xref: /freebsd/sys/netinet/udp_usrreq.c (revision 964219664dcec4198441910904fb9064569d174d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_rss.h"
48 
49 #include <sys/param.h>
50 #include <sys/domain.h>
51 #include <sys/eventhandler.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/protosw.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/systm.h>
68 
69 #include <vm/uma.h>
70 
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/route.h>
74 #include <net/rss_config.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_kdtrace.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #endif
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/ip_options.h>
89 #ifdef INET6
90 #include <netinet6/ip6_var.h>
91 #endif
92 #include <netinet/udp.h>
93 #include <netinet/udp_var.h>
94 #include <netinet/udplite.h>
95 #include <netinet/in_rss.h>
96 
97 #include <netipsec/ipsec_support.h>
98 
99 #include <machine/in_cksum.h>
100 
101 #include <security/mac/mac_framework.h>
102 
103 /*
104  * UDP and UDP-Lite protocols implementation.
105  * Per RFC 768, August, 1980.
106  * Per RFC 3828, July, 2004.
107  */
108 
109 /*
110  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
111  * removes the only data integrity mechanism for packets and malformed
112  * packets that would otherwise be discarded due to bad checksums, and may
113  * cause problems (especially for NFS data blocks).
114  */
115 VNET_DEFINE(int, udp_cksum) = 1;
116 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
117     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
118 
119 int	udp_log_in_vain = 0;
120 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
121     &udp_log_in_vain, 0, "Log all incoming UDP packets");
122 
123 VNET_DEFINE(int, udp_blackhole) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
125     &VNET_NAME(udp_blackhole), 0,
126     "Do not send port unreachables for refused connects");
127 
128 u_long	udp_sendspace = 9216;		/* really max datagram size */
129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131 
132 u_long	udp_recvspace = 40 * (1024 +
133 #ifdef INET6
134 				      sizeof(struct sockaddr_in6)
135 #else
136 				      sizeof(struct sockaddr_in)
137 #endif
138 				      );	/* 40 1K datagrams */
139 
140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142 
143 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
144 VNET_DEFINE(struct inpcbinfo, udbinfo);
145 VNET_DEFINE(struct inpcbhead, ulitecb);
146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147 static VNET_DEFINE(uma_zone_t, udpcb_zone);
148 #define	V_udpcb_zone			VNET(udpcb_zone)
149 
150 #ifndef UDBHASHSIZE
151 #define	UDBHASHSIZE	128
152 #endif
153 
154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
155 VNET_PCPUSTAT_SYSINIT(udpstat);
156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158 
159 #ifdef VIMAGE
160 VNET_PCPUSTAT_SYSUNINIT(udpstat);
161 #endif /* VIMAGE */
162 #ifdef INET
163 static void	udp_detach(struct socket *so);
164 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165 		    struct mbuf *, struct thread *);
166 #endif
167 
168 static void
169 udp_zone_change(void *tag)
170 {
171 
172 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
173 	uma_zone_set_max(V_udpcb_zone, maxsockets);
174 }
175 
176 static int
177 udp_inpcb_init(void *mem, int size, int flags)
178 {
179 	struct inpcb *inp;
180 
181 	inp = mem;
182 	INP_LOCK_INIT(inp, "inp", "udpinp");
183 	return (0);
184 }
185 
186 static int
187 udplite_inpcb_init(void *mem, int size, int flags)
188 {
189 	struct inpcb *inp;
190 
191 	inp = mem;
192 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
193 	return (0);
194 }
195 
196 void
197 udp_init(void)
198 {
199 
200 	/*
201 	 * For now default to 2-tuple UDP hashing - until the fragment
202 	 * reassembly code can also update the flowid.
203 	 *
204 	 * Once we can calculate the flowid that way and re-establish
205 	 * a 4-tuple, flip this to 4-tuple.
206 	 */
207 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
208 	    "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
209 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
211 	uma_zone_set_max(V_udpcb_zone, maxsockets);
212 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
213 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
214 	    EVENTHANDLER_PRI_ANY);
215 }
216 
217 void
218 udplite_init(void)
219 {
220 
221 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
222 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
223 	    IPI_HASHFIELDS_2TUPLE);
224 }
225 
226 /*
227  * Kernel module interface for updating udpstat.  The argument is an index
228  * into udpstat treated as an array of u_long.  While this encodes the
229  * general layout of udpstat into the caller, it doesn't encode its location,
230  * so that future changes to add, for example, per-CPU stats support won't
231  * cause binary compatibility problems for kernel modules.
232  */
233 void
234 kmod_udpstat_inc(int statnum)
235 {
236 
237 	counter_u64_add(VNET(udpstat)[statnum], 1);
238 }
239 
240 int
241 udp_newudpcb(struct inpcb *inp)
242 {
243 	struct udpcb *up;
244 
245 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
246 	if (up == NULL)
247 		return (ENOBUFS);
248 	inp->inp_ppcb = up;
249 	return (0);
250 }
251 
252 void
253 udp_discardcb(struct udpcb *up)
254 {
255 
256 	uma_zfree(V_udpcb_zone, up);
257 }
258 
259 #ifdef VIMAGE
260 static void
261 udp_destroy(void *unused __unused)
262 {
263 
264 	in_pcbinfo_destroy(&V_udbinfo);
265 	uma_zdestroy(V_udpcb_zone);
266 }
267 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
268 
269 static void
270 udplite_destroy(void *unused __unused)
271 {
272 
273 	in_pcbinfo_destroy(&V_ulitecbinfo);
274 }
275 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
276     NULL);
277 #endif
278 
279 #ifdef INET
280 /*
281  * Subroutine of udp_input(), which appends the provided mbuf chain to the
282  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
283  * contains the source address.  If the socket ends up being an IPv6 socket,
284  * udp_append() will convert to a sockaddr_in6 before passing the address
285  * into the socket code.
286  *
287  * In the normal case udp_append() will return 0, indicating that you
288  * must unlock the inp. However if a tunneling protocol is in place we increment
289  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
290  * then decrement the reference count. If the inp_rele returns 1, indicating the
291  * inp is gone, we return that to the caller to tell them *not* to unlock
292  * the inp. In the case of multi-cast this will cause the distribution
293  * to stop (though most tunneling protocols known currently do *not* use
294  * multicast).
295  */
296 static int
297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
298     struct sockaddr_in *udp_in)
299 {
300 	struct sockaddr *append_sa;
301 	struct socket *so;
302 	struct mbuf *tmpopts, *opts = NULL;
303 #ifdef INET6
304 	struct sockaddr_in6 udp_in6;
305 #endif
306 	struct udpcb *up;
307 
308 	INP_LOCK_ASSERT(inp);
309 
310 	/*
311 	 * Engage the tunneling protocol.
312 	 */
313 	up = intoudpcb(inp);
314 	if (up->u_tun_func != NULL) {
315 		in_pcbref(inp);
316 		INP_RUNLOCK(inp);
317 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
318 		    up->u_tun_ctx);
319 		INP_RLOCK(inp);
320 		return (in_pcbrele_rlocked(inp));
321 	}
322 
323 	off += sizeof(struct udphdr);
324 
325 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
326 	/* Check AH/ESP integrity. */
327 	if (IPSEC_ENABLED(ipv4) &&
328 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
329 		m_freem(n);
330 		return (0);
331 	}
332 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
333 		if (IPSEC_ENABLED(ipv4) &&
334 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
335 			return (0);	/* Consumed. */
336 	}
337 #endif /* IPSEC */
338 #ifdef MAC
339 	if (mac_inpcb_check_deliver(inp, n) != 0) {
340 		m_freem(n);
341 		return (0);
342 	}
343 #endif /* MAC */
344 	if (inp->inp_flags & INP_CONTROLOPTS ||
345 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
346 #ifdef INET6
347 		if (inp->inp_vflag & INP_IPV6)
348 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
349 		else
350 #endif /* INET6 */
351 			ip_savecontrol(inp, &opts, ip, n);
352 	}
353 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
354 		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
355 			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
356 		if (tmpopts) {
357 			if (opts) {
358 				tmpopts->m_next = opts;
359 				opts = tmpopts;
360 			} else
361 				opts = tmpopts;
362 		}
363 	}
364 #ifdef INET6
365 	if (inp->inp_vflag & INP_IPV6) {
366 		bzero(&udp_in6, sizeof(udp_in6));
367 		udp_in6.sin6_len = sizeof(udp_in6);
368 		udp_in6.sin6_family = AF_INET6;
369 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
370 		append_sa = (struct sockaddr *)&udp_in6;
371 	} else
372 #endif /* INET6 */
373 		append_sa = (struct sockaddr *)&udp_in[0];
374 	m_adj(n, off);
375 
376 	so = inp->inp_socket;
377 	SOCKBUF_LOCK(&so->so_rcv);
378 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
379 		SOCKBUF_UNLOCK(&so->so_rcv);
380 		m_freem(n);
381 		if (opts)
382 			m_freem(opts);
383 		UDPSTAT_INC(udps_fullsock);
384 	} else
385 		sorwakeup_locked(so);
386 	return (0);
387 }
388 
389 int
390 udp_input(struct mbuf **mp, int *offp, int proto)
391 {
392 	struct ip *ip;
393 	struct udphdr *uh;
394 	struct ifnet *ifp;
395 	struct inpcb *inp;
396 	uint16_t len, ip_len;
397 	struct inpcbinfo *pcbinfo;
398 	struct ip save_ip;
399 	struct sockaddr_in udp_in[2];
400 	struct mbuf *m;
401 	struct m_tag *fwd_tag;
402 	int cscov_partial, iphlen;
403 
404 	m = *mp;
405 	iphlen = *offp;
406 	ifp = m->m_pkthdr.rcvif;
407 	*mp = NULL;
408 	UDPSTAT_INC(udps_ipackets);
409 
410 	/*
411 	 * Strip IP options, if any; should skip this, make available to
412 	 * user, and use on returned packets, but we don't yet have a way to
413 	 * check the checksum with options still present.
414 	 */
415 	if (iphlen > sizeof (struct ip)) {
416 		ip_stripoptions(m);
417 		iphlen = sizeof(struct ip);
418 	}
419 
420 	/*
421 	 * Get IP and UDP header together in first mbuf.
422 	 */
423 	ip = mtod(m, struct ip *);
424 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
425 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
426 			UDPSTAT_INC(udps_hdrops);
427 			return (IPPROTO_DONE);
428 		}
429 		ip = mtod(m, struct ip *);
430 	}
431 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
432 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
433 
434 	/*
435 	 * Destination port of 0 is illegal, based on RFC768.
436 	 */
437 	if (uh->uh_dport == 0)
438 		goto badunlocked;
439 
440 	/*
441 	 * Construct sockaddr format source address.  Stuff source address
442 	 * and datagram in user buffer.
443 	 */
444 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
445 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
446 	udp_in[0].sin_family = AF_INET;
447 	udp_in[0].sin_port = uh->uh_sport;
448 	udp_in[0].sin_addr = ip->ip_src;
449 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
450 	udp_in[1].sin_family = AF_INET;
451 	udp_in[1].sin_port = uh->uh_dport;
452 	udp_in[1].sin_addr = ip->ip_dst;
453 
454 	/*
455 	 * Make mbuf data length reflect UDP length.  If not enough data to
456 	 * reflect UDP length, drop.
457 	 */
458 	len = ntohs((u_short)uh->uh_ulen);
459 	ip_len = ntohs(ip->ip_len) - iphlen;
460 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
461 		/* Zero means checksum over the complete packet. */
462 		if (len == 0)
463 			len = ip_len;
464 		cscov_partial = 0;
465 	}
466 	if (ip_len != len) {
467 		if (len > ip_len || len < sizeof(struct udphdr)) {
468 			UDPSTAT_INC(udps_badlen);
469 			goto badunlocked;
470 		}
471 		if (proto == IPPROTO_UDP)
472 			m_adj(m, len - ip_len);
473 	}
474 
475 	/*
476 	 * Save a copy of the IP header in case we want restore it for
477 	 * sending an ICMP error message in response.
478 	 */
479 	if (!V_udp_blackhole)
480 		save_ip = *ip;
481 	else
482 		memset(&save_ip, 0, sizeof(save_ip));
483 
484 	/*
485 	 * Checksum extended UDP header and data.
486 	 */
487 	if (uh->uh_sum) {
488 		u_short uh_sum;
489 
490 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
491 		    !cscov_partial) {
492 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
493 				uh_sum = m->m_pkthdr.csum_data;
494 			else
495 				uh_sum = in_pseudo(ip->ip_src.s_addr,
496 				    ip->ip_dst.s_addr, htonl((u_short)len +
497 				    m->m_pkthdr.csum_data + proto));
498 			uh_sum ^= 0xffff;
499 		} else {
500 			char b[9];
501 
502 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
503 			bzero(((struct ipovly *)ip)->ih_x1, 9);
504 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
505 			    uh->uh_ulen : htons(ip_len);
506 			uh_sum = in_cksum(m, len + sizeof (struct ip));
507 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
508 		}
509 		if (uh_sum) {
510 			UDPSTAT_INC(udps_badsum);
511 			m_freem(m);
512 			return (IPPROTO_DONE);
513 		}
514 	} else {
515 		if (proto == IPPROTO_UDP) {
516 			UDPSTAT_INC(udps_nosum);
517 		} else {
518 			/* UDPLite requires a checksum */
519 			/* XXX: What is the right UDPLite MIB counter here? */
520 			m_freem(m);
521 			return (IPPROTO_DONE);
522 		}
523 	}
524 
525 	pcbinfo = udp_get_inpcbinfo(proto);
526 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
527 	    in_broadcast(ip->ip_dst, ifp)) {
528 		struct inpcb *last;
529 		struct inpcbhead *pcblist;
530 		struct ip_moptions *imo;
531 
532 		INP_INFO_RLOCK(pcbinfo);
533 		pcblist = udp_get_pcblist(proto);
534 		last = NULL;
535 		CK_LIST_FOREACH(inp, pcblist, inp_list) {
536 			if (inp->inp_lport != uh->uh_dport)
537 				continue;
538 #ifdef INET6
539 			if ((inp->inp_vflag & INP_IPV4) == 0)
540 				continue;
541 #endif
542 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
543 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
544 				continue;
545 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
546 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
547 				continue;
548 			if (inp->inp_fport != 0 &&
549 			    inp->inp_fport != uh->uh_sport)
550 				continue;
551 
552 			INP_RLOCK(inp);
553 
554 			/*
555 			 * XXXRW: Because we weren't holding either the inpcb
556 			 * or the hash lock when we checked for a match
557 			 * before, we should probably recheck now that the
558 			 * inpcb lock is held.
559 			 */
560 
561 			/*
562 			 * Handle socket delivery policy for any-source
563 			 * and source-specific multicast. [RFC3678]
564 			 */
565 			imo = inp->inp_moptions;
566 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
567 				struct sockaddr_in	 group;
568 				int			 blocked;
569 				if (imo == NULL) {
570 					INP_RUNLOCK(inp);
571 					continue;
572 				}
573 				bzero(&group, sizeof(struct sockaddr_in));
574 				group.sin_len = sizeof(struct sockaddr_in);
575 				group.sin_family = AF_INET;
576 				group.sin_addr = ip->ip_dst;
577 
578 				blocked = imo_multi_filter(imo, ifp,
579 					(struct sockaddr *)&group,
580 					(struct sockaddr *)&udp_in[0]);
581 				if (blocked != MCAST_PASS) {
582 					if (blocked == MCAST_NOTGMEMBER)
583 						IPSTAT_INC(ips_notmember);
584 					if (blocked == MCAST_NOTSMEMBER ||
585 					    blocked == MCAST_MUTED)
586 						UDPSTAT_INC(udps_filtermcast);
587 					INP_RUNLOCK(inp);
588 					continue;
589 				}
590 			}
591 			if (last != NULL) {
592 				struct mbuf *n;
593 
594 				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
595 				    NULL) {
596 					UDP_PROBE(receive, NULL, last, ip,
597 					    last, uh);
598 					if (udp_append(last, ip, n, iphlen,
599 						udp_in)) {
600 						goto inp_lost;
601 					}
602 				}
603 				INP_RUNLOCK(last);
604 			}
605 			last = inp;
606 			/*
607 			 * Don't look for additional matches if this one does
608 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
609 			 * socket options set.  This heuristic avoids
610 			 * searching through all pcbs in the common case of a
611 			 * non-shared port.  It assumes that an application
612 			 * will never clear these options after setting them.
613 			 */
614 			if ((last->inp_socket->so_options &
615 			    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0)
616 				break;
617 		}
618 
619 		if (last == NULL) {
620 			/*
621 			 * No matching pcb found; discard datagram.  (No need
622 			 * to send an ICMP Port Unreachable for a broadcast
623 			 * or multicast datgram.)
624 			 */
625 			UDPSTAT_INC(udps_noportbcast);
626 			if (inp)
627 				INP_RUNLOCK(inp);
628 			INP_INFO_RUNLOCK(pcbinfo);
629 			goto badunlocked;
630 		}
631 		UDP_PROBE(receive, NULL, last, ip, last, uh);
632 		if (udp_append(last, ip, m, iphlen, udp_in) == 0)
633 			INP_RUNLOCK(last);
634 	inp_lost:
635 		INP_INFO_RUNLOCK(pcbinfo);
636 		return (IPPROTO_DONE);
637 	}
638 
639 	/*
640 	 * Locate pcb for datagram.
641 	 */
642 
643 	/*
644 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
645 	 */
646 	if ((m->m_flags & M_IP_NEXTHOP) &&
647 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
648 		struct sockaddr_in *next_hop;
649 
650 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
651 
652 		/*
653 		 * Transparently forwarded. Pretend to be the destination.
654 		 * Already got one like this?
655 		 */
656 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
657 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
658 		if (!inp) {
659 			/*
660 			 * It's new.  Try to find the ambushing socket.
661 			 * Because we've rewritten the destination address,
662 			 * any hardware-generated hash is ignored.
663 			 */
664 			inp = in_pcblookup(pcbinfo, ip->ip_src,
665 			    uh->uh_sport, next_hop->sin_addr,
666 			    next_hop->sin_port ? htons(next_hop->sin_port) :
667 			    uh->uh_dport, INPLOOKUP_WILDCARD |
668 			    INPLOOKUP_RLOCKPCB, ifp);
669 		}
670 		/* Remove the tag from the packet. We don't need it anymore. */
671 		m_tag_delete(m, fwd_tag);
672 		m->m_flags &= ~M_IP_NEXTHOP;
673 	} else
674 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
675 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
676 		    INPLOOKUP_RLOCKPCB, ifp, m);
677 	if (inp == NULL) {
678 		if (udp_log_in_vain) {
679 			char src[INET_ADDRSTRLEN];
680 			char dst[INET_ADDRSTRLEN];
681 
682 			log(LOG_INFO,
683 			    "Connection attempt to UDP %s:%d from %s:%d\n",
684 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
685 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
686 		}
687 		UDPSTAT_INC(udps_noport);
688 		if (m->m_flags & (M_BCAST | M_MCAST)) {
689 			UDPSTAT_INC(udps_noportbcast);
690 			goto badunlocked;
691 		}
692 		if (V_udp_blackhole)
693 			goto badunlocked;
694 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
695 			goto badunlocked;
696 		*ip = save_ip;
697 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
698 		return (IPPROTO_DONE);
699 	}
700 
701 	/*
702 	 * Check the minimum TTL for socket.
703 	 */
704 	INP_RLOCK_ASSERT(inp);
705 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
706 		INP_RUNLOCK(inp);
707 		m_freem(m);
708 		return (IPPROTO_DONE);
709 	}
710 	if (cscov_partial) {
711 		struct udpcb *up;
712 
713 		up = intoudpcb(inp);
714 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
715 			INP_RUNLOCK(inp);
716 			m_freem(m);
717 			return (IPPROTO_DONE);
718 		}
719 	}
720 
721 	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
722 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
723 		INP_RUNLOCK(inp);
724 	return (IPPROTO_DONE);
725 
726 badunlocked:
727 	m_freem(m);
728 	return (IPPROTO_DONE);
729 }
730 #endif /* INET */
731 
732 /*
733  * Notify a udp user of an asynchronous error; just wake up so that they can
734  * collect error status.
735  */
736 struct inpcb *
737 udp_notify(struct inpcb *inp, int errno)
738 {
739 
740 	/*
741 	 * While udp_ctlinput() always calls udp_notify() with a read lock
742 	 * when invoking it directly, in_pcbnotifyall() currently uses write
743 	 * locks due to sharing code with TCP.  For now, accept either a read
744 	 * or a write lock, but a read lock is sufficient.
745 	 */
746 	INP_LOCK_ASSERT(inp);
747 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
748 	     errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
749 		RTFREE(inp->inp_route.ro_rt);
750 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
751 	}
752 
753 	inp->inp_socket->so_error = errno;
754 	sorwakeup(inp->inp_socket);
755 	sowwakeup(inp->inp_socket);
756 	return (inp);
757 }
758 
759 #ifdef INET
760 static void
761 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
762     struct inpcbinfo *pcbinfo)
763 {
764 	struct ip *ip = vip;
765 	struct udphdr *uh;
766 	struct in_addr faddr;
767 	struct inpcb *inp;
768 
769 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
770 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
771 		return;
772 
773 	if (PRC_IS_REDIRECT(cmd)) {
774 		/* signal EHOSTDOWN, as it flushes the cached route */
775 		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
776 		return;
777 	}
778 
779 	/*
780 	 * Hostdead is ugly because it goes linearly through all PCBs.
781 	 *
782 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
783 	 * DoS attack on machines with many connections.
784 	 */
785 	if (cmd == PRC_HOSTDEAD)
786 		ip = NULL;
787 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
788 		return;
789 	if (ip != NULL) {
790 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
791 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
792 		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
793 		if (inp != NULL) {
794 			INP_RLOCK_ASSERT(inp);
795 			if (inp->inp_socket != NULL) {
796 				udp_notify(inp, inetctlerrmap[cmd]);
797 			}
798 			INP_RUNLOCK(inp);
799 		} else {
800 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
801 					   ip->ip_src, uh->uh_sport,
802 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
803 			if (inp != NULL) {
804 				struct udpcb *up;
805 				void *ctx;
806 				udp_tun_icmp_t func;
807 
808 				up = intoudpcb(inp);
809 				ctx = up->u_tun_ctx;
810 				func = up->u_icmp_func;
811 				INP_RUNLOCK(inp);
812 				if (func != NULL)
813 					(*func)(cmd, sa, vip, ctx);
814 			}
815 		}
816 	} else
817 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
818 		    udp_notify);
819 }
820 void
821 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
822 {
823 
824 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
825 }
826 
827 void
828 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
829 {
830 
831 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
832 }
833 #endif /* INET */
834 
835 static int
836 udp_pcblist(SYSCTL_HANDLER_ARGS)
837 {
838 	int error, i, n;
839 	struct inpcb *inp, **inp_list;
840 	struct in_pcblist *il;
841 	inp_gen_t gencnt;
842 	struct xinpgen xig;
843 
844 	/*
845 	 * The process of preparing the PCB list is too time-consuming and
846 	 * resource-intensive to repeat twice on every request.
847 	 */
848 	if (req->oldptr == 0) {
849 		n = V_udbinfo.ipi_count;
850 		n += imax(n / 8, 10);
851 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
852 		return (0);
853 	}
854 
855 	if (req->newptr != 0)
856 		return (EPERM);
857 
858 	/*
859 	 * OK, now we're committed to doing something.
860 	 */
861 	INP_INFO_RLOCK(&V_udbinfo);
862 	gencnt = V_udbinfo.ipi_gencnt;
863 	n = V_udbinfo.ipi_count;
864 	INP_INFO_RUNLOCK(&V_udbinfo);
865 
866 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
867 		+ n * sizeof(struct xinpcb));
868 	if (error != 0)
869 		return (error);
870 
871 	xig.xig_len = sizeof xig;
872 	xig.xig_count = n;
873 	xig.xig_gen = gencnt;
874 	xig.xig_sogen = so_gencnt;
875 	error = SYSCTL_OUT(req, &xig, sizeof xig);
876 	if (error)
877 		return (error);
878 	il = malloc(sizeof(struct in_pcblist) + n * sizeof(struct inpcb *), M_TEMP, M_WAITOK|M_ZERO_INVARIANTS);
879 	inp_list = il->il_inp_list;
880 
881 	INP_INFO_RLOCK(&V_udbinfo);
882 	for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
883 	     inp = CK_LIST_NEXT(inp, inp_list)) {
884 		INP_WLOCK(inp);
885 		if (inp->inp_gencnt <= gencnt &&
886 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
887 			in_pcbref(inp);
888 			inp_list[i++] = inp;
889 		}
890 		INP_WUNLOCK(inp);
891 	}
892 	INP_INFO_RUNLOCK(&V_udbinfo);
893 	n = i;
894 
895 	error = 0;
896 	for (i = 0; i < n; i++) {
897 		inp = inp_list[i];
898 		INP_RLOCK(inp);
899 		if (inp->inp_gencnt <= gencnt) {
900 			struct xinpcb xi;
901 
902 			in_pcbtoxinpcb(inp, &xi);
903 			INP_RUNLOCK(inp);
904 			error = SYSCTL_OUT(req, &xi, sizeof xi);
905 		} else
906 			INP_RUNLOCK(inp);
907 	}
908 	il->il_count = n;
909 	il->il_pcbinfo = &V_udbinfo;
910 	epoch_call(net_epoch_preempt, &il->il_epoch_ctx, in_pcblist_rele_rlocked);
911 
912 	if (!error) {
913 		/*
914 		 * Give the user an updated idea of our state.  If the
915 		 * generation differs from what we told her before, she knows
916 		 * that something happened while we were processing this
917 		 * request, and it might be necessary to retry.
918 		 */
919 		INP_INFO_RLOCK(&V_udbinfo);
920 		xig.xig_gen = V_udbinfo.ipi_gencnt;
921 		xig.xig_sogen = so_gencnt;
922 		xig.xig_count = V_udbinfo.ipi_count;
923 		INP_INFO_RUNLOCK(&V_udbinfo);
924 		error = SYSCTL_OUT(req, &xig, sizeof xig);
925 	}
926 	return (error);
927 }
928 
929 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
930     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
931     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
932 
933 #ifdef INET
934 static int
935 udp_getcred(SYSCTL_HANDLER_ARGS)
936 {
937 	struct xucred xuc;
938 	struct sockaddr_in addrs[2];
939 	struct inpcb *inp;
940 	int error;
941 
942 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
943 	if (error)
944 		return (error);
945 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
946 	if (error)
947 		return (error);
948 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
949 	    addrs[0].sin_addr, addrs[0].sin_port,
950 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
951 	if (inp != NULL) {
952 		INP_RLOCK_ASSERT(inp);
953 		if (inp->inp_socket == NULL)
954 			error = ENOENT;
955 		if (error == 0)
956 			error = cr_canseeinpcb(req->td->td_ucred, inp);
957 		if (error == 0)
958 			cru2x(inp->inp_cred, &xuc);
959 		INP_RUNLOCK(inp);
960 	} else
961 		error = ENOENT;
962 	if (error == 0)
963 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
964 	return (error);
965 }
966 
967 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
968     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
969     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
970 #endif /* INET */
971 
972 int
973 udp_ctloutput(struct socket *so, struct sockopt *sopt)
974 {
975 	struct inpcb *inp;
976 	struct udpcb *up;
977 	int isudplite, error, optval;
978 
979 	error = 0;
980 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
981 	inp = sotoinpcb(so);
982 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
983 	INP_WLOCK(inp);
984 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
985 #ifdef INET6
986 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
987 			INP_WUNLOCK(inp);
988 			error = ip6_ctloutput(so, sopt);
989 		}
990 #endif
991 #if defined(INET) && defined(INET6)
992 		else
993 #endif
994 #ifdef INET
995 		{
996 			INP_WUNLOCK(inp);
997 			error = ip_ctloutput(so, sopt);
998 		}
999 #endif
1000 		return (error);
1001 	}
1002 
1003 	switch (sopt->sopt_dir) {
1004 	case SOPT_SET:
1005 		switch (sopt->sopt_name) {
1006 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1007 #ifdef INET
1008 		case UDP_ENCAP:
1009 			if (!IPSEC_ENABLED(ipv4)) {
1010 				INP_WUNLOCK(inp);
1011 				return (ENOPROTOOPT);
1012 			}
1013 			error = UDPENCAP_PCBCTL(inp, sopt);
1014 			break;
1015 #endif /* INET */
1016 #endif /* IPSEC */
1017 		case UDPLITE_SEND_CSCOV:
1018 		case UDPLITE_RECV_CSCOV:
1019 			if (!isudplite) {
1020 				INP_WUNLOCK(inp);
1021 				error = ENOPROTOOPT;
1022 				break;
1023 			}
1024 			INP_WUNLOCK(inp);
1025 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1026 			    sizeof(optval));
1027 			if (error != 0)
1028 				break;
1029 			inp = sotoinpcb(so);
1030 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1031 			INP_WLOCK(inp);
1032 			up = intoudpcb(inp);
1033 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1034 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1035 				INP_WUNLOCK(inp);
1036 				error = EINVAL;
1037 				break;
1038 			}
1039 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1040 				up->u_txcslen = optval;
1041 			else
1042 				up->u_rxcslen = optval;
1043 			INP_WUNLOCK(inp);
1044 			break;
1045 		default:
1046 			INP_WUNLOCK(inp);
1047 			error = ENOPROTOOPT;
1048 			break;
1049 		}
1050 		break;
1051 	case SOPT_GET:
1052 		switch (sopt->sopt_name) {
1053 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1054 #ifdef INET
1055 		case UDP_ENCAP:
1056 			if (!IPSEC_ENABLED(ipv4)) {
1057 				INP_WUNLOCK(inp);
1058 				return (ENOPROTOOPT);
1059 			}
1060 			error = UDPENCAP_PCBCTL(inp, sopt);
1061 			break;
1062 #endif /* INET */
1063 #endif /* IPSEC */
1064 		case UDPLITE_SEND_CSCOV:
1065 		case UDPLITE_RECV_CSCOV:
1066 			if (!isudplite) {
1067 				INP_WUNLOCK(inp);
1068 				error = ENOPROTOOPT;
1069 				break;
1070 			}
1071 			up = intoudpcb(inp);
1072 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1073 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1074 				optval = up->u_txcslen;
1075 			else
1076 				optval = up->u_rxcslen;
1077 			INP_WUNLOCK(inp);
1078 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1079 			break;
1080 		default:
1081 			INP_WUNLOCK(inp);
1082 			error = ENOPROTOOPT;
1083 			break;
1084 		}
1085 		break;
1086 	}
1087 	return (error);
1088 }
1089 
1090 #ifdef INET
1091 #define	UH_WLOCKED	2
1092 #define	UH_RLOCKED	1
1093 #define	UH_UNLOCKED	0
1094 static int
1095 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1096     struct mbuf *control, struct thread *td)
1097 {
1098 	struct udpiphdr *ui;
1099 	int len = m->m_pkthdr.len;
1100 	struct in_addr faddr, laddr;
1101 	struct cmsghdr *cm;
1102 	struct inpcbinfo *pcbinfo;
1103 	struct sockaddr_in *sin, src;
1104 	int cscov_partial = 0;
1105 	int error = 0;
1106 	int ipflags;
1107 	u_short fport, lport;
1108 	int unlock_udbinfo, unlock_inp;
1109 	u_char tos;
1110 	uint8_t pr;
1111 	uint16_t cscov = 0;
1112 	uint32_t flowid = 0;
1113 	uint8_t flowtype = M_HASHTYPE_NONE;
1114 
1115 	/*
1116 	 * udp_output() may need to temporarily bind or connect the current
1117 	 * inpcb.  As such, we don't know up front whether we will need the
1118 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1119 	 * front before acquiring any locks.
1120 	 */
1121 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1122 		if (control)
1123 			m_freem(control);
1124 		m_freem(m);
1125 		return (EMSGSIZE);
1126 	}
1127 
1128 	src.sin_family = 0;
1129 	sin = (struct sockaddr_in *)addr;
1130 	if (sin == NULL ||
1131 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1132 		INP_WLOCK(inp);
1133 		unlock_inp = UH_WLOCKED;
1134 	} else {
1135 		INP_RLOCK(inp);
1136 		unlock_inp = UH_RLOCKED;
1137 	}
1138 	tos = inp->inp_ip_tos;
1139 	if (control != NULL) {
1140 		/*
1141 		 * XXX: Currently, we assume all the optional information is
1142 		 * stored in a single mbuf.
1143 		 */
1144 		if (control->m_next) {
1145 			if (unlock_inp == UH_WLOCKED)
1146 				INP_WUNLOCK(inp);
1147 			else
1148 				INP_RUNLOCK(inp);
1149 			m_freem(control);
1150 			m_freem(m);
1151 			return (EINVAL);
1152 		}
1153 		for (; control->m_len > 0;
1154 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1155 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1156 			cm = mtod(control, struct cmsghdr *);
1157 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1158 			    || cm->cmsg_len > control->m_len) {
1159 				error = EINVAL;
1160 				break;
1161 			}
1162 			if (cm->cmsg_level != IPPROTO_IP)
1163 				continue;
1164 
1165 			switch (cm->cmsg_type) {
1166 			case IP_SENDSRCADDR:
1167 				if (cm->cmsg_len !=
1168 				    CMSG_LEN(sizeof(struct in_addr))) {
1169 					error = EINVAL;
1170 					break;
1171 				}
1172 				bzero(&src, sizeof(src));
1173 				src.sin_family = AF_INET;
1174 				src.sin_len = sizeof(src);
1175 				src.sin_port = inp->inp_lport;
1176 				src.sin_addr =
1177 				    *(struct in_addr *)CMSG_DATA(cm);
1178 				break;
1179 
1180 			case IP_TOS:
1181 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1182 					error = EINVAL;
1183 					break;
1184 				}
1185 				tos = *(u_char *)CMSG_DATA(cm);
1186 				break;
1187 
1188 			case IP_FLOWID:
1189 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1190 					error = EINVAL;
1191 					break;
1192 				}
1193 				flowid = *(uint32_t *) CMSG_DATA(cm);
1194 				break;
1195 
1196 			case IP_FLOWTYPE:
1197 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1198 					error = EINVAL;
1199 					break;
1200 				}
1201 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1202 				break;
1203 
1204 #ifdef	RSS
1205 			case IP_RSSBUCKETID:
1206 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1207 					error = EINVAL;
1208 					break;
1209 				}
1210 				/* This is just a placeholder for now */
1211 				break;
1212 #endif	/* RSS */
1213 			default:
1214 				error = ENOPROTOOPT;
1215 				break;
1216 			}
1217 			if (error)
1218 				break;
1219 		}
1220 		m_freem(control);
1221 	}
1222 	if (error) {
1223 		if (unlock_inp == UH_WLOCKED)
1224 			INP_WUNLOCK(inp);
1225 		else
1226 			INP_RUNLOCK(inp);
1227 		m_freem(m);
1228 		return (error);
1229 	}
1230 
1231 	/*
1232 	 * Depending on whether or not the application has bound or connected
1233 	 * the socket, we may have to do varying levels of work.  The optimal
1234 	 * case is for a connected UDP socket, as a global lock isn't
1235 	 * required at all.
1236 	 *
1237 	 * In order to decide which we need, we require stability of the
1238 	 * inpcb binding, which we ensure by acquiring a read lock on the
1239 	 * inpcb.  This doesn't strictly follow the lock order, so we play
1240 	 * the trylock and retry game; note that we may end up with more
1241 	 * conservative locks than required the second time around, so later
1242 	 * assertions have to accept that.  Further analysis of the number of
1243 	 * misses under contention is required.
1244 	 *
1245 	 * XXXRW: Check that hash locking update here is correct.
1246 	 */
1247 	pr = inp->inp_socket->so_proto->pr_protocol;
1248 	pcbinfo = udp_get_inpcbinfo(pr);
1249 	sin = (struct sockaddr_in *)addr;
1250 	if (sin != NULL &&
1251 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1252 		INP_HASH_WLOCK(pcbinfo);
1253 		unlock_udbinfo = UH_WLOCKED;
1254 	} else if ((sin != NULL && (
1255 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1256 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1257 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1258 	    (inp->inp_lport == 0))) ||
1259 	    (src.sin_family == AF_INET)) {
1260 		INP_HASH_RLOCK(pcbinfo);
1261 		unlock_udbinfo = UH_RLOCKED;
1262 	} else
1263 		unlock_udbinfo = UH_UNLOCKED;
1264 
1265 	/*
1266 	 * If the IP_SENDSRCADDR control message was specified, override the
1267 	 * source address for this datagram.  Its use is invalidated if the
1268 	 * address thus specified is incomplete or clobbers other inpcbs.
1269 	 */
1270 	laddr = inp->inp_laddr;
1271 	lport = inp->inp_lport;
1272 	if (src.sin_family == AF_INET) {
1273 		INP_HASH_LOCK_ASSERT(pcbinfo);
1274 		if ((lport == 0) ||
1275 		    (laddr.s_addr == INADDR_ANY &&
1276 		     src.sin_addr.s_addr == INADDR_ANY)) {
1277 			error = EINVAL;
1278 			goto release;
1279 		}
1280 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1281 		    &laddr.s_addr, &lport, td->td_ucred);
1282 		if (error)
1283 			goto release;
1284 	}
1285 
1286 	/*
1287 	 * If a UDP socket has been connected, then a local address/port will
1288 	 * have been selected and bound.
1289 	 *
1290 	 * If a UDP socket has not been connected to, then an explicit
1291 	 * destination address must be used, in which case a local
1292 	 * address/port may not have been selected and bound.
1293 	 */
1294 	if (sin != NULL) {
1295 		INP_LOCK_ASSERT(inp);
1296 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1297 			error = EISCONN;
1298 			goto release;
1299 		}
1300 
1301 		/*
1302 		 * Jail may rewrite the destination address, so let it do
1303 		 * that before we use it.
1304 		 */
1305 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1306 		if (error)
1307 			goto release;
1308 
1309 		/*
1310 		 * If a local address or port hasn't yet been selected, or if
1311 		 * the destination address needs to be rewritten due to using
1312 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1313 		 * to do the heavy lifting.  Once a port is selected, we
1314 		 * commit the binding back to the socket; we also commit the
1315 		 * binding of the address if in jail.
1316 		 *
1317 		 * If we already have a valid binding and we're not
1318 		 * requesting a destination address rewrite, use a fast path.
1319 		 */
1320 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1321 		    inp->inp_lport == 0 ||
1322 		    sin->sin_addr.s_addr == INADDR_ANY ||
1323 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1324 			INP_HASH_LOCK_ASSERT(pcbinfo);
1325 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1326 			    &lport, &faddr.s_addr, &fport, NULL,
1327 			    td->td_ucred);
1328 			if (error)
1329 				goto release;
1330 
1331 			/*
1332 			 * XXXRW: Why not commit the port if the address is
1333 			 * !INADDR_ANY?
1334 			 */
1335 			/* Commit the local port if newly assigned. */
1336 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1337 			    inp->inp_lport == 0) {
1338 				INP_WLOCK_ASSERT(inp);
1339 				INP_HASH_WLOCK_ASSERT(pcbinfo);
1340 				/*
1341 				 * Remember addr if jailed, to prevent
1342 				 * rebinding.
1343 				 */
1344 				if (prison_flag(td->td_ucred, PR_IP4))
1345 					inp->inp_laddr = laddr;
1346 				inp->inp_lport = lport;
1347 				if (in_pcbinshash(inp) != 0) {
1348 					inp->inp_lport = 0;
1349 					error = EAGAIN;
1350 					goto release;
1351 				}
1352 				inp->inp_flags |= INP_ANONPORT;
1353 			}
1354 		} else {
1355 			faddr = sin->sin_addr;
1356 			fport = sin->sin_port;
1357 		}
1358 	} else {
1359 		INP_LOCK_ASSERT(inp);
1360 		faddr = inp->inp_faddr;
1361 		fport = inp->inp_fport;
1362 		if (faddr.s_addr == INADDR_ANY) {
1363 			error = ENOTCONN;
1364 			goto release;
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1370 	 * link-layer headers.  Immediate slide the data pointer back forward
1371 	 * since we won't use that space at this layer.
1372 	 */
1373 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1374 	if (m == NULL) {
1375 		error = ENOBUFS;
1376 		goto release;
1377 	}
1378 	m->m_data += max_linkhdr;
1379 	m->m_len -= max_linkhdr;
1380 	m->m_pkthdr.len -= max_linkhdr;
1381 
1382 	/*
1383 	 * Fill in mbuf with extended UDP header and addresses and length put
1384 	 * into network format.
1385 	 */
1386 	ui = mtod(m, struct udpiphdr *);
1387 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1388 	ui->ui_pr = pr;
1389 	ui->ui_src = laddr;
1390 	ui->ui_dst = faddr;
1391 	ui->ui_sport = lport;
1392 	ui->ui_dport = fport;
1393 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1394 	if (pr == IPPROTO_UDPLITE) {
1395 		struct udpcb *up;
1396 		uint16_t plen;
1397 
1398 		up = intoudpcb(inp);
1399 		cscov = up->u_txcslen;
1400 		plen = (u_short)len + sizeof(struct udphdr);
1401 		if (cscov >= plen)
1402 			cscov = 0;
1403 		ui->ui_len = htons(plen);
1404 		ui->ui_ulen = htons(cscov);
1405 		/*
1406 		 * For UDP-Lite, checksum coverage length of zero means
1407 		 * the entire UDPLite packet is covered by the checksum.
1408 		 */
1409 		cscov_partial = (cscov == 0) ? 0 : 1;
1410 	} else
1411 		ui->ui_v = IPVERSION << 4;
1412 
1413 	/*
1414 	 * Set the Don't Fragment bit in the IP header.
1415 	 */
1416 	if (inp->inp_flags & INP_DONTFRAG) {
1417 		struct ip *ip;
1418 
1419 		ip = (struct ip *)&ui->ui_i;
1420 		ip->ip_off |= htons(IP_DF);
1421 	}
1422 
1423 	ipflags = 0;
1424 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1425 		ipflags |= IP_ROUTETOIF;
1426 	if (inp->inp_socket->so_options & SO_BROADCAST)
1427 		ipflags |= IP_ALLOWBROADCAST;
1428 	if (inp->inp_flags & INP_ONESBCAST)
1429 		ipflags |= IP_SENDONES;
1430 
1431 #ifdef MAC
1432 	mac_inpcb_create_mbuf(inp, m);
1433 #endif
1434 
1435 	/*
1436 	 * Set up checksum and output datagram.
1437 	 */
1438 	ui->ui_sum = 0;
1439 	if (pr == IPPROTO_UDPLITE) {
1440 		if (inp->inp_flags & INP_ONESBCAST)
1441 			faddr.s_addr = INADDR_BROADCAST;
1442 		if (cscov_partial) {
1443 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1444 				ui->ui_sum = 0xffff;
1445 		} else {
1446 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1447 				ui->ui_sum = 0xffff;
1448 		}
1449 	} else if (V_udp_cksum) {
1450 		if (inp->inp_flags & INP_ONESBCAST)
1451 			faddr.s_addr = INADDR_BROADCAST;
1452 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1453 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1454 		m->m_pkthdr.csum_flags = CSUM_UDP;
1455 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1456 	}
1457 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1458 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1459 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1460 	UDPSTAT_INC(udps_opackets);
1461 
1462 	/*
1463 	 * Setup flowid / RSS information for outbound socket.
1464 	 *
1465 	 * Once the UDP code decides to set a flowid some other way,
1466 	 * this allows the flowid to be overridden by userland.
1467 	 */
1468 	if (flowtype != M_HASHTYPE_NONE) {
1469 		m->m_pkthdr.flowid = flowid;
1470 		M_HASHTYPE_SET(m, flowtype);
1471 #ifdef	RSS
1472 	} else {
1473 		uint32_t hash_val, hash_type;
1474 		/*
1475 		 * Calculate an appropriate RSS hash for UDP and
1476 		 * UDP Lite.
1477 		 *
1478 		 * The called function will take care of figuring out
1479 		 * whether a 2-tuple or 4-tuple hash is required based
1480 		 * on the currently configured scheme.
1481 		 *
1482 		 * Later later on connected socket values should be
1483 		 * cached in the inpcb and reused, rather than constantly
1484 		 * re-calculating it.
1485 		 *
1486 		 * UDP Lite is a different protocol number and will
1487 		 * likely end up being hashed as a 2-tuple until
1488 		 * RSS / NICs grow UDP Lite protocol awareness.
1489 		 */
1490 		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1491 		    pr, &hash_val, &hash_type) == 0) {
1492 			m->m_pkthdr.flowid = hash_val;
1493 			M_HASHTYPE_SET(m, hash_type);
1494 		}
1495 #endif
1496 	}
1497 
1498 #ifdef	RSS
1499 	/*
1500 	 * Don't override with the inp cached flowid value.
1501 	 *
1502 	 * Depending upon the kind of send being done, the inp
1503 	 * flowid/flowtype values may actually not be appropriate
1504 	 * for this particular socket send.
1505 	 *
1506 	 * We should either leave the flowid at zero (which is what is
1507 	 * currently done) or set it to some software generated
1508 	 * hash value based on the packet contents.
1509 	 */
1510 	ipflags |= IP_NODEFAULTFLOWID;
1511 #endif	/* RSS */
1512 
1513 	if (unlock_udbinfo == UH_WLOCKED)
1514 		INP_HASH_WUNLOCK(pcbinfo);
1515 	else if (unlock_udbinfo == UH_RLOCKED)
1516 		INP_HASH_RUNLOCK(pcbinfo);
1517 	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1518 	error = ip_output(m, inp->inp_options,
1519 	    (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1520 	    inp->inp_moptions, inp);
1521 	if (unlock_inp == UH_WLOCKED)
1522 		INP_WUNLOCK(inp);
1523 	else
1524 		INP_RUNLOCK(inp);
1525 	return (error);
1526 
1527 release:
1528 	if (unlock_udbinfo == UH_WLOCKED) {
1529 		KASSERT(unlock_inp == UH_WLOCKED,
1530 		    ("%s: excl udbinfo lock, shared inp lock", __func__));
1531 		INP_HASH_WUNLOCK(pcbinfo);
1532 		INP_WUNLOCK(inp);
1533 	} else if (unlock_udbinfo == UH_RLOCKED) {
1534 		KASSERT(unlock_inp == UH_RLOCKED,
1535 		    ("%s: shared udbinfo lock, excl inp lock", __func__));
1536 		INP_HASH_RUNLOCK(pcbinfo);
1537 		INP_RUNLOCK(inp);
1538 	} else if (unlock_inp == UH_WLOCKED)
1539 		INP_WUNLOCK(inp);
1540 	else
1541 		INP_RUNLOCK(inp);
1542 	m_freem(m);
1543 	return (error);
1544 }
1545 
1546 static void
1547 udp_abort(struct socket *so)
1548 {
1549 	struct inpcb *inp;
1550 	struct inpcbinfo *pcbinfo;
1551 
1552 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1553 	inp = sotoinpcb(so);
1554 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1555 	INP_WLOCK(inp);
1556 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1557 		INP_HASH_WLOCK(pcbinfo);
1558 		in_pcbdisconnect(inp);
1559 		inp->inp_laddr.s_addr = INADDR_ANY;
1560 		INP_HASH_WUNLOCK(pcbinfo);
1561 		soisdisconnected(so);
1562 	}
1563 	INP_WUNLOCK(inp);
1564 }
1565 
1566 static int
1567 udp_attach(struct socket *so, int proto, struct thread *td)
1568 {
1569 	static uint32_t udp_flowid;
1570 	struct inpcb *inp;
1571 	struct inpcbinfo *pcbinfo;
1572 	int error;
1573 
1574 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1575 	inp = sotoinpcb(so);
1576 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1577 	error = soreserve(so, udp_sendspace, udp_recvspace);
1578 	if (error)
1579 		return (error);
1580 	INP_INFO_WLOCK(pcbinfo);
1581 	error = in_pcballoc(so, pcbinfo);
1582 	if (error) {
1583 		INP_INFO_WUNLOCK(pcbinfo);
1584 		return (error);
1585 	}
1586 
1587 	inp = sotoinpcb(so);
1588 	inp->inp_vflag |= INP_IPV4;
1589 	inp->inp_ip_ttl = V_ip_defttl;
1590 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1591 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1592 
1593 	error = udp_newudpcb(inp);
1594 	if (error) {
1595 		in_pcbdetach(inp);
1596 		in_pcbfree(inp);
1597 		INP_INFO_WUNLOCK(pcbinfo);
1598 		return (error);
1599 	}
1600 
1601 	INP_WUNLOCK(inp);
1602 	INP_INFO_WUNLOCK(pcbinfo);
1603 	return (0);
1604 }
1605 #endif /* INET */
1606 
1607 int
1608 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1609 {
1610 	struct inpcb *inp;
1611 	struct udpcb *up;
1612 
1613 	KASSERT(so->so_type == SOCK_DGRAM,
1614 	    ("udp_set_kernel_tunneling: !dgram"));
1615 	inp = sotoinpcb(so);
1616 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1617 	INP_WLOCK(inp);
1618 	up = intoudpcb(inp);
1619 	if ((up->u_tun_func != NULL) ||
1620 	    (up->u_icmp_func != NULL)) {
1621 		INP_WUNLOCK(inp);
1622 		return (EBUSY);
1623 	}
1624 	up->u_tun_func = f;
1625 	up->u_icmp_func = i;
1626 	up->u_tun_ctx = ctx;
1627 	INP_WUNLOCK(inp);
1628 	return (0);
1629 }
1630 
1631 #ifdef INET
1632 static int
1633 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1634 {
1635 	struct inpcb *inp;
1636 	struct inpcbinfo *pcbinfo;
1637 	int error;
1638 
1639 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1640 	inp = sotoinpcb(so);
1641 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1642 	INP_WLOCK(inp);
1643 	INP_HASH_WLOCK(pcbinfo);
1644 	error = in_pcbbind(inp, nam, td->td_ucred);
1645 	INP_HASH_WUNLOCK(pcbinfo);
1646 	INP_WUNLOCK(inp);
1647 	return (error);
1648 }
1649 
1650 static void
1651 udp_close(struct socket *so)
1652 {
1653 	struct inpcb *inp;
1654 	struct inpcbinfo *pcbinfo;
1655 
1656 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1657 	inp = sotoinpcb(so);
1658 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1659 	INP_WLOCK(inp);
1660 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1661 		INP_HASH_WLOCK(pcbinfo);
1662 		in_pcbdisconnect(inp);
1663 		inp->inp_laddr.s_addr = INADDR_ANY;
1664 		INP_HASH_WUNLOCK(pcbinfo);
1665 		soisdisconnected(so);
1666 	}
1667 	INP_WUNLOCK(inp);
1668 }
1669 
1670 static int
1671 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1672 {
1673 	struct inpcb *inp;
1674 	struct inpcbinfo *pcbinfo;
1675 	struct sockaddr_in *sin;
1676 	int error;
1677 
1678 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1679 	inp = sotoinpcb(so);
1680 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1681 	INP_WLOCK(inp);
1682 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1683 		INP_WUNLOCK(inp);
1684 		return (EISCONN);
1685 	}
1686 	sin = (struct sockaddr_in *)nam;
1687 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1688 	if (error != 0) {
1689 		INP_WUNLOCK(inp);
1690 		return (error);
1691 	}
1692 	INP_HASH_WLOCK(pcbinfo);
1693 	error = in_pcbconnect(inp, nam, td->td_ucred);
1694 	INP_HASH_WUNLOCK(pcbinfo);
1695 	if (error == 0)
1696 		soisconnected(so);
1697 	INP_WUNLOCK(inp);
1698 	return (error);
1699 }
1700 
1701 static void
1702 udp_detach(struct socket *so)
1703 {
1704 	struct inpcb *inp;
1705 	struct inpcbinfo *pcbinfo;
1706 	struct udpcb *up;
1707 
1708 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1709 	inp = sotoinpcb(so);
1710 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1711 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1712 	    ("udp_detach: not disconnected"));
1713 	INP_INFO_WLOCK(pcbinfo);
1714 	INP_WLOCK(inp);
1715 	up = intoudpcb(inp);
1716 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1717 	/* XXX defer to epoch_call */
1718 	inp->inp_ppcb = NULL;
1719 	in_pcbdetach(inp);
1720 	in_pcbfree(inp);
1721 	INP_INFO_WUNLOCK(pcbinfo);
1722 	udp_discardcb(up);
1723 }
1724 
1725 static int
1726 udp_disconnect(struct socket *so)
1727 {
1728 	struct inpcb *inp;
1729 	struct inpcbinfo *pcbinfo;
1730 
1731 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1732 	inp = sotoinpcb(so);
1733 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1734 	INP_WLOCK(inp);
1735 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1736 		INP_WUNLOCK(inp);
1737 		return (ENOTCONN);
1738 	}
1739 	INP_HASH_WLOCK(pcbinfo);
1740 	in_pcbdisconnect(inp);
1741 	inp->inp_laddr.s_addr = INADDR_ANY;
1742 	INP_HASH_WUNLOCK(pcbinfo);
1743 	SOCK_LOCK(so);
1744 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1745 	SOCK_UNLOCK(so);
1746 	INP_WUNLOCK(inp);
1747 	return (0);
1748 }
1749 
1750 static int
1751 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1752     struct mbuf *control, struct thread *td)
1753 {
1754 	struct inpcb *inp;
1755 
1756 	inp = sotoinpcb(so);
1757 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1758 	return (udp_output(inp, m, addr, control, td));
1759 }
1760 #endif /* INET */
1761 
1762 int
1763 udp_shutdown(struct socket *so)
1764 {
1765 	struct inpcb *inp;
1766 
1767 	inp = sotoinpcb(so);
1768 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1769 	INP_WLOCK(inp);
1770 	socantsendmore(so);
1771 	INP_WUNLOCK(inp);
1772 	return (0);
1773 }
1774 
1775 #ifdef INET
1776 struct pr_usrreqs udp_usrreqs = {
1777 	.pru_abort =		udp_abort,
1778 	.pru_attach =		udp_attach,
1779 	.pru_bind =		udp_bind,
1780 	.pru_connect =		udp_connect,
1781 	.pru_control =		in_control,
1782 	.pru_detach =		udp_detach,
1783 	.pru_disconnect =	udp_disconnect,
1784 	.pru_peeraddr =		in_getpeeraddr,
1785 	.pru_send =		udp_send,
1786 	.pru_soreceive =	soreceive_dgram,
1787 	.pru_sosend =		sosend_dgram,
1788 	.pru_shutdown =		udp_shutdown,
1789 	.pru_sockaddr =		in_getsockaddr,
1790 	.pru_sosetlabel =	in_pcbsosetlabel,
1791 	.pru_close =		udp_close,
1792 };
1793 #endif /* INET */
1794