m_freem(n); 338 return (0); 339 } 340 #ifdef IPSEC_NAT_T 341 up = intoudpcb(inp); 342 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 343 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */ 344 n = udp4_espdecap(inp, n, off); 345 if (n == NULL) /* Consumed. */ 346 return (0); 347 } 348 #endif /* IPSEC_NAT_T */ 349 #endif /* IPSEC */ 350 #ifdef MAC 351 if (mac_inpcb_check_deliver(inp, n) != 0) { 352 m_freem(n); 353 return (0); 354 } 355 #endif /* MAC */ 356 if (inp->inp_flags & INP_CONTROLOPTS || 357 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 358 #ifdef INET6 359 if (inp->inp_vflag & INP_IPV6) 360 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 361 else 362 #endif /* INET6 */ 363 ip_savecontrol(inp, &opts, ip, n); 364 } 365 #ifdef INET6 366 if (inp->inp_vflag & INP_IPV6) { 367 bzero(&udp_in6, sizeof(udp_in6)); 368 udp_in6.sin6_len = sizeof(udp_in6); 369 udp_in6.sin6_family = AF_INET6; 370 in6_sin_2_v4mapsin6(udp_in, &udp_in6); 371 append_sa = (struct sockaddr *)&udp_in6; 372 } else 373 #endif /* INET6 */ 374 append_sa = (struct sockaddr *)udp_in; 375 m_adj(n, off); 376 377 so = inp->inp_socket; 378 SOCKBUF_LOCK(&so->so_rcv); 379 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 380 SOCKBUF_UNLOCK(&so->so_rcv); 381 m_freem(n); 382 if (opts) 383 m_freem(opts); 384 UDPSTAT_INC(udps_fullsock); 385 } else 386 sorwakeup_locked(so); 387 return (0); 388 } 389 390 int 391 udp_input(struct mbuf **mp, int *offp, int proto) 392 { 393 struct ip *ip; 394 struct udphdr *uh; 395 struct ifnet *ifp; 396 struct inpcb *inp; 397 uint16_t len, ip_len; 398 struct inpcbinfo *pcbinfo; 399 struct ip save_ip; 400 struct sockaddr_in udp_in; 401 struct mbuf *m; 402 struct m_tag *fwd_tag; 403 int cscov_partial, iphlen; 404 405 m = *mp; 406 iphlen = *offp; 407 ifp = m->m_pkthdr.rcvif; 408 *mp = NULL; 409 UDPSTAT_INC(udps_ipackets); 410 411 /* 412 * Strip IP options, if any; should skip this, make available to 413 * user, and use on returned packets, but we don't yet have a way to 414 * check the checksum with options still present. 415 */ 416 if (iphlen > sizeof (struct ip)) { 417 ip_stripoptions(m); 418 iphlen = sizeof(struct ip); 419 } 420 421 /* 422 * Get IP and UDP header together in first mbuf. 423 */ 424 ip = mtod(m, struct ip *); 425 if (m->m_len < iphlen + sizeof(struct udphdr)) { 426 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 427 UDPSTAT_INC(udps_hdrops); 428 return (IPPROTO_DONE); 429 } 430 ip = mtod(m, struct ip *); 431 } 432 uh = (struct udphdr *)((caddr_t)ip + iphlen); 433 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 434 435 /* 436 * Destination port of 0 is illegal, based on RFC768. 437 */ 438 if (uh->uh_dport == 0) 439 goto badunlocked; 440 441 /* 442 * Construct sockaddr format source address. Stuff source address 443 * and datagram in user buffer. 444 */ 445 bzero(&udp_in, sizeof(udp_in)); 446 udp_in.sin_len = sizeof(udp_in); 447 udp_in.sin_family = AF_INET; 448 udp_in.sin_port = uh->uh_sport; 449 udp_in.sin_addr = ip->ip_src; 450 451 /* 452 * Make mbuf data length reflect UDP length. If not enough data to 453 * reflect UDP length, drop. 454 */ 455 len = ntohs((u_short)uh->uh_ulen); 456 ip_len = ntohs(ip->ip_len) - iphlen; 457 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 458 /* Zero means checksum over the complete packet. */ 459 if (len == 0) 460 len = ip_len; 461 cscov_partial = 0; 462 } 463 if (ip_len != len) { 464 if (len > ip_len || len < sizeof(struct udphdr)) { 465 UDPSTAT_INC(udps_badlen); 466 goto badunlocked; 467 } 468 if (proto == IPPROTO_UDP) 469 m_adj(m, len - ip_len); 470 } 471 472 /* 473 * Save a copy of the IP header in case we want restore it for 474 * sending an ICMP error message in response. 475 */ 476 if (!V_udp_blackhole) 477 save_ip = *ip; 478 else 479 memset(&save_ip, 0, sizeof(save_ip)); 480 481 /* 482 * Checksum extended UDP header and data. 483 */ 484 if (uh->uh_sum) { 485 u_short uh_sum; 486 487 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 488 !cscov_partial) { 489 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 490 uh_sum = m->m_pkthdr.csum_data; 491 else 492 uh_sum = in_pseudo(ip->ip_src.s_addr, 493 ip->ip_dst.s_addr, htonl((u_short)len + 494 m->m_pkthdr.csum_data + proto)); 495 uh_sum ^= 0xffff; 496 } else { 497 char b[9]; 498 499 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 500 bzero(((struct ipovly *)ip)->ih_x1, 9); 501 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 502 uh->uh_ulen : htons(ip_len); 503 uh_sum = in_cksum(m, len + sizeof (struct ip)); 504 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 505 } 506 if (uh_sum) { 507 UDPSTAT_INC(udps_badsum); 508 m_freem(m); 509 return (IPPROTO_DONE); 510 } 511 } else { 512 if (proto == IPPROTO_UDP) { 513 UDPSTAT_INC(udps_nosum); 514 } else { 515 /* UDPLite requires a checksum */ 516 /* XXX: What is the right UDPLite MIB counter here? */ 517 m_freem(m); 518 return (IPPROTO_DONE); 519 } 520 } 521 522 pcbinfo = udp_get_inpcbinfo(proto); 523 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 524 in_broadcast(ip->ip_dst, ifp)) { 525 struct inpcb *last; 526 struct inpcbhead *pcblist; 527 struct ip_moptions *imo; 528 529 INP_INFO_RLOCK(pcbinfo); 530 pcblist = udp_get_pcblist(proto); 531 last = NULL; 532 LIST_FOREACH(inp, pcblist, inp_list) { 533 if (inp->inp_lport != uh->uh_dport) 534 continue; 535 #ifdef INET6 536 if ((inp->inp_vflag & INP_IPV4) == 0) 537 continue; 538 #endif 539 if (inp->inp_laddr.s_addr != INADDR_ANY && 540 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 541 continue; 542 if (inp->inp_faddr.s_addr != INADDR_ANY && 543 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 544 continue; 545 if (inp->inp_fport != 0 && 546 inp->inp_fport != uh->uh_sport) 547 continue; 548 549 INP_RLOCK(inp); 550 551 /* 552 * XXXRW: Because we weren't holding either the inpcb 553 * or the hash lock when we checked for a match 554 * before, we should probably recheck now that the 555 * inpcb lock is held. 556 */ 557 558 /* 559 * Handle socket delivery policy for any-source 560 * and source-specific multicast. [RFC3678] 561 */ 562 imo = inp->inp_moptions; 563 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 564 struct sockaddr_in group; 565 int blocked; 566 if (imo == NULL) { 567 INP_RUNLOCK(inp); 568 continue; 569 } 570 bzero(&group, sizeof(struct sockaddr_in)); 571 group.sin_len = sizeof(struct sockaddr_in); 572 group.sin_family = AF_INET; 573 group.sin_addr = ip->ip_dst; 574 575 blocked = imo_multi_filter(imo, ifp, 576 (struct sockaddr *)&group, 577 (struct sockaddr *)&udp_in); 578 if (blocked != MCAST_PASS) { 579 if (blocked == MCAST_NOTGMEMBER) 580 IPSTAT_INC(ips_notmember); 581 if (blocked == MCAST_NOTSMEMBER || 582 blocked == MCAST_MUTED) 583 UDPSTAT_INC(udps_filtermcast); 584 INP_RUNLOCK(inp); 585 continue; 586 } 587 } 588 if (last != NULL) { 589 struct mbuf *n; 590 591 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) { 592 UDP_PROBE(receive, NULL, last, ip, 593 last, uh); 594 if (udp_append(last, ip, n, iphlen, 595 &udp_in)) { 596 goto inp_lost; 597 } 598 } 599 INP_RUNLOCK(last); 600 } 601 last = inp; 602 /* 603 * Don't look for additional matches if this one does 604 * not have either the SO_REUSEPORT or SO_REUSEADDR 605 * socket options set. This heuristic avoids 606 * searching through all pcbs in the common case of a 607 * non-shared port. It assumes that an application 608 * will never clear these options after setting them. 609 */ 610 if ((last->inp_socket->so_options & 611 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 612 break; 613 } 614 615 if (last == NULL) { 616 /* 617 * No matching pcb found; discard datagram. (No need 618 * to send an ICMP Port Unreachable for a broadcast 619 * or multicast datgram.) 620 */ 621 UDPSTAT_INC(udps_noportbcast); 622 if (inp) 623 INP_RUNLOCK(inp); 624 INP_INFO_RUNLOCK(pcbinfo); 625 goto badunlocked; 626 } 627 UDP_PROBE(receive, NULL, last, ip, last, uh); 628 if (udp_append(last, ip, m, iphlen, &udp_in) == 0) 629 INP_RUNLOCK(last); 630 inp_lost: 631 INP_INFO_RUNLOCK(pcbinfo); 632 return (IPPROTO_DONE); 633 } 634 635 /* 636 * Locate pcb for datagram. 637 */ 638 639 /* 640 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 641 */ 642 if ((m->m_flags & M_IP_NEXTHOP) && 643 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 644 struct sockaddr_in *next_hop; 645 646 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 647 648 /* 649 * Transparently forwarded. Pretend to be the destination. 650 * Already got one like this? 651 */ 652 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 653 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 654 if (!inp) { 655 /* 656 * It's new. Try to find the ambushing socket. 657 * Because we've rewritten the destination address, 658 * any hardware-generated hash is ignored. 659 */ 660 inp = in_pcblookup(pcbinfo, ip->ip_src, 661 uh->uh_sport, next_hop->sin_addr, 662 next_hop->sin_port ? htons(next_hop->sin_port) : 663 uh->uh_dport, INPLOOKUP_WILDCARD | 664 INPLOOKUP_RLOCKPCB, ifp); 665 } 666 /* Remove the tag from the packet. We don't need it anymore. */ 667 m_tag_delete(m, fwd_tag); 668 m->m_flags &= ~M_IP_NEXTHOP; 669 } else 670 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 671 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 672 INPLOOKUP_RLOCKPCB, ifp, m); 673 if (inp == NULL) { 674 if (udp_log_in_vain) { 675 char buf[4*sizeof "123"]; 676 677 strcpy(buf, inet_ntoa(ip->ip_dst)); 678 log(LOG_INFO, 679 "Connection attempt to UDP %s:%d from %s:%d\n", 680 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), 681 ntohs(uh->uh_sport)); 682 } 683 UDPSTAT_INC(udps_noport); 684 if (m->m_flags & (M_BCAST | M_MCAST)) { 685 UDPSTAT_INC(udps_noportbcast); 686 goto badunlocked; 687 } 688 if (V_udp_blackhole) 689 goto badunlocked; 690 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 691 goto badunlocked; 692 *ip = save_ip; 693 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 694 return (IPPROTO_DONE); 695 } 696 697 /* 698 * Check the minimum TTL for socket. 699 */ 700 INP_RLOCK_ASSERT(inp); 701 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 702 INP_RUNLOCK(inp); 703 m_freem(m); 704 return (IPPROTO_DONE); 705 } 706 if (cscov_partial) { 707 struct udpcb *up; 708 709 up = intoudpcb(inp); 710 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 711 INP_RUNLOCK(inp); 712 m_freem(m); 713 return (IPPROTO_DONE); 714 } 715 } 716 717 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 718 if (udp_append(inp, ip, m, iphlen, &udp_in) == 0) 719 INP_RUNLOCK(inp); 720 return (IPPROTO_DONE); 721 722 badunlocked: 723 m_freem(m); 724 return (IPPROTO_DONE); 725 } 726 #endif /* INET */ 727 728 /* 729 * Notify a udp user of an asynchronous error; just wake up so that they can 730 * collect error status. 731 */ 732 struct inpcb * 733 udp_notify(struct inpcb *inp, int errno) 734 { 735 736 /* 737 * While udp_ctlinput() always calls udp_notify() with a read lock 738 * when invoking it directly, in_pcbnotifyall() currently uses write 739 * locks due to sharing code with TCP. For now, accept either a read 740 * or a write lock, but a read lock is sufficient. 741 */ 742 INP_LOCK_ASSERT(inp); 743 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 744 errno == EHOSTDOWN) && inp->inp_route.ro_rt) { 745 RTFREE(inp->inp_route.ro_rt); 746 inp->inp_route.ro_rt = (struct rtentry *)NULL; 747 } 748 749 inp->inp_socket->so_error = errno; 750 sorwakeup(inp->inp_socket); 751 sowwakeup(inp->inp_socket); 752 return (inp); 753 } 754 755 #ifdef INET 756 static void 757 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 758 struct inpcbinfo *pcbinfo) 759 { 760 struct ip *ip = vip; 761 struct udphdr *uh; 762 struct in_addr faddr; 763 struct inpcb *inp; 764 765 faddr = ((struct sockaddr_in *)sa)->sin_addr; 766 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 767 return; 768 769 if (PRC_IS_REDIRECT(cmd)) { 770 /* signal EHOSTDOWN, as it flushes the cached route */ 771 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); 772 return; 773 } 774 775 /* 776 * Hostdead is ugly because it goes linearly through all PCBs. 777 * 778 * XXX: We never get this from ICMP, otherwise it makes an excellent 779 * DoS attack on machines with many connections. 780 */ 781 if (cmd == PRC_HOSTDEAD) 782 ip = NULL; 783 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 784 return; 785 if (ip != NULL) { 786 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 787 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 788 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); 789 if (inp != NULL) { 790 INP_RLOCK_ASSERT(inp); 791 if (inp->inp_socket != NULL) { 792 udp_notify(inp, inetctlerrmap[cmd]); 793 } 794 INP_RUNLOCK(inp); 795 } 796 } else 797 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 798 udp_notify); 799 } 800 void 801 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 802 { 803 804 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 805 } 806 807 void 808 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 809 { 810 811 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 812 } 813 #endif /* INET */ 814 815 static int 816 udp_pcblist(SYSCTL_HANDLER_ARGS) 817 { 818 int error, i, n; 819 struct inpcb *inp, **inp_list; 820 inp_gen_t gencnt; 821 struct xinpgen xig; 822 823 /* 824 * The process of preparing the PCB list is too time-consuming and 825 * resource-intensive to repeat twice on every request. 826 */ 827 if (req->oldptr == 0) { 828 n = V_udbinfo.ipi_count; 829 n += imax(n / 8, 10); 830 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 831 return (0); 832 } 833 834 if (req->newptr != 0) 835 return (EPERM); 836 837 /* 838 * OK, now we're committed to doing something. 839 */ 840 INP_INFO_RLOCK(&V_udbinfo); 841 gencnt = V_udbinfo.ipi_gencnt; 842 n = V_udbinfo.ipi_count; 843 INP_INFO_RUNLOCK(&V_udbinfo); 844 845 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 846 + n * sizeof(struct xinpcb)); 847 if (error != 0) 848 return (error); 849 850 xig.xig_len = sizeof xig; 851 xig.xig_count = n; 852 xig.xig_gen = gencnt; 853 xig.xig_sogen = so_gencnt; 854 error = SYSCTL_OUT(req, &xig, sizeof xig); 855 if (error) 856 return (error); 857 858 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 859 if (inp_list == 0) 860 return (ENOMEM); 861 862 INP_INFO_RLOCK(&V_udbinfo); 863 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 864 inp = LIST_NEXT(inp, inp_list)) { 865 INP_WLOCK(inp); 866 if (inp->inp_gencnt <= gencnt && 867 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 868 in_pcbref(inp); 869 inp_list[i++] = inp; 870 } 871 INP_WUNLOCK(inp); 872 } 873 INP_INFO_RUNLOCK(&V_udbinfo); 874 n = i; 875 876 error = 0; 877 for (i = 0; i < n; i++) { 878 inp = inp_list[i]; 879 INP_RLOCK(inp); 880 if (inp->inp_gencnt <= gencnt) { 881 struct xinpcb xi; 882 883 bzero(&xi, sizeof(xi)); 884 xi.xi_len = sizeof xi; 885 /* XXX should avoid extra copy */ 886 bcopy(inp, &xi.xi_inp, sizeof *inp); 887 if (inp->inp_socket) 888 sotoxsocket(inp->inp_socket, &xi.xi_socket); 889 xi.xi_inp.inp_gencnt = inp->inp_gencnt; 890 INP_RUNLOCK(inp); 891 error = SYSCTL_OUT(req, &xi, sizeof xi); 892 } else 893 INP_RUNLOCK(inp); 894 } 895 INP_INFO_WLOCK(&V_udbinfo); 896 for (i = 0; i < n; i++) { 897 inp = inp_list[i]; 898 INP_RLOCK(inp); 899 if (!in_pcbrele_rlocked(inp)) 900 INP_RUNLOCK(inp); 901 } 902 INP_INFO_WUNLOCK(&V_udbinfo); 903 904 if (!error) { 905 /* 906 * Give the user an updated idea of our state. If the 907 * generation differs from what we told her before, she knows 908 * that something happened while we were processing this 909 * request, and it might be necessary to retry. 910 */ 911 INP_INFO_RLOCK(&V_udbinfo); 912 xig.xig_gen = V_udbinfo.ipi_gencnt; 913 xig.xig_sogen = so_gencnt; 914 xig.xig_count = V_udbinfo.ipi_count; 915 INP_INFO_RUNLOCK(&V_udbinfo); 916 error = SYSCTL_OUT(req, &xig, sizeof xig); 917 } 918 free(inp_list, M_TEMP); 919 return (error); 920 } 921 922 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 923 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 924 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 925 926 #ifdef INET 927 static int 928 udp_getcred(SYSCTL_HANDLER_ARGS) 929 { 930 struct xucred xuc; 931 struct sockaddr_in addrs[2]; 932 struct inpcb *inp; 933 int error; 934 935 error = priv_check(req->td, PRIV_NETINET_GETCRED); 936 if (error) 937 return (error); 938 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 939 if (error) 940 return (error); 941 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 942 addrs[0].sin_addr, addrs[0].sin_port, 943 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 944 if (inp != NULL) { 945 INP_RLOCK_ASSERT(inp); 946 if (inp->inp_socket == NULL) 947 error = ENOENT; 948 if (error == 0) 949 error = cr_canseeinpcb(req->td->td_ucred, inp); 950 if (error == 0) 951 cru2x(inp->inp_cred, &xuc); 952 INP_RUNLOCK(inp); 953 } else 954 error = ENOENT; 955 if (error == 0) 956 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 957 return (error); 958 } 959 960 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 961 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 962 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 963 #endif /* INET */ 964 965 int 966 udp_ctloutput(struct socket *so, struct sockopt *sopt) 967 { 968 struct inpcb *inp; 969 struct udpcb *up; 970 int isudplite, error, optval; 971 972 error = 0; 973 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 974 inp = sotoinpcb(so); 975 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 976 INP_WLOCK(inp); 977 if (sopt->sopt_level != so->so_proto->pr_protocol) { 978 #ifdef INET6 979 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 980 INP_WUNLOCK(inp); 981 error = ip6_ctloutput(so, sopt); 982 } 983 #endif 984 #if defined(INET) && defined(INET6) 985 else 986 #endif 987 #ifdef INET 988 { 989 INP_WUNLOCK(inp); 990 error = ip_ctloutput(so, sopt); 991 } 992 #endif 993 return (error); 994 } 995 996 switch (sopt->sopt_dir) { 997 case SOPT_SET: 998 switch (sopt->sopt_name) { 999 case UDP_ENCAP: 1000 INP_WUNLOCK(inp); 1001 error = sooptcopyin(sopt, &optval, sizeof optval, 1002 sizeof optval); 1003 if (error) 1004 break; 1005 inp = sotoinpcb(so); 1006 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1007 INP_WLOCK(inp); 1008 #ifdef IPSEC_NAT_T 1009 up = intoudpcb(inp); 1010 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1011 #endif 1012 switch (optval) { 1013 case 0: 1014 /* Clear all UDP encap. */ 1015 #ifdef IPSEC_NAT_T 1016 up->u_flags &= ~UF_ESPINUDP_ALL; 1017 #endif 1018 break; 1019 #ifdef IPSEC_NAT_T 1020 case UDP_ENCAP_ESPINUDP: 1021 case UDP_ENCAP_ESPINUDP_NON_IKE: 1022 up->u_flags &= ~UF_ESPINUDP_ALL; 1023 if (optval == UDP_ENCAP_ESPINUDP) 1024 up->u_flags |= UF_ESPINUDP; 1025 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE) 1026 up->u_flags |= UF_ESPINUDP_NON_IKE; 1027 break; 1028 #endif 1029 default: 1030 error = EINVAL; 1031 break; 1032 } 1033 INP_WUNLOCK(inp); 1034 break; 1035 case UDPLITE_SEND_CSCOV: 1036 case UDPLITE_RECV_CSCOV: 1037 if (!isudplite) { 1038 INP_WUNLOCK(inp); 1039 error = ENOPROTOOPT; 1040 break; 1041 } 1042 INP_WUNLOCK(inp); 1043 error = sooptcopyin(sopt, &optval, sizeof(optval), 1044 sizeof(optval)); 1045 if (error != 0) 1046 break; 1047 inp = sotoinpcb(so); 1048 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1049 INP_WLOCK(inp); 1050 up = intoudpcb(inp); 1051 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1052 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1053 INP_WUNLOCK(inp); 1054 error = EINVAL; 1055 break; 1056 } 1057 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1058 up->u_txcslen = optval; 1059 else 1060 up->u_rxcslen = optval; 1061 INP_WUNLOCK(inp); 1062 break; 1063 default: 1064 INP_WUNLOCK(inp); 1065 error = ENOPROTOOPT; 1066 break; 1067 } 1068 break; 1069 case SOPT_GET: 1070 switch (sopt->sopt_name) { 1071 #ifdef IPSEC_NAT_T 1072 case UDP_ENCAP: 1073 up = intoudpcb(inp); 1074 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1075 optval = up->u_flags & UF_ESPINUDP_ALL; 1076 INP_WUNLOCK(inp); 1077 error = sooptcopyout(sopt, &optval, sizeof optval); 1078 break; 1079 #endif 1080 case UDPLITE_SEND_CSCOV: 1081 case UDPLITE_RECV_CSCOV: 1082 if (!isudplite) { 1083 INP_WUNLOCK(inp); 1084 error = ENOPROTOOPT; 1085 break; 1086 } 1087 up = intoudpcb(inp); 1088 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1089 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1090 optval = up->u_txcslen; 1091 else 1092 optval = up->u_rxcslen; 1093 INP_WUNLOCK(inp); 1094 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1095 break; 1096 default: 1097 INP_WUNLOCK(inp); 1098 error = ENOPROTOOPT; 1099 break; 1100 } 1101 break; 1102 } 1103 return (error); 1104 } 1105 1106 #ifdef INET 1107 #define UH_WLOCKED 2 1108 #define UH_RLOCKED 1 1109 #define UH_UNLOCKED 0 1110 static int 1111 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1112 struct mbuf *control, struct thread *td) 1113 { 1114 struct udpiphdr *ui; 1115 int len = m->m_pkthdr.len; 1116 struct in_addr faddr, laddr; 1117 struct cmsghdr *cm; 1118 struct inpcbinfo *pcbinfo; 1119 struct sockaddr_in *sin, src; 1120 int cscov_partial = 0; 1121 int error = 0; 1122 int ipflags; 1123 u_short fport, lport; 1124 int unlock_udbinfo, unlock_inp; 1125 u_char tos; 1126 uint8_t pr; 1127 uint16_t cscov = 0; 1128 uint32_t flowid = 0; 1129 uint8_t flowtype = M_HASHTYPE_NONE; 1130 1131 /* 1132 * udp_output() may need to temporarily bind or connect the current 1133 * inpcb. As such, we don't know up front whether we will need the 1134 * pcbinfo lock or not. Do any work to decide what is needed up 1135 * front before acquiring any locks. 1136 */ 1137 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1138 if (control) 1139 m_freem(control); 1140 m_freem(m); 1141 return (EMSGSIZE); 1142 } 1143 1144 src.sin_family = 0; 1145 sin = (struct sockaddr_in *)addr; 1146 if (sin == NULL || 1147 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1148 INP_WLOCK(inp); 1149 unlock_inp = UH_WLOCKED; 1150 } else { 1151 INP_RLOCK(inp); 1152 unlock_inp = UH_RLOCKED; 1153 } 1154 tos = inp->inp_ip_tos; 1155 if (control != NULL) { 1156 /* 1157 * XXX: Currently, we assume all the optional information is 1158 * stored in a single mbuf. 1159 */ 1160 if (control->m_next) { 1161 if (unlock_inp == UH_WLOCKED) 1162 INP_WUNLOCK(inp); 1163 else 1164 INP_RUNLOCK(inp); 1165 m_freem(control); 1166 m_freem(m); 1167 return (EINVAL); 1168 } 1169 for (; control->m_len > 0; 1170 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1171 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1172 cm = mtod(control, struct cmsghdr *); 1173 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1174 || cm->cmsg_len > control->m_len) { 1175 error = EINVAL; 1176 break; 1177 } 1178 if (cm->cmsg_level != IPPROTO_IP) 1179 continue; 1180 1181 switch (cm->cmsg_type) { 1182 case IP_SENDSRCADDR: 1183 if (cm->cmsg_len != 1184 CMSG_LEN(sizeof(struct in_addr))) { 1185 error = EINVAL; 1186 break; 1187 } 1188 bzero(&src, sizeof(src)); 1189 src.sin_family = AF_INET; 1190 src.sin_len = sizeof(src); 1191 src.sin_port = inp->inp_lport; 1192 src.sin_addr = 1193 *(struct in_addr *)CMSG_DATA(cm); 1194 break; 1195 1196 case IP_TOS: 1197 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1198 error = EINVAL; 1199 break; 1200 } 1201 tos = *(u_char *)CMSG_DATA(cm); 1202 break; 1203 1204 case IP_FLOWID: 1205 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1206 error = EINVAL; 1207 break; 1208 } 1209 flowid = *(uint32_t *) CMSG_DATA(cm); 1210 break; 1211 1212 case IP_FLOWTYPE: 1213 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1214 error = EINVAL; 1215 break; 1216 } 1217 flowtype = *(uint32_t *) CMSG_DATA(cm); 1218 break; 1219 1220 #ifdef RSS 1221 case IP_RSSBUCKETID: 1222 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1223 error = EINVAL; 1224 break; 1225 } 1226 /* This is just a placeholder for now */ 1227 break; 1228 #endif /* RSS */ 1229 default: 1230 error = ENOPROTOOPT; 1231 break; 1232 } 1233 if (error) 1234 break; 1235 } 1236 m_freem(control); 1237 } 1238 if (error) { 1239 if (unlock_inp == UH_WLOCKED) 1240 INP_WUNLOCK(inp); 1241 else 1242 INP_RUNLOCK(inp); 1243 m_freem(m); 1244 return (error); 1245 } 1246 1247 /* 1248 * Depending on whether or not the application has bound or connected 1249 * the socket, we may have to do varying levels of work. The optimal 1250 * case is for a connected UDP socket, as a global lock isn't 1251 * required at all. 1252 * 1253 * In order to decide which we need, we require stability of the 1254 * inpcb binding, which we ensure by acquiring a read lock on the 1255 * inpcb. This doesn't strictly follow the lock order, so we play 1256 * the trylock and retry game; note that we may end up with more 1257 * conservative locks than required the second time around, so later 1258 * assertions have to accept that. Further analysis of the number of 1259 * misses under contention is required. 1260 * 1261 * XXXRW: Check that hash locking update here is correct. 1262 */ 1263 pr = inp->inp_socket->so_proto->pr_protocol; 1264 pcbinfo = udp_get_inpcbinfo(pr); 1265 sin = (struct sockaddr_in *)addr; 1266 if (sin != NULL && 1267 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1268 INP_HASH_WLOCK(pcbinfo); 1269 unlock_udbinfo = UH_WLOCKED; 1270 } else if ((sin != NULL && ( 1271 (sin->sin_addr.s_addr == INADDR_ANY) || 1272 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1273 (inp->inp_laddr.s_addr == INADDR_ANY) || 1274 (inp->inp_lport == 0))) || 1275 (src.sin_family == AF_INET)) { 1276 INP_HASH_RLOCK(pcbinfo); 1277 unlock_udbinfo = UH_RLOCKED; 1278 } else 1279 unlock_udbinfo = UH_UNLOCKED; 1280 1281 /* 1282 * If the IP_SENDSRCADDR control message was specified, override the 1283 * source address for this datagram. Its use is invalidated if the 1284 * address thus specified is incomplete or clobbers other inpcbs. 1285 */ 1286 laddr = inp->inp_laddr; 1287 lport = inp->inp_lport; 1288 if (src.sin_family == AF_INET) { 1289 INP_HASH_LOCK_ASSERT(pcbinfo); 1290 if ((lport == 0) || 1291 (laddr.s_addr == INADDR_ANY && 1292 src.sin_addr.s_addr == INADDR_ANY)) { 1293 error = EINVAL; 1294 goto release; 1295 } 1296 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1297 &laddr.s_addr, &lport, td->td_ucred); 1298 if (error) 1299 goto release; 1300 } 1301 1302 /* 1303 * If a UDP socket has been connected, then a local address/port will 1304 * have been selected and bound. 1305 * 1306 * If a UDP socket has not been connected to, then an explicit 1307 * destination address must be used, in which case a local 1308 * address/port may not have been selected and bound. 1309 */ 1310 if (sin != NULL) { 1311 INP_LOCK_ASSERT(inp); 1312 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1313 error = EISCONN; 1314 goto release; 1315 } 1316 1317 /* 1318 * Jail may rewrite the destination address, so let it do 1319 * that before we use it. 1320 */ 1321 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1322 if (error) 1323 goto release; 1324 1325 /* 1326 * If a local address or port hasn't yet been selected, or if 1327 * the destination address needs to be rewritten due to using 1328 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1329 * to do the heavy lifting. Once a port is selected, we 1330 * commit the binding back to the socket; we also commit the 1331 * binding of the address if in jail. 1332 * 1333 * If we already have a valid binding and we're not 1334 * requesting a destination address rewrite, use a fast path. 1335 */ 1336 if (inp->inp_laddr.s_addr == INADDR_ANY || 1337 inp->inp_lport == 0 || 1338 sin->sin_addr.s_addr == INADDR_ANY || 1339 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1340 INP_HASH_LOCK_ASSERT(pcbinfo); 1341 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1342 &lport, &faddr.s_addr, &fport, NULL, 1343 td->td_ucred); 1344 if (error) 1345 goto release; 1346 1347 /* 1348 * XXXRW: Why not commit the port if the address is 1349 * !INADDR_ANY? 1350 */ 1351 /* Commit the local port if newly assigned. */ 1352 if (inp->inp_laddr.s_addr == INADDR_ANY && 1353 inp->inp_lport == 0) { 1354 INP_WLOCK_ASSERT(inp); 1355 INP_HASH_WLOCK_ASSERT(pcbinfo); 1356 /* 1357 * Remember addr if jailed, to prevent 1358 * rebinding. 1359 */ 1360 if (prison_flag(td->td_ucred, PR_IP4)) 1361 inp->inp_laddr = laddr; 1362 inp->inp_lport = lport; 1363 if (in_pcbinshash(inp) != 0) { 1364 inp->inp_lport = 0; 1365 error = EAGAIN; 1366 goto release; 1367 } 1368 inp->inp_flags |= INP_ANONPORT; 1369 } 1370 } else { 1371 faddr = sin->sin_addr; 1372 fport = sin->sin_port; 1373 } 1374 } else { 1375 INP_LOCK_ASSERT(inp); 1376 faddr = inp->inp_faddr; 1377 fport = inp->inp_fport; 1378 if (faddr.s_addr == INADDR_ANY) { 1379 error = ENOTCONN; 1380 goto release; 1381 } 1382 } 1383 1384 /* 1385 * Calculate data length and get a mbuf for UDP, IP, and possible 1386 * link-layer headers. Immediate slide the data pointer back forward 1387 * since we won't use that space at this layer. 1388 */ 1389 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1390 if (m == NULL) { 1391 error = ENOBUFS; 1392 goto release; 1393 } 1394 m->m_data += max_linkhdr; 1395 m->m_len -= max_linkhdr; 1396 m->m_pkthdr.len -= max_linkhdr; 1397 1398 /* 1399 * Fill in mbuf with extended UDP header and addresses and length put 1400 * into network format. 1401 */ 1402 ui = mtod(m, struct udpiphdr *); 1403 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1404 ui->ui_pr = pr; 1405 ui->ui_src = laddr; 1406 ui->ui_dst = faddr; 1407 ui->ui_sport = lport; 1408 ui->ui_dport = fport; 1409 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1410 if (pr == IPPROTO_UDPLITE) { 1411 struct udpcb *up; 1412 uint16_t plen; 1413 1414 up = intoudpcb(inp); 1415 cscov = up->u_txcslen; 1416 plen = (u_short)len + sizeof(struct udphdr); 1417 if (cscov >= plen) 1418 cscov = 0; 1419 ui->ui_len = htons(plen); 1420 ui->ui_ulen = htons(cscov); 1421 /* 1422 * For UDP-Lite, checksum coverage length of zero means 1423 * the entire UDPLite packet is covered by the checksum. 1424 */ 1425 cscov_partial = (cscov == 0) ? 0 : 1; 1426 } else 1427 ui->ui_v = IPVERSION << 4; 1428 1429 /* 1430 * Set the Don't Fragment bit in the IP header. 1431 */ 1432 if (inp->inp_flags & INP_DONTFRAG) { 1433 struct ip *ip; 1434 1435 ip = (struct ip *)&ui->ui_i; 1436 ip->ip_off |= htons(IP_DF); 1437 } 1438 1439 ipflags = 0; 1440 if (inp->inp_socket->so_options & SO_DONTROUTE) 1441 ipflags |= IP_ROUTETOIF; 1442 if (inp->inp_socket->so_options & SO_BROADCAST) 1443 ipflags |= IP_ALLOWBROADCAST; 1444 if (inp->inp_flags & INP_ONESBCAST) 1445 ipflags |= IP_SENDONES; 1446 1447 #ifdef MAC 1448 mac_inpcb_create_mbuf(inp, m); 1449 #endif 1450 1451 /* 1452 * Set up checksum and output datagram. 1453 */ 1454 ui->ui_sum = 0; 1455 if (pr == IPPROTO_UDPLITE) { 1456 if (inp->inp_flags & INP_ONESBCAST) 1457 faddr.s_addr = INADDR_BROADCAST; 1458 if (cscov_partial) { 1459 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1460 ui->ui_sum = 0xffff; 1461 } else { 1462 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1463 ui->ui_sum = 0xffff; 1464 } 1465 } else if (V_udp_cksum) { 1466 if (inp->inp_flags & INP_ONESBCAST) 1467 faddr.s_addr = INADDR_BROADCAST; 1468 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1469 htons((u_short)len + sizeof(struct udphdr) + pr)); 1470 m->m_pkthdr.csum_flags = CSUM_UDP; 1471 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1472 } 1473 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1474 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1475 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1476 UDPSTAT_INC(udps_opackets); 1477 1478 /* 1479 * Setup flowid / RSS information for outbound socket. 1480 * 1481 * Once the UDP code decides to set a flowid some other way, 1482 * this allows the flowid to be overridden by userland. 1483 */ 1484 if (flowtype != M_HASHTYPE_NONE) { 1485 m->m_pkthdr.flowid = flowid; 1486 M_HASHTYPE_SET(m, flowtype); 1487 #ifdef RSS 1488 } else { 1489 uint32_t hash_val, hash_type; 1490 /* 1491 * Calculate an appropriate RSS hash for UDP and 1492 * UDP Lite. 1493 * 1494 * The called function will take care of figuring out 1495 * whether a 2-tuple or 4-tuple hash is required based 1496 * on the currently configured scheme. 1497 * 1498 * Later later on connected socket values should be 1499 * cached in the inpcb and reused, rather than constantly 1500 * re-calculating it. 1501 * 1502 * UDP Lite is a different protocol number and will 1503 * likely end up being hashed as a 2-tuple until 1504 * RSS / NICs grow UDP Lite protocol awareness. 1505 */ 1506 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, 1507 pr, &hash_val, &hash_type) == 0) { 1508 m->m_pkthdr.flowid = hash_val; 1509 M_HASHTYPE_SET(m, hash_type); 1510 } 1511 #endif 1512 } 1513 1514 #ifdef RSS 1515 /* 1516 * Don't override with the inp cached flowid value. 1517 * 1518 * Depending upon the kind of send being done, the inp 1519 * flowid/flowtype values may actually not be appropriate 1520 * for this particular socket send. 1521 * 1522 * We should either leave the flowid at zero (which is what is 1523 * currently done) or set it to some software generated 1524 * hash value based on the packet contents. 1525 */ 1526 ipflags |= IP_NODEFAULTFLOWID; 1527 #endif /* RSS */ 1528 1529 if (unlock_udbinfo == UH_WLOCKED) 1530 INP_HASH_WUNLOCK(pcbinfo); 1531 else if (unlock_udbinfo == UH_RLOCKED) 1532 INP_HASH_RUNLOCK(pcbinfo); 1533 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1534 error = ip_output(m, inp->inp_options, 1535 (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags, 1536 inp->inp_moptions, inp); 1537 if (unlock_inp == UH_WLOCKED) 1538 INP_WUNLOCK(inp); 1539 else 1540 INP_RUNLOCK(inp); 1541 return (error); 1542 1543 release: 1544 if (unlock_udbinfo == UH_WLOCKED) { 1545 INP_HASH_WUNLOCK(pcbinfo); 1546 INP_WUNLOCK(inp); 1547 } else if (unlock_udbinfo == UH_RLOCKED) { 1548 INP_HASH_RUNLOCK(pcbinfo); 1549 INP_RUNLOCK(inp); 1550 } else 1551 INP_RUNLOCK(inp); 1552 m_freem(m); 1553 return (error); 1554 } 1555 1556 1557 #if defined(IPSEC) && defined(IPSEC_NAT_T) 1558 /* 1559 * Potentially decap ESP in UDP frame. Check for an ESP header 1560 * and optional marker; if present, strip the UDP header and 1561 * push the result through IPSec. 1562 * 1563 * Returns mbuf to be processed (potentially re-allocated) or 1564 * NULL if consumed and/or processed. 1565 */ 1566 static struct mbuf * 1567 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off) 1568 { 1569 size_t minlen, payload, skip, iphlen; 1570 caddr_t data; 1571 struct udpcb *up; 1572 struct m_tag *tag; 1573 struct udphdr *udphdr; 1574 struct ip *ip; 1575 1576 INP_RLOCK_ASSERT(inp); 1577 1578 /* 1579 * Pull up data so the longest case is contiguous: 1580 * IP/UDP hdr + non ESP marker + ESP hdr. 1581 */ 1582 minlen = off + sizeof(uint64_t) + sizeof(struct esp); 1583 if (minlen > m->m_pkthdr.len) 1584 minlen = m->m_pkthdr.len; 1585 if ((m = m_pullup(m, minlen)) == NULL) { 1586 IPSECSTAT_INC(ips_in_inval); 1587 return (NULL); /* Bypass caller processing. */ 1588 } 1589 data = mtod(m, caddr_t); /* Points to ip header. */ 1590 payload = m->m_len - off; /* Size of payload. */ 1591 1592 if (payload == 1 && data[off] == '\xff') 1593 return (m); /* NB: keepalive packet, no decap. */ 1594 1595 up = intoudpcb(inp); 1596 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 1597 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0, 1598 ("u_flags 0x%x", up->u_flags)); 1599 1600 /* 1601 * Check that the payload is large enough to hold an 1602 * ESP header and compute the amount of data to remove. 1603 * 1604 * NB: the caller has already done a pullup for us. 1605 * XXX can we assume alignment and eliminate bcopys? 1606 */ 1607 if (up->u_flags & UF_ESPINUDP_NON_IKE) { 1608 /* 1609 * draft-ietf-ipsec-nat-t-ike-0[01].txt and 1610 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring 1611 * possible AH mode non-IKE marker+non-ESP marker 1612 * from draft-ietf-ipsec-udp-encaps-00.txt. 1613 */ 1614 uint64_t marker; 1615 1616 if (payload <= sizeof(uint64_t) + sizeof(struct esp)) 1617 return (m); /* NB: no decap. */ 1618 bcopy(data + off, &marker, sizeof(uint64_t)); 1619 if (marker != 0) /* Non-IKE marker. */ 1620 return (m); /* NB: no decap. */ 1621 skip = sizeof(uint64_t) + sizeof(struct udphdr); 1622 } else { 1623 uint32_t spi; 1624 1625 if (payload <= sizeof(struct esp)) { 1626 IPSECSTAT_INC(ips_in_inval); 1627 m_freem(m); 1628 return (NULL); /* Discard. */ 1629 } 1630 bcopy(data + off, &spi, sizeof(uint32_t)); 1631 if (spi == 0) /* Non-ESP marker. */ 1632 return (m); /* NB: no decap. */ 1633 skip = sizeof(struct udphdr); 1634 } 1635 1636 /* 1637 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember 1638 * the UDP ports. This is required if we want to select 1639 * the right SPD for multiple hosts behind same NAT. 1640 * 1641 * NB: ports are maintained in network byte order everywhere 1642 * in the NAT-T code. 1643 */ 1644 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, 1645 2 * sizeof(uint16_t), M_NOWAIT); 1646 if (tag == NULL) { 1647 IPSECSTAT_INC(ips_in_nomem); 1648 m_freem(m); 1649 return (NULL); /* Discard. */ 1650 } 1651 iphlen = off - sizeof(struct udphdr); 1652 udphdr = (struct udphdr *)(data + iphlen); 1653 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport; 1654 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport; 1655 m_tag_prepend(m, tag); 1656 1657 /* 1658 * Remove the UDP header (and possibly the non ESP marker) 1659 * IP header length is iphlen 1660 * Before: 1661 * <--- off ---> 1662 * +----+------+-----+ 1663 * | IP | UDP | ESP | 1664 * +----+------+-----+ 1665 * <-skip-> 1666 * After: 1667 * +----+-----+ 1668 * | IP | ESP | 1669 * +----+-----+ 1670 * <-skip-> 1671 */ 1672 ovbcopy(data, data + skip, iphlen); 1673 m_adj(m, skip); 1674 1675 ip = mtod(m, struct ip *); 1676 ip->ip_len = htons(ntohs(ip->ip_len) - skip); 1677 ip->ip_p = IPPROTO_ESP; 1678 1679 /* 1680 * We cannot yet update the cksums so clear any 1681 * h/w cksum flags as they are no longer valid. 1682 */ 1683 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) 1684 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 1685 1686 (void) ipsec_common_input(m, iphlen, offsetof(struct ip, ip_p), 1687 AF_INET, ip->ip_p); 1688 return (NULL); /* NB: consumed, bypass processing. */ 1689 } 1690 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */ 1691 1692 static void 1693 udp_abort(struct socket *so) 1694 { 1695 struct inpcb *inp; 1696 struct inpcbinfo *pcbinfo; 1697 1698 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1699 inp = sotoinpcb(so); 1700 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1701 INP_WLOCK(inp); 1702 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1703 INP_HASH_WLOCK(pcbinfo); 1704 in_pcbdisconnect(inp); 1705 inp->inp_laddr.s_addr = INADDR_ANY; 1706 INP_HASH_WUNLOCK(pcbinfo); 1707 soisdisconnected(so); 1708 } 1709 INP_WUNLOCK(inp); 1710 } 1711 1712 static int 1713 udp_attach(struct socket *so, int proto, struct thread *td) 1714 { 1715 struct inpcb *inp; 1716 struct inpcbinfo *pcbinfo; 1717 int error; 1718 1719 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1720 inp = sotoinpcb(so); 1721 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1722 error = soreserve(so, udp_sendspace, udp_recvspace); 1723 if (error) 1724 return (error); 1725 INP_INFO_WLOCK(pcbinfo); 1726 error = in_pcballoc(so, pcbinfo); 1727 if (error) { 1728 INP_INFO_WUNLOCK(pcbinfo); 1729 return (error); 1730 } 1731 1732 inp = sotoinpcb(so); 1733 inp->inp_vflag |= INP_IPV4; 1734 inp->inp_ip_ttl = V_ip_defttl; 1735 1736 error = udp_newudpcb(inp); 1737 if (error) { 1738 in_pcbdetach(inp); 1739 in_pcbfree(inp); 1740 INP_INFO_WUNLOCK(pcbinfo); 1741 return (error); 1742 } 1743 1744 INP_WUNLOCK(inp); 1745 INP_INFO_WUNLOCK(pcbinfo); 1746 return (0); 1747 } 1748 #endif /* INET */ 1749 1750 int 1751 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, void *ctx) 1752 { 1753 struct inpcb *inp; 1754 struct udpcb *up; 1755 1756 KASSERT(so->so_type == SOCK_DGRAM, 1757 ("udp_set_kernel_tunneling: !dgram")); 1758 inp = sotoinpcb(so); 1759 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1760 INP_WLOCK(inp); 1761 up = intoudpcb(inp); 1762 if (up->u_tun_func != NULL) { 1763 INP_WUNLOCK(inp); 1764 return (EBUSY); 1765 } 1766 up->u_tun_func = f; 1767 up->u_tun_ctx = ctx; 1768 INP_WUNLOCK(inp); 1769 return (0); 1770 } 1771 1772 #ifdef INET 1773 static int 1774 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1775 { 1776 struct inpcb *inp; 1777 struct inpcbinfo *pcbinfo; 1778 int error; 1779 1780 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1781 inp = sotoinpcb(so); 1782 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1783 INP_WLOCK(inp); 1784 INP_HASH_WLOCK(pcbinfo); 1785 error = in_pcbbind(inp, nam, td->td_ucred); 1786 INP_HASH_WUNLOCK(pcbinfo); 1787 INP_WUNLOCK(inp); 1788 return (error); 1789 } 1790 1791 static void 1792 udp_close(struct socket *so) 1793 { 1794 struct inpcb *inp; 1795 struct inpcbinfo *pcbinfo; 1796 1797 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1798 inp = sotoinpcb(so); 1799 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1800 INP_WLOCK(inp); 1801 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1802 INP_HASH_WLOCK(pcbinfo); 1803 in_pcbdisconnect(inp); 1804 inp->inp_laddr.s_addr = INADDR_ANY; 1805 INP_HASH_WUNLOCK(pcbinfo); 1806 soisdisconnected(so); 1807 } 1808 INP_WUNLOCK(inp); 1809 } 1810 1811 static int 1812 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1813 { 1814 struct inpcb *inp; 1815 struct inpcbinfo *pcbinfo; 1816 struct sockaddr_in *sin; 1817 int error; 1818 1819 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1820 inp = sotoinpcb(so); 1821 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1822 INP_WLOCK(inp); 1823 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1824 INP_WUNLOCK(inp); 1825 return (EISCONN); 1826 } 1827 sin = (struct sockaddr_in *)nam; 1828 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1829 if (error != 0) { 1830 INP_WUNLOCK(inp); 1831 return (error); 1832 } 1833 INP_HASH_WLOCK(pcbinfo); 1834 error = in_pcbconnect(inp, nam, td->td_ucred); 1835 INP_HASH_WUNLOCK(pcbinfo); 1836 if (error == 0) 1837 soisconnected(so); 1838 INP_WUNLOCK(inp); 1839 return (error); 1840 } 1841 1842 static void 1843 udp_detach(struct socket *so) 1844 { 1845 struct inpcb *inp; 1846 struct inpcbinfo *pcbinfo; 1847 struct udpcb *up; 1848 1849 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1850 inp = sotoinpcb(so); 1851 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1852 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1853 ("udp_detach: not disconnected")); 1854 INP_INFO_WLOCK(pcbinfo); 1855 INP_WLOCK(inp); 1856 up = intoudpcb(inp); 1857 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1858 inp->inp_ppcb = NULL; 1859 in_pcbdetach(inp); 1860 in_pcbfree(inp); 1861 INP_INFO_WUNLOCK(pcbinfo); 1862 udp_discardcb(up); 1863 } 1864 1865 static int 1866 udp_disconnect(struct socket *so) 1867 { 1868 struct inpcb *inp; 1869 struct inpcbinfo *pcbinfo; 1870 1871 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1872 inp = sotoinpcb(so); 1873 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1874 INP_WLOCK(inp); 1875 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1876 INP_WUNLOCK(inp); 1877 return (ENOTCONN); 1878 } 1879 INP_HASH_WLOCK(pcbinfo); 1880 in_pcbdisconnect(inp); 1881 inp->inp_laddr.s_addr = INADDR_ANY; 1882 INP_HASH_WUNLOCK(pcbinfo); 1883 SOCK_LOCK(so); 1884 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1885 SOCK_UNLOCK(so); 1886 INP_WUNLOCK(inp); 1887 return (0); 1888 } 1889 1890 static int 1891 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1892 struct mbuf *control, struct thread *td) 1893 { 1894 struct inpcb *inp; 1895 1896 inp = sotoinpcb(so); 1897 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1898 return (udp_output(inp, m, addr, control, td)); 1899 } 1900 #endif /* INET */ 1901 1902 int 1903 udp_shutdown(struct socket *so) 1904 { 1905 struct inpcb *inp; 1906 1907 inp = sotoinpcb(so); 1908 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1909 INP_WLOCK(inp); 1910 socantsendmore(so); 1911 INP_WUNLOCK(inp); 1912 return (0); 1913 } 1914 1915 #ifdef INET 1916 struct pr_usrreqs udp_usrreqs = { 1917 .pru_abort = udp_abort, 1918 .pru_attach = udp_attach, 1919 .pru_bind = udp_bind, 1920 .pru_connect = udp_connect, 1921 .pru_control = in_control, 1922 .pru_detach = udp_detach, 1923 .pru_disconnect = udp_disconnect, 1924 .pru_peeraddr = in_getpeeraddr, 1925 .pru_send = udp_send, 1926 .pru_soreceive = soreceive_dgram, 1927 .pru_sosend = sosend_dgram, 1928 .pru_shutdown = udp_shutdown, 1929 .pru_sockaddr = in_getsockaddr, 1930 .pru_sosetlabel = in_pcbsosetlabel, 1931 .pru_close = udp_close, 1932 }; 1933 #endif /* INET */ 1934