1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2008 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ipfw.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/param.h> 42 #include <sys/domain.h> 43 #include <sys/eventhandler.h> 44 #include <sys/jail.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/signalvar.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sx.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/systm.h> 59 #include <sys/vimage.h> 60 61 #include <vm/uma.h> 62 63 #include <net/if.h> 64 #include <net/route.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip.h> 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 #include <netinet/ip_icmp.h> 75 #include <netinet/icmp_var.h> 76 #include <netinet/ip_var.h> 77 #include <netinet/ip_options.h> 78 #ifdef INET6 79 #include <netinet6/ip6_var.h> 80 #endif 81 #include <netinet/udp.h> 82 #include <netinet/udp_var.h> 83 #include <netinet/vinet.h> 84 85 #ifdef IPSEC 86 #include <netipsec/ipsec.h> 87 #include <netipsec/esp.h> 88 #endif 89 90 #include <machine/in_cksum.h> 91 92 #include <security/mac/mac_framework.h> 93 94 /* 95 * UDP protocol implementation. 96 * Per RFC 768, August, 1980. 97 */ 98 99 #ifdef VIMAGE_GLOBALS 100 int udp_blackhole; 101 #endif 102 103 /* 104 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 105 * removes the only data integrity mechanism for packets and malformed 106 * packets that would otherwise be discarded due to bad checksums, and may 107 * cause problems (especially for NFS data blocks). 108 */ 109 static int udp_cksum = 1; 110 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udp_cksum, 111 0, "compute udp checksum"); 112 113 int udp_log_in_vain = 0; 114 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 115 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 116 117 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_udp, OID_AUTO, blackhole, 118 CTLFLAG_RW, udp_blackhole, 0, 119 "Do not send port unreachables for refused connects"); 120 121 u_long udp_sendspace = 9216; /* really max datagram size */ 122 /* 40 1K datagrams */ 123 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 124 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 125 126 u_long udp_recvspace = 40 * (1024 + 127 #ifdef INET6 128 sizeof(struct sockaddr_in6) 129 #else 130 sizeof(struct sockaddr_in) 131 #endif 132 ); 133 134 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 135 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 136 137 #ifdef VIMAGE_GLOBALS 138 struct inpcbhead udb; /* from udp_var.h */ 139 struct inpcbinfo udbinfo; 140 static uma_zone_t udpcb_zone; 141 struct udpstat udpstat; /* from udp_var.h */ 142 #endif 143 144 #ifndef UDBHASHSIZE 145 #define UDBHASHSIZE 128 146 #endif 147 148 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_udp, UDPCTL_STATS, stats, 149 CTLFLAG_RW, udpstat, udpstat, 150 "UDP statistics (struct udpstat, netinet/udp_var.h)"); 151 152 static void udp_detach(struct socket *so); 153 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 154 struct mbuf *, struct thread *); 155 #ifdef IPSEC 156 #ifdef IPSEC_NAT_T 157 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP) 158 #ifdef INET 159 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int); 160 #endif 161 #endif /* IPSEC_NAT_T */ 162 #endif /* IPSEC */ 163 164 static void 165 udp_zone_change(void *tag) 166 { 167 INIT_VNET_INET(curvnet); 168 169 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 170 uma_zone_set_max(V_udpcb_zone, maxsockets); 171 } 172 173 static int 174 udp_inpcb_init(void *mem, int size, int flags) 175 { 176 struct inpcb *inp; 177 178 inp = mem; 179 INP_LOCK_INIT(inp, "inp", "udpinp"); 180 return (0); 181 } 182 183 void 184 udp_init(void) 185 { 186 INIT_VNET_INET(curvnet); 187 188 V_udp_blackhole = 0; 189 190 INP_INFO_LOCK_INIT(&V_udbinfo, "udp"); 191 LIST_INIT(&V_udb); 192 #ifdef VIMAGE 193 V_udbinfo.ipi_vnet = curvnet; 194 #endif 195 V_udbinfo.ipi_listhead = &V_udb; 196 V_udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB, 197 &V_udbinfo.ipi_hashmask); 198 V_udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB, 199 &V_udbinfo.ipi_porthashmask); 200 V_udbinfo.ipi_zone = uma_zcreate("udp_inpcb", sizeof(struct inpcb), 201 NULL, NULL, udp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 202 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 203 204 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 205 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 206 uma_zone_set_max(V_udpcb_zone, maxsockets); 207 208 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 209 EVENTHANDLER_PRI_ANY); 210 } 211 212 int 213 udp_newudpcb(struct inpcb *inp) 214 { 215 INIT_VNET_INET(curvnet); 216 struct udpcb *up; 217 218 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 219 if (up == NULL) 220 return (ENOBUFS); 221 inp->inp_ppcb = up; 222 return (0); 223 } 224 225 void 226 udp_discardcb(struct udpcb *up) 227 { 228 INIT_VNET_INET(curvnet); 229 230 uma_zfree(V_udpcb_zone, up); 231 } 232 233 #ifdef VIMAGE 234 void 235 udp_destroy(void) 236 { 237 INIT_VNET_INET(curvnet); 238 239 hashdestroy(V_udbinfo.ipi_hashbase, M_PCB, 240 V_udbinfo.ipi_hashmask); 241 hashdestroy(V_udbinfo.ipi_porthashbase, M_PCB, 242 V_udbinfo.ipi_porthashmask); 243 INP_INFO_LOCK_DESTROY(&V_udbinfo); 244 } 245 #endif 246 247 /* 248 * Subroutine of udp_input(), which appends the provided mbuf chain to the 249 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 250 * contains the source address. If the socket ends up being an IPv6 socket, 251 * udp_append() will convert to a sockaddr_in6 before passing the address 252 * into the socket code. 253 */ 254 static void 255 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 256 struct sockaddr_in *udp_in) 257 { 258 struct sockaddr *append_sa; 259 struct socket *so; 260 struct mbuf *opts = 0; 261 #ifdef INET6 262 struct sockaddr_in6 udp_in6; 263 #endif 264 #ifdef IPSEC 265 #ifdef IPSEC_NAT_T 266 #ifdef INET 267 struct udpcb *up; 268 #endif 269 #endif 270 #endif 271 272 INP_RLOCK_ASSERT(inp); 273 274 #ifdef IPSEC 275 /* Check AH/ESP integrity. */ 276 if (ipsec4_in_reject(n, inp)) { 277 INIT_VNET_IPSEC(curvnet); 278 m_freem(n); 279 V_ipsec4stat.in_polvio++; 280 return; 281 } 282 #ifdef IPSEC_NAT_T 283 #ifdef INET 284 up = intoudpcb(inp); 285 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 286 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */ 287 n = udp4_espdecap(inp, n, off); 288 if (n == NULL) /* Consumed. */ 289 return; 290 } 291 #endif /* INET */ 292 #endif /* IPSEC_NAT_T */ 293 #endif /* IPSEC */ 294 #ifdef MAC 295 if (mac_inpcb_check_deliver(inp, n) != 0) { 296 m_freem(n); 297 return; 298 } 299 #endif 300 if (inp->inp_flags & INP_CONTROLOPTS || 301 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 302 #ifdef INET6 303 if (inp->inp_vflag & INP_IPV6) 304 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 305 else 306 #endif 307 ip_savecontrol(inp, &opts, ip, n); 308 } 309 #ifdef INET6 310 if (inp->inp_vflag & INP_IPV6) { 311 bzero(&udp_in6, sizeof(udp_in6)); 312 udp_in6.sin6_len = sizeof(udp_in6); 313 udp_in6.sin6_family = AF_INET6; 314 in6_sin_2_v4mapsin6(udp_in, &udp_in6); 315 append_sa = (struct sockaddr *)&udp_in6; 316 } else 317 #endif 318 append_sa = (struct sockaddr *)udp_in; 319 m_adj(n, off); 320 321 so = inp->inp_socket; 322 SOCKBUF_LOCK(&so->so_rcv); 323 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 324 INIT_VNET_INET(so->so_vnet); 325 SOCKBUF_UNLOCK(&so->so_rcv); 326 m_freem(n); 327 if (opts) 328 m_freem(opts); 329 UDPSTAT_INC(udps_fullsock); 330 } else 331 sorwakeup_locked(so); 332 } 333 334 void 335 udp_input(struct mbuf *m, int off) 336 { 337 INIT_VNET_INET(curvnet); 338 int iphlen = off; 339 struct ip *ip; 340 struct udphdr *uh; 341 struct ifnet *ifp; 342 struct inpcb *inp; 343 struct udpcb *up; 344 int len; 345 struct ip save_ip; 346 struct sockaddr_in udp_in; 347 #ifdef IPFIREWALL_FORWARD 348 struct m_tag *fwd_tag; 349 #endif 350 351 ifp = m->m_pkthdr.rcvif; 352 UDPSTAT_INC(udps_ipackets); 353 354 /* 355 * Strip IP options, if any; should skip this, make available to 356 * user, and use on returned packets, but we don't yet have a way to 357 * check the checksum with options still present. 358 */ 359 if (iphlen > sizeof (struct ip)) { 360 ip_stripoptions(m, (struct mbuf *)0); 361 iphlen = sizeof(struct ip); 362 } 363 364 /* 365 * Get IP and UDP header together in first mbuf. 366 */ 367 ip = mtod(m, struct ip *); 368 if (m->m_len < iphlen + sizeof(struct udphdr)) { 369 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) { 370 UDPSTAT_INC(udps_hdrops); 371 return; 372 } 373 ip = mtod(m, struct ip *); 374 } 375 uh = (struct udphdr *)((caddr_t)ip + iphlen); 376 377 /* 378 * Destination port of 0 is illegal, based on RFC768. 379 */ 380 if (uh->uh_dport == 0) 381 goto badunlocked; 382 383 /* 384 * Construct sockaddr format source address. Stuff source address 385 * and datagram in user buffer. 386 */ 387 bzero(&udp_in, sizeof(udp_in)); 388 udp_in.sin_len = sizeof(udp_in); 389 udp_in.sin_family = AF_INET; 390 udp_in.sin_port = uh->uh_sport; 391 udp_in.sin_addr = ip->ip_src; 392 393 /* 394 * Make mbuf data length reflect UDP length. If not enough data to 395 * reflect UDP length, drop. 396 */ 397 len = ntohs((u_short)uh->uh_ulen); 398 if (ip->ip_len != len) { 399 if (len > ip->ip_len || len < sizeof(struct udphdr)) { 400 UDPSTAT_INC(udps_badlen); 401 goto badunlocked; 402 } 403 m_adj(m, len - ip->ip_len); 404 /* ip->ip_len = len; */ 405 } 406 407 /* 408 * Save a copy of the IP header in case we want restore it for 409 * sending an ICMP error message in response. 410 */ 411 if (!V_udp_blackhole) 412 save_ip = *ip; 413 else 414 memset(&save_ip, 0, sizeof(save_ip)); 415 416 /* 417 * Checksum extended UDP header and data. 418 */ 419 if (uh->uh_sum) { 420 u_short uh_sum; 421 422 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 423 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 424 uh_sum = m->m_pkthdr.csum_data; 425 else 426 uh_sum = in_pseudo(ip->ip_src.s_addr, 427 ip->ip_dst.s_addr, htonl((u_short)len + 428 m->m_pkthdr.csum_data + IPPROTO_UDP)); 429 uh_sum ^= 0xffff; 430 } else { 431 char b[9]; 432 433 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 434 bzero(((struct ipovly *)ip)->ih_x1, 9); 435 ((struct ipovly *)ip)->ih_len = uh->uh_ulen; 436 uh_sum = in_cksum(m, len + sizeof (struct ip)); 437 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 438 } 439 if (uh_sum) { 440 UDPSTAT_INC(udps_badsum); 441 m_freem(m); 442 return; 443 } 444 } else 445 UDPSTAT_INC(udps_nosum); 446 447 #ifdef IPFIREWALL_FORWARD 448 /* 449 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 450 */ 451 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 452 if (fwd_tag != NULL) { 453 struct sockaddr_in *next_hop; 454 455 /* 456 * Do the hack. 457 */ 458 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 459 ip->ip_dst = next_hop->sin_addr; 460 uh->uh_dport = ntohs(next_hop->sin_port); 461 462 /* 463 * Remove the tag from the packet. We don't need it anymore. 464 */ 465 m_tag_delete(m, fwd_tag); 466 } 467 #endif 468 469 INP_INFO_RLOCK(&V_udbinfo); 470 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 471 in_broadcast(ip->ip_dst, ifp)) { 472 struct inpcb *last; 473 struct ip_moptions *imo; 474 475 last = NULL; 476 LIST_FOREACH(inp, &V_udb, inp_list) { 477 if (inp->inp_lport != uh->uh_dport) 478 continue; 479 #ifdef INET6 480 if ((inp->inp_vflag & INP_IPV4) == 0) 481 continue; 482 #endif 483 if (inp->inp_laddr.s_addr != INADDR_ANY && 484 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 485 continue; 486 if (inp->inp_faddr.s_addr != INADDR_ANY && 487 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 488 continue; 489 if (inp->inp_fport != 0 && 490 inp->inp_fport != uh->uh_sport) 491 continue; 492 493 INP_RLOCK(inp); 494 495 /* 496 * Handle socket delivery policy for any-source 497 * and source-specific multicast. [RFC3678] 498 */ 499 imo = inp->inp_moptions; 500 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 501 imo != NULL) { 502 struct sockaddr_in group; 503 int blocked; 504 505 bzero(&group, sizeof(struct sockaddr_in)); 506 group.sin_len = sizeof(struct sockaddr_in); 507 group.sin_family = AF_INET; 508 group.sin_addr = ip->ip_dst; 509 510 blocked = imo_multi_filter(imo, ifp, 511 (struct sockaddr *)&group, 512 (struct sockaddr *)&udp_in); 513 if (blocked != MCAST_PASS) { 514 if (blocked == MCAST_NOTGMEMBER) 515 IPSTAT_INC(ips_notmember); 516 if (blocked == MCAST_NOTSMEMBER || 517 blocked == MCAST_MUTED) 518 UDPSTAT_INC(udps_filtermcast); 519 INP_RUNLOCK(inp); 520 continue; 521 } 522 } 523 if (last != NULL) { 524 struct mbuf *n; 525 526 n = m_copy(m, 0, M_COPYALL); 527 up = intoudpcb(last); 528 if (up->u_tun_func == NULL) { 529 if (n != NULL) 530 udp_append(last, 531 ip, n, 532 iphlen + 533 sizeof(struct udphdr), 534 &udp_in); 535 } else { 536 /* 537 * Engage the tunneling protocol we 538 * will have to leave the info_lock 539 * up, since we are hunting through 540 * multiple UDP's. 541 */ 542 543 (*up->u_tun_func)(n, iphlen, last); 544 } 545 INP_RUNLOCK(last); 546 } 547 last = inp; 548 /* 549 * Don't look for additional matches if this one does 550 * not have either the SO_REUSEPORT or SO_REUSEADDR 551 * socket options set. This heuristic avoids 552 * searching through all pcbs in the common case of a 553 * non-shared port. It assumes that an application 554 * will never clear these options after setting them. 555 */ 556 if ((last->inp_socket->so_options & 557 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 558 break; 559 } 560 561 if (last == NULL) { 562 /* 563 * No matching pcb found; discard datagram. (No need 564 * to send an ICMP Port Unreachable for a broadcast 565 * or multicast datgram.) 566 */ 567 UDPSTAT_INC(udps_noportbcast); 568 goto badheadlocked; 569 } 570 up = intoudpcb(last); 571 if (up->u_tun_func == NULL) { 572 udp_append(last, ip, m, iphlen + sizeof(struct udphdr), 573 &udp_in); 574 } else { 575 /* 576 * Engage the tunneling protocol. 577 */ 578 (*up->u_tun_func)(m, iphlen, last); 579 } 580 INP_RUNLOCK(last); 581 INP_INFO_RUNLOCK(&V_udbinfo); 582 return; 583 } 584 585 /* 586 * Locate pcb for datagram. 587 */ 588 inp = in_pcblookup_hash(&V_udbinfo, ip->ip_src, uh->uh_sport, 589 ip->ip_dst, uh->uh_dport, 1, ifp); 590 if (inp == NULL) { 591 if (udp_log_in_vain) { 592 char buf[4*sizeof "123"]; 593 594 strcpy(buf, inet_ntoa(ip->ip_dst)); 595 log(LOG_INFO, 596 "Connection attempt to UDP %s:%d from %s:%d\n", 597 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), 598 ntohs(uh->uh_sport)); 599 } 600 UDPSTAT_INC(udps_noport); 601 if (m->m_flags & (M_BCAST | M_MCAST)) { 602 UDPSTAT_INC(udps_noportbcast); 603 goto badheadlocked; 604 } 605 if (V_udp_blackhole) 606 goto badheadlocked; 607 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 608 goto badheadlocked; 609 *ip = save_ip; 610 ip->ip_len += iphlen; 611 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 612 INP_INFO_RUNLOCK(&V_udbinfo); 613 return; 614 } 615 616 /* 617 * Check the minimum TTL for socket. 618 */ 619 INP_RLOCK(inp); 620 INP_INFO_RUNLOCK(&V_udbinfo); 621 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 622 INP_RUNLOCK(inp); 623 goto badunlocked; 624 } 625 up = intoudpcb(inp); 626 if (up->u_tun_func == NULL) { 627 udp_append(inp, ip, m, iphlen + sizeof(struct udphdr), &udp_in); 628 } else { 629 /* 630 * Engage the tunneling protocol. 631 */ 632 633 (*up->u_tun_func)(m, iphlen, inp); 634 } 635 INP_RUNLOCK(inp); 636 return; 637 638 badheadlocked: 639 if (inp) 640 INP_RUNLOCK(inp); 641 INP_INFO_RUNLOCK(&V_udbinfo); 642 badunlocked: 643 m_freem(m); 644 } 645 646 /* 647 * Notify a udp user of an asynchronous error; just wake up so that they can 648 * collect error status. 649 */ 650 struct inpcb * 651 udp_notify(struct inpcb *inp, int errno) 652 { 653 654 /* 655 * While udp_ctlinput() always calls udp_notify() with a read lock 656 * when invoking it directly, in_pcbnotifyall() currently uses write 657 * locks due to sharing code with TCP. For now, accept either a read 658 * or a write lock, but a read lock is sufficient. 659 */ 660 INP_LOCK_ASSERT(inp); 661 662 inp->inp_socket->so_error = errno; 663 sorwakeup(inp->inp_socket); 664 sowwakeup(inp->inp_socket); 665 return (inp); 666 } 667 668 void 669 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 670 { 671 INIT_VNET_INET(curvnet); 672 struct ip *ip = vip; 673 struct udphdr *uh; 674 struct in_addr faddr; 675 struct inpcb *inp; 676 677 faddr = ((struct sockaddr_in *)sa)->sin_addr; 678 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 679 return; 680 681 /* 682 * Redirects don't need to be handled up here. 683 */ 684 if (PRC_IS_REDIRECT(cmd)) 685 return; 686 687 /* 688 * Hostdead is ugly because it goes linearly through all PCBs. 689 * 690 * XXX: We never get this from ICMP, otherwise it makes an excellent 691 * DoS attack on machines with many connections. 692 */ 693 if (cmd == PRC_HOSTDEAD) 694 ip = NULL; 695 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 696 return; 697 if (ip != NULL) { 698 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 699 INP_INFO_RLOCK(&V_udbinfo); 700 inp = in_pcblookup_hash(&V_udbinfo, faddr, uh->uh_dport, 701 ip->ip_src, uh->uh_sport, 0, NULL); 702 if (inp != NULL) { 703 INP_RLOCK(inp); 704 if (inp->inp_socket != NULL) { 705 udp_notify(inp, inetctlerrmap[cmd]); 706 } 707 INP_RUNLOCK(inp); 708 } 709 INP_INFO_RUNLOCK(&V_udbinfo); 710 } else 711 in_pcbnotifyall(&V_udbinfo, faddr, inetctlerrmap[cmd], 712 udp_notify); 713 } 714 715 static int 716 udp_pcblist(SYSCTL_HANDLER_ARGS) 717 { 718 INIT_VNET_INET(curvnet); 719 int error, i, n; 720 struct inpcb *inp, **inp_list; 721 inp_gen_t gencnt; 722 struct xinpgen xig; 723 724 /* 725 * The process of preparing the PCB list is too time-consuming and 726 * resource-intensive to repeat twice on every request. 727 */ 728 if (req->oldptr == 0) { 729 n = V_udbinfo.ipi_count; 730 req->oldidx = 2 * (sizeof xig) 731 + (n + n/8) * sizeof(struct xinpcb); 732 return (0); 733 } 734 735 if (req->newptr != 0) 736 return (EPERM); 737 738 /* 739 * OK, now we're committed to doing something. 740 */ 741 INP_INFO_RLOCK(&V_udbinfo); 742 gencnt = V_udbinfo.ipi_gencnt; 743 n = V_udbinfo.ipi_count; 744 INP_INFO_RUNLOCK(&V_udbinfo); 745 746 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 747 + n * sizeof(struct xinpcb)); 748 if (error != 0) 749 return (error); 750 751 xig.xig_len = sizeof xig; 752 xig.xig_count = n; 753 xig.xig_gen = gencnt; 754 xig.xig_sogen = so_gencnt; 755 error = SYSCTL_OUT(req, &xig, sizeof xig); 756 if (error) 757 return (error); 758 759 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 760 if (inp_list == 0) 761 return (ENOMEM); 762 763 INP_INFO_RLOCK(&V_udbinfo); 764 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 765 inp = LIST_NEXT(inp, inp_list)) { 766 INP_RLOCK(inp); 767 if (inp->inp_gencnt <= gencnt && 768 cr_canseeinpcb(req->td->td_ucred, inp) == 0) 769 inp_list[i++] = inp; 770 INP_RUNLOCK(inp); 771 } 772 INP_INFO_RUNLOCK(&V_udbinfo); 773 n = i; 774 775 error = 0; 776 for (i = 0; i < n; i++) { 777 inp = inp_list[i]; 778 INP_RLOCK(inp); 779 if (inp->inp_gencnt <= gencnt) { 780 struct xinpcb xi; 781 bzero(&xi, sizeof(xi)); 782 xi.xi_len = sizeof xi; 783 /* XXX should avoid extra copy */ 784 bcopy(inp, &xi.xi_inp, sizeof *inp); 785 if (inp->inp_socket) 786 sotoxsocket(inp->inp_socket, &xi.xi_socket); 787 xi.xi_inp.inp_gencnt = inp->inp_gencnt; 788 INP_RUNLOCK(inp); 789 error = SYSCTL_OUT(req, &xi, sizeof xi); 790 } else 791 INP_RUNLOCK(inp); 792 } 793 if (!error) { 794 /* 795 * Give the user an updated idea of our state. If the 796 * generation differs from what we told her before, she knows 797 * that something happened while we were processing this 798 * request, and it might be necessary to retry. 799 */ 800 INP_INFO_RLOCK(&V_udbinfo); 801 xig.xig_gen = V_udbinfo.ipi_gencnt; 802 xig.xig_sogen = so_gencnt; 803 xig.xig_count = V_udbinfo.ipi_count; 804 INP_INFO_RUNLOCK(&V_udbinfo); 805 error = SYSCTL_OUT(req, &xig, sizeof xig); 806 } 807 free(inp_list, M_TEMP); 808 return (error); 809 } 810 811 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 812 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 813 814 static int 815 udp_getcred(SYSCTL_HANDLER_ARGS) 816 { 817 INIT_VNET_INET(curvnet); 818 struct xucred xuc; 819 struct sockaddr_in addrs[2]; 820 struct inpcb *inp; 821 int error; 822 823 error = priv_check(req->td, PRIV_NETINET_GETCRED); 824 if (error) 825 return (error); 826 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 827 if (error) 828 return (error); 829 INP_INFO_RLOCK(&V_udbinfo); 830 inp = in_pcblookup_hash(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 831 addrs[0].sin_addr, addrs[0].sin_port, 1, NULL); 832 if (inp != NULL) { 833 INP_RLOCK(inp); 834 INP_INFO_RUNLOCK(&V_udbinfo); 835 if (inp->inp_socket == NULL) 836 error = ENOENT; 837 if (error == 0) 838 error = cr_canseeinpcb(req->td->td_ucred, inp); 839 if (error == 0) 840 cru2x(inp->inp_cred, &xuc); 841 INP_RUNLOCK(inp); 842 } else { 843 INP_INFO_RUNLOCK(&V_udbinfo); 844 error = ENOENT; 845 } 846 if (error == 0) 847 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 848 return (error); 849 } 850 851 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 852 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 853 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 854 855 int 856 udp_ctloutput(struct socket *so, struct sockopt *sopt) 857 { 858 int error = 0, optval; 859 struct inpcb *inp; 860 #ifdef IPSEC_NAT_T 861 struct udpcb *up; 862 #endif 863 864 inp = sotoinpcb(so); 865 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 866 INP_WLOCK(inp); 867 if (sopt->sopt_level != IPPROTO_UDP) { 868 #ifdef INET6 869 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 870 INP_WUNLOCK(inp); 871 error = ip6_ctloutput(so, sopt); 872 } else { 873 #endif 874 INP_WUNLOCK(inp); 875 error = ip_ctloutput(so, sopt); 876 #ifdef INET6 877 } 878 #endif 879 return (error); 880 } 881 882 switch (sopt->sopt_dir) { 883 case SOPT_SET: 884 switch (sopt->sopt_name) { 885 case UDP_ENCAP: 886 INP_WUNLOCK(inp); 887 error = sooptcopyin(sopt, &optval, sizeof optval, 888 sizeof optval); 889 if (error) 890 break; 891 inp = sotoinpcb(so); 892 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 893 INP_WLOCK(inp); 894 #ifdef IPSEC_NAT_T 895 up = intoudpcb(inp); 896 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 897 #endif 898 switch (optval) { 899 case 0: 900 /* Clear all UDP encap. */ 901 #ifdef IPSEC_NAT_T 902 up->u_flags &= ~UF_ESPINUDP_ALL; 903 #endif 904 break; 905 #ifdef IPSEC_NAT_T 906 case UDP_ENCAP_ESPINUDP: 907 case UDP_ENCAP_ESPINUDP_NON_IKE: 908 up->u_flags &= ~UF_ESPINUDP_ALL; 909 if (optval == UDP_ENCAP_ESPINUDP) 910 up->u_flags |= UF_ESPINUDP; 911 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE) 912 up->u_flags |= UF_ESPINUDP_NON_IKE; 913 break; 914 #endif 915 default: 916 error = EINVAL; 917 break; 918 } 919 INP_WUNLOCK(inp); 920 break; 921 default: 922 INP_WUNLOCK(inp); 923 error = ENOPROTOOPT; 924 break; 925 } 926 break; 927 case SOPT_GET: 928 switch (sopt->sopt_name) { 929 #ifdef IPSEC_NAT_T 930 case UDP_ENCAP: 931 up = intoudpcb(inp); 932 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 933 optval = up->u_flags & UF_ESPINUDP_ALL; 934 INP_WUNLOCK(inp); 935 error = sooptcopyout(sopt, &optval, sizeof optval); 936 break; 937 #endif 938 default: 939 INP_WUNLOCK(inp); 940 error = ENOPROTOOPT; 941 break; 942 } 943 break; 944 } 945 return (error); 946 } 947 948 static int 949 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 950 struct mbuf *control, struct thread *td) 951 { 952 INIT_VNET_INET(inp->inp_vnet); 953 struct udpiphdr *ui; 954 int len = m->m_pkthdr.len; 955 struct in_addr faddr, laddr; 956 struct cmsghdr *cm; 957 struct sockaddr_in *sin, src; 958 int error = 0; 959 int ipflags; 960 u_short fport, lport; 961 int unlock_udbinfo; 962 963 /* 964 * udp_output() may need to temporarily bind or connect the current 965 * inpcb. As such, we don't know up front whether we will need the 966 * pcbinfo lock or not. Do any work to decide what is needed up 967 * front before acquiring any locks. 968 */ 969 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 970 if (control) 971 m_freem(control); 972 m_freem(m); 973 return (EMSGSIZE); 974 } 975 976 src.sin_family = 0; 977 if (control != NULL) { 978 /* 979 * XXX: Currently, we assume all the optional information is 980 * stored in a single mbuf. 981 */ 982 if (control->m_next) { 983 m_freem(control); 984 m_freem(m); 985 return (EINVAL); 986 } 987 for (; control->m_len > 0; 988 control->m_data += CMSG_ALIGN(cm->cmsg_len), 989 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 990 cm = mtod(control, struct cmsghdr *); 991 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 992 || cm->cmsg_len > control->m_len) { 993 error = EINVAL; 994 break; 995 } 996 if (cm->cmsg_level != IPPROTO_IP) 997 continue; 998 999 switch (cm->cmsg_type) { 1000 case IP_SENDSRCADDR: 1001 if (cm->cmsg_len != 1002 CMSG_LEN(sizeof(struct in_addr))) { 1003 error = EINVAL; 1004 break; 1005 } 1006 bzero(&src, sizeof(src)); 1007 src.sin_family = AF_INET; 1008 src.sin_len = sizeof(src); 1009 src.sin_port = inp->inp_lport; 1010 src.sin_addr = 1011 *(struct in_addr *)CMSG_DATA(cm); 1012 break; 1013 1014 default: 1015 error = ENOPROTOOPT; 1016 break; 1017 } 1018 if (error) 1019 break; 1020 } 1021 m_freem(control); 1022 } 1023 if (error) { 1024 m_freem(m); 1025 return (error); 1026 } 1027 1028 /* 1029 * Depending on whether or not the application has bound or connected 1030 * the socket, we may have to do varying levels of work. The optimal 1031 * case is for a connected UDP socket, as a global lock isn't 1032 * required at all. 1033 * 1034 * In order to decide which we need, we require stability of the 1035 * inpcb binding, which we ensure by acquiring a read lock on the 1036 * inpcb. This doesn't strictly follow the lock order, so we play 1037 * the trylock and retry game; note that we may end up with more 1038 * conservative locks than required the second time around, so later 1039 * assertions have to accept that. Further analysis of the number of 1040 * misses under contention is required. 1041 */ 1042 sin = (struct sockaddr_in *)addr; 1043 INP_RLOCK(inp); 1044 if (sin != NULL && 1045 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1046 INP_RUNLOCK(inp); 1047 INP_INFO_WLOCK(&V_udbinfo); 1048 INP_WLOCK(inp); 1049 unlock_udbinfo = 2; 1050 } else if ((sin != NULL && ( 1051 (sin->sin_addr.s_addr == INADDR_ANY) || 1052 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1053 (inp->inp_laddr.s_addr == INADDR_ANY) || 1054 (inp->inp_lport == 0))) || 1055 (src.sin_family == AF_INET)) { 1056 if (!INP_INFO_TRY_RLOCK(&V_udbinfo)) { 1057 INP_RUNLOCK(inp); 1058 INP_INFO_RLOCK(&V_udbinfo); 1059 INP_RLOCK(inp); 1060 } 1061 unlock_udbinfo = 1; 1062 } else 1063 unlock_udbinfo = 0; 1064 1065 /* 1066 * If the IP_SENDSRCADDR control message was specified, override the 1067 * source address for this datagram. Its use is invalidated if the 1068 * address thus specified is incomplete or clobbers other inpcbs. 1069 */ 1070 laddr = inp->inp_laddr; 1071 lport = inp->inp_lport; 1072 if (src.sin_family == AF_INET) { 1073 INP_INFO_LOCK_ASSERT(&V_udbinfo); 1074 if ((lport == 0) || 1075 (laddr.s_addr == INADDR_ANY && 1076 src.sin_addr.s_addr == INADDR_ANY)) { 1077 error = EINVAL; 1078 goto release; 1079 } 1080 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1081 &laddr.s_addr, &lport, td->td_ucred); 1082 if (error) 1083 goto release; 1084 } 1085 1086 /* 1087 * If a UDP socket has been connected, then a local address/port will 1088 * have been selected and bound. 1089 * 1090 * If a UDP socket has not been connected to, then an explicit 1091 * destination address must be used, in which case a local 1092 * address/port may not have been selected and bound. 1093 */ 1094 if (sin != NULL) { 1095 INP_LOCK_ASSERT(inp); 1096 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1097 error = EISCONN; 1098 goto release; 1099 } 1100 1101 /* 1102 * Jail may rewrite the destination address, so let it do 1103 * that before we use it. 1104 */ 1105 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1106 if (error) 1107 goto release; 1108 1109 /* 1110 * If a local address or port hasn't yet been selected, or if 1111 * the destination address needs to be rewritten due to using 1112 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1113 * to do the heavy lifting. Once a port is selected, we 1114 * commit the binding back to the socket; we also commit the 1115 * binding of the address if in jail. 1116 * 1117 * If we already have a valid binding and we're not 1118 * requesting a destination address rewrite, use a fast path. 1119 */ 1120 if (inp->inp_laddr.s_addr == INADDR_ANY || 1121 inp->inp_lport == 0 || 1122 sin->sin_addr.s_addr == INADDR_ANY || 1123 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1124 INP_INFO_LOCK_ASSERT(&V_udbinfo); 1125 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1126 &lport, &faddr.s_addr, &fport, NULL, 1127 td->td_ucred); 1128 if (error) 1129 goto release; 1130 1131 /* 1132 * XXXRW: Why not commit the port if the address is 1133 * !INADDR_ANY? 1134 */ 1135 /* Commit the local port if newly assigned. */ 1136 if (inp->inp_laddr.s_addr == INADDR_ANY && 1137 inp->inp_lport == 0) { 1138 INP_INFO_WLOCK_ASSERT(&V_udbinfo); 1139 INP_WLOCK_ASSERT(inp); 1140 /* 1141 * Remember addr if jailed, to prevent 1142 * rebinding. 1143 */ 1144 if (prison_flag(td->td_ucred, PR_IP4)) 1145 inp->inp_laddr = laddr; 1146 inp->inp_lport = lport; 1147 if (in_pcbinshash(inp) != 0) { 1148 inp->inp_lport = 0; 1149 error = EAGAIN; 1150 goto release; 1151 } 1152 inp->inp_flags |= INP_ANONPORT; 1153 } 1154 } else { 1155 faddr = sin->sin_addr; 1156 fport = sin->sin_port; 1157 } 1158 } else { 1159 INP_LOCK_ASSERT(inp); 1160 faddr = inp->inp_faddr; 1161 fport = inp->inp_fport; 1162 if (faddr.s_addr == INADDR_ANY) { 1163 error = ENOTCONN; 1164 goto release; 1165 } 1166 } 1167 1168 /* 1169 * Calculate data length and get a mbuf for UDP, IP, and possible 1170 * link-layer headers. Immediate slide the data pointer back forward 1171 * since we won't use that space at this layer. 1172 */ 1173 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_DONTWAIT); 1174 if (m == NULL) { 1175 error = ENOBUFS; 1176 goto release; 1177 } 1178 m->m_data += max_linkhdr; 1179 m->m_len -= max_linkhdr; 1180 m->m_pkthdr.len -= max_linkhdr; 1181 1182 /* 1183 * Fill in mbuf with extended UDP header and addresses and length put 1184 * into network format. 1185 */ 1186 ui = mtod(m, struct udpiphdr *); 1187 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1188 ui->ui_pr = IPPROTO_UDP; 1189 ui->ui_src = laddr; 1190 ui->ui_dst = faddr; 1191 ui->ui_sport = lport; 1192 ui->ui_dport = fport; 1193 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1194 1195 /* 1196 * Set the Don't Fragment bit in the IP header. 1197 */ 1198 if (inp->inp_flags & INP_DONTFRAG) { 1199 struct ip *ip; 1200 1201 ip = (struct ip *)&ui->ui_i; 1202 ip->ip_off |= IP_DF; 1203 } 1204 1205 ipflags = 0; 1206 if (inp->inp_socket->so_options & SO_DONTROUTE) 1207 ipflags |= IP_ROUTETOIF; 1208 if (inp->inp_socket->so_options & SO_BROADCAST) 1209 ipflags |= IP_ALLOWBROADCAST; 1210 if (inp->inp_flags & INP_ONESBCAST) 1211 ipflags |= IP_SENDONES; 1212 1213 #ifdef MAC 1214 mac_inpcb_create_mbuf(inp, m); 1215 #endif 1216 1217 /* 1218 * Set up checksum and output datagram. 1219 */ 1220 if (udp_cksum) { 1221 if (inp->inp_flags & INP_ONESBCAST) 1222 faddr.s_addr = INADDR_BROADCAST; 1223 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1224 htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP)); 1225 m->m_pkthdr.csum_flags = CSUM_UDP; 1226 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1227 } else 1228 ui->ui_sum = 0; 1229 ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len; 1230 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1231 ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ 1232 UDPSTAT_INC(udps_opackets); 1233 1234 if (unlock_udbinfo == 2) 1235 INP_INFO_WUNLOCK(&V_udbinfo); 1236 else if (unlock_udbinfo == 1) 1237 INP_INFO_RUNLOCK(&V_udbinfo); 1238 error = ip_output(m, inp->inp_options, NULL, ipflags, 1239 inp->inp_moptions, inp); 1240 if (unlock_udbinfo == 2) 1241 INP_WUNLOCK(inp); 1242 else 1243 INP_RUNLOCK(inp); 1244 return (error); 1245 1246 release: 1247 if (unlock_udbinfo == 2) { 1248 INP_WUNLOCK(inp); 1249 INP_INFO_WUNLOCK(&V_udbinfo); 1250 } else if (unlock_udbinfo == 1) { 1251 INP_RUNLOCK(inp); 1252 INP_INFO_RUNLOCK(&V_udbinfo); 1253 } else 1254 INP_RUNLOCK(inp); 1255 m_freem(m); 1256 return (error); 1257 } 1258 1259 1260 #if defined(IPSEC) && defined(IPSEC_NAT_T) 1261 #ifdef INET 1262 /* 1263 * Potentially decap ESP in UDP frame. Check for an ESP header 1264 * and optional marker; if present, strip the UDP header and 1265 * push the result through IPSec. 1266 * 1267 * Returns mbuf to be processed (potentially re-allocated) or 1268 * NULL if consumed and/or processed. 1269 */ 1270 static struct mbuf * 1271 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off) 1272 { 1273 INIT_VNET_IPSEC(curvnet); 1274 size_t minlen, payload, skip, iphlen; 1275 caddr_t data; 1276 struct udpcb *up; 1277 struct m_tag *tag; 1278 struct udphdr *udphdr; 1279 struct ip *ip; 1280 1281 INP_RLOCK_ASSERT(inp); 1282 1283 /* 1284 * Pull up data so the longest case is contiguous: 1285 * IP/UDP hdr + non ESP marker + ESP hdr. 1286 */ 1287 minlen = off + sizeof(uint64_t) + sizeof(struct esp); 1288 if (minlen > m->m_pkthdr.len) 1289 minlen = m->m_pkthdr.len; 1290 if ((m = m_pullup(m, minlen)) == NULL) { 1291 V_ipsec4stat.in_inval++; 1292 return (NULL); /* Bypass caller processing. */ 1293 } 1294 data = mtod(m, caddr_t); /* Points to ip header. */ 1295 payload = m->m_len - off; /* Size of payload. */ 1296 1297 if (payload == 1 && data[off] == '\xff') 1298 return (m); /* NB: keepalive packet, no decap. */ 1299 1300 up = intoudpcb(inp); 1301 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 1302 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0, 1303 ("u_flags 0x%x", up->u_flags)); 1304 1305 /* 1306 * Check that the payload is large enough to hold an 1307 * ESP header and compute the amount of data to remove. 1308 * 1309 * NB: the caller has already done a pullup for us. 1310 * XXX can we assume alignment and eliminate bcopys? 1311 */ 1312 if (up->u_flags & UF_ESPINUDP_NON_IKE) { 1313 /* 1314 * draft-ietf-ipsec-nat-t-ike-0[01].txt and 1315 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring 1316 * possible AH mode non-IKE marker+non-ESP marker 1317 * from draft-ietf-ipsec-udp-encaps-00.txt. 1318 */ 1319 uint64_t marker; 1320 1321 if (payload <= sizeof(uint64_t) + sizeof(struct esp)) 1322 return (m); /* NB: no decap. */ 1323 bcopy(data + off, &marker, sizeof(uint64_t)); 1324 if (marker != 0) /* Non-IKE marker. */ 1325 return (m); /* NB: no decap. */ 1326 skip = sizeof(uint64_t) + sizeof(struct udphdr); 1327 } else { 1328 uint32_t spi; 1329 1330 if (payload <= sizeof(struct esp)) { 1331 V_ipsec4stat.in_inval++; 1332 m_freem(m); 1333 return (NULL); /* Discard. */ 1334 } 1335 bcopy(data + off, &spi, sizeof(uint32_t)); 1336 if (spi == 0) /* Non-ESP marker. */ 1337 return (m); /* NB: no decap. */ 1338 skip = sizeof(struct udphdr); 1339 } 1340 1341 /* 1342 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember 1343 * the UDP ports. This is required if we want to select 1344 * the right SPD for multiple hosts behind same NAT. 1345 * 1346 * NB: ports are maintained in network byte order everywhere 1347 * in the NAT-T code. 1348 */ 1349 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, 1350 2 * sizeof(uint16_t), M_NOWAIT); 1351 if (tag == NULL) { 1352 V_ipsec4stat.in_nomem++; 1353 m_freem(m); 1354 return (NULL); /* Discard. */ 1355 } 1356 iphlen = off - sizeof(struct udphdr); 1357 udphdr = (struct udphdr *)(data + iphlen); 1358 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport; 1359 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport; 1360 m_tag_prepend(m, tag); 1361 1362 /* 1363 * Remove the UDP header (and possibly the non ESP marker) 1364 * IP header length is iphlen 1365 * Before: 1366 * <--- off ---> 1367 * +----+------+-----+ 1368 * | IP | UDP | ESP | 1369 * +----+------+-----+ 1370 * <-skip-> 1371 * After: 1372 * +----+-----+ 1373 * | IP | ESP | 1374 * +----+-----+ 1375 * <-skip-> 1376 */ 1377 ovbcopy(data, data + skip, iphlen); 1378 m_adj(m, skip); 1379 1380 ip = mtod(m, struct ip *); 1381 ip->ip_len -= skip; 1382 ip->ip_p = IPPROTO_ESP; 1383 1384 /* 1385 * We cannot yet update the cksums so clear any 1386 * h/w cksum flags as they are no longer valid. 1387 */ 1388 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) 1389 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 1390 1391 (void) ipsec4_common_input(m, iphlen, ip->ip_p); 1392 return (NULL); /* NB: consumed, bypass processing. */ 1393 } 1394 #endif /* INET */ 1395 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */ 1396 1397 static void 1398 udp_abort(struct socket *so) 1399 { 1400 INIT_VNET_INET(so->so_vnet); 1401 struct inpcb *inp; 1402 1403 inp = sotoinpcb(so); 1404 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1405 INP_INFO_WLOCK(&V_udbinfo); 1406 INP_WLOCK(inp); 1407 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1408 in_pcbdisconnect(inp); 1409 inp->inp_laddr.s_addr = INADDR_ANY; 1410 soisdisconnected(so); 1411 } 1412 INP_WUNLOCK(inp); 1413 INP_INFO_WUNLOCK(&V_udbinfo); 1414 } 1415 1416 static int 1417 udp_attach(struct socket *so, int proto, struct thread *td) 1418 { 1419 INIT_VNET_INET(so->so_vnet); 1420 struct inpcb *inp; 1421 int error; 1422 1423 inp = sotoinpcb(so); 1424 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1425 error = soreserve(so, udp_sendspace, udp_recvspace); 1426 if (error) 1427 return (error); 1428 INP_INFO_WLOCK(&V_udbinfo); 1429 error = in_pcballoc(so, &V_udbinfo); 1430 if (error) { 1431 INP_INFO_WUNLOCK(&V_udbinfo); 1432 return (error); 1433 } 1434 1435 inp = (struct inpcb *)so->so_pcb; 1436 inp->inp_vflag |= INP_IPV4; 1437 inp->inp_ip_ttl = V_ip_defttl; 1438 1439 error = udp_newudpcb(inp); 1440 if (error) { 1441 in_pcbdetach(inp); 1442 in_pcbfree(inp); 1443 INP_INFO_WUNLOCK(&V_udbinfo); 1444 return (error); 1445 } 1446 1447 INP_WUNLOCK(inp); 1448 INP_INFO_WUNLOCK(&V_udbinfo); 1449 return (0); 1450 } 1451 1452 int 1453 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f) 1454 { 1455 struct inpcb *inp; 1456 struct udpcb *up; 1457 1458 KASSERT(so->so_type == SOCK_DGRAM, ("udp_set_kernel_tunneling: !dgram")); 1459 KASSERT(so->so_pcb != NULL, ("udp_set_kernel_tunneling: NULL inp")); 1460 if (so->so_type != SOCK_DGRAM) { 1461 /* Not UDP socket... sorry! */ 1462 return (ENOTSUP); 1463 } 1464 inp = (struct inpcb *)so->so_pcb; 1465 if (inp == NULL) { 1466 /* NULL INP? */ 1467 return (EINVAL); 1468 } 1469 INP_WLOCK(inp); 1470 up = intoudpcb(inp); 1471 if (up->u_tun_func != NULL) { 1472 INP_WUNLOCK(inp); 1473 return (EBUSY); 1474 } 1475 up->u_tun_func = f; 1476 INP_WUNLOCK(inp); 1477 return (0); 1478 } 1479 1480 static int 1481 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1482 { 1483 INIT_VNET_INET(so->so_vnet); 1484 struct inpcb *inp; 1485 int error; 1486 1487 inp = sotoinpcb(so); 1488 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1489 INP_INFO_WLOCK(&V_udbinfo); 1490 INP_WLOCK(inp); 1491 error = in_pcbbind(inp, nam, td->td_ucred); 1492 INP_WUNLOCK(inp); 1493 INP_INFO_WUNLOCK(&V_udbinfo); 1494 return (error); 1495 } 1496 1497 static void 1498 udp_close(struct socket *so) 1499 { 1500 INIT_VNET_INET(so->so_vnet); 1501 struct inpcb *inp; 1502 1503 inp = sotoinpcb(so); 1504 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1505 INP_INFO_WLOCK(&V_udbinfo); 1506 INP_WLOCK(inp); 1507 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1508 in_pcbdisconnect(inp); 1509 inp->inp_laddr.s_addr = INADDR_ANY; 1510 soisdisconnected(so); 1511 } 1512 INP_WUNLOCK(inp); 1513 INP_INFO_WUNLOCK(&V_udbinfo); 1514 } 1515 1516 static int 1517 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1518 { 1519 INIT_VNET_INET(so->so_vnet); 1520 struct inpcb *inp; 1521 int error; 1522 struct sockaddr_in *sin; 1523 1524 inp = sotoinpcb(so); 1525 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1526 INP_INFO_WLOCK(&V_udbinfo); 1527 INP_WLOCK(inp); 1528 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1529 INP_WUNLOCK(inp); 1530 INP_INFO_WUNLOCK(&V_udbinfo); 1531 return (EISCONN); 1532 } 1533 sin = (struct sockaddr_in *)nam; 1534 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1535 if (error != 0) { 1536 INP_WUNLOCK(inp); 1537 INP_INFO_WUNLOCK(&V_udbinfo); 1538 return (error); 1539 } 1540 error = in_pcbconnect(inp, nam, td->td_ucred); 1541 if (error == 0) 1542 soisconnected(so); 1543 INP_WUNLOCK(inp); 1544 INP_INFO_WUNLOCK(&V_udbinfo); 1545 return (error); 1546 } 1547 1548 static void 1549 udp_detach(struct socket *so) 1550 { 1551 INIT_VNET_INET(so->so_vnet); 1552 struct inpcb *inp; 1553 struct udpcb *up; 1554 1555 inp = sotoinpcb(so); 1556 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1557 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1558 ("udp_detach: not disconnected")); 1559 INP_INFO_WLOCK(&V_udbinfo); 1560 INP_WLOCK(inp); 1561 up = intoudpcb(inp); 1562 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1563 inp->inp_ppcb = NULL; 1564 in_pcbdetach(inp); 1565 in_pcbfree(inp); 1566 INP_INFO_WUNLOCK(&V_udbinfo); 1567 udp_discardcb(up); 1568 } 1569 1570 static int 1571 udp_disconnect(struct socket *so) 1572 { 1573 INIT_VNET_INET(so->so_vnet); 1574 struct inpcb *inp; 1575 1576 inp = sotoinpcb(so); 1577 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1578 INP_INFO_WLOCK(&V_udbinfo); 1579 INP_WLOCK(inp); 1580 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1581 INP_WUNLOCK(inp); 1582 INP_INFO_WUNLOCK(&V_udbinfo); 1583 return (ENOTCONN); 1584 } 1585 1586 in_pcbdisconnect(inp); 1587 inp->inp_laddr.s_addr = INADDR_ANY; 1588 SOCK_LOCK(so); 1589 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1590 SOCK_UNLOCK(so); 1591 INP_WUNLOCK(inp); 1592 INP_INFO_WUNLOCK(&V_udbinfo); 1593 return (0); 1594 } 1595 1596 static int 1597 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1598 struct mbuf *control, struct thread *td) 1599 { 1600 struct inpcb *inp; 1601 1602 inp = sotoinpcb(so); 1603 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1604 return (udp_output(inp, m, addr, control, td)); 1605 } 1606 1607 int 1608 udp_shutdown(struct socket *so) 1609 { 1610 struct inpcb *inp; 1611 1612 inp = sotoinpcb(so); 1613 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1614 INP_WLOCK(inp); 1615 socantsendmore(so); 1616 INP_WUNLOCK(inp); 1617 return (0); 1618 } 1619 1620 struct pr_usrreqs udp_usrreqs = { 1621 .pru_abort = udp_abort, 1622 .pru_attach = udp_attach, 1623 .pru_bind = udp_bind, 1624 .pru_connect = udp_connect, 1625 .pru_control = in_control, 1626 .pru_detach = udp_detach, 1627 .pru_disconnect = udp_disconnect, 1628 .pru_peeraddr = in_getpeeraddr, 1629 .pru_send = udp_send, 1630 .pru_soreceive = soreceive_dgram, 1631 .pru_sosend = sosend_dgram, 1632 .pru_shutdown = udp_shutdown, 1633 .pru_sockaddr = in_getsockaddr, 1634 .pru_sosetlabel = in_pcbsosetlabel, 1635 .pru_close = udp_close, 1636 }; 1637