1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_route.h" 48 #include "opt_rss.h" 49 50 #include <sys/param.h> 51 #include <sys/domain.h> 52 #include <sys/eventhandler.h> 53 #include <sys/jail.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/protosw.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sx.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/systm.h> 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/route.h> 75 #include <net/route/nhop.h> 76 #include <net/rss_config.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #ifdef INET6 86 #include <netinet/ip6.h> 87 #endif 88 #include <netinet/ip_icmp.h> 89 #include <netinet/icmp_var.h> 90 #include <netinet/ip_var.h> 91 #include <netinet/ip_options.h> 92 #ifdef INET6 93 #include <netinet6/ip6_var.h> 94 #endif 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 #include <netinet/udplite.h> 98 #include <netinet/in_rss.h> 99 100 #include <netipsec/ipsec_support.h> 101 102 #include <machine/in_cksum.h> 103 104 #include <security/mac/mac_framework.h> 105 106 /* 107 * UDP and UDP-Lite protocols implementation. 108 * Per RFC 768, August, 1980. 109 * Per RFC 3828, July, 2004. 110 */ 111 112 /* 113 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 114 * removes the only data integrity mechanism for packets and malformed 115 * packets that would otherwise be discarded due to bad checksums, and may 116 * cause problems (especially for NFS data blocks). 117 */ 118 VNET_DEFINE(int, udp_cksum) = 1; 119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 120 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 121 122 VNET_DEFINE(int, udp_log_in_vain) = 0; 123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 124 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 125 126 VNET_DEFINE(int, udp_blackhole) = 0; 127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 128 &VNET_NAME(udp_blackhole), 0, 129 "Do not send port unreachables for refused connects"); 130 VNET_DEFINE(bool, udp_blackhole_local) = false; 131 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 132 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 133 "Enforce net.inet.udp.blackhole for locally originated packets"); 134 135 u_long udp_sendspace = 9216; /* really max datagram size */ 136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 137 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 138 139 u_long udp_recvspace = 40 * (1024 + 140 #ifdef INET6 141 sizeof(struct sockaddr_in6) 142 #else 143 sizeof(struct sockaddr_in) 144 #endif 145 ); /* 40 1K datagrams */ 146 147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 148 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 149 150 VNET_DEFINE(struct inpcbinfo, udbinfo); 151 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 152 153 #ifndef UDBHASHSIZE 154 #define UDBHASHSIZE 128 155 #endif 156 157 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 158 VNET_PCPUSTAT_SYSINIT(udpstat); 159 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 160 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 161 162 #ifdef VIMAGE 163 VNET_PCPUSTAT_SYSUNINIT(udpstat); 164 #endif /* VIMAGE */ 165 #ifdef INET 166 static void udp_detach(struct socket *so); 167 #endif 168 169 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash"); 170 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb", 171 "udplite", "udplitehash"); 172 173 static void 174 udp_vnet_init(void *arg __unused) 175 { 176 177 /* 178 * For now default to 2-tuple UDP hashing - until the fragment 179 * reassembly code can also update the flowid. 180 * 181 * Once we can calculate the flowid that way and re-establish 182 * a 4-tuple, flip this to 4-tuple. 183 */ 184 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 185 /* Additional pcbinfo for UDP-Lite */ 186 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 187 UDBHASHSIZE); 188 } 189 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 190 udp_vnet_init, NULL); 191 192 /* 193 * Kernel module interface for updating udpstat. The argument is an index 194 * into udpstat treated as an array of u_long. While this encodes the 195 * general layout of udpstat into the caller, it doesn't encode its location, 196 * so that future changes to add, for example, per-CPU stats support won't 197 * cause binary compatibility problems for kernel modules. 198 */ 199 void 200 kmod_udpstat_inc(int statnum) 201 { 202 203 counter_u64_add(VNET(udpstat)[statnum], 1); 204 } 205 206 #ifdef VIMAGE 207 static void 208 udp_destroy(void *unused __unused) 209 { 210 211 in_pcbinfo_destroy(&V_udbinfo); 212 in_pcbinfo_destroy(&V_ulitecbinfo); 213 } 214 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 215 #endif 216 217 #ifdef INET 218 /* 219 * Subroutine of udp_input(), which appends the provided mbuf chain to the 220 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 221 * contains the source address. If the socket ends up being an IPv6 socket, 222 * udp_append() will convert to a sockaddr_in6 before passing the address 223 * into the socket code. 224 * 225 * In the normal case udp_append() will return 0, indicating that you 226 * must unlock the inp. However if a tunneling protocol is in place we increment 227 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 228 * then decrement the reference count. If the inp_rele returns 1, indicating the 229 * inp is gone, we return that to the caller to tell them *not* to unlock 230 * the inp. In the case of multi-cast this will cause the distribution 231 * to stop (though most tunneling protocols known currently do *not* use 232 * multicast). 233 */ 234 static int 235 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 236 struct sockaddr_in *udp_in) 237 { 238 struct sockaddr *append_sa; 239 struct socket *so; 240 struct mbuf *tmpopts, *opts = NULL; 241 #ifdef INET6 242 struct sockaddr_in6 udp_in6; 243 #endif 244 struct udpcb *up; 245 bool filtered; 246 247 INP_LOCK_ASSERT(inp); 248 249 /* 250 * Engage the tunneling protocol. 251 */ 252 up = intoudpcb(inp); 253 if (up->u_tun_func != NULL) { 254 in_pcbref(inp); 255 INP_RUNLOCK(inp); 256 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 257 up->u_tun_ctx); 258 INP_RLOCK(inp); 259 if (filtered) 260 return (in_pcbrele_rlocked(inp)); 261 } 262 263 off += sizeof(struct udphdr); 264 265 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 266 /* Check AH/ESP integrity. */ 267 if (IPSEC_ENABLED(ipv4) && 268 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 269 m_freem(n); 270 return (0); 271 } 272 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 273 if (IPSEC_ENABLED(ipv4) && 274 UDPENCAP_INPUT(n, off, AF_INET) != 0) 275 return (0); /* Consumed. */ 276 } 277 #endif /* IPSEC */ 278 #ifdef MAC 279 if (mac_inpcb_check_deliver(inp, n) != 0) { 280 m_freem(n); 281 return (0); 282 } 283 #endif /* MAC */ 284 if (inp->inp_flags & INP_CONTROLOPTS || 285 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 286 #ifdef INET6 287 if (inp->inp_vflag & INP_IPV6) 288 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 289 else 290 #endif /* INET6 */ 291 ip_savecontrol(inp, &opts, ip, n); 292 } 293 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 294 tmpopts = sbcreatecontrol(&udp_in[1], 295 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 296 M_NOWAIT); 297 if (tmpopts) { 298 if (opts) { 299 tmpopts->m_next = opts; 300 opts = tmpopts; 301 } else 302 opts = tmpopts; 303 } 304 } 305 #ifdef INET6 306 if (inp->inp_vflag & INP_IPV6) { 307 bzero(&udp_in6, sizeof(udp_in6)); 308 udp_in6.sin6_len = sizeof(udp_in6); 309 udp_in6.sin6_family = AF_INET6; 310 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 311 append_sa = (struct sockaddr *)&udp_in6; 312 } else 313 #endif /* INET6 */ 314 append_sa = (struct sockaddr *)&udp_in[0]; 315 m_adj(n, off); 316 317 so = inp->inp_socket; 318 SOCKBUF_LOCK(&so->so_rcv); 319 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 320 soroverflow_locked(so); 321 m_freem(n); 322 if (opts) 323 m_freem(opts); 324 UDPSTAT_INC(udps_fullsock); 325 } else 326 sorwakeup_locked(so); 327 return (0); 328 } 329 330 static bool 331 udp_multi_match(const struct inpcb *inp, void *v) 332 { 333 struct ip *ip = v; 334 struct udphdr *uh = (struct udphdr *)(ip + 1); 335 336 if (inp->inp_lport != uh->uh_dport) 337 return (false); 338 #ifdef INET6 339 if ((inp->inp_vflag & INP_IPV4) == 0) 340 return (false); 341 #endif 342 if (inp->inp_laddr.s_addr != INADDR_ANY && 343 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 344 return (false); 345 if (inp->inp_faddr.s_addr != INADDR_ANY && 346 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 347 return (false); 348 if (inp->inp_fport != 0 && 349 inp->inp_fport != uh->uh_sport) 350 return (false); 351 352 return (true); 353 } 354 355 static int 356 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 357 { 358 struct ip *ip = mtod(m, struct ip *); 359 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 360 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 361 #ifdef KDTRACE_HOOKS 362 struct udphdr *uh = (struct udphdr *)(ip + 1); 363 #endif 364 struct inpcb *inp; 365 struct mbuf *n; 366 int appends = 0; 367 368 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 369 370 while ((inp = inp_next(&inpi)) != NULL) { 371 /* 372 * XXXRW: Because we weren't holding either the inpcb 373 * or the hash lock when we checked for a match 374 * before, we should probably recheck now that the 375 * inpcb lock is held. 376 */ 377 /* 378 * Handle socket delivery policy for any-source 379 * and source-specific multicast. [RFC3678] 380 */ 381 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 382 struct ip_moptions *imo; 383 struct sockaddr_in group; 384 int blocked; 385 386 imo = inp->inp_moptions; 387 if (imo == NULL) 388 continue; 389 bzero(&group, sizeof(struct sockaddr_in)); 390 group.sin_len = sizeof(struct sockaddr_in); 391 group.sin_family = AF_INET; 392 group.sin_addr = ip->ip_dst; 393 394 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 395 (struct sockaddr *)&group, 396 (struct sockaddr *)&udp_in[0]); 397 if (blocked != MCAST_PASS) { 398 if (blocked == MCAST_NOTGMEMBER) 399 IPSTAT_INC(ips_notmember); 400 if (blocked == MCAST_NOTSMEMBER || 401 blocked == MCAST_MUTED) 402 UDPSTAT_INC(udps_filtermcast); 403 continue; 404 } 405 } 406 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 407 if (proto == IPPROTO_UDPLITE) 408 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 409 else 410 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 411 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 412 break; 413 } else 414 appends++; 415 } 416 /* 417 * Don't look for additional matches if this one does 418 * not have either the SO_REUSEPORT or SO_REUSEADDR 419 * socket options set. This heuristic avoids 420 * searching through all pcbs in the common case of a 421 * non-shared port. It assumes that an application 422 * will never clear these options after setting them. 423 */ 424 if ((inp->inp_socket->so_options & 425 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 426 INP_RUNLOCK(inp); 427 break; 428 } 429 } 430 431 if (appends == 0) { 432 /* 433 * No matching pcb found; discard datagram. (No need 434 * to send an ICMP Port Unreachable for a broadcast 435 * or multicast datgram.) 436 */ 437 UDPSTAT_INC(udps_noport); 438 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 439 UDPSTAT_INC(udps_noportmcast); 440 else 441 UDPSTAT_INC(udps_noportbcast); 442 } 443 m_freem(m); 444 445 return (IPPROTO_DONE); 446 } 447 448 static int 449 udp_input(struct mbuf **mp, int *offp, int proto) 450 { 451 struct ip *ip; 452 struct udphdr *uh; 453 struct ifnet *ifp; 454 struct inpcb *inp; 455 uint16_t len, ip_len; 456 struct inpcbinfo *pcbinfo; 457 struct sockaddr_in udp_in[2]; 458 struct mbuf *m; 459 struct m_tag *fwd_tag; 460 int cscov_partial, iphlen; 461 462 m = *mp; 463 iphlen = *offp; 464 ifp = m->m_pkthdr.rcvif; 465 *mp = NULL; 466 UDPSTAT_INC(udps_ipackets); 467 468 /* 469 * Strip IP options, if any; should skip this, make available to 470 * user, and use on returned packets, but we don't yet have a way to 471 * check the checksum with options still present. 472 */ 473 if (iphlen > sizeof (struct ip)) { 474 ip_stripoptions(m); 475 iphlen = sizeof(struct ip); 476 } 477 478 /* 479 * Get IP and UDP header together in first mbuf. 480 */ 481 if (m->m_len < iphlen + sizeof(struct udphdr)) { 482 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 483 UDPSTAT_INC(udps_hdrops); 484 return (IPPROTO_DONE); 485 } 486 } 487 ip = mtod(m, struct ip *); 488 uh = (struct udphdr *)((caddr_t)ip + iphlen); 489 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 490 491 /* 492 * Destination port of 0 is illegal, based on RFC768. 493 */ 494 if (uh->uh_dport == 0) 495 goto badunlocked; 496 497 /* 498 * Construct sockaddr format source address. Stuff source address 499 * and datagram in user buffer. 500 */ 501 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 502 udp_in[0].sin_len = sizeof(struct sockaddr_in); 503 udp_in[0].sin_family = AF_INET; 504 udp_in[0].sin_port = uh->uh_sport; 505 udp_in[0].sin_addr = ip->ip_src; 506 udp_in[1].sin_len = sizeof(struct sockaddr_in); 507 udp_in[1].sin_family = AF_INET; 508 udp_in[1].sin_port = uh->uh_dport; 509 udp_in[1].sin_addr = ip->ip_dst; 510 511 /* 512 * Make mbuf data length reflect UDP length. If not enough data to 513 * reflect UDP length, drop. 514 */ 515 len = ntohs((u_short)uh->uh_ulen); 516 ip_len = ntohs(ip->ip_len) - iphlen; 517 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 518 /* Zero means checksum over the complete packet. */ 519 if (len == 0) 520 len = ip_len; 521 cscov_partial = 0; 522 } 523 if (ip_len != len) { 524 if (len > ip_len || len < sizeof(struct udphdr)) { 525 UDPSTAT_INC(udps_badlen); 526 goto badunlocked; 527 } 528 if (proto == IPPROTO_UDP) 529 m_adj(m, len - ip_len); 530 } 531 532 /* 533 * Checksum extended UDP header and data. 534 */ 535 if (uh->uh_sum) { 536 u_short uh_sum; 537 538 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 539 !cscov_partial) { 540 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 541 uh_sum = m->m_pkthdr.csum_data; 542 else 543 uh_sum = in_pseudo(ip->ip_src.s_addr, 544 ip->ip_dst.s_addr, htonl((u_short)len + 545 m->m_pkthdr.csum_data + proto)); 546 uh_sum ^= 0xffff; 547 } else { 548 char b[offsetof(struct ipovly, ih_src)]; 549 struct ipovly *ipov = (struct ipovly *)ip; 550 551 bcopy(ipov, b, sizeof(b)); 552 bzero(ipov, sizeof(ipov->ih_x1)); 553 ipov->ih_len = (proto == IPPROTO_UDP) ? 554 uh->uh_ulen : htons(ip_len); 555 uh_sum = in_cksum(m, len + sizeof (struct ip)); 556 bcopy(b, ipov, sizeof(b)); 557 } 558 if (uh_sum) { 559 UDPSTAT_INC(udps_badsum); 560 m_freem(m); 561 return (IPPROTO_DONE); 562 } 563 } else { 564 if (proto == IPPROTO_UDP) { 565 UDPSTAT_INC(udps_nosum); 566 } else { 567 /* UDPLite requires a checksum */ 568 /* XXX: What is the right UDPLite MIB counter here? */ 569 m_freem(m); 570 return (IPPROTO_DONE); 571 } 572 } 573 574 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 575 in_broadcast(ip->ip_dst, ifp)) 576 return (udp_multi_input(m, proto, udp_in)); 577 578 pcbinfo = udp_get_inpcbinfo(proto); 579 580 /* 581 * Locate pcb for datagram. 582 * 583 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 584 */ 585 if ((m->m_flags & M_IP_NEXTHOP) && 586 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 587 struct sockaddr_in *next_hop; 588 589 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 590 591 /* 592 * Transparently forwarded. Pretend to be the destination. 593 * Already got one like this? 594 */ 595 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 596 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 597 if (!inp) { 598 /* 599 * It's new. Try to find the ambushing socket. 600 * Because we've rewritten the destination address, 601 * any hardware-generated hash is ignored. 602 */ 603 inp = in_pcblookup(pcbinfo, ip->ip_src, 604 uh->uh_sport, next_hop->sin_addr, 605 next_hop->sin_port ? htons(next_hop->sin_port) : 606 uh->uh_dport, INPLOOKUP_WILDCARD | 607 INPLOOKUP_RLOCKPCB, ifp); 608 } 609 /* Remove the tag from the packet. We don't need it anymore. */ 610 m_tag_delete(m, fwd_tag); 611 m->m_flags &= ~M_IP_NEXTHOP; 612 } else 613 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 614 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 615 INPLOOKUP_RLOCKPCB, ifp, m); 616 if (inp == NULL) { 617 if (V_udp_log_in_vain) { 618 char src[INET_ADDRSTRLEN]; 619 char dst[INET_ADDRSTRLEN]; 620 621 log(LOG_INFO, 622 "Connection attempt to UDP %s:%d from %s:%d\n", 623 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 624 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 625 } 626 if (proto == IPPROTO_UDPLITE) 627 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 628 else 629 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 630 UDPSTAT_INC(udps_noport); 631 if (m->m_flags & (M_BCAST | M_MCAST)) { 632 UDPSTAT_INC(udps_noportbcast); 633 goto badunlocked; 634 } 635 if (V_udp_blackhole && (V_udp_blackhole_local || 636 !in_localip(ip->ip_src))) 637 goto badunlocked; 638 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 639 goto badunlocked; 640 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 641 return (IPPROTO_DONE); 642 } 643 644 /* 645 * Check the minimum TTL for socket. 646 */ 647 INP_RLOCK_ASSERT(inp); 648 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 649 if (proto == IPPROTO_UDPLITE) 650 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 651 else 652 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 653 INP_RUNLOCK(inp); 654 m_freem(m); 655 return (IPPROTO_DONE); 656 } 657 if (cscov_partial) { 658 struct udpcb *up; 659 660 up = intoudpcb(inp); 661 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 662 INP_RUNLOCK(inp); 663 m_freem(m); 664 return (IPPROTO_DONE); 665 } 666 } 667 668 if (proto == IPPROTO_UDPLITE) 669 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 670 else 671 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 672 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 673 INP_RUNLOCK(inp); 674 return (IPPROTO_DONE); 675 676 badunlocked: 677 m_freem(m); 678 return (IPPROTO_DONE); 679 } 680 #endif /* INET */ 681 682 /* 683 * Notify a udp user of an asynchronous error; just wake up so that they can 684 * collect error status. 685 */ 686 struct inpcb * 687 udp_notify(struct inpcb *inp, int errno) 688 { 689 690 INP_WLOCK_ASSERT(inp); 691 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 692 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 693 NH_FREE(inp->inp_route.ro_nh); 694 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 695 } 696 697 inp->inp_socket->so_error = errno; 698 sorwakeup(inp->inp_socket); 699 sowwakeup(inp->inp_socket); 700 return (inp); 701 } 702 703 #ifdef INET 704 static void 705 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) 706 { 707 struct ip *ip = &icmp->icmp_ip; 708 struct udphdr *uh; 709 struct inpcb *inp; 710 711 if (icmp_errmap(icmp) == 0) 712 return; 713 714 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 715 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, 716 uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 717 if (inp != NULL) { 718 INP_WLOCK_ASSERT(inp); 719 if (inp->inp_socket != NULL) 720 udp_notify(inp, icmp_errmap(icmp)); 721 INP_WUNLOCK(inp); 722 } else { 723 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, 724 ip->ip_src, uh->uh_sport, 725 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 726 if (inp != NULL) { 727 struct udpcb *up; 728 udp_tun_icmp_t *func; 729 730 up = intoudpcb(inp); 731 func = up->u_icmp_func; 732 INP_RUNLOCK(inp); 733 if (func != NULL) 734 func(icmp); 735 } 736 } 737 } 738 739 static void 740 udp_ctlinput(struct icmp *icmp) 741 { 742 743 return (udp_common_ctlinput(icmp, &V_udbinfo)); 744 } 745 746 static void 747 udplite_ctlinput(struct icmp *icmp) 748 { 749 750 return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); 751 } 752 #endif /* INET */ 753 754 static int 755 udp_pcblist(SYSCTL_HANDLER_ARGS) 756 { 757 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 758 INPLOOKUP_RLOCKPCB); 759 struct xinpgen xig; 760 struct inpcb *inp; 761 int error; 762 763 if (req->newptr != 0) 764 return (EPERM); 765 766 if (req->oldptr == 0) { 767 int n; 768 769 n = V_udbinfo.ipi_count; 770 n += imax(n / 8, 10); 771 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 772 return (0); 773 } 774 775 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 776 return (error); 777 778 bzero(&xig, sizeof(xig)); 779 xig.xig_len = sizeof xig; 780 xig.xig_count = V_udbinfo.ipi_count; 781 xig.xig_gen = V_udbinfo.ipi_gencnt; 782 xig.xig_sogen = so_gencnt; 783 error = SYSCTL_OUT(req, &xig, sizeof xig); 784 if (error) 785 return (error); 786 787 while ((inp = inp_next(&inpi)) != NULL) { 788 if (inp->inp_gencnt <= xig.xig_gen && 789 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 790 struct xinpcb xi; 791 792 in_pcbtoxinpcb(inp, &xi); 793 error = SYSCTL_OUT(req, &xi, sizeof xi); 794 if (error) { 795 INP_RUNLOCK(inp); 796 break; 797 } 798 } 799 } 800 801 if (!error) { 802 /* 803 * Give the user an updated idea of our state. If the 804 * generation differs from what we told her before, she knows 805 * that something happened while we were processing this 806 * request, and it might be necessary to retry. 807 */ 808 xig.xig_gen = V_udbinfo.ipi_gencnt; 809 xig.xig_sogen = so_gencnt; 810 xig.xig_count = V_udbinfo.ipi_count; 811 error = SYSCTL_OUT(req, &xig, sizeof xig); 812 } 813 814 return (error); 815 } 816 817 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 818 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 819 udp_pcblist, "S,xinpcb", 820 "List of active UDP sockets"); 821 822 #ifdef INET 823 static int 824 udp_getcred(SYSCTL_HANDLER_ARGS) 825 { 826 struct xucred xuc; 827 struct sockaddr_in addrs[2]; 828 struct epoch_tracker et; 829 struct inpcb *inp; 830 int error; 831 832 error = priv_check(req->td, PRIV_NETINET_GETCRED); 833 if (error) 834 return (error); 835 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 836 if (error) 837 return (error); 838 NET_EPOCH_ENTER(et); 839 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 840 addrs[0].sin_addr, addrs[0].sin_port, 841 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 842 NET_EPOCH_EXIT(et); 843 if (inp != NULL) { 844 INP_RLOCK_ASSERT(inp); 845 if (inp->inp_socket == NULL) 846 error = ENOENT; 847 if (error == 0) 848 error = cr_canseeinpcb(req->td->td_ucred, inp); 849 if (error == 0) 850 cru2x(inp->inp_cred, &xuc); 851 INP_RUNLOCK(inp); 852 } else 853 error = ENOENT; 854 if (error == 0) 855 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 856 return (error); 857 } 858 859 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 860 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 861 0, 0, udp_getcred, "S,xucred", 862 "Get the xucred of a UDP connection"); 863 #endif /* INET */ 864 865 int 866 udp_ctloutput(struct socket *so, struct sockopt *sopt) 867 { 868 struct inpcb *inp; 869 struct udpcb *up; 870 int isudplite, error, optval; 871 872 error = 0; 873 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 874 inp = sotoinpcb(so); 875 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 876 INP_WLOCK(inp); 877 if (sopt->sopt_level != so->so_proto->pr_protocol) { 878 #ifdef INET6 879 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 880 INP_WUNLOCK(inp); 881 error = ip6_ctloutput(so, sopt); 882 } 883 #endif 884 #if defined(INET) && defined(INET6) 885 else 886 #endif 887 #ifdef INET 888 { 889 INP_WUNLOCK(inp); 890 error = ip_ctloutput(so, sopt); 891 } 892 #endif 893 return (error); 894 } 895 896 switch (sopt->sopt_dir) { 897 case SOPT_SET: 898 switch (sopt->sopt_name) { 899 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 900 #ifdef INET 901 case UDP_ENCAP: 902 if (!IPSEC_ENABLED(ipv4)) { 903 INP_WUNLOCK(inp); 904 return (ENOPROTOOPT); 905 } 906 error = UDPENCAP_PCBCTL(inp, sopt); 907 break; 908 #endif /* INET */ 909 #endif /* IPSEC */ 910 case UDPLITE_SEND_CSCOV: 911 case UDPLITE_RECV_CSCOV: 912 if (!isudplite) { 913 INP_WUNLOCK(inp); 914 error = ENOPROTOOPT; 915 break; 916 } 917 INP_WUNLOCK(inp); 918 error = sooptcopyin(sopt, &optval, sizeof(optval), 919 sizeof(optval)); 920 if (error != 0) 921 break; 922 inp = sotoinpcb(so); 923 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 924 INP_WLOCK(inp); 925 up = intoudpcb(inp); 926 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 927 if ((optval != 0 && optval < 8) || (optval > 65535)) { 928 INP_WUNLOCK(inp); 929 error = EINVAL; 930 break; 931 } 932 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 933 up->u_txcslen = optval; 934 else 935 up->u_rxcslen = optval; 936 INP_WUNLOCK(inp); 937 break; 938 default: 939 INP_WUNLOCK(inp); 940 error = ENOPROTOOPT; 941 break; 942 } 943 break; 944 case SOPT_GET: 945 switch (sopt->sopt_name) { 946 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 947 #ifdef INET 948 case UDP_ENCAP: 949 if (!IPSEC_ENABLED(ipv4)) { 950 INP_WUNLOCK(inp); 951 return (ENOPROTOOPT); 952 } 953 error = UDPENCAP_PCBCTL(inp, sopt); 954 break; 955 #endif /* INET */ 956 #endif /* IPSEC */ 957 case UDPLITE_SEND_CSCOV: 958 case UDPLITE_RECV_CSCOV: 959 if (!isudplite) { 960 INP_WUNLOCK(inp); 961 error = ENOPROTOOPT; 962 break; 963 } 964 up = intoudpcb(inp); 965 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 966 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 967 optval = up->u_txcslen; 968 else 969 optval = up->u_rxcslen; 970 INP_WUNLOCK(inp); 971 error = sooptcopyout(sopt, &optval, sizeof(optval)); 972 break; 973 default: 974 INP_WUNLOCK(inp); 975 error = ENOPROTOOPT; 976 break; 977 } 978 break; 979 } 980 return (error); 981 } 982 983 #ifdef INET 984 #ifdef INET6 985 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 986 static int 987 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 988 struct inpcb *inp, int flags) 989 { 990 struct ifnet *ifp; 991 struct in6_pktinfo *pktinfo; 992 struct in_addr ia; 993 994 if ((flags & PRUS_IPV6) == 0) 995 return (0); 996 997 if (cm->cmsg_level != IPPROTO_IPV6) 998 return (0); 999 1000 if (cm->cmsg_type != IPV6_2292PKTINFO && 1001 cm->cmsg_type != IPV6_PKTINFO) 1002 return (0); 1003 1004 if (cm->cmsg_len != 1005 CMSG_LEN(sizeof(struct in6_pktinfo))) 1006 return (EINVAL); 1007 1008 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1009 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1010 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1011 return (EINVAL); 1012 1013 /* Validate the interface index if specified. */ 1014 if (pktinfo->ipi6_ifindex) { 1015 struct epoch_tracker et; 1016 1017 NET_EPOCH_ENTER(et); 1018 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1019 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 1020 if (ifp == NULL) 1021 return (ENXIO); 1022 } else 1023 ifp = NULL; 1024 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1025 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1026 if (in_ifhasaddr(ifp, ia) == 0) 1027 return (EADDRNOTAVAIL); 1028 } 1029 1030 bzero(src, sizeof(*src)); 1031 src->sin_family = AF_INET; 1032 src->sin_len = sizeof(*src); 1033 src->sin_port = inp->inp_lport; 1034 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1035 1036 return (0); 1037 } 1038 #endif /* INET6 */ 1039 1040 int 1041 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1042 struct mbuf *control, struct thread *td) 1043 { 1044 struct inpcb *inp; 1045 struct udpiphdr *ui; 1046 int len, error = 0; 1047 struct in_addr faddr, laddr; 1048 struct cmsghdr *cm; 1049 struct inpcbinfo *pcbinfo; 1050 struct sockaddr_in *sin, src; 1051 struct epoch_tracker et; 1052 int cscov_partial = 0; 1053 int ipflags = 0; 1054 u_short fport, lport; 1055 u_char tos; 1056 uint8_t pr; 1057 uint16_t cscov = 0; 1058 uint32_t flowid = 0; 1059 uint8_t flowtype = M_HASHTYPE_NONE; 1060 1061 inp = sotoinpcb(so); 1062 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1063 1064 if (addr != NULL) { 1065 if (addr->sa_family != AF_INET) 1066 error = EAFNOSUPPORT; 1067 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1068 error = EINVAL; 1069 if (__predict_false(error != 0)) { 1070 m_freem(control); 1071 m_freem(m); 1072 return (error); 1073 } 1074 } 1075 1076 len = m->m_pkthdr.len; 1077 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1078 if (control) 1079 m_freem(control); 1080 m_freem(m); 1081 return (EMSGSIZE); 1082 } 1083 1084 src.sin_family = 0; 1085 sin = (struct sockaddr_in *)addr; 1086 1087 /* 1088 * udp_send() may need to temporarily bind or connect the current 1089 * inpcb. As such, we don't know up front whether we will need the 1090 * pcbinfo lock or not. Do any work to decide what is needed up 1091 * front before acquiring any locks. 1092 * 1093 * We will need network epoch in either case, to safely lookup into 1094 * pcb hash. 1095 */ 1096 if (sin == NULL || 1097 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) 1098 INP_WLOCK(inp); 1099 else 1100 INP_RLOCK(inp); 1101 NET_EPOCH_ENTER(et); 1102 tos = inp->inp_ip_tos; 1103 if (control != NULL) { 1104 /* 1105 * XXX: Currently, we assume all the optional information is 1106 * stored in a single mbuf. 1107 */ 1108 if (control->m_next) { 1109 m_freem(control); 1110 error = EINVAL; 1111 goto release; 1112 } 1113 for (; control->m_len > 0; 1114 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1115 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1116 cm = mtod(control, struct cmsghdr *); 1117 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1118 || cm->cmsg_len > control->m_len) { 1119 error = EINVAL; 1120 break; 1121 } 1122 #ifdef INET6 1123 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1124 if (error != 0) 1125 break; 1126 #endif 1127 if (cm->cmsg_level != IPPROTO_IP) 1128 continue; 1129 1130 switch (cm->cmsg_type) { 1131 case IP_SENDSRCADDR: 1132 if (cm->cmsg_len != 1133 CMSG_LEN(sizeof(struct in_addr))) { 1134 error = EINVAL; 1135 break; 1136 } 1137 bzero(&src, sizeof(src)); 1138 src.sin_family = AF_INET; 1139 src.sin_len = sizeof(src); 1140 src.sin_port = inp->inp_lport; 1141 src.sin_addr = 1142 *(struct in_addr *)CMSG_DATA(cm); 1143 break; 1144 1145 case IP_TOS: 1146 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1147 error = EINVAL; 1148 break; 1149 } 1150 tos = *(u_char *)CMSG_DATA(cm); 1151 break; 1152 1153 case IP_FLOWID: 1154 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1155 error = EINVAL; 1156 break; 1157 } 1158 flowid = *(uint32_t *) CMSG_DATA(cm); 1159 break; 1160 1161 case IP_FLOWTYPE: 1162 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1163 error = EINVAL; 1164 break; 1165 } 1166 flowtype = *(uint32_t *) CMSG_DATA(cm); 1167 break; 1168 1169 #ifdef RSS 1170 case IP_RSSBUCKETID: 1171 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1172 error = EINVAL; 1173 break; 1174 } 1175 /* This is just a placeholder for now */ 1176 break; 1177 #endif /* RSS */ 1178 default: 1179 error = ENOPROTOOPT; 1180 break; 1181 } 1182 if (error) 1183 break; 1184 } 1185 m_freem(control); 1186 control = NULL; 1187 } 1188 if (error) 1189 goto release; 1190 1191 pr = inp->inp_socket->so_proto->pr_protocol; 1192 pcbinfo = udp_get_inpcbinfo(pr); 1193 1194 /* 1195 * If the IP_SENDSRCADDR control message was specified, override the 1196 * source address for this datagram. Its use is invalidated if the 1197 * address thus specified is incomplete or clobbers other inpcbs. 1198 */ 1199 laddr = inp->inp_laddr; 1200 lport = inp->inp_lport; 1201 if (src.sin_family == AF_INET) { 1202 if ((lport == 0) || 1203 (laddr.s_addr == INADDR_ANY && 1204 src.sin_addr.s_addr == INADDR_ANY)) { 1205 error = EINVAL; 1206 goto release; 1207 } 1208 INP_HASH_WLOCK(pcbinfo); 1209 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1210 &laddr.s_addr, &lport, td->td_ucred); 1211 INP_HASH_WUNLOCK(pcbinfo); 1212 if (error) 1213 goto release; 1214 } 1215 1216 /* 1217 * If a UDP socket has been connected, then a local address/port will 1218 * have been selected and bound. 1219 * 1220 * If a UDP socket has not been connected to, then an explicit 1221 * destination address must be used, in which case a local 1222 * address/port may not have been selected and bound. 1223 */ 1224 if (sin != NULL) { 1225 INP_LOCK_ASSERT(inp); 1226 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1227 error = EISCONN; 1228 goto release; 1229 } 1230 1231 /* 1232 * Jail may rewrite the destination address, so let it do 1233 * that before we use it. 1234 */ 1235 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1236 if (error) 1237 goto release; 1238 1239 /* 1240 * If a local address or port hasn't yet been selected, or if 1241 * the destination address needs to be rewritten due to using 1242 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1243 * to do the heavy lifting. Once a port is selected, we 1244 * commit the binding back to the socket; we also commit the 1245 * binding of the address if in jail. 1246 * 1247 * If we already have a valid binding and we're not 1248 * requesting a destination address rewrite, use a fast path. 1249 */ 1250 if (inp->inp_laddr.s_addr == INADDR_ANY || 1251 inp->inp_lport == 0 || 1252 sin->sin_addr.s_addr == INADDR_ANY || 1253 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1254 INP_HASH_WLOCK(pcbinfo); 1255 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1256 &lport, &faddr.s_addr, &fport, NULL, 1257 td->td_ucred); 1258 if (error) { 1259 INP_HASH_WUNLOCK(pcbinfo); 1260 goto release; 1261 } 1262 1263 /* 1264 * XXXRW: Why not commit the port if the address is 1265 * !INADDR_ANY? 1266 */ 1267 /* Commit the local port if newly assigned. */ 1268 if (inp->inp_laddr.s_addr == INADDR_ANY && 1269 inp->inp_lport == 0) { 1270 INP_WLOCK_ASSERT(inp); 1271 /* 1272 * Remember addr if jailed, to prevent 1273 * rebinding. 1274 */ 1275 if (prison_flag(td->td_ucred, PR_IP4)) 1276 inp->inp_laddr = laddr; 1277 inp->inp_lport = lport; 1278 error = in_pcbinshash(inp); 1279 INP_HASH_WUNLOCK(pcbinfo); 1280 if (error != 0) { 1281 inp->inp_lport = 0; 1282 error = EAGAIN; 1283 goto release; 1284 } 1285 inp->inp_flags |= INP_ANONPORT; 1286 } else 1287 INP_HASH_WUNLOCK(pcbinfo); 1288 } else { 1289 faddr = sin->sin_addr; 1290 fport = sin->sin_port; 1291 } 1292 } else { 1293 INP_LOCK_ASSERT(inp); 1294 faddr = inp->inp_faddr; 1295 fport = inp->inp_fport; 1296 if (faddr.s_addr == INADDR_ANY) { 1297 error = ENOTCONN; 1298 goto release; 1299 } 1300 } 1301 1302 /* 1303 * Calculate data length and get a mbuf for UDP, IP, and possible 1304 * link-layer headers. Immediate slide the data pointer back forward 1305 * since we won't use that space at this layer. 1306 */ 1307 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1308 if (m == NULL) { 1309 error = ENOBUFS; 1310 goto release; 1311 } 1312 m->m_data += max_linkhdr; 1313 m->m_len -= max_linkhdr; 1314 m->m_pkthdr.len -= max_linkhdr; 1315 1316 /* 1317 * Fill in mbuf with extended UDP header and addresses and length put 1318 * into network format. 1319 */ 1320 ui = mtod(m, struct udpiphdr *); 1321 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1322 ui->ui_v = IPVERSION << 4; 1323 ui->ui_pr = pr; 1324 ui->ui_src = laddr; 1325 ui->ui_dst = faddr; 1326 ui->ui_sport = lport; 1327 ui->ui_dport = fport; 1328 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1329 if (pr == IPPROTO_UDPLITE) { 1330 struct udpcb *up; 1331 uint16_t plen; 1332 1333 up = intoudpcb(inp); 1334 cscov = up->u_txcslen; 1335 plen = (u_short)len + sizeof(struct udphdr); 1336 if (cscov >= plen) 1337 cscov = 0; 1338 ui->ui_len = htons(plen); 1339 ui->ui_ulen = htons(cscov); 1340 /* 1341 * For UDP-Lite, checksum coverage length of zero means 1342 * the entire UDPLite packet is covered by the checksum. 1343 */ 1344 cscov_partial = (cscov == 0) ? 0 : 1; 1345 } 1346 1347 /* 1348 * Set the Don't Fragment bit in the IP header. 1349 */ 1350 if (inp->inp_flags & INP_DONTFRAG) { 1351 struct ip *ip; 1352 1353 ip = (struct ip *)&ui->ui_i; 1354 ip->ip_off |= htons(IP_DF); 1355 } 1356 1357 if (inp->inp_socket->so_options & SO_DONTROUTE) 1358 ipflags |= IP_ROUTETOIF; 1359 if (inp->inp_socket->so_options & SO_BROADCAST) 1360 ipflags |= IP_ALLOWBROADCAST; 1361 if (inp->inp_flags & INP_ONESBCAST) 1362 ipflags |= IP_SENDONES; 1363 1364 #ifdef MAC 1365 mac_inpcb_create_mbuf(inp, m); 1366 #endif 1367 1368 /* 1369 * Set up checksum and output datagram. 1370 */ 1371 ui->ui_sum = 0; 1372 if (pr == IPPROTO_UDPLITE) { 1373 if (inp->inp_flags & INP_ONESBCAST) 1374 faddr.s_addr = INADDR_BROADCAST; 1375 if (cscov_partial) { 1376 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1377 ui->ui_sum = 0xffff; 1378 } else { 1379 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1380 ui->ui_sum = 0xffff; 1381 } 1382 } else if (V_udp_cksum) { 1383 if (inp->inp_flags & INP_ONESBCAST) 1384 faddr.s_addr = INADDR_BROADCAST; 1385 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1386 htons((u_short)len + sizeof(struct udphdr) + pr)); 1387 m->m_pkthdr.csum_flags = CSUM_UDP; 1388 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1389 } 1390 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1391 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1392 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1393 UDPSTAT_INC(udps_opackets); 1394 1395 /* 1396 * Setup flowid / RSS information for outbound socket. 1397 * 1398 * Once the UDP code decides to set a flowid some other way, 1399 * this allows the flowid to be overridden by userland. 1400 */ 1401 if (flowtype != M_HASHTYPE_NONE) { 1402 m->m_pkthdr.flowid = flowid; 1403 M_HASHTYPE_SET(m, flowtype); 1404 } 1405 #if defined(ROUTE_MPATH) || defined(RSS) 1406 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1407 uint32_t hash_val, hash_type; 1408 1409 hash_val = fib4_calc_packet_hash(laddr, faddr, 1410 lport, fport, pr, &hash_type); 1411 m->m_pkthdr.flowid = hash_val; 1412 M_HASHTYPE_SET(m, hash_type); 1413 } 1414 1415 /* 1416 * Don't override with the inp cached flowid value. 1417 * 1418 * Depending upon the kind of send being done, the inp 1419 * flowid/flowtype values may actually not be appropriate 1420 * for this particular socket send. 1421 * 1422 * We should either leave the flowid at zero (which is what is 1423 * currently done) or set it to some software generated 1424 * hash value based on the packet contents. 1425 */ 1426 ipflags |= IP_NODEFAULTFLOWID; 1427 #endif /* RSS */ 1428 1429 if (pr == IPPROTO_UDPLITE) 1430 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1431 else 1432 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1433 error = ip_output(m, inp->inp_options, 1434 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1435 inp->inp_moptions, inp); 1436 INP_UNLOCK(inp); 1437 NET_EPOCH_EXIT(et); 1438 return (error); 1439 1440 release: 1441 INP_UNLOCK(inp); 1442 NET_EPOCH_EXIT(et); 1443 m_freem(m); 1444 return (error); 1445 } 1446 1447 void 1448 udp_abort(struct socket *so) 1449 { 1450 struct inpcb *inp; 1451 struct inpcbinfo *pcbinfo; 1452 1453 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1454 inp = sotoinpcb(so); 1455 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1456 INP_WLOCK(inp); 1457 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1458 INP_HASH_WLOCK(pcbinfo); 1459 in_pcbdisconnect(inp); 1460 inp->inp_laddr.s_addr = INADDR_ANY; 1461 INP_HASH_WUNLOCK(pcbinfo); 1462 soisdisconnected(so); 1463 } 1464 INP_WUNLOCK(inp); 1465 } 1466 1467 static int 1468 udp_attach(struct socket *so, int proto, struct thread *td) 1469 { 1470 static uint32_t udp_flowid; 1471 struct inpcbinfo *pcbinfo; 1472 struct inpcb *inp; 1473 struct udpcb *up; 1474 int error; 1475 1476 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1477 inp = sotoinpcb(so); 1478 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1479 error = soreserve(so, udp_sendspace, udp_recvspace); 1480 if (error) 1481 return (error); 1482 error = in_pcballoc(so, pcbinfo); 1483 if (error) 1484 return (error); 1485 1486 inp = sotoinpcb(so); 1487 inp->inp_ip_ttl = V_ip_defttl; 1488 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1489 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1490 up = intoudpcb(inp); 1491 bzero(&up->u_start_zero, u_zero_size); 1492 INP_WUNLOCK(inp); 1493 1494 return (0); 1495 } 1496 #endif /* INET */ 1497 1498 int 1499 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1500 { 1501 struct inpcb *inp; 1502 struct udpcb *up; 1503 1504 KASSERT(so->so_type == SOCK_DGRAM, 1505 ("udp_set_kernel_tunneling: !dgram")); 1506 inp = sotoinpcb(so); 1507 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1508 INP_WLOCK(inp); 1509 up = intoudpcb(inp); 1510 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1511 (up->u_icmp_func != NULL))) { 1512 INP_WUNLOCK(inp); 1513 return (EBUSY); 1514 } 1515 up->u_tun_func = f; 1516 up->u_icmp_func = i; 1517 up->u_tun_ctx = ctx; 1518 INP_WUNLOCK(inp); 1519 return (0); 1520 } 1521 1522 #ifdef INET 1523 static int 1524 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1525 { 1526 struct inpcb *inp; 1527 struct inpcbinfo *pcbinfo; 1528 struct sockaddr_in *sinp; 1529 int error; 1530 1531 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1532 inp = sotoinpcb(so); 1533 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1534 1535 sinp = (struct sockaddr_in *)nam; 1536 if (nam->sa_family != AF_INET) { 1537 /* 1538 * Preserve compatibility with old programs. 1539 */ 1540 if (nam->sa_family != AF_UNSPEC || 1541 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1542 sinp->sin_addr.s_addr != INADDR_ANY) 1543 return (EAFNOSUPPORT); 1544 nam->sa_family = AF_INET; 1545 } 1546 if (nam->sa_len != sizeof(struct sockaddr_in)) 1547 return (EINVAL); 1548 1549 INP_WLOCK(inp); 1550 INP_HASH_WLOCK(pcbinfo); 1551 error = in_pcbbind(inp, nam, td->td_ucred); 1552 INP_HASH_WUNLOCK(pcbinfo); 1553 INP_WUNLOCK(inp); 1554 return (error); 1555 } 1556 1557 static void 1558 udp_close(struct socket *so) 1559 { 1560 struct inpcb *inp; 1561 struct inpcbinfo *pcbinfo; 1562 1563 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1564 inp = sotoinpcb(so); 1565 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1566 INP_WLOCK(inp); 1567 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1568 INP_HASH_WLOCK(pcbinfo); 1569 in_pcbdisconnect(inp); 1570 inp->inp_laddr.s_addr = INADDR_ANY; 1571 INP_HASH_WUNLOCK(pcbinfo); 1572 soisdisconnected(so); 1573 } 1574 INP_WUNLOCK(inp); 1575 } 1576 1577 static int 1578 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1579 { 1580 struct epoch_tracker et; 1581 struct inpcb *inp; 1582 struct inpcbinfo *pcbinfo; 1583 struct sockaddr_in *sin; 1584 int error; 1585 1586 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1587 inp = sotoinpcb(so); 1588 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1589 1590 sin = (struct sockaddr_in *)nam; 1591 if (sin->sin_family != AF_INET) 1592 return (EAFNOSUPPORT); 1593 if (sin->sin_len != sizeof(*sin)) 1594 return (EINVAL); 1595 1596 INP_WLOCK(inp); 1597 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1598 INP_WUNLOCK(inp); 1599 return (EISCONN); 1600 } 1601 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1602 if (error != 0) { 1603 INP_WUNLOCK(inp); 1604 return (error); 1605 } 1606 NET_EPOCH_ENTER(et); 1607 INP_HASH_WLOCK(pcbinfo); 1608 error = in_pcbconnect(inp, nam, td->td_ucred, true); 1609 INP_HASH_WUNLOCK(pcbinfo); 1610 NET_EPOCH_EXIT(et); 1611 if (error == 0) 1612 soisconnected(so); 1613 INP_WUNLOCK(inp); 1614 return (error); 1615 } 1616 1617 static void 1618 udp_detach(struct socket *so) 1619 { 1620 struct inpcb *inp; 1621 1622 inp = sotoinpcb(so); 1623 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1624 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1625 ("udp_detach: not disconnected")); 1626 INP_WLOCK(inp); 1627 in_pcbdetach(inp); 1628 in_pcbfree(inp); 1629 } 1630 1631 int 1632 udp_disconnect(struct socket *so) 1633 { 1634 struct inpcb *inp; 1635 struct inpcbinfo *pcbinfo; 1636 1637 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1638 inp = sotoinpcb(so); 1639 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1640 INP_WLOCK(inp); 1641 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1642 INP_WUNLOCK(inp); 1643 return (ENOTCONN); 1644 } 1645 INP_HASH_WLOCK(pcbinfo); 1646 in_pcbdisconnect(inp); 1647 inp->inp_laddr.s_addr = INADDR_ANY; 1648 INP_HASH_WUNLOCK(pcbinfo); 1649 SOCK_LOCK(so); 1650 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1651 SOCK_UNLOCK(so); 1652 INP_WUNLOCK(inp); 1653 return (0); 1654 } 1655 #endif /* INET */ 1656 1657 int 1658 udp_shutdown(struct socket *so) 1659 { 1660 struct inpcb *inp; 1661 1662 inp = sotoinpcb(so); 1663 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1664 INP_WLOCK(inp); 1665 socantsendmore(so); 1666 INP_WUNLOCK(inp); 1667 return (0); 1668 } 1669 1670 #ifdef INET 1671 #define UDP_PROTOSW \ 1672 .pr_type = SOCK_DGRAM, \ 1673 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ 1674 .pr_ctloutput = udp_ctloutput, \ 1675 .pr_abort = udp_abort, \ 1676 .pr_attach = udp_attach, \ 1677 .pr_bind = udp_bind, \ 1678 .pr_connect = udp_connect, \ 1679 .pr_control = in_control, \ 1680 .pr_detach = udp_detach, \ 1681 .pr_disconnect = udp_disconnect, \ 1682 .pr_peeraddr = in_getpeeraddr, \ 1683 .pr_send = udp_send, \ 1684 .pr_soreceive = soreceive_dgram, \ 1685 .pr_sosend = sosend_dgram, \ 1686 .pr_shutdown = udp_shutdown, \ 1687 .pr_sockaddr = in_getsockaddr, \ 1688 .pr_sosetlabel = in_pcbsosetlabel, \ 1689 .pr_close = udp_close 1690 1691 struct protosw udp_protosw = { 1692 .pr_protocol = IPPROTO_UDP, 1693 UDP_PROTOSW 1694 }; 1695 1696 struct protosw udplite_protosw = { 1697 .pr_protocol = IPPROTO_UDPLITE, 1698 UDP_PROTOSW 1699 }; 1700 1701 static void 1702 udp_init(void *arg __unused) 1703 { 1704 1705 IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); 1706 IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); 1707 } 1708 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 1709 #endif /* INET */ 1710