xref: /freebsd/sys/netinet/udp_usrreq.c (revision a812392203d7c4c3f0db9d8a0f3391374c49c71f)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * Copyright (c) 2014 Kevin Lo
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Robert N. M. Watson under
10  * contract to Juniper Networks, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ipfw.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_ipsec.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/domain.h>
50 #include <sys/eventhandler.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/sdt.h>
60 #include <sys/signalvar.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sx.h>
64 #include <sys/sysctl.h>
65 #include <sys/syslog.h>
66 #include <sys/systm.h>
67 
68 #include <vm/uma.h>
69 
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/route.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #endif
83 #include <netinet/ip_icmp.h>
84 #include <netinet/icmp_var.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/ip_options.h>
87 #ifdef INET6
88 #include <netinet6/ip6_var.h>
89 #endif
90 #include <netinet/udp.h>
91 #include <netinet/udp_var.h>
92 #include <netinet/udplite.h>
93 #include <netinet/in_rss.h>
94 
95 #ifdef IPSEC
96 #include <netipsec/ipsec.h>
97 #include <netipsec/esp.h>
98 #endif
99 
100 #include <machine/in_cksum.h>
101 
102 #include <security/mac/mac_framework.h>
103 
104 /*
105  * UDP and UDP-Lite protocols implementation.
106  * Per RFC 768, August, 1980.
107  * Per RFC 3828, July, 2004.
108  */
109 
110 /*
111  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
112  * removes the only data integrity mechanism for packets and malformed
113  * packets that would otherwise be discarded due to bad checksums, and may
114  * cause problems (especially for NFS data blocks).
115  */
116 VNET_DEFINE(int, udp_cksum) = 1;
117 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
118     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
119 
120 int	udp_log_in_vain = 0;
121 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
122     &udp_log_in_vain, 0, "Log all incoming UDP packets");
123 
124 VNET_DEFINE(int, udp_blackhole) = 0;
125 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
126     &VNET_NAME(udp_blackhole), 0,
127     "Do not send port unreachables for refused connects");
128 
129 u_long	udp_sendspace = 9216;		/* really max datagram size */
130 					/* 40 1K datagrams */
131 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
132     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
133 
134 u_long	udp_recvspace = 40 * (1024 +
135 #ifdef INET6
136 				      sizeof(struct sockaddr_in6)
137 #else
138 				      sizeof(struct sockaddr_in)
139 #endif
140 				      );
141 
142 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
143     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
144 
145 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
146 VNET_DEFINE(struct inpcbinfo, udbinfo);
147 VNET_DEFINE(struct inpcbhead, ulitecb);
148 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
149 static VNET_DEFINE(uma_zone_t, udpcb_zone);
150 #define	V_udpcb_zone			VNET(udpcb_zone)
151 
152 #ifndef UDBHASHSIZE
153 #define	UDBHASHSIZE	128
154 #endif
155 
156 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
157 VNET_PCPUSTAT_SYSINIT(udpstat);
158 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
159     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
160 
161 #ifdef VIMAGE
162 VNET_PCPUSTAT_SYSUNINIT(udpstat);
163 #endif /* VIMAGE */
164 #ifdef INET
165 static void	udp_detach(struct socket *so);
166 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
167 		    struct mbuf *, struct thread *);
168 #endif
169 
170 #ifdef IPSEC
171 #ifdef IPSEC_NAT_T
172 #define	UF_ESPINUDP_ALL	(UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
173 #ifdef INET
174 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
175 #endif
176 #endif /* IPSEC_NAT_T */
177 #endif /* IPSEC */
178 
179 static void
180 udp_zone_change(void *tag)
181 {
182 
183 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
184 	uma_zone_set_max(V_udpcb_zone, maxsockets);
185 }
186 
187 static int
188 udp_inpcb_init(void *mem, int size, int flags)
189 {
190 	struct inpcb *inp;
191 
192 	inp = mem;
193 	INP_LOCK_INIT(inp, "inp", "udpinp");
194 	return (0);
195 }
196 
197 static int
198 udplite_inpcb_init(void *mem, int size, int flags)
199 {
200 	struct inpcb *inp;
201 
202 	inp = mem;
203 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
204 	return (0);
205 }
206 
207 void
208 udp_init(void)
209 {
210 
211 	/*
212 	 * For now default to 2-tuple UDP hashing - until the fragment
213 	 * reassembly code can also update the flowid.
214 	 *
215 	 * Once we can calculate the flowid that way and re-establish
216 	 * a 4-tuple, flip this to 4-tuple.
217 	 */
218 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
219 	    "udp_inpcb", udp_inpcb_init, NULL, 0,
220 	    IPI_HASHFIELDS_2TUPLE);
221 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
222 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
223 	uma_zone_set_max(V_udpcb_zone, maxsockets);
224 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
225 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
226 	    EVENTHANDLER_PRI_ANY);
227 }
228 
229 void
230 udplite_init(void)
231 {
232 
233 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
234 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
235 	    0, IPI_HASHFIELDS_2TUPLE);
236 }
237 
238 /*
239  * Kernel module interface for updating udpstat.  The argument is an index
240  * into udpstat treated as an array of u_long.  While this encodes the
241  * general layout of udpstat into the caller, it doesn't encode its location,
242  * so that future changes to add, for example, per-CPU stats support won't
243  * cause binary compatibility problems for kernel modules.
244  */
245 void
246 kmod_udpstat_inc(int statnum)
247 {
248 
249 	counter_u64_add(VNET(udpstat)[statnum], 1);
250 }
251 
252 int
253 udp_newudpcb(struct inpcb *inp)
254 {
255 	struct udpcb *up;
256 
257 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
258 	if (up == NULL)
259 		return (ENOBUFS);
260 	inp->inp_ppcb = up;
261 	return (0);
262 }
263 
264 void
265 udp_discardcb(struct udpcb *up)
266 {
267 
268 	uma_zfree(V_udpcb_zone, up);
269 }
270 
271 #ifdef VIMAGE
272 void
273 udp_destroy(void)
274 {
275 
276 	in_pcbinfo_destroy(&V_udbinfo);
277 	uma_zdestroy(V_udpcb_zone);
278 }
279 
280 void
281 udplite_destroy(void)
282 {
283 
284 	in_pcbinfo_destroy(&V_ulitecbinfo);
285 }
286 #endif
287 
288 #ifdef INET
289 /*
290  * Subroutine of udp_input(), which appends the provided mbuf chain to the
291  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
292  * contains the source address.  If the socket ends up being an IPv6 socket,
293  * udp_append() will convert to a sockaddr_in6 before passing the address
294  * into the socket code.
295  */
296 static void
297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
298     struct sockaddr_in *udp_in)
299 {
300 	struct sockaddr *append_sa;
301 	struct socket *so;
302 	struct mbuf *opts = 0;
303 #ifdef INET6
304 	struct sockaddr_in6 udp_in6;
305 #endif
306 	struct udpcb *up;
307 
308 	INP_LOCK_ASSERT(inp);
309 
310 	/*
311 	 * Engage the tunneling protocol.
312 	 */
313 	up = intoudpcb(inp);
314 	if (up->u_tun_func != NULL) {
315 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in,
316 		    up->u_tun_ctx);
317 		return;
318 	}
319 
320 	off += sizeof(struct udphdr);
321 
322 #ifdef IPSEC
323 	/* Check AH/ESP integrity. */
324 	if (ipsec4_in_reject(n, inp)) {
325 		m_freem(n);
326 		return;
327 	}
328 #ifdef IPSEC_NAT_T
329 	up = intoudpcb(inp);
330 	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
331 	if (up->u_flags & UF_ESPINUDP_ALL) {	/* IPSec UDP encaps. */
332 		n = udp4_espdecap(inp, n, off);
333 		if (n == NULL)				/* Consumed. */
334 			return;
335 	}
336 #endif /* IPSEC_NAT_T */
337 #endif /* IPSEC */
338 #ifdef MAC
339 	if (mac_inpcb_check_deliver(inp, n) != 0) {
340 		m_freem(n);
341 		return;
342 	}
343 #endif /* MAC */
344 	if (inp->inp_flags & INP_CONTROLOPTS ||
345 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
346 #ifdef INET6
347 		if (inp->inp_vflag & INP_IPV6)
348 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
349 		else
350 #endif /* INET6 */
351 			ip_savecontrol(inp, &opts, ip, n);
352 	}
353 #ifdef INET6
354 	if (inp->inp_vflag & INP_IPV6) {
355 		bzero(&udp_in6, sizeof(udp_in6));
356 		udp_in6.sin6_len = sizeof(udp_in6);
357 		udp_in6.sin6_family = AF_INET6;
358 		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
359 		append_sa = (struct sockaddr *)&udp_in6;
360 	} else
361 #endif /* INET6 */
362 		append_sa = (struct sockaddr *)udp_in;
363 	m_adj(n, off);
364 
365 	so = inp->inp_socket;
366 	SOCKBUF_LOCK(&so->so_rcv);
367 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
368 		SOCKBUF_UNLOCK(&so->so_rcv);
369 		m_freem(n);
370 		if (opts)
371 			m_freem(opts);
372 		UDPSTAT_INC(udps_fullsock);
373 	} else
374 		sorwakeup_locked(so);
375 }
376 
377 int
378 udp_input(struct mbuf **mp, int *offp, int proto)
379 {
380 	struct ip *ip;
381 	struct udphdr *uh;
382 	struct ifnet *ifp;
383 	struct inpcb *inp;
384 	uint16_t len, ip_len;
385 	struct inpcbinfo *pcbinfo;
386 	struct ip save_ip;
387 	struct sockaddr_in udp_in;
388 	struct mbuf *m;
389 	struct m_tag *fwd_tag;
390 	int cscov_partial, iphlen;
391 
392 	m = *mp;
393 	iphlen = *offp;
394 	ifp = m->m_pkthdr.rcvif;
395 	*mp = NULL;
396 	UDPSTAT_INC(udps_ipackets);
397 
398 	/*
399 	 * Strip IP options, if any; should skip this, make available to
400 	 * user, and use on returned packets, but we don't yet have a way to
401 	 * check the checksum with options still present.
402 	 */
403 	if (iphlen > sizeof (struct ip)) {
404 		ip_stripoptions(m);
405 		iphlen = sizeof(struct ip);
406 	}
407 
408 	/*
409 	 * Get IP and UDP header together in first mbuf.
410 	 */
411 	ip = mtod(m, struct ip *);
412 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
413 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
414 			UDPSTAT_INC(udps_hdrops);
415 			return (IPPROTO_DONE);
416 		}
417 		ip = mtod(m, struct ip *);
418 	}
419 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
420 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
421 
422 	/*
423 	 * Destination port of 0 is illegal, based on RFC768.
424 	 */
425 	if (uh->uh_dport == 0)
426 		goto badunlocked;
427 
428 	/*
429 	 * Construct sockaddr format source address.  Stuff source address
430 	 * and datagram in user buffer.
431 	 */
432 	bzero(&udp_in, sizeof(udp_in));
433 	udp_in.sin_len = sizeof(udp_in);
434 	udp_in.sin_family = AF_INET;
435 	udp_in.sin_port = uh->uh_sport;
436 	udp_in.sin_addr = ip->ip_src;
437 
438 	/*
439 	 * Make mbuf data length reflect UDP length.  If not enough data to
440 	 * reflect UDP length, drop.
441 	 */
442 	len = ntohs((u_short)uh->uh_ulen);
443 	ip_len = ntohs(ip->ip_len) - iphlen;
444 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
445 		/* Zero means checksum over the complete packet. */
446 		if (len == 0)
447 			len = ip_len;
448 		cscov_partial = 0;
449 	}
450 	if (ip_len != len) {
451 		if (len > ip_len || len < sizeof(struct udphdr)) {
452 			UDPSTAT_INC(udps_badlen);
453 			goto badunlocked;
454 		}
455 		if (proto == IPPROTO_UDP)
456 			m_adj(m, len - ip_len);
457 	}
458 
459 	/*
460 	 * Save a copy of the IP header in case we want restore it for
461 	 * sending an ICMP error message in response.
462 	 */
463 	if (!V_udp_blackhole)
464 		save_ip = *ip;
465 	else
466 		memset(&save_ip, 0, sizeof(save_ip));
467 
468 	/*
469 	 * Checksum extended UDP header and data.
470 	 */
471 	if (uh->uh_sum) {
472 		u_short uh_sum;
473 
474 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
475 		    !cscov_partial) {
476 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
477 				uh_sum = m->m_pkthdr.csum_data;
478 			else
479 				uh_sum = in_pseudo(ip->ip_src.s_addr,
480 				    ip->ip_dst.s_addr, htonl((u_short)len +
481 				    m->m_pkthdr.csum_data + proto));
482 			uh_sum ^= 0xffff;
483 		} else {
484 			char b[9];
485 
486 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
487 			bzero(((struct ipovly *)ip)->ih_x1, 9);
488 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
489 			    uh->uh_ulen : htons(ip_len);
490 			uh_sum = in_cksum(m, len + sizeof (struct ip));
491 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
492 		}
493 		if (uh_sum) {
494 			UDPSTAT_INC(udps_badsum);
495 			m_freem(m);
496 			return (IPPROTO_DONE);
497 		}
498 	} else {
499 		if (proto == IPPROTO_UDP) {
500 			UDPSTAT_INC(udps_nosum);
501 		} else {
502 			/* UDPLite requires a checksum */
503 			/* XXX: What is the right UDPLite MIB counter here? */
504 			m_freem(m);
505 			return (IPPROTO_DONE);
506 		}
507 	}
508 
509 	pcbinfo = get_inpcbinfo(proto);
510 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
511 	    in_broadcast(ip->ip_dst, ifp)) {
512 		struct inpcb *last;
513 		struct inpcbhead *pcblist;
514 		struct ip_moptions *imo;
515 
516 		INP_INFO_RLOCK(pcbinfo);
517 		pcblist = get_pcblist(proto);
518 		last = NULL;
519 		LIST_FOREACH(inp, pcblist, inp_list) {
520 			if (inp->inp_lport != uh->uh_dport)
521 				continue;
522 #ifdef INET6
523 			if ((inp->inp_vflag & INP_IPV4) == 0)
524 				continue;
525 #endif
526 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
527 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
528 				continue;
529 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
530 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
531 				continue;
532 			if (inp->inp_fport != 0 &&
533 			    inp->inp_fport != uh->uh_sport)
534 				continue;
535 
536 			INP_RLOCK(inp);
537 
538 			/*
539 			 * XXXRW: Because we weren't holding either the inpcb
540 			 * or the hash lock when we checked for a match
541 			 * before, we should probably recheck now that the
542 			 * inpcb lock is held.
543 			 */
544 
545 			/*
546 			 * Handle socket delivery policy for any-source
547 			 * and source-specific multicast. [RFC3678]
548 			 */
549 			imo = inp->inp_moptions;
550 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
551 				struct sockaddr_in	 group;
552 				int			 blocked;
553 				if (imo == NULL) {
554 					INP_RUNLOCK(inp);
555 					continue;
556 				}
557 				bzero(&group, sizeof(struct sockaddr_in));
558 				group.sin_len = sizeof(struct sockaddr_in);
559 				group.sin_family = AF_INET;
560 				group.sin_addr = ip->ip_dst;
561 
562 				blocked = imo_multi_filter(imo, ifp,
563 					(struct sockaddr *)&group,
564 					(struct sockaddr *)&udp_in);
565 				if (blocked != MCAST_PASS) {
566 					if (blocked == MCAST_NOTGMEMBER)
567 						IPSTAT_INC(ips_notmember);
568 					if (blocked == MCAST_NOTSMEMBER ||
569 					    blocked == MCAST_MUTED)
570 						UDPSTAT_INC(udps_filtermcast);
571 					INP_RUNLOCK(inp);
572 					continue;
573 				}
574 			}
575 			if (last != NULL) {
576 				struct mbuf *n;
577 
578 				if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
579 					UDP_PROBE(receive, NULL, last, ip,
580 					    last, uh);
581 					udp_append(last, ip, n, iphlen,
582 					    &udp_in);
583 				}
584 				INP_RUNLOCK(last);
585 			}
586 			last = inp;
587 			/*
588 			 * Don't look for additional matches if this one does
589 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
590 			 * socket options set.  This heuristic avoids
591 			 * searching through all pcbs in the common case of a
592 			 * non-shared port.  It assumes that an application
593 			 * will never clear these options after setting them.
594 			 */
595 			if ((last->inp_socket->so_options &
596 			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
597 				break;
598 		}
599 
600 		if (last == NULL) {
601 			/*
602 			 * No matching pcb found; discard datagram.  (No need
603 			 * to send an ICMP Port Unreachable for a broadcast
604 			 * or multicast datgram.)
605 			 */
606 			UDPSTAT_INC(udps_noportbcast);
607 			if (inp)
608 				INP_RUNLOCK(inp);
609 			INP_INFO_RUNLOCK(pcbinfo);
610 			goto badunlocked;
611 		}
612 		UDP_PROBE(receive, NULL, last, ip, last, uh);
613 		udp_append(last, ip, m, iphlen, &udp_in);
614 		INP_RUNLOCK(last);
615 		INP_INFO_RUNLOCK(pcbinfo);
616 		return (IPPROTO_DONE);
617 	}
618 
619 	/*
620 	 * Locate pcb for datagram.
621 	 */
622 
623 	/*
624 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
625 	 */
626 	if ((m->m_flags & M_IP_NEXTHOP) &&
627 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
628 		struct sockaddr_in *next_hop;
629 
630 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
631 
632 		/*
633 		 * Transparently forwarded. Pretend to be the destination.
634 		 * Already got one like this?
635 		 */
636 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
637 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
638 		if (!inp) {
639 			/*
640 			 * It's new.  Try to find the ambushing socket.
641 			 * Because we've rewritten the destination address,
642 			 * any hardware-generated hash is ignored.
643 			 */
644 			inp = in_pcblookup(pcbinfo, ip->ip_src,
645 			    uh->uh_sport, next_hop->sin_addr,
646 			    next_hop->sin_port ? htons(next_hop->sin_port) :
647 			    uh->uh_dport, INPLOOKUP_WILDCARD |
648 			    INPLOOKUP_RLOCKPCB, ifp);
649 		}
650 		/* Remove the tag from the packet. We don't need it anymore. */
651 		m_tag_delete(m, fwd_tag);
652 		m->m_flags &= ~M_IP_NEXTHOP;
653 	} else
654 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
655 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
656 		    INPLOOKUP_RLOCKPCB, ifp, m);
657 	if (inp == NULL) {
658 		if (udp_log_in_vain) {
659 			char buf[4*sizeof "123"];
660 
661 			strcpy(buf, inet_ntoa(ip->ip_dst));
662 			log(LOG_INFO,
663 			    "Connection attempt to UDP %s:%d from %s:%d\n",
664 			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
665 			    ntohs(uh->uh_sport));
666 		}
667 		UDPSTAT_INC(udps_noport);
668 		if (m->m_flags & (M_BCAST | M_MCAST)) {
669 			UDPSTAT_INC(udps_noportbcast);
670 			goto badunlocked;
671 		}
672 		if (V_udp_blackhole)
673 			goto badunlocked;
674 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
675 			goto badunlocked;
676 		*ip = save_ip;
677 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
678 		return (IPPROTO_DONE);
679 	}
680 
681 	/*
682 	 * Check the minimum TTL for socket.
683 	 */
684 	INP_RLOCK_ASSERT(inp);
685 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
686 		INP_RUNLOCK(inp);
687 		m_freem(m);
688 		return (IPPROTO_DONE);
689 	}
690 	if (cscov_partial) {
691 		struct udpcb *up;
692 
693 		up = intoudpcb(inp);
694 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
695 			INP_RUNLOCK(inp);
696 			m_freem(m);
697 			return (IPPROTO_DONE);
698 		}
699 	}
700 
701 	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
702 	udp_append(inp, ip, m, iphlen, &udp_in);
703 	INP_RUNLOCK(inp);
704 	return (IPPROTO_DONE);
705 
706 badunlocked:
707 	m_freem(m);
708 	return (IPPROTO_DONE);
709 }
710 #endif /* INET */
711 
712 /*
713  * Notify a udp user of an asynchronous error; just wake up so that they can
714  * collect error status.
715  */
716 struct inpcb *
717 udp_notify(struct inpcb *inp, int errno)
718 {
719 
720 	/*
721 	 * While udp_ctlinput() always calls udp_notify() with a read lock
722 	 * when invoking it directly, in_pcbnotifyall() currently uses write
723 	 * locks due to sharing code with TCP.  For now, accept either a read
724 	 * or a write lock, but a read lock is sufficient.
725 	 */
726 	INP_LOCK_ASSERT(inp);
727 
728 	inp->inp_socket->so_error = errno;
729 	sorwakeup(inp->inp_socket);
730 	sowwakeup(inp->inp_socket);
731 	return (inp);
732 }
733 
734 #ifdef INET
735 static void
736 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
737     struct inpcbinfo *pcbinfo)
738 {
739 	struct ip *ip = vip;
740 	struct udphdr *uh;
741 	struct in_addr faddr;
742 	struct inpcb *inp;
743 
744 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
745 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
746 		return;
747 
748 	/*
749 	 * Redirects don't need to be handled up here.
750 	 */
751 	if (PRC_IS_REDIRECT(cmd))
752 		return;
753 
754 	/*
755 	 * Hostdead is ugly because it goes linearly through all PCBs.
756 	 *
757 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
758 	 * DoS attack on machines with many connections.
759 	 */
760 	if (cmd == PRC_HOSTDEAD)
761 		ip = NULL;
762 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
763 		return;
764 	if (ip != NULL) {
765 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
766 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
767 		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
768 		if (inp != NULL) {
769 			INP_RLOCK_ASSERT(inp);
770 			if (inp->inp_socket != NULL) {
771 				udp_notify(inp, inetctlerrmap[cmd]);
772 			}
773 			INP_RUNLOCK(inp);
774 		}
775 	} else
776 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
777 		    udp_notify);
778 }
779 void
780 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
781 {
782 
783 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
784 }
785 
786 void
787 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
788 {
789 
790 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
791 }
792 #endif /* INET */
793 
794 static int
795 udp_pcblist(SYSCTL_HANDLER_ARGS)
796 {
797 	int error, i, n;
798 	struct inpcb *inp, **inp_list;
799 	inp_gen_t gencnt;
800 	struct xinpgen xig;
801 
802 	/*
803 	 * The process of preparing the PCB list is too time-consuming and
804 	 * resource-intensive to repeat twice on every request.
805 	 */
806 	if (req->oldptr == 0) {
807 		n = V_udbinfo.ipi_count;
808 		n += imax(n / 8, 10);
809 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
810 		return (0);
811 	}
812 
813 	if (req->newptr != 0)
814 		return (EPERM);
815 
816 	/*
817 	 * OK, now we're committed to doing something.
818 	 */
819 	INP_INFO_RLOCK(&V_udbinfo);
820 	gencnt = V_udbinfo.ipi_gencnt;
821 	n = V_udbinfo.ipi_count;
822 	INP_INFO_RUNLOCK(&V_udbinfo);
823 
824 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
825 		+ n * sizeof(struct xinpcb));
826 	if (error != 0)
827 		return (error);
828 
829 	xig.xig_len = sizeof xig;
830 	xig.xig_count = n;
831 	xig.xig_gen = gencnt;
832 	xig.xig_sogen = so_gencnt;
833 	error = SYSCTL_OUT(req, &xig, sizeof xig);
834 	if (error)
835 		return (error);
836 
837 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
838 	if (inp_list == 0)
839 		return (ENOMEM);
840 
841 	INP_INFO_RLOCK(&V_udbinfo);
842 	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
843 	     inp = LIST_NEXT(inp, inp_list)) {
844 		INP_WLOCK(inp);
845 		if (inp->inp_gencnt <= gencnt &&
846 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
847 			in_pcbref(inp);
848 			inp_list[i++] = inp;
849 		}
850 		INP_WUNLOCK(inp);
851 	}
852 	INP_INFO_RUNLOCK(&V_udbinfo);
853 	n = i;
854 
855 	error = 0;
856 	for (i = 0; i < n; i++) {
857 		inp = inp_list[i];
858 		INP_RLOCK(inp);
859 		if (inp->inp_gencnt <= gencnt) {
860 			struct xinpcb xi;
861 
862 			bzero(&xi, sizeof(xi));
863 			xi.xi_len = sizeof xi;
864 			/* XXX should avoid extra copy */
865 			bcopy(inp, &xi.xi_inp, sizeof *inp);
866 			if (inp->inp_socket)
867 				sotoxsocket(inp->inp_socket, &xi.xi_socket);
868 			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
869 			INP_RUNLOCK(inp);
870 			error = SYSCTL_OUT(req, &xi, sizeof xi);
871 		} else
872 			INP_RUNLOCK(inp);
873 	}
874 	INP_INFO_WLOCK(&V_udbinfo);
875 	for (i = 0; i < n; i++) {
876 		inp = inp_list[i];
877 		INP_RLOCK(inp);
878 		if (!in_pcbrele_rlocked(inp))
879 			INP_RUNLOCK(inp);
880 	}
881 	INP_INFO_WUNLOCK(&V_udbinfo);
882 
883 	if (!error) {
884 		/*
885 		 * Give the user an updated idea of our state.  If the
886 		 * generation differs from what we told her before, she knows
887 		 * that something happened while we were processing this
888 		 * request, and it might be necessary to retry.
889 		 */
890 		INP_INFO_RLOCK(&V_udbinfo);
891 		xig.xig_gen = V_udbinfo.ipi_gencnt;
892 		xig.xig_sogen = so_gencnt;
893 		xig.xig_count = V_udbinfo.ipi_count;
894 		INP_INFO_RUNLOCK(&V_udbinfo);
895 		error = SYSCTL_OUT(req, &xig, sizeof xig);
896 	}
897 	free(inp_list, M_TEMP);
898 	return (error);
899 }
900 
901 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
902     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
903     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
904 
905 #ifdef INET
906 static int
907 udp_getcred(SYSCTL_HANDLER_ARGS)
908 {
909 	struct xucred xuc;
910 	struct sockaddr_in addrs[2];
911 	struct inpcb *inp;
912 	int error;
913 
914 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
915 	if (error)
916 		return (error);
917 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
918 	if (error)
919 		return (error);
920 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
921 	    addrs[0].sin_addr, addrs[0].sin_port,
922 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
923 	if (inp != NULL) {
924 		INP_RLOCK_ASSERT(inp);
925 		if (inp->inp_socket == NULL)
926 			error = ENOENT;
927 		if (error == 0)
928 			error = cr_canseeinpcb(req->td->td_ucred, inp);
929 		if (error == 0)
930 			cru2x(inp->inp_cred, &xuc);
931 		INP_RUNLOCK(inp);
932 	} else
933 		error = ENOENT;
934 	if (error == 0)
935 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
936 	return (error);
937 }
938 
939 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
940     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
941     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
942 #endif /* INET */
943 
944 int
945 udp_ctloutput(struct socket *so, struct sockopt *sopt)
946 {
947 	struct inpcb *inp;
948 	struct udpcb *up;
949 	int isudplite, error, optval;
950 
951 	error = 0;
952 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
953 	inp = sotoinpcb(so);
954 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
955 	INP_WLOCK(inp);
956 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
957 #ifdef INET6
958 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
959 			INP_WUNLOCK(inp);
960 			error = ip6_ctloutput(so, sopt);
961 		}
962 #endif
963 #if defined(INET) && defined(INET6)
964 		else
965 #endif
966 #ifdef INET
967 		{
968 			INP_WUNLOCK(inp);
969 			error = ip_ctloutput(so, sopt);
970 		}
971 #endif
972 		return (error);
973 	}
974 
975 	switch (sopt->sopt_dir) {
976 	case SOPT_SET:
977 		switch (sopt->sopt_name) {
978 		case UDP_ENCAP:
979 			INP_WUNLOCK(inp);
980 			error = sooptcopyin(sopt, &optval, sizeof optval,
981 					    sizeof optval);
982 			if (error)
983 				break;
984 			inp = sotoinpcb(so);
985 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
986 			INP_WLOCK(inp);
987 #ifdef IPSEC_NAT_T
988 			up = intoudpcb(inp);
989 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
990 #endif
991 			switch (optval) {
992 			case 0:
993 				/* Clear all UDP encap. */
994 #ifdef IPSEC_NAT_T
995 				up->u_flags &= ~UF_ESPINUDP_ALL;
996 #endif
997 				break;
998 #ifdef IPSEC_NAT_T
999 			case UDP_ENCAP_ESPINUDP:
1000 			case UDP_ENCAP_ESPINUDP_NON_IKE:
1001 				up->u_flags &= ~UF_ESPINUDP_ALL;
1002 				if (optval == UDP_ENCAP_ESPINUDP)
1003 					up->u_flags |= UF_ESPINUDP;
1004 				else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
1005 					up->u_flags |= UF_ESPINUDP_NON_IKE;
1006 				break;
1007 #endif
1008 			default:
1009 				error = EINVAL;
1010 				break;
1011 			}
1012 			INP_WUNLOCK(inp);
1013 			break;
1014 		case UDPLITE_SEND_CSCOV:
1015 		case UDPLITE_RECV_CSCOV:
1016 			if (!isudplite) {
1017 				INP_WUNLOCK(inp);
1018 				error = ENOPROTOOPT;
1019 				break;
1020 			}
1021 			INP_WUNLOCK(inp);
1022 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1023 			    sizeof(optval));
1024 			if (error != 0)
1025 				break;
1026 			inp = sotoinpcb(so);
1027 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1028 			INP_WLOCK(inp);
1029 			up = intoudpcb(inp);
1030 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1031 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1032 				INP_WUNLOCK(inp);
1033 				error = EINVAL;
1034 				break;
1035 			}
1036 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1037 				up->u_txcslen = optval;
1038 			else
1039 				up->u_rxcslen = optval;
1040 			INP_WUNLOCK(inp);
1041 			break;
1042 		default:
1043 			INP_WUNLOCK(inp);
1044 			error = ENOPROTOOPT;
1045 			break;
1046 		}
1047 		break;
1048 	case SOPT_GET:
1049 		switch (sopt->sopt_name) {
1050 #ifdef IPSEC_NAT_T
1051 		case UDP_ENCAP:
1052 			up = intoudpcb(inp);
1053 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1054 			optval = up->u_flags & UF_ESPINUDP_ALL;
1055 			INP_WUNLOCK(inp);
1056 			error = sooptcopyout(sopt, &optval, sizeof optval);
1057 			break;
1058 #endif
1059 		case UDPLITE_SEND_CSCOV:
1060 		case UDPLITE_RECV_CSCOV:
1061 			if (!isudplite) {
1062 				INP_WUNLOCK(inp);
1063 				error = ENOPROTOOPT;
1064 				break;
1065 			}
1066 			up = intoudpcb(inp);
1067 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1068 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1069 				optval = up->u_txcslen;
1070 			else
1071 				optval = up->u_rxcslen;
1072 			INP_WUNLOCK(inp);
1073 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1074 			break;
1075 		default:
1076 			INP_WUNLOCK(inp);
1077 			error = ENOPROTOOPT;
1078 			break;
1079 		}
1080 		break;
1081 	}
1082 	return (error);
1083 }
1084 
1085 #ifdef INET
1086 #define	UH_WLOCKED	2
1087 #define	UH_RLOCKED	1
1088 #define	UH_UNLOCKED	0
1089 static int
1090 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1091     struct mbuf *control, struct thread *td)
1092 {
1093 	struct udpiphdr *ui;
1094 	int len = m->m_pkthdr.len;
1095 	struct in_addr faddr, laddr;
1096 	struct cmsghdr *cm;
1097 	struct inpcbinfo *pcbinfo;
1098 	struct sockaddr_in *sin, src;
1099 	int cscov_partial = 0;
1100 	int error = 0;
1101 	int ipflags;
1102 	u_short fport, lport;
1103 	int unlock_udbinfo;
1104 	u_char tos;
1105 	uint8_t pr;
1106 	uint16_t cscov = 0;
1107 	uint32_t flowid = 0;
1108 	uint8_t flowtype = M_HASHTYPE_NONE;
1109 
1110 	/*
1111 	 * udp_output() may need to temporarily bind or connect the current
1112 	 * inpcb.  As such, we don't know up front whether we will need the
1113 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1114 	 * front before acquiring any locks.
1115 	 */
1116 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1117 		if (control)
1118 			m_freem(control);
1119 		m_freem(m);
1120 		return (EMSGSIZE);
1121 	}
1122 
1123 	src.sin_family = 0;
1124 	INP_RLOCK(inp);
1125 	tos = inp->inp_ip_tos;
1126 	if (control != NULL) {
1127 		/*
1128 		 * XXX: Currently, we assume all the optional information is
1129 		 * stored in a single mbuf.
1130 		 */
1131 		if (control->m_next) {
1132 			INP_RUNLOCK(inp);
1133 			m_freem(control);
1134 			m_freem(m);
1135 			return (EINVAL);
1136 		}
1137 		for (; control->m_len > 0;
1138 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1139 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1140 			cm = mtod(control, struct cmsghdr *);
1141 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1142 			    || cm->cmsg_len > control->m_len) {
1143 				error = EINVAL;
1144 				break;
1145 			}
1146 			if (cm->cmsg_level != IPPROTO_IP)
1147 				continue;
1148 
1149 			switch (cm->cmsg_type) {
1150 			case IP_SENDSRCADDR:
1151 				if (cm->cmsg_len !=
1152 				    CMSG_LEN(sizeof(struct in_addr))) {
1153 					error = EINVAL;
1154 					break;
1155 				}
1156 				bzero(&src, sizeof(src));
1157 				src.sin_family = AF_INET;
1158 				src.sin_len = sizeof(src);
1159 				src.sin_port = inp->inp_lport;
1160 				src.sin_addr =
1161 				    *(struct in_addr *)CMSG_DATA(cm);
1162 				break;
1163 
1164 			case IP_TOS:
1165 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1166 					error = EINVAL;
1167 					break;
1168 				}
1169 				tos = *(u_char *)CMSG_DATA(cm);
1170 				break;
1171 
1172 			case IP_FLOWID:
1173 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1174 					error = EINVAL;
1175 					break;
1176 				}
1177 				flowid = *(uint32_t *) CMSG_DATA(cm);
1178 				break;
1179 
1180 			case IP_FLOWTYPE:
1181 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1182 					error = EINVAL;
1183 					break;
1184 				}
1185 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1186 				break;
1187 
1188 #ifdef	RSS
1189 			case IP_RSSBUCKETID:
1190 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1191 					error = EINVAL;
1192 					break;
1193 				}
1194 				/* This is just a placeholder for now */
1195 				break;
1196 #endif	/* RSS */
1197 			default:
1198 				error = ENOPROTOOPT;
1199 				break;
1200 			}
1201 			if (error)
1202 				break;
1203 		}
1204 		m_freem(control);
1205 	}
1206 	if (error) {
1207 		INP_RUNLOCK(inp);
1208 		m_freem(m);
1209 		return (error);
1210 	}
1211 
1212 	/*
1213 	 * Depending on whether or not the application has bound or connected
1214 	 * the socket, we may have to do varying levels of work.  The optimal
1215 	 * case is for a connected UDP socket, as a global lock isn't
1216 	 * required at all.
1217 	 *
1218 	 * In order to decide which we need, we require stability of the
1219 	 * inpcb binding, which we ensure by acquiring a read lock on the
1220 	 * inpcb.  This doesn't strictly follow the lock order, so we play
1221 	 * the trylock and retry game; note that we may end up with more
1222 	 * conservative locks than required the second time around, so later
1223 	 * assertions have to accept that.  Further analysis of the number of
1224 	 * misses under contention is required.
1225 	 *
1226 	 * XXXRW: Check that hash locking update here is correct.
1227 	 */
1228 	pr = inp->inp_socket->so_proto->pr_protocol;
1229 	pcbinfo = get_inpcbinfo(pr);
1230 	sin = (struct sockaddr_in *)addr;
1231 	if (sin != NULL &&
1232 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1233 		INP_RUNLOCK(inp);
1234 		INP_WLOCK(inp);
1235 		INP_HASH_WLOCK(pcbinfo);
1236 		unlock_udbinfo = UH_WLOCKED;
1237 	} else if ((sin != NULL && (
1238 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1239 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1240 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1241 	    (inp->inp_lport == 0))) ||
1242 	    (src.sin_family == AF_INET)) {
1243 		INP_HASH_RLOCK(pcbinfo);
1244 		unlock_udbinfo = UH_RLOCKED;
1245 	} else
1246 		unlock_udbinfo = UH_UNLOCKED;
1247 
1248 	/*
1249 	 * If the IP_SENDSRCADDR control message was specified, override the
1250 	 * source address for this datagram.  Its use is invalidated if the
1251 	 * address thus specified is incomplete or clobbers other inpcbs.
1252 	 */
1253 	laddr = inp->inp_laddr;
1254 	lport = inp->inp_lport;
1255 	if (src.sin_family == AF_INET) {
1256 		INP_HASH_LOCK_ASSERT(pcbinfo);
1257 		if ((lport == 0) ||
1258 		    (laddr.s_addr == INADDR_ANY &&
1259 		     src.sin_addr.s_addr == INADDR_ANY)) {
1260 			error = EINVAL;
1261 			goto release;
1262 		}
1263 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1264 		    &laddr.s_addr, &lport, td->td_ucred);
1265 		if (error)
1266 			goto release;
1267 	}
1268 
1269 	/*
1270 	 * If a UDP socket has been connected, then a local address/port will
1271 	 * have been selected and bound.
1272 	 *
1273 	 * If a UDP socket has not been connected to, then an explicit
1274 	 * destination address must be used, in which case a local
1275 	 * address/port may not have been selected and bound.
1276 	 */
1277 	if (sin != NULL) {
1278 		INP_LOCK_ASSERT(inp);
1279 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1280 			error = EISCONN;
1281 			goto release;
1282 		}
1283 
1284 		/*
1285 		 * Jail may rewrite the destination address, so let it do
1286 		 * that before we use it.
1287 		 */
1288 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1289 		if (error)
1290 			goto release;
1291 
1292 		/*
1293 		 * If a local address or port hasn't yet been selected, or if
1294 		 * the destination address needs to be rewritten due to using
1295 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1296 		 * to do the heavy lifting.  Once a port is selected, we
1297 		 * commit the binding back to the socket; we also commit the
1298 		 * binding of the address if in jail.
1299 		 *
1300 		 * If we already have a valid binding and we're not
1301 		 * requesting a destination address rewrite, use a fast path.
1302 		 */
1303 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1304 		    inp->inp_lport == 0 ||
1305 		    sin->sin_addr.s_addr == INADDR_ANY ||
1306 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1307 			INP_HASH_LOCK_ASSERT(pcbinfo);
1308 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1309 			    &lport, &faddr.s_addr, &fport, NULL,
1310 			    td->td_ucred);
1311 			if (error)
1312 				goto release;
1313 
1314 			/*
1315 			 * XXXRW: Why not commit the port if the address is
1316 			 * !INADDR_ANY?
1317 			 */
1318 			/* Commit the local port if newly assigned. */
1319 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1320 			    inp->inp_lport == 0) {
1321 				INP_WLOCK_ASSERT(inp);
1322 				INP_HASH_WLOCK_ASSERT(pcbinfo);
1323 				/*
1324 				 * Remember addr if jailed, to prevent
1325 				 * rebinding.
1326 				 */
1327 				if (prison_flag(td->td_ucred, PR_IP4))
1328 					inp->inp_laddr = laddr;
1329 				inp->inp_lport = lport;
1330 				if (in_pcbinshash(inp) != 0) {
1331 					inp->inp_lport = 0;
1332 					error = EAGAIN;
1333 					goto release;
1334 				}
1335 				inp->inp_flags |= INP_ANONPORT;
1336 			}
1337 		} else {
1338 			faddr = sin->sin_addr;
1339 			fport = sin->sin_port;
1340 		}
1341 	} else {
1342 		INP_LOCK_ASSERT(inp);
1343 		faddr = inp->inp_faddr;
1344 		fport = inp->inp_fport;
1345 		if (faddr.s_addr == INADDR_ANY) {
1346 			error = ENOTCONN;
1347 			goto release;
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1353 	 * link-layer headers.  Immediate slide the data pointer back forward
1354 	 * since we won't use that space at this layer.
1355 	 */
1356 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1357 	if (m == NULL) {
1358 		error = ENOBUFS;
1359 		goto release;
1360 	}
1361 	m->m_data += max_linkhdr;
1362 	m->m_len -= max_linkhdr;
1363 	m->m_pkthdr.len -= max_linkhdr;
1364 
1365 	/*
1366 	 * Fill in mbuf with extended UDP header and addresses and length put
1367 	 * into network format.
1368 	 */
1369 	ui = mtod(m, struct udpiphdr *);
1370 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1371 	ui->ui_pr = pr;
1372 	ui->ui_src = laddr;
1373 	ui->ui_dst = faddr;
1374 	ui->ui_sport = lport;
1375 	ui->ui_dport = fport;
1376 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1377 	if (pr == IPPROTO_UDPLITE) {
1378 		struct udpcb *up;
1379 		uint16_t plen;
1380 
1381 		up = intoudpcb(inp);
1382 		cscov = up->u_txcslen;
1383 		plen = (u_short)len + sizeof(struct udphdr);
1384 		if (cscov >= plen)
1385 			cscov = 0;
1386 		ui->ui_len = htons(plen);
1387 		ui->ui_ulen = htons(cscov);
1388 		/*
1389 		 * For UDP-Lite, checksum coverage length of zero means
1390 		 * the entire UDPLite packet is covered by the checksum.
1391 		 */
1392 		cscov_partial = (cscov == 0) ? 0 : 1;
1393 	} else
1394 		ui->ui_v = IPVERSION << 4;
1395 
1396 	/*
1397 	 * Set the Don't Fragment bit in the IP header.
1398 	 */
1399 	if (inp->inp_flags & INP_DONTFRAG) {
1400 		struct ip *ip;
1401 
1402 		ip = (struct ip *)&ui->ui_i;
1403 		ip->ip_off |= htons(IP_DF);
1404 	}
1405 
1406 	ipflags = 0;
1407 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1408 		ipflags |= IP_ROUTETOIF;
1409 	if (inp->inp_socket->so_options & SO_BROADCAST)
1410 		ipflags |= IP_ALLOWBROADCAST;
1411 	if (inp->inp_flags & INP_ONESBCAST)
1412 		ipflags |= IP_SENDONES;
1413 
1414 #ifdef MAC
1415 	mac_inpcb_create_mbuf(inp, m);
1416 #endif
1417 
1418 	/*
1419 	 * Set up checksum and output datagram.
1420 	 */
1421 	ui->ui_sum = 0;
1422 	if (pr == IPPROTO_UDPLITE) {
1423 		if (inp->inp_flags & INP_ONESBCAST)
1424 			faddr.s_addr = INADDR_BROADCAST;
1425 		if (cscov_partial) {
1426 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1427 				ui->ui_sum = 0xffff;
1428 		} else {
1429 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1430 				ui->ui_sum = 0xffff;
1431 		}
1432 	} else if (V_udp_cksum) {
1433 		if (inp->inp_flags & INP_ONESBCAST)
1434 			faddr.s_addr = INADDR_BROADCAST;
1435 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1436 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1437 		m->m_pkthdr.csum_flags = CSUM_UDP;
1438 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1439 	}
1440 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1441 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1442 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1443 	UDPSTAT_INC(udps_opackets);
1444 
1445 	/*
1446 	 * Setup flowid / RSS information for outbound socket.
1447 	 *
1448 	 * Once the UDP code decides to set a flowid some other way,
1449 	 * this allows the flowid to be overridden by userland.
1450 	 */
1451 	if (flowtype != M_HASHTYPE_NONE) {
1452 		m->m_pkthdr.flowid = flowid;
1453 		M_HASHTYPE_SET(m, flowtype);
1454 #ifdef	RSS
1455 	} else {
1456 		uint32_t hash_val, hash_type;
1457 		/*
1458 		 * Calculate an appropriate RSS hash for UDP and
1459 		 * UDP Lite.
1460 		 *
1461 		 * The called function will take care of figuring out
1462 		 * whether a 2-tuple or 4-tuple hash is required based
1463 		 * on the currently configured scheme.
1464 		 *
1465 		 * Later later on connected socket values should be
1466 		 * cached in the inpcb and reused, rather than constantly
1467 		 * re-calculating it.
1468 		 *
1469 		 * UDP Lite is a different protocol number and will
1470 		 * likely end up being hashed as a 2-tuple until
1471 		 * RSS / NICs grow UDP Lite protocol awareness.
1472 		 */
1473 		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1474 		    pr, &hash_val, &hash_type) == 0) {
1475 			m->m_pkthdr.flowid = hash_val;
1476 			M_HASHTYPE_SET(m, hash_type);
1477 		}
1478 #endif
1479 	}
1480 
1481 #ifdef	RSS
1482 	/*
1483 	 * Don't override with the inp cached flowid value.
1484 	 *
1485 	 * Depending upon the kind of send being done, the inp
1486 	 * flowid/flowtype values may actually not be appropriate
1487 	 * for this particular socket send.
1488 	 *
1489 	 * We should either leave the flowid at zero (which is what is
1490 	 * currently done) or set it to some software generated
1491 	 * hash value based on the packet contents.
1492 	 */
1493 	ipflags |= IP_NODEFAULTFLOWID;
1494 #endif	/* RSS */
1495 
1496 	if (unlock_udbinfo == UH_WLOCKED)
1497 		INP_HASH_WUNLOCK(pcbinfo);
1498 	else if (unlock_udbinfo == UH_RLOCKED)
1499 		INP_HASH_RUNLOCK(pcbinfo);
1500 	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1501 	error = ip_output(m, inp->inp_options, NULL, ipflags,
1502 	    inp->inp_moptions, inp);
1503 	if (unlock_udbinfo == UH_WLOCKED)
1504 		INP_WUNLOCK(inp);
1505 	else
1506 		INP_RUNLOCK(inp);
1507 	return (error);
1508 
1509 release:
1510 	if (unlock_udbinfo == UH_WLOCKED) {
1511 		INP_HASH_WUNLOCK(pcbinfo);
1512 		INP_WUNLOCK(inp);
1513 	} else if (unlock_udbinfo == UH_RLOCKED) {
1514 		INP_HASH_RUNLOCK(pcbinfo);
1515 		INP_RUNLOCK(inp);
1516 	} else
1517 		INP_RUNLOCK(inp);
1518 	m_freem(m);
1519 	return (error);
1520 }
1521 
1522 
1523 #if defined(IPSEC) && defined(IPSEC_NAT_T)
1524 /*
1525  * Potentially decap ESP in UDP frame.  Check for an ESP header
1526  * and optional marker; if present, strip the UDP header and
1527  * push the result through IPSec.
1528  *
1529  * Returns mbuf to be processed (potentially re-allocated) or
1530  * NULL if consumed and/or processed.
1531  */
1532 static struct mbuf *
1533 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1534 {
1535 	size_t minlen, payload, skip, iphlen;
1536 	caddr_t data;
1537 	struct udpcb *up;
1538 	struct m_tag *tag;
1539 	struct udphdr *udphdr;
1540 	struct ip *ip;
1541 
1542 	INP_RLOCK_ASSERT(inp);
1543 
1544 	/*
1545 	 * Pull up data so the longest case is contiguous:
1546 	 *    IP/UDP hdr + non ESP marker + ESP hdr.
1547 	 */
1548 	minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1549 	if (minlen > m->m_pkthdr.len)
1550 		minlen = m->m_pkthdr.len;
1551 	if ((m = m_pullup(m, minlen)) == NULL) {
1552 		IPSECSTAT_INC(ips_in_inval);
1553 		return (NULL);		/* Bypass caller processing. */
1554 	}
1555 	data = mtod(m, caddr_t);	/* Points to ip header. */
1556 	payload = m->m_len - off;	/* Size of payload. */
1557 
1558 	if (payload == 1 && data[off] == '\xff')
1559 		return (m);		/* NB: keepalive packet, no decap. */
1560 
1561 	up = intoudpcb(inp);
1562 	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1563 	KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1564 	    ("u_flags 0x%x", up->u_flags));
1565 
1566 	/*
1567 	 * Check that the payload is large enough to hold an
1568 	 * ESP header and compute the amount of data to remove.
1569 	 *
1570 	 * NB: the caller has already done a pullup for us.
1571 	 * XXX can we assume alignment and eliminate bcopys?
1572 	 */
1573 	if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1574 		/*
1575 		 * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1576 		 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1577 		 * possible AH mode non-IKE marker+non-ESP marker
1578 		 * from draft-ietf-ipsec-udp-encaps-00.txt.
1579 		 */
1580 		uint64_t marker;
1581 
1582 		if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1583 			return (m);	/* NB: no decap. */
1584 		bcopy(data + off, &marker, sizeof(uint64_t));
1585 		if (marker != 0)	/* Non-IKE marker. */
1586 			return (m);	/* NB: no decap. */
1587 		skip = sizeof(uint64_t) + sizeof(struct udphdr);
1588 	} else {
1589 		uint32_t spi;
1590 
1591 		if (payload <= sizeof(struct esp)) {
1592 			IPSECSTAT_INC(ips_in_inval);
1593 			m_freem(m);
1594 			return (NULL);	/* Discard. */
1595 		}
1596 		bcopy(data + off, &spi, sizeof(uint32_t));
1597 		if (spi == 0)		/* Non-ESP marker. */
1598 			return (m);	/* NB: no decap. */
1599 		skip = sizeof(struct udphdr);
1600 	}
1601 
1602 	/*
1603 	 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1604 	 * the UDP ports. This is required if we want to select
1605 	 * the right SPD for multiple hosts behind same NAT.
1606 	 *
1607 	 * NB: ports are maintained in network byte order everywhere
1608 	 *     in the NAT-T code.
1609 	 */
1610 	tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1611 		2 * sizeof(uint16_t), M_NOWAIT);
1612 	if (tag == NULL) {
1613 		IPSECSTAT_INC(ips_in_nomem);
1614 		m_freem(m);
1615 		return (NULL);		/* Discard. */
1616 	}
1617 	iphlen = off - sizeof(struct udphdr);
1618 	udphdr = (struct udphdr *)(data + iphlen);
1619 	((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1620 	((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1621 	m_tag_prepend(m, tag);
1622 
1623 	/*
1624 	 * Remove the UDP header (and possibly the non ESP marker)
1625 	 * IP header length is iphlen
1626 	 * Before:
1627 	 *   <--- off --->
1628 	 *   +----+------+-----+
1629 	 *   | IP |  UDP | ESP |
1630 	 *   +----+------+-----+
1631 	 *        <-skip->
1632 	 * After:
1633 	 *          +----+-----+
1634 	 *          | IP | ESP |
1635 	 *          +----+-----+
1636 	 *   <-skip->
1637 	 */
1638 	ovbcopy(data, data + skip, iphlen);
1639 	m_adj(m, skip);
1640 
1641 	ip = mtod(m, struct ip *);
1642 	ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1643 	ip->ip_p = IPPROTO_ESP;
1644 
1645 	/*
1646 	 * We cannot yet update the cksums so clear any
1647 	 * h/w cksum flags as they are no longer valid.
1648 	 */
1649 	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1650 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1651 
1652 	(void) ipsec4_common_input(m, iphlen, ip->ip_p);
1653 	return (NULL);			/* NB: consumed, bypass processing. */
1654 }
1655 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1656 
1657 static void
1658 udp_abort(struct socket *so)
1659 {
1660 	struct inpcb *inp;
1661 	struct inpcbinfo *pcbinfo;
1662 
1663 	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1664 	inp = sotoinpcb(so);
1665 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1666 	INP_WLOCK(inp);
1667 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1668 		INP_HASH_WLOCK(pcbinfo);
1669 		in_pcbdisconnect(inp);
1670 		inp->inp_laddr.s_addr = INADDR_ANY;
1671 		INP_HASH_WUNLOCK(pcbinfo);
1672 		soisdisconnected(so);
1673 	}
1674 	INP_WUNLOCK(inp);
1675 }
1676 
1677 static int
1678 udp_attach(struct socket *so, int proto, struct thread *td)
1679 {
1680 	struct inpcb *inp;
1681 	struct inpcbinfo *pcbinfo;
1682 	int error;
1683 
1684 	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1685 	inp = sotoinpcb(so);
1686 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1687 	error = soreserve(so, udp_sendspace, udp_recvspace);
1688 	if (error)
1689 		return (error);
1690 	INP_INFO_WLOCK(pcbinfo);
1691 	error = in_pcballoc(so, pcbinfo);
1692 	if (error) {
1693 		INP_INFO_WUNLOCK(pcbinfo);
1694 		return (error);
1695 	}
1696 
1697 	inp = sotoinpcb(so);
1698 	inp->inp_vflag |= INP_IPV4;
1699 	inp->inp_ip_ttl = V_ip_defttl;
1700 
1701 	error = udp_newudpcb(inp);
1702 	if (error) {
1703 		in_pcbdetach(inp);
1704 		in_pcbfree(inp);
1705 		INP_INFO_WUNLOCK(pcbinfo);
1706 		return (error);
1707 	}
1708 
1709 	INP_WUNLOCK(inp);
1710 	INP_INFO_WUNLOCK(pcbinfo);
1711 	return (0);
1712 }
1713 #endif /* INET */
1714 
1715 int
1716 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, void *ctx)
1717 {
1718 	struct inpcb *inp;
1719 	struct udpcb *up;
1720 
1721 	KASSERT(so->so_type == SOCK_DGRAM,
1722 	    ("udp_set_kernel_tunneling: !dgram"));
1723 	inp = sotoinpcb(so);
1724 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1725 	INP_WLOCK(inp);
1726 	up = intoudpcb(inp);
1727 	if (up->u_tun_func != NULL) {
1728 		INP_WUNLOCK(inp);
1729 		return (EBUSY);
1730 	}
1731 	up->u_tun_func = f;
1732 	up->u_tun_ctx = ctx;
1733 	INP_WUNLOCK(inp);
1734 	return (0);
1735 }
1736 
1737 #ifdef INET
1738 static int
1739 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1740 {
1741 	struct inpcb *inp;
1742 	struct inpcbinfo *pcbinfo;
1743 	int error;
1744 
1745 	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1746 	inp = sotoinpcb(so);
1747 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1748 	INP_WLOCK(inp);
1749 	INP_HASH_WLOCK(pcbinfo);
1750 	error = in_pcbbind(inp, nam, td->td_ucred);
1751 	INP_HASH_WUNLOCK(pcbinfo);
1752 	INP_WUNLOCK(inp);
1753 	return (error);
1754 }
1755 
1756 static void
1757 udp_close(struct socket *so)
1758 {
1759 	struct inpcb *inp;
1760 	struct inpcbinfo *pcbinfo;
1761 
1762 	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1763 	inp = sotoinpcb(so);
1764 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1765 	INP_WLOCK(inp);
1766 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1767 		INP_HASH_WLOCK(pcbinfo);
1768 		in_pcbdisconnect(inp);
1769 		inp->inp_laddr.s_addr = INADDR_ANY;
1770 		INP_HASH_WUNLOCK(pcbinfo);
1771 		soisdisconnected(so);
1772 	}
1773 	INP_WUNLOCK(inp);
1774 }
1775 
1776 static int
1777 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1778 {
1779 	struct inpcb *inp;
1780 	struct inpcbinfo *pcbinfo;
1781 	struct sockaddr_in *sin;
1782 	int error;
1783 
1784 	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1785 	inp = sotoinpcb(so);
1786 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1787 	INP_WLOCK(inp);
1788 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1789 		INP_WUNLOCK(inp);
1790 		return (EISCONN);
1791 	}
1792 	sin = (struct sockaddr_in *)nam;
1793 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1794 	if (error != 0) {
1795 		INP_WUNLOCK(inp);
1796 		return (error);
1797 	}
1798 	INP_HASH_WLOCK(pcbinfo);
1799 	error = in_pcbconnect(inp, nam, td->td_ucred);
1800 	INP_HASH_WUNLOCK(pcbinfo);
1801 	if (error == 0)
1802 		soisconnected(so);
1803 	INP_WUNLOCK(inp);
1804 	return (error);
1805 }
1806 
1807 static void
1808 udp_detach(struct socket *so)
1809 {
1810 	struct inpcb *inp;
1811 	struct inpcbinfo *pcbinfo;
1812 	struct udpcb *up;
1813 
1814 	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1815 	inp = sotoinpcb(so);
1816 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1817 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1818 	    ("udp_detach: not disconnected"));
1819 	INP_INFO_WLOCK(pcbinfo);
1820 	INP_WLOCK(inp);
1821 	up = intoudpcb(inp);
1822 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1823 	inp->inp_ppcb = NULL;
1824 	in_pcbdetach(inp);
1825 	in_pcbfree(inp);
1826 	INP_INFO_WUNLOCK(pcbinfo);
1827 	udp_discardcb(up);
1828 }
1829 
1830 static int
1831 udp_disconnect(struct socket *so)
1832 {
1833 	struct inpcb *inp;
1834 	struct inpcbinfo *pcbinfo;
1835 
1836 	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1837 	inp = sotoinpcb(so);
1838 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1839 	INP_WLOCK(inp);
1840 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1841 		INP_WUNLOCK(inp);
1842 		return (ENOTCONN);
1843 	}
1844 	INP_HASH_WLOCK(pcbinfo);
1845 	in_pcbdisconnect(inp);
1846 	inp->inp_laddr.s_addr = INADDR_ANY;
1847 	INP_HASH_WUNLOCK(pcbinfo);
1848 	SOCK_LOCK(so);
1849 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1850 	SOCK_UNLOCK(so);
1851 	INP_WUNLOCK(inp);
1852 	return (0);
1853 }
1854 
1855 static int
1856 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1857     struct mbuf *control, struct thread *td)
1858 {
1859 	struct inpcb *inp;
1860 
1861 	inp = sotoinpcb(so);
1862 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1863 	return (udp_output(inp, m, addr, control, td));
1864 }
1865 #endif /* INET */
1866 
1867 int
1868 udp_shutdown(struct socket *so)
1869 {
1870 	struct inpcb *inp;
1871 
1872 	inp = sotoinpcb(so);
1873 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1874 	INP_WLOCK(inp);
1875 	socantsendmore(so);
1876 	INP_WUNLOCK(inp);
1877 	return (0);
1878 }
1879 
1880 #ifdef INET
1881 struct pr_usrreqs udp_usrreqs = {
1882 	.pru_abort =		udp_abort,
1883 	.pru_attach =		udp_attach,
1884 	.pru_bind =		udp_bind,
1885 	.pru_connect =		udp_connect,
1886 	.pru_control =		in_control,
1887 	.pru_detach =		udp_detach,
1888 	.pru_disconnect =	udp_disconnect,
1889 	.pru_peeraddr =		in_getpeeraddr,
1890 	.pru_send =		udp_send,
1891 	.pru_soreceive =	soreceive_dgram,
1892 	.pru_sosend =		sosend_dgram,
1893 	.pru_shutdown =		udp_shutdown,
1894 	.pru_sockaddr =		in_getsockaddr,
1895 	.pru_sosetlabel =	in_pcbsosetlabel,
1896 	.pru_close =		udp_close,
1897 };
1898 #endif /* INET */
1899