1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2008 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * Copyright (c) 2014 Kevin Lo 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Robert N. M. Watson under 10 * contract to Juniper Networks, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ipfw.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ipsec.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/domain.h> 50 #include <sys/eventhandler.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/sdt.h> 60 #include <sys/signalvar.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sx.h> 64 #include <sys/sysctl.h> 65 #include <sys/syslog.h> 66 #include <sys/systm.h> 67 68 #include <vm/uma.h> 69 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/route.h> 73 #include <net/rss_config.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip.h> 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #endif 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/ip_options.h> 88 #ifdef INET6 89 #include <netinet6/ip6_var.h> 90 #endif 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 #include <netinet/udplite.h> 94 #include <netinet/in_rss.h> 95 96 #ifdef IPSEC 97 #include <netipsec/ipsec.h> 98 #include <netipsec/esp.h> 99 #endif 100 101 #include <machine/in_cksum.h> 102 103 #include <security/mac/mac_framework.h> 104 105 /* 106 * UDP and UDP-Lite protocols implementation. 107 * Per RFC 768, August, 1980. 108 * Per RFC 3828, July, 2004. 109 */ 110 111 /* 112 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 113 * removes the only data integrity mechanism for packets and malformed 114 * packets that would otherwise be discarded due to bad checksums, and may 115 * cause problems (especially for NFS data blocks). 116 */ 117 VNET_DEFINE(int, udp_cksum) = 1; 118 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 119 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 120 121 int udp_log_in_vain = 0; 122 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 123 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 124 125 VNET_DEFINE(int, udp_blackhole) = 0; 126 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 127 &VNET_NAME(udp_blackhole), 0, 128 "Do not send port unreachables for refused connects"); 129 130 u_long udp_sendspace = 9216; /* really max datagram size */ 131 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 132 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 133 134 u_long udp_recvspace = 40 * (1024 + 135 #ifdef INET6 136 sizeof(struct sockaddr_in6) 137 #else 138 sizeof(struct sockaddr_in) 139 #endif 140 ); /* 40 1K datagrams */ 141 142 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 143 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 144 145 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 146 VNET_DEFINE(struct inpcbinfo, udbinfo); 147 VNET_DEFINE(struct inpcbhead, ulitecb); 148 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 149 static VNET_DEFINE(uma_zone_t, udpcb_zone); 150 #define V_udpcb_zone VNET(udpcb_zone) 151 152 #ifndef UDBHASHSIZE 153 #define UDBHASHSIZE 128 154 #endif 155 156 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 157 VNET_PCPUSTAT_SYSINIT(udpstat); 158 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 159 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 160 161 #ifdef VIMAGE 162 VNET_PCPUSTAT_SYSUNINIT(udpstat); 163 #endif /* VIMAGE */ 164 #ifdef INET 165 static void udp_detach(struct socket *so); 166 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 167 struct mbuf *, struct thread *); 168 #endif 169 170 #ifdef IPSEC 171 #ifdef IPSEC_NAT_T 172 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP) 173 #ifdef INET 174 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int); 175 #endif 176 #endif /* IPSEC_NAT_T */ 177 #endif /* IPSEC */ 178 179 static void 180 udp_zone_change(void *tag) 181 { 182 183 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 184 uma_zone_set_max(V_udpcb_zone, maxsockets); 185 } 186 187 static int 188 udp_inpcb_init(void *mem, int size, int flags) 189 { 190 struct inpcb *inp; 191 192 inp = mem; 193 INP_LOCK_INIT(inp, "inp", "udpinp"); 194 return (0); 195 } 196 197 static int 198 udplite_inpcb_init(void *mem, int size, int flags) 199 { 200 struct inpcb *inp; 201 202 inp = mem; 203 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 204 return (0); 205 } 206 207 void 208 udp_init(void) 209 { 210 211 /* 212 * For now default to 2-tuple UDP hashing - until the fragment 213 * reassembly code can also update the flowid. 214 * 215 * Once we can calculate the flowid that way and re-establish 216 * a 4-tuple, flip this to 4-tuple. 217 */ 218 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 219 "udp_inpcb", udp_inpcb_init, NULL, 0, 220 IPI_HASHFIELDS_2TUPLE); 221 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 222 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 223 uma_zone_set_max(V_udpcb_zone, maxsockets); 224 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 225 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 226 EVENTHANDLER_PRI_ANY); 227 } 228 229 void 230 udplite_init(void) 231 { 232 233 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 234 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL, 235 0, IPI_HASHFIELDS_2TUPLE); 236 } 237 238 /* 239 * Kernel module interface for updating udpstat. The argument is an index 240 * into udpstat treated as an array of u_long. While this encodes the 241 * general layout of udpstat into the caller, it doesn't encode its location, 242 * so that future changes to add, for example, per-CPU stats support won't 243 * cause binary compatibility problems for kernel modules. 244 */ 245 void 246 kmod_udpstat_inc(int statnum) 247 { 248 249 counter_u64_add(VNET(udpstat)[statnum], 1); 250 } 251 252 int 253 udp_newudpcb(struct inpcb *inp) 254 { 255 struct udpcb *up; 256 257 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 258 if (up == NULL) 259 return (ENOBUFS); 260 inp->inp_ppcb = up; 261 return (0); 262 } 263 264 void 265 udp_discardcb(struct udpcb *up) 266 { 267 268 uma_zfree(V_udpcb_zone, up); 269 } 270 271 #ifdef VIMAGE 272 void 273 udp_destroy(void) 274 { 275 276 in_pcbinfo_destroy(&V_udbinfo); 277 uma_zdestroy(V_udpcb_zone); 278 } 279 280 void 281 udplite_destroy(void) 282 { 283 284 in_pcbinfo_destroy(&V_ulitecbinfo); 285 } 286 #endif 287 288 #ifdef INET 289 /* 290 * Subroutine of udp_input(), which appends the provided mbuf chain to the 291 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 292 * contains the source address. If the socket ends up being an IPv6 socket, 293 * udp_append() will convert to a sockaddr_in6 before passing the address 294 * into the socket code. 295 * 296 * In the normal case udp_append() will return 0, indicating that you 297 * must unlock the inp. However if a tunneling protocol is in place we increment 298 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 299 * then decrement the reference count. If the inp_rele returns 1, indicating the 300 * inp is gone, we return that to the caller to tell them *not* to unlock 301 * the inp. In the case of multi-cast this will cause the distribution 302 * to stop (though most tunneling protocols known currently do *not* use 303 * multicast). 304 */ 305 static int 306 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 307 struct sockaddr_in *udp_in) 308 { 309 struct sockaddr *append_sa; 310 struct socket *so; 311 struct mbuf *opts = NULL; 312 #ifdef INET6 313 struct sockaddr_in6 udp_in6; 314 #endif 315 struct udpcb *up; 316 317 INP_LOCK_ASSERT(inp); 318 319 /* 320 * Engage the tunneling protocol. 321 */ 322 up = intoudpcb(inp); 323 if (up->u_tun_func != NULL) { 324 in_pcbref(inp); 325 INP_RUNLOCK(inp); 326 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in, 327 up->u_tun_ctx); 328 INP_RLOCK(inp); 329 return (in_pcbrele_rlocked(inp)); 330 } 331 332 off += sizeof(struct udphdr); 333 334 #ifdef IPSEC 335 /* Check AH/ESP integrity. */ 336 if (ipsec4_in_reject(n, inp)) { 337 m_freem(n); 338 return (0); 339 } 340 #ifdef IPSEC_NAT_T 341 up = intoudpcb(inp); 342 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 343 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */ 344 n = udp4_espdecap(inp, n, off); 345 if (n == NULL) /* Consumed. */ 346 return (0); 347 } 348 #endif /* IPSEC_NAT_T */ 349 #endif /* IPSEC */ 350 #ifdef MAC 351 if (mac_inpcb_check_deliver(inp, n) != 0) { 352 m_freem(n); 353 return (0); 354 } 355 #endif /* MAC */ 356 if (inp->inp_flags & INP_CONTROLOPTS || 357 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 358 #ifdef INET6 359 if (inp->inp_vflag & INP_IPV6) 360 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 361 else 362 #endif /* INET6 */ 363 ip_savecontrol(inp, &opts, ip, n); 364 } 365 #ifdef INET6 366 if (inp->inp_vflag & INP_IPV6) { 367 bzero(&udp_in6, sizeof(udp_in6)); 368 udp_in6.sin6_len = sizeof(udp_in6); 369 udp_in6.sin6_family = AF_INET6; 370 in6_sin_2_v4mapsin6(udp_in, &udp_in6); 371 append_sa = (struct sockaddr *)&udp_in6; 372 } else 373 #endif /* INET6 */ 374 append_sa = (struct sockaddr *)udp_in; 375 m_adj(n, off); 376 377 so = inp->inp_socket; 378 SOCKBUF_LOCK(&so->so_rcv); 379 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 380 SOCKBUF_UNLOCK(&so->so_rcv); 381 m_freem(n); 382 if (opts) 383 m_freem(opts); 384 UDPSTAT_INC(udps_fullsock); 385 } else 386 sorwakeup_locked(so); 387 return (0); 388 } 389 390 int 391 udp_input(struct mbuf **mp, int *offp, int proto) 392 { 393 struct ip *ip; 394 struct udphdr *uh; 395 struct ifnet *ifp; 396 struct inpcb *inp; 397 uint16_t len, ip_len; 398 struct inpcbinfo *pcbinfo; 399 struct ip save_ip; 400 struct sockaddr_in udp_in; 401 struct mbuf *m; 402 struct m_tag *fwd_tag; 403 int cscov_partial, iphlen; 404 405 m = *mp; 406 iphlen = *offp; 407 ifp = m->m_pkthdr.rcvif; 408 *mp = NULL; 409 UDPSTAT_INC(udps_ipackets); 410 411 /* 412 * Strip IP options, if any; should skip this, make available to 413 * user, and use on returned packets, but we don't yet have a way to 414 * check the checksum with options still present. 415 */ 416 if (iphlen > sizeof (struct ip)) { 417 ip_stripoptions(m); 418 iphlen = sizeof(struct ip); 419 } 420 421 /* 422 * Get IP and UDP header together in first mbuf. 423 */ 424 ip = mtod(m, struct ip *); 425 if (m->m_len < iphlen + sizeof(struct udphdr)) { 426 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 427 UDPSTAT_INC(udps_hdrops); 428 return (IPPROTO_DONE); 429 } 430 ip = mtod(m, struct ip *); 431 } 432 uh = (struct udphdr *)((caddr_t)ip + iphlen); 433 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 434 435 /* 436 * Destination port of 0 is illegal, based on RFC768. 437 */ 438 if (uh->uh_dport == 0) 439 goto badunlocked; 440 441 /* 442 * Construct sockaddr format source address. Stuff source address 443 * and datagram in user buffer. 444 */ 445 bzero(&udp_in, sizeof(udp_in)); 446 udp_in.sin_len = sizeof(udp_in); 447 udp_in.sin_family = AF_INET; 448 udp_in.sin_port = uh->uh_sport; 449 udp_in.sin_addr = ip->ip_src; 450 451 /* 452 * Make mbuf data length reflect UDP length. If not enough data to 453 * reflect UDP length, drop. 454 */ 455 len = ntohs((u_short)uh->uh_ulen); 456 ip_len = ntohs(ip->ip_len) - iphlen; 457 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 458 /* Zero means checksum over the complete packet. */ 459 if (len == 0) 460 len = ip_len; 461 cscov_partial = 0; 462 } 463 if (ip_len != len) { 464 if (len > ip_len || len < sizeof(struct udphdr)) { 465 UDPSTAT_INC(udps_badlen); 466 goto badunlocked; 467 } 468 if (proto == IPPROTO_UDP) 469 m_adj(m, len - ip_len); 470 } 471 472 /* 473 * Save a copy of the IP header in case we want restore it for 474 * sending an ICMP error message in response. 475 */ 476 if (!V_udp_blackhole) 477 save_ip = *ip; 478 else 479 memset(&save_ip, 0, sizeof(save_ip)); 480 481 /* 482 * Checksum extended UDP header and data. 483 */ 484 if (uh->uh_sum) { 485 u_short uh_sum; 486 487 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 488 !cscov_partial) { 489 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 490 uh_sum = m->m_pkthdr.csum_data; 491 else 492 uh_sum = in_pseudo(ip->ip_src.s_addr, 493 ip->ip_dst.s_addr, htonl((u_short)len + 494 m->m_pkthdr.csum_data + proto)); 495 uh_sum ^= 0xffff; 496 } else { 497 char b[9]; 498 499 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 500 bzero(((struct ipovly *)ip)->ih_x1, 9); 501 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 502 uh->uh_ulen : htons(ip_len); 503 uh_sum = in_cksum(m, len + sizeof (struct ip)); 504 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 505 } 506 if (uh_sum) { 507 UDPSTAT_INC(udps_badsum); 508 m_freem(m); 509 return (IPPROTO_DONE); 510 } 511 } else { 512 if (proto == IPPROTO_UDP) { 513 UDPSTAT_INC(udps_nosum); 514 } else { 515 /* UDPLite requires a checksum */ 516 /* XXX: What is the right UDPLite MIB counter here? */ 517 m_freem(m); 518 return (IPPROTO_DONE); 519 } 520 } 521 522 pcbinfo = udp_get_inpcbinfo(proto); 523 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 524 in_broadcast(ip->ip_dst, ifp)) { 525 struct inpcb *last; 526 struct inpcbhead *pcblist; 527 struct ip_moptions *imo; 528 529 INP_INFO_RLOCK(pcbinfo); 530 pcblist = udp_get_pcblist(proto); 531 last = NULL; 532 LIST_FOREACH(inp, pcblist, inp_list) { 533 if (inp->inp_lport != uh->uh_dport) 534 continue; 535 #ifdef INET6 536 if ((inp->inp_vflag & INP_IPV4) == 0) 537 continue; 538 #endif 539 if (inp->inp_laddr.s_addr != INADDR_ANY && 540 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 541 continue; 542 if (inp->inp_faddr.s_addr != INADDR_ANY && 543 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 544 continue; 545 if (inp->inp_fport != 0 && 546 inp->inp_fport != uh->uh_sport) 547 continue; 548 549 INP_RLOCK(inp); 550 551 /* 552 * XXXRW: Because we weren't holding either the inpcb 553 * or the hash lock when we checked for a match 554 * before, we should probably recheck now that the 555 * inpcb lock is held. 556 */ 557 558 /* 559 * Handle socket delivery policy for any-source 560 * and source-specific multicast. [RFC3678] 561 */ 562 imo = inp->inp_moptions; 563 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 564 struct sockaddr_in group; 565 int blocked; 566 if (imo == NULL) { 567 INP_RUNLOCK(inp); 568 continue; 569 } 570 bzero(&group, sizeof(struct sockaddr_in)); 571 group.sin_len = sizeof(struct sockaddr_in); 572 group.sin_family = AF_INET; 573 group.sin_addr = ip->ip_dst; 574 575 blocked = imo_multi_filter(imo, ifp, 576 (struct sockaddr *)&group, 577 (struct sockaddr *)&udp_in); 578 if (blocked != MCAST_PASS) { 579 if (blocked == MCAST_NOTGMEMBER) 580 IPSTAT_INC(ips_notmember); 581 if (blocked == MCAST_NOTSMEMBER || 582 blocked == MCAST_MUTED) 583 UDPSTAT_INC(udps_filtermcast); 584 INP_RUNLOCK(inp); 585 continue; 586 } 587 } 588 if (last != NULL) { 589 struct mbuf *n; 590 591 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) { 592 UDP_PROBE(receive, NULL, last, ip, 593 last, uh); 594 if (udp_append(last, ip, n, iphlen, 595 &udp_in)) { 596 goto inp_lost; 597 } 598 } 599 INP_RUNLOCK(last); 600 } 601 last = inp; 602 /* 603 * Don't look for additional matches if this one does 604 * not have either the SO_REUSEPORT or SO_REUSEADDR 605 * socket options set. This heuristic avoids 606 * searching through all pcbs in the common case of a 607 * non-shared port. It assumes that an application 608 * will never clear these options after setting them. 609 */ 610 if ((last->inp_socket->so_options & 611 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 612 break; 613 } 614 615 if (last == NULL) { 616 /* 617 * No matching pcb found; discard datagram. (No need 618 * to send an ICMP Port Unreachable for a broadcast 619 * or multicast datgram.) 620 */ 621 UDPSTAT_INC(udps_noportbcast); 622 if (inp) 623 INP_RUNLOCK(inp); 624 INP_INFO_RUNLOCK(pcbinfo); 625 goto badunlocked; 626 } 627 UDP_PROBE(receive, NULL, last, ip, last, uh); 628 if (udp_append(last, ip, m, iphlen, &udp_in) == 0) 629 INP_RUNLOCK(last); 630 inp_lost: 631 INP_INFO_RUNLOCK(pcbinfo); 632 return (IPPROTO_DONE); 633 } 634 635 /* 636 * Locate pcb for datagram. 637 */ 638 639 /* 640 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 641 */ 642 if ((m->m_flags & M_IP_NEXTHOP) && 643 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 644 struct sockaddr_in *next_hop; 645 646 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 647 648 /* 649 * Transparently forwarded. Pretend to be the destination. 650 * Already got one like this? 651 */ 652 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 653 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 654 if (!inp) { 655 /* 656 * It's new. Try to find the ambushing socket. 657 * Because we've rewritten the destination address, 658 * any hardware-generated hash is ignored. 659 */ 660 inp = in_pcblookup(pcbinfo, ip->ip_src, 661 uh->uh_sport, next_hop->sin_addr, 662 next_hop->sin_port ? htons(next_hop->sin_port) : 663 uh->uh_dport, INPLOOKUP_WILDCARD | 664 INPLOOKUP_RLOCKPCB, ifp); 665 } 666 /* Remove the tag from the packet. We don't need it anymore. */ 667 m_tag_delete(m, fwd_tag); 668 m->m_flags &= ~M_IP_NEXTHOP; 669 } else 670 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 671 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 672 INPLOOKUP_RLOCKPCB, ifp, m); 673 if (inp == NULL) { 674 if (udp_log_in_vain) { 675 char buf[4*sizeof "123"]; 676 677 strcpy(buf, inet_ntoa(ip->ip_dst)); 678 log(LOG_INFO, 679 "Connection attempt to UDP %s:%d from %s:%d\n", 680 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), 681 ntohs(uh->uh_sport)); 682 } 683 UDPSTAT_INC(udps_noport); 684 if (m->m_flags & (M_BCAST | M_MCAST)) { 685 UDPSTAT_INC(udps_noportbcast); 686 goto badunlocked; 687 } 688 if (V_udp_blackhole) 689 goto badunlocked; 690 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 691 goto badunlocked; 692 *ip = save_ip; 693 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 694 return (IPPROTO_DONE); 695 } 696 697 /* 698 * Check the minimum TTL for socket. 699 */ 700 INP_RLOCK_ASSERT(inp); 701 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 702 INP_RUNLOCK(inp); 703 m_freem(m); 704 return (IPPROTO_DONE); 705 } 706 if (cscov_partial) { 707 struct udpcb *up; 708 709 up = intoudpcb(inp); 710 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 711 INP_RUNLOCK(inp); 712 m_freem(m); 713 return (IPPROTO_DONE); 714 } 715 } 716 717 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 718 if (udp_append(inp, ip, m, iphlen, &udp_in) == 0) 719 INP_RUNLOCK(inp); 720 return (IPPROTO_DONE); 721 722 badunlocked: 723 m_freem(m); 724 return (IPPROTO_DONE); 725 } 726 #endif /* INET */ 727 728 /* 729 * Notify a udp user of an asynchronous error; just wake up so that they can 730 * collect error status. 731 */ 732 struct inpcb * 733 udp_notify(struct inpcb *inp, int errno) 734 { 735 736 /* 737 * While udp_ctlinput() always calls udp_notify() with a read lock 738 * when invoking it directly, in_pcbnotifyall() currently uses write 739 * locks due to sharing code with TCP. For now, accept either a read 740 * or a write lock, but a read lock is sufficient. 741 */ 742 INP_LOCK_ASSERT(inp); 743 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 744 errno == EHOSTDOWN) && inp->inp_route.ro_rt) { 745 RTFREE(inp->inp_route.ro_rt); 746 inp->inp_route.ro_rt = (struct rtentry *)NULL; 747 } 748 749 inp->inp_socket->so_error = errno; 750 sorwakeup(inp->inp_socket); 751 sowwakeup(inp->inp_socket); 752 return (inp); 753 } 754 755 #ifdef INET 756 static void 757 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 758 struct inpcbinfo *pcbinfo) 759 { 760 struct ip *ip = vip; 761 struct udphdr *uh; 762 struct in_addr faddr; 763 struct inpcb *inp; 764 765 faddr = ((struct sockaddr_in *)sa)->sin_addr; 766 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 767 return; 768 769 if (PRC_IS_REDIRECT(cmd)) { 770 /* signal EHOSTDOWN, as it flushes the cached route */ 771 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); 772 return; 773 } 774 775 /* 776 * Hostdead is ugly because it goes linearly through all PCBs. 777 * 778 * XXX: We never get this from ICMP, otherwise it makes an excellent 779 * DoS attack on machines with many connections. 780 */ 781 if (cmd == PRC_HOSTDEAD) 782 ip = NULL; 783 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 784 return; 785 if (ip != NULL) { 786 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 787 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 788 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); 789 if (inp != NULL) { 790 INP_RLOCK_ASSERT(inp); 791 if (inp->inp_socket != NULL) { 792 udp_notify(inp, inetctlerrmap[cmd]); 793 } 794 INP_RUNLOCK(inp); 795 } else { 796 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 797 ip->ip_src, uh->uh_sport, 798 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 799 if (inp != NULL) { 800 struct udpcb *up; 801 802 up = intoudpcb(inp); 803 if (up->u_icmp_func != NULL) { 804 INP_RUNLOCK(inp); 805 (*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx); 806 } else { 807 INP_RUNLOCK(inp); 808 } 809 } 810 } 811 } else 812 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 813 udp_notify); 814 } 815 void 816 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 817 { 818 819 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 820 } 821 822 void 823 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 824 { 825 826 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 827 } 828 #endif /* INET */ 829 830 static int 831 udp_pcblist(SYSCTL_HANDLER_ARGS) 832 { 833 int error, i, n; 834 struct inpcb *inp, **inp_list; 835 inp_gen_t gencnt; 836 struct xinpgen xig; 837 838 /* 839 * The process of preparing the PCB list is too time-consuming and 840 * resource-intensive to repeat twice on every request. 841 */ 842 if (req->oldptr == 0) { 843 n = V_udbinfo.ipi_count; 844 n += imax(n / 8, 10); 845 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 846 return (0); 847 } 848 849 if (req->newptr != 0) 850 return (EPERM); 851 852 /* 853 * OK, now we're committed to doing something. 854 */ 855 INP_INFO_RLOCK(&V_udbinfo); 856 gencnt = V_udbinfo.ipi_gencnt; 857 n = V_udbinfo.ipi_count; 858 INP_INFO_RUNLOCK(&V_udbinfo); 859 860 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 861 + n * sizeof(struct xinpcb)); 862 if (error != 0) 863 return (error); 864 865 xig.xig_len = sizeof xig; 866 xig.xig_count = n; 867 xig.xig_gen = gencnt; 868 xig.xig_sogen = so_gencnt; 869 error = SYSCTL_OUT(req, &xig, sizeof xig); 870 if (error) 871 return (error); 872 873 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 874 if (inp_list == NULL) 875 return (ENOMEM); 876 877 INP_INFO_RLOCK(&V_udbinfo); 878 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 879 inp = LIST_NEXT(inp, inp_list)) { 880 INP_WLOCK(inp); 881 if (inp->inp_gencnt <= gencnt && 882 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 883 in_pcbref(inp); 884 inp_list[i++] = inp; 885 } 886 INP_WUNLOCK(inp); 887 } 888 INP_INFO_RUNLOCK(&V_udbinfo); 889 n = i; 890 891 error = 0; 892 for (i = 0; i < n; i++) { 893 inp = inp_list[i]; 894 INP_RLOCK(inp); 895 if (inp->inp_gencnt <= gencnt) { 896 struct xinpcb xi; 897 898 bzero(&xi, sizeof(xi)); 899 xi.xi_len = sizeof xi; 900 /* XXX should avoid extra copy */ 901 bcopy(inp, &xi.xi_inp, sizeof *inp); 902 if (inp->inp_socket) 903 sotoxsocket(inp->inp_socket, &xi.xi_socket); 904 xi.xi_inp.inp_gencnt = inp->inp_gencnt; 905 INP_RUNLOCK(inp); 906 error = SYSCTL_OUT(req, &xi, sizeof xi); 907 } else 908 INP_RUNLOCK(inp); 909 } 910 INP_INFO_WLOCK(&V_udbinfo); 911 for (i = 0; i < n; i++) { 912 inp = inp_list[i]; 913 INP_RLOCK(inp); 914 if (!in_pcbrele_rlocked(inp)) 915 INP_RUNLOCK(inp); 916 } 917 INP_INFO_WUNLOCK(&V_udbinfo); 918 919 if (!error) { 920 /* 921 * Give the user an updated idea of our state. If the 922 * generation differs from what we told her before, she knows 923 * that something happened while we were processing this 924 * request, and it might be necessary to retry. 925 */ 926 INP_INFO_RLOCK(&V_udbinfo); 927 xig.xig_gen = V_udbinfo.ipi_gencnt; 928 xig.xig_sogen = so_gencnt; 929 xig.xig_count = V_udbinfo.ipi_count; 930 INP_INFO_RUNLOCK(&V_udbinfo); 931 error = SYSCTL_OUT(req, &xig, sizeof xig); 932 } 933 free(inp_list, M_TEMP); 934 return (error); 935 } 936 937 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 938 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 939 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 940 941 #ifdef INET 942 static int 943 udp_getcred(SYSCTL_HANDLER_ARGS) 944 { 945 struct xucred xuc; 946 struct sockaddr_in addrs[2]; 947 struct inpcb *inp; 948 int error; 949 950 error = priv_check(req->td, PRIV_NETINET_GETCRED); 951 if (error) 952 return (error); 953 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 954 if (error) 955 return (error); 956 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 957 addrs[0].sin_addr, addrs[0].sin_port, 958 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 959 if (inp != NULL) { 960 INP_RLOCK_ASSERT(inp); 961 if (inp->inp_socket == NULL) 962 error = ENOENT; 963 if (error == 0) 964 error = cr_canseeinpcb(req->td->td_ucred, inp); 965 if (error == 0) 966 cru2x(inp->inp_cred, &xuc); 967 INP_RUNLOCK(inp); 968 } else 969 error = ENOENT; 970 if (error == 0) 971 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 972 return (error); 973 } 974 975 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 976 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 977 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 978 #endif /* INET */ 979 980 int 981 udp_ctloutput(struct socket *so, struct sockopt *sopt) 982 { 983 struct inpcb *inp; 984 struct udpcb *up; 985 int isudplite, error, optval; 986 987 error = 0; 988 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 989 inp = sotoinpcb(so); 990 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 991 INP_WLOCK(inp); 992 if (sopt->sopt_level != so->so_proto->pr_protocol) { 993 #ifdef INET6 994 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 995 INP_WUNLOCK(inp); 996 error = ip6_ctloutput(so, sopt); 997 } 998 #endif 999 #if defined(INET) && defined(INET6) 1000 else 1001 #endif 1002 #ifdef INET 1003 { 1004 INP_WUNLOCK(inp); 1005 error = ip_ctloutput(so, sopt); 1006 } 1007 #endif 1008 return (error); 1009 } 1010 1011 switch (sopt->sopt_dir) { 1012 case SOPT_SET: 1013 switch (sopt->sopt_name) { 1014 case UDP_ENCAP: 1015 INP_WUNLOCK(inp); 1016 error = sooptcopyin(sopt, &optval, sizeof optval, 1017 sizeof optval); 1018 if (error) 1019 break; 1020 inp = sotoinpcb(so); 1021 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1022 INP_WLOCK(inp); 1023 #ifdef IPSEC_NAT_T 1024 up = intoudpcb(inp); 1025 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1026 #endif 1027 switch (optval) { 1028 case 0: 1029 /* Clear all UDP encap. */ 1030 #ifdef IPSEC_NAT_T 1031 up->u_flags &= ~UF_ESPINUDP_ALL; 1032 #endif 1033 break; 1034 #ifdef IPSEC_NAT_T 1035 case UDP_ENCAP_ESPINUDP: 1036 case UDP_ENCAP_ESPINUDP_NON_IKE: 1037 up->u_flags &= ~UF_ESPINUDP_ALL; 1038 if (optval == UDP_ENCAP_ESPINUDP) 1039 up->u_flags |= UF_ESPINUDP; 1040 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE) 1041 up->u_flags |= UF_ESPINUDP_NON_IKE; 1042 break; 1043 #endif 1044 default: 1045 error = EINVAL; 1046 break; 1047 } 1048 INP_WUNLOCK(inp); 1049 break; 1050 case UDPLITE_SEND_CSCOV: 1051 case UDPLITE_RECV_CSCOV: 1052 if (!isudplite) { 1053 INP_WUNLOCK(inp); 1054 error = ENOPROTOOPT; 1055 break; 1056 } 1057 INP_WUNLOCK(inp); 1058 error = sooptcopyin(sopt, &optval, sizeof(optval), 1059 sizeof(optval)); 1060 if (error != 0) 1061 break; 1062 inp = sotoinpcb(so); 1063 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1064 INP_WLOCK(inp); 1065 up = intoudpcb(inp); 1066 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1067 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1068 INP_WUNLOCK(inp); 1069 error = EINVAL; 1070 break; 1071 } 1072 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1073 up->u_txcslen = optval; 1074 else 1075 up->u_rxcslen = optval; 1076 INP_WUNLOCK(inp); 1077 break; 1078 default: 1079 INP_WUNLOCK(inp); 1080 error = ENOPROTOOPT; 1081 break; 1082 } 1083 break; 1084 case SOPT_GET: 1085 switch (sopt->sopt_name) { 1086 #ifdef IPSEC_NAT_T 1087 case UDP_ENCAP: 1088 up = intoudpcb(inp); 1089 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1090 optval = up->u_flags & UF_ESPINUDP_ALL; 1091 INP_WUNLOCK(inp); 1092 error = sooptcopyout(sopt, &optval, sizeof optval); 1093 break; 1094 #endif 1095 case UDPLITE_SEND_CSCOV: 1096 case UDPLITE_RECV_CSCOV: 1097 if (!isudplite) { 1098 INP_WUNLOCK(inp); 1099 error = ENOPROTOOPT; 1100 break; 1101 } 1102 up = intoudpcb(inp); 1103 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1104 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1105 optval = up->u_txcslen; 1106 else 1107 optval = up->u_rxcslen; 1108 INP_WUNLOCK(inp); 1109 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1110 break; 1111 default: 1112 INP_WUNLOCK(inp); 1113 error = ENOPROTOOPT; 1114 break; 1115 } 1116 break; 1117 } 1118 return (error); 1119 } 1120 1121 #ifdef INET 1122 #define UH_WLOCKED 2 1123 #define UH_RLOCKED 1 1124 #define UH_UNLOCKED 0 1125 static int 1126 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1127 struct mbuf *control, struct thread *td) 1128 { 1129 struct udpiphdr *ui; 1130 int len = m->m_pkthdr.len; 1131 struct in_addr faddr, laddr; 1132 struct cmsghdr *cm; 1133 struct inpcbinfo *pcbinfo; 1134 struct sockaddr_in *sin, src; 1135 int cscov_partial = 0; 1136 int error = 0; 1137 int ipflags; 1138 u_short fport, lport; 1139 int unlock_udbinfo, unlock_inp; 1140 u_char tos; 1141 uint8_t pr; 1142 uint16_t cscov = 0; 1143 uint32_t flowid = 0; 1144 uint8_t flowtype = M_HASHTYPE_NONE; 1145 1146 /* 1147 * udp_output() may need to temporarily bind or connect the current 1148 * inpcb. As such, we don't know up front whether we will need the 1149 * pcbinfo lock or not. Do any work to decide what is needed up 1150 * front before acquiring any locks. 1151 */ 1152 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1153 if (control) 1154 m_freem(control); 1155 m_freem(m); 1156 return (EMSGSIZE); 1157 } 1158 1159 src.sin_family = 0; 1160 sin = (struct sockaddr_in *)addr; 1161 if (sin == NULL || 1162 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1163 INP_WLOCK(inp); 1164 unlock_inp = UH_WLOCKED; 1165 } else { 1166 INP_RLOCK(inp); 1167 unlock_inp = UH_RLOCKED; 1168 } 1169 tos = inp->inp_ip_tos; 1170 if (control != NULL) { 1171 /* 1172 * XXX: Currently, we assume all the optional information is 1173 * stored in a single mbuf. 1174 */ 1175 if (control->m_next) { 1176 if (unlock_inp == UH_WLOCKED) 1177 INP_WUNLOCK(inp); 1178 else 1179 INP_RUNLOCK(inp); 1180 m_freem(control); 1181 m_freem(m); 1182 return (EINVAL); 1183 } 1184 for (; control->m_len > 0; 1185 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1186 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1187 cm = mtod(control, struct cmsghdr *); 1188 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1189 || cm->cmsg_len > control->m_len) { 1190 error = EINVAL; 1191 break; 1192 } 1193 if (cm->cmsg_level != IPPROTO_IP) 1194 continue; 1195 1196 switch (cm->cmsg_type) { 1197 case IP_SENDSRCADDR: 1198 if (cm->cmsg_len != 1199 CMSG_LEN(sizeof(struct in_addr))) { 1200 error = EINVAL; 1201 break; 1202 } 1203 bzero(&src, sizeof(src)); 1204 src.sin_family = AF_INET; 1205 src.sin_len = sizeof(src); 1206 src.sin_port = inp->inp_lport; 1207 src.sin_addr = 1208 *(struct in_addr *)CMSG_DATA(cm); 1209 break; 1210 1211 case IP_TOS: 1212 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1213 error = EINVAL; 1214 break; 1215 } 1216 tos = *(u_char *)CMSG_DATA(cm); 1217 break; 1218 1219 case IP_FLOWID: 1220 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1221 error = EINVAL; 1222 break; 1223 } 1224 flowid = *(uint32_t *) CMSG_DATA(cm); 1225 break; 1226 1227 case IP_FLOWTYPE: 1228 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1229 error = EINVAL; 1230 break; 1231 } 1232 flowtype = *(uint32_t *) CMSG_DATA(cm); 1233 break; 1234 1235 #ifdef RSS 1236 case IP_RSSBUCKETID: 1237 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1238 error = EINVAL; 1239 break; 1240 } 1241 /* This is just a placeholder for now */ 1242 break; 1243 #endif /* RSS */ 1244 default: 1245 error = ENOPROTOOPT; 1246 break; 1247 } 1248 if (error) 1249 break; 1250 } 1251 m_freem(control); 1252 } 1253 if (error) { 1254 if (unlock_inp == UH_WLOCKED) 1255 INP_WUNLOCK(inp); 1256 else 1257 INP_RUNLOCK(inp); 1258 m_freem(m); 1259 return (error); 1260 } 1261 1262 /* 1263 * Depending on whether or not the application has bound or connected 1264 * the socket, we may have to do varying levels of work. The optimal 1265 * case is for a connected UDP socket, as a global lock isn't 1266 * required at all. 1267 * 1268 * In order to decide which we need, we require stability of the 1269 * inpcb binding, which we ensure by acquiring a read lock on the 1270 * inpcb. This doesn't strictly follow the lock order, so we play 1271 * the trylock and retry game; note that we may end up with more 1272 * conservative locks than required the second time around, so later 1273 * assertions have to accept that. Further analysis of the number of 1274 * misses under contention is required. 1275 * 1276 * XXXRW: Check that hash locking update here is correct. 1277 */ 1278 pr = inp->inp_socket->so_proto->pr_protocol; 1279 pcbinfo = udp_get_inpcbinfo(pr); 1280 sin = (struct sockaddr_in *)addr; 1281 if (sin != NULL && 1282 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1283 INP_HASH_WLOCK(pcbinfo); 1284 unlock_udbinfo = UH_WLOCKED; 1285 } else if ((sin != NULL && ( 1286 (sin->sin_addr.s_addr == INADDR_ANY) || 1287 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1288 (inp->inp_laddr.s_addr == INADDR_ANY) || 1289 (inp->inp_lport == 0))) || 1290 (src.sin_family == AF_INET)) { 1291 INP_HASH_RLOCK(pcbinfo); 1292 unlock_udbinfo = UH_RLOCKED; 1293 } else 1294 unlock_udbinfo = UH_UNLOCKED; 1295 1296 /* 1297 * If the IP_SENDSRCADDR control message was specified, override the 1298 * source address for this datagram. Its use is invalidated if the 1299 * address thus specified is incomplete or clobbers other inpcbs. 1300 */ 1301 laddr = inp->inp_laddr; 1302 lport = inp->inp_lport; 1303 if (src.sin_family == AF_INET) { 1304 INP_HASH_LOCK_ASSERT(pcbinfo); 1305 if ((lport == 0) || 1306 (laddr.s_addr == INADDR_ANY && 1307 src.sin_addr.s_addr == INADDR_ANY)) { 1308 error = EINVAL; 1309 goto release; 1310 } 1311 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1312 &laddr.s_addr, &lport, td->td_ucred); 1313 if (error) 1314 goto release; 1315 } 1316 1317 /* 1318 * If a UDP socket has been connected, then a local address/port will 1319 * have been selected and bound. 1320 * 1321 * If a UDP socket has not been connected to, then an explicit 1322 * destination address must be used, in which case a local 1323 * address/port may not have been selected and bound. 1324 */ 1325 if (sin != NULL) { 1326 INP_LOCK_ASSERT(inp); 1327 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1328 error = EISCONN; 1329 goto release; 1330 } 1331 1332 /* 1333 * Jail may rewrite the destination address, so let it do 1334 * that before we use it. 1335 */ 1336 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1337 if (error) 1338 goto release; 1339 1340 /* 1341 * If a local address or port hasn't yet been selected, or if 1342 * the destination address needs to be rewritten due to using 1343 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1344 * to do the heavy lifting. Once a port is selected, we 1345 * commit the binding back to the socket; we also commit the 1346 * binding of the address if in jail. 1347 * 1348 * If we already have a valid binding and we're not 1349 * requesting a destination address rewrite, use a fast path. 1350 */ 1351 if (inp->inp_laddr.s_addr == INADDR_ANY || 1352 inp->inp_lport == 0 || 1353 sin->sin_addr.s_addr == INADDR_ANY || 1354 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1355 INP_HASH_LOCK_ASSERT(pcbinfo); 1356 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1357 &lport, &faddr.s_addr, &fport, NULL, 1358 td->td_ucred); 1359 if (error) 1360 goto release; 1361 1362 /* 1363 * XXXRW: Why not commit the port if the address is 1364 * !INADDR_ANY? 1365 */ 1366 /* Commit the local port if newly assigned. */ 1367 if (inp->inp_laddr.s_addr == INADDR_ANY && 1368 inp->inp_lport == 0) { 1369 INP_WLOCK_ASSERT(inp); 1370 INP_HASH_WLOCK_ASSERT(pcbinfo); 1371 /* 1372 * Remember addr if jailed, to prevent 1373 * rebinding. 1374 */ 1375 if (prison_flag(td->td_ucred, PR_IP4)) 1376 inp->inp_laddr = laddr; 1377 inp->inp_lport = lport; 1378 if (in_pcbinshash(inp) != 0) { 1379 inp->inp_lport = 0; 1380 error = EAGAIN; 1381 goto release; 1382 } 1383 inp->inp_flags |= INP_ANONPORT; 1384 } 1385 } else { 1386 faddr = sin->sin_addr; 1387 fport = sin->sin_port; 1388 } 1389 } else { 1390 INP_LOCK_ASSERT(inp); 1391 faddr = inp->inp_faddr; 1392 fport = inp->inp_fport; 1393 if (faddr.s_addr == INADDR_ANY) { 1394 error = ENOTCONN; 1395 goto release; 1396 } 1397 } 1398 1399 /* 1400 * Calculate data length and get a mbuf for UDP, IP, and possible 1401 * link-layer headers. Immediate slide the data pointer back forward 1402 * since we won't use that space at this layer. 1403 */ 1404 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1405 if (m == NULL) { 1406 error = ENOBUFS; 1407 goto release; 1408 } 1409 m->m_data += max_linkhdr; 1410 m->m_len -= max_linkhdr; 1411 m->m_pkthdr.len -= max_linkhdr; 1412 1413 /* 1414 * Fill in mbuf with extended UDP header and addresses and length put 1415 * into network format. 1416 */ 1417 ui = mtod(m, struct udpiphdr *); 1418 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1419 ui->ui_pr = pr; 1420 ui->ui_src = laddr; 1421 ui->ui_dst = faddr; 1422 ui->ui_sport = lport; 1423 ui->ui_dport = fport; 1424 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1425 if (pr == IPPROTO_UDPLITE) { 1426 struct udpcb *up; 1427 uint16_t plen; 1428 1429 up = intoudpcb(inp); 1430 cscov = up->u_txcslen; 1431 plen = (u_short)len + sizeof(struct udphdr); 1432 if (cscov >= plen) 1433 cscov = 0; 1434 ui->ui_len = htons(plen); 1435 ui->ui_ulen = htons(cscov); 1436 /* 1437 * For UDP-Lite, checksum coverage length of zero means 1438 * the entire UDPLite packet is covered by the checksum. 1439 */ 1440 cscov_partial = (cscov == 0) ? 0 : 1; 1441 } else 1442 ui->ui_v = IPVERSION << 4; 1443 1444 /* 1445 * Set the Don't Fragment bit in the IP header. 1446 */ 1447 if (inp->inp_flags & INP_DONTFRAG) { 1448 struct ip *ip; 1449 1450 ip = (struct ip *)&ui->ui_i; 1451 ip->ip_off |= htons(IP_DF); 1452 } 1453 1454 ipflags = 0; 1455 if (inp->inp_socket->so_options & SO_DONTROUTE) 1456 ipflags |= IP_ROUTETOIF; 1457 if (inp->inp_socket->so_options & SO_BROADCAST) 1458 ipflags |= IP_ALLOWBROADCAST; 1459 if (inp->inp_flags & INP_ONESBCAST) 1460 ipflags |= IP_SENDONES; 1461 1462 #ifdef MAC 1463 mac_inpcb_create_mbuf(inp, m); 1464 #endif 1465 1466 /* 1467 * Set up checksum and output datagram. 1468 */ 1469 ui->ui_sum = 0; 1470 if (pr == IPPROTO_UDPLITE) { 1471 if (inp->inp_flags & INP_ONESBCAST) 1472 faddr.s_addr = INADDR_BROADCAST; 1473 if (cscov_partial) { 1474 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1475 ui->ui_sum = 0xffff; 1476 } else { 1477 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1478 ui->ui_sum = 0xffff; 1479 } 1480 } else if (V_udp_cksum) { 1481 if (inp->inp_flags & INP_ONESBCAST) 1482 faddr.s_addr = INADDR_BROADCAST; 1483 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1484 htons((u_short)len + sizeof(struct udphdr) + pr)); 1485 m->m_pkthdr.csum_flags = CSUM_UDP; 1486 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1487 } 1488 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1489 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1490 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1491 UDPSTAT_INC(udps_opackets); 1492 1493 /* 1494 * Setup flowid / RSS information for outbound socket. 1495 * 1496 * Once the UDP code decides to set a flowid some other way, 1497 * this allows the flowid to be overridden by userland. 1498 */ 1499 if (flowtype != M_HASHTYPE_NONE) { 1500 m->m_pkthdr.flowid = flowid; 1501 M_HASHTYPE_SET(m, flowtype); 1502 #ifdef RSS 1503 } else { 1504 uint32_t hash_val, hash_type; 1505 /* 1506 * Calculate an appropriate RSS hash for UDP and 1507 * UDP Lite. 1508 * 1509 * The called function will take care of figuring out 1510 * whether a 2-tuple or 4-tuple hash is required based 1511 * on the currently configured scheme. 1512 * 1513 * Later later on connected socket values should be 1514 * cached in the inpcb and reused, rather than constantly 1515 * re-calculating it. 1516 * 1517 * UDP Lite is a different protocol number and will 1518 * likely end up being hashed as a 2-tuple until 1519 * RSS / NICs grow UDP Lite protocol awareness. 1520 */ 1521 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, 1522 pr, &hash_val, &hash_type) == 0) { 1523 m->m_pkthdr.flowid = hash_val; 1524 M_HASHTYPE_SET(m, hash_type); 1525 } 1526 #endif 1527 } 1528 1529 #ifdef RSS 1530 /* 1531 * Don't override with the inp cached flowid value. 1532 * 1533 * Depending upon the kind of send being done, the inp 1534 * flowid/flowtype values may actually not be appropriate 1535 * for this particular socket send. 1536 * 1537 * We should either leave the flowid at zero (which is what is 1538 * currently done) or set it to some software generated 1539 * hash value based on the packet contents. 1540 */ 1541 ipflags |= IP_NODEFAULTFLOWID; 1542 #endif /* RSS */ 1543 1544 if (unlock_udbinfo == UH_WLOCKED) 1545 INP_HASH_WUNLOCK(pcbinfo); 1546 else if (unlock_udbinfo == UH_RLOCKED) 1547 INP_HASH_RUNLOCK(pcbinfo); 1548 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1549 error = ip_output(m, inp->inp_options, 1550 (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags, 1551 inp->inp_moptions, inp); 1552 if (unlock_inp == UH_WLOCKED) 1553 INP_WUNLOCK(inp); 1554 else 1555 INP_RUNLOCK(inp); 1556 return (error); 1557 1558 release: 1559 if (unlock_udbinfo == UH_WLOCKED) { 1560 INP_HASH_WUNLOCK(pcbinfo); 1561 INP_WUNLOCK(inp); 1562 } else if (unlock_udbinfo == UH_RLOCKED) { 1563 INP_HASH_RUNLOCK(pcbinfo); 1564 INP_RUNLOCK(inp); 1565 } else 1566 INP_RUNLOCK(inp); 1567 m_freem(m); 1568 return (error); 1569 } 1570 1571 1572 #if defined(IPSEC) && defined(IPSEC_NAT_T) 1573 /* 1574 * Potentially decap ESP in UDP frame. Check for an ESP header 1575 * and optional marker; if present, strip the UDP header and 1576 * push the result through IPSec. 1577 * 1578 * Returns mbuf to be processed (potentially re-allocated) or 1579 * NULL if consumed and/or processed. 1580 */ 1581 static struct mbuf * 1582 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off) 1583 { 1584 size_t minlen, payload, skip, iphlen; 1585 caddr_t data; 1586 struct udpcb *up; 1587 struct m_tag *tag; 1588 struct udphdr *udphdr; 1589 struct ip *ip; 1590 1591 INP_RLOCK_ASSERT(inp); 1592 1593 /* 1594 * Pull up data so the longest case is contiguous: 1595 * IP/UDP hdr + non ESP marker + ESP hdr. 1596 */ 1597 minlen = off + sizeof(uint64_t) + sizeof(struct esp); 1598 if (minlen > m->m_pkthdr.len) 1599 minlen = m->m_pkthdr.len; 1600 if ((m = m_pullup(m, minlen)) == NULL) { 1601 IPSECSTAT_INC(ips_in_inval); 1602 return (NULL); /* Bypass caller processing. */ 1603 } 1604 data = mtod(m, caddr_t); /* Points to ip header. */ 1605 payload = m->m_len - off; /* Size of payload. */ 1606 1607 if (payload == 1 && data[off] == '\xff') 1608 return (m); /* NB: keepalive packet, no decap. */ 1609 1610 up = intoudpcb(inp); 1611 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 1612 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0, 1613 ("u_flags 0x%x", up->u_flags)); 1614 1615 /* 1616 * Check that the payload is large enough to hold an 1617 * ESP header and compute the amount of data to remove. 1618 * 1619 * NB: the caller has already done a pullup for us. 1620 * XXX can we assume alignment and eliminate bcopys? 1621 */ 1622 if (up->u_flags & UF_ESPINUDP_NON_IKE) { 1623 /* 1624 * draft-ietf-ipsec-nat-t-ike-0[01].txt and 1625 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring 1626 * possible AH mode non-IKE marker+non-ESP marker 1627 * from draft-ietf-ipsec-udp-encaps-00.txt. 1628 */ 1629 uint64_t marker; 1630 1631 if (payload <= sizeof(uint64_t) + sizeof(struct esp)) 1632 return (m); /* NB: no decap. */ 1633 bcopy(data + off, &marker, sizeof(uint64_t)); 1634 if (marker != 0) /* Non-IKE marker. */ 1635 return (m); /* NB: no decap. */ 1636 skip = sizeof(uint64_t) + sizeof(struct udphdr); 1637 } else { 1638 uint32_t spi; 1639 1640 if (payload <= sizeof(struct esp)) { 1641 IPSECSTAT_INC(ips_in_inval); 1642 m_freem(m); 1643 return (NULL); /* Discard. */ 1644 } 1645 bcopy(data + off, &spi, sizeof(uint32_t)); 1646 if (spi == 0) /* Non-ESP marker. */ 1647 return (m); /* NB: no decap. */ 1648 skip = sizeof(struct udphdr); 1649 } 1650 1651 /* 1652 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember 1653 * the UDP ports. This is required if we want to select 1654 * the right SPD for multiple hosts behind same NAT. 1655 * 1656 * NB: ports are maintained in network byte order everywhere 1657 * in the NAT-T code. 1658 */ 1659 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, 1660 2 * sizeof(uint16_t), M_NOWAIT); 1661 if (tag == NULL) { 1662 IPSECSTAT_INC(ips_in_nomem); 1663 m_freem(m); 1664 return (NULL); /* Discard. */ 1665 } 1666 iphlen = off - sizeof(struct udphdr); 1667 udphdr = (struct udphdr *)(data + iphlen); 1668 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport; 1669 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport; 1670 m_tag_prepend(m, tag); 1671 1672 /* 1673 * Remove the UDP header (and possibly the non ESP marker) 1674 * IP header length is iphlen 1675 * Before: 1676 * <--- off ---> 1677 * +----+------+-----+ 1678 * | IP | UDP | ESP | 1679 * +----+------+-----+ 1680 * <-skip-> 1681 * After: 1682 * +----+-----+ 1683 * | IP | ESP | 1684 * +----+-----+ 1685 * <-skip-> 1686 */ 1687 ovbcopy(data, data + skip, iphlen); 1688 m_adj(m, skip); 1689 1690 ip = mtod(m, struct ip *); 1691 ip->ip_len = htons(ntohs(ip->ip_len) - skip); 1692 ip->ip_p = IPPROTO_ESP; 1693 1694 /* 1695 * We cannot yet update the cksums so clear any 1696 * h/w cksum flags as they are no longer valid. 1697 */ 1698 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) 1699 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 1700 1701 (void) ipsec_common_input(m, iphlen, offsetof(struct ip, ip_p), 1702 AF_INET, ip->ip_p); 1703 return (NULL); /* NB: consumed, bypass processing. */ 1704 } 1705 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */ 1706 1707 static void 1708 udp_abort(struct socket *so) 1709 { 1710 struct inpcb *inp; 1711 struct inpcbinfo *pcbinfo; 1712 1713 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1714 inp = sotoinpcb(so); 1715 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1716 INP_WLOCK(inp); 1717 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1718 INP_HASH_WLOCK(pcbinfo); 1719 in_pcbdisconnect(inp); 1720 inp->inp_laddr.s_addr = INADDR_ANY; 1721 INP_HASH_WUNLOCK(pcbinfo); 1722 soisdisconnected(so); 1723 } 1724 INP_WUNLOCK(inp); 1725 } 1726 1727 static int 1728 udp_attach(struct socket *so, int proto, struct thread *td) 1729 { 1730 struct inpcb *inp; 1731 struct inpcbinfo *pcbinfo; 1732 int error; 1733 1734 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1735 inp = sotoinpcb(so); 1736 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1737 error = soreserve(so, udp_sendspace, udp_recvspace); 1738 if (error) 1739 return (error); 1740 INP_INFO_WLOCK(pcbinfo); 1741 error = in_pcballoc(so, pcbinfo); 1742 if (error) { 1743 INP_INFO_WUNLOCK(pcbinfo); 1744 return (error); 1745 } 1746 1747 inp = sotoinpcb(so); 1748 inp->inp_vflag |= INP_IPV4; 1749 inp->inp_ip_ttl = V_ip_defttl; 1750 1751 error = udp_newudpcb(inp); 1752 if (error) { 1753 in_pcbdetach(inp); 1754 in_pcbfree(inp); 1755 INP_INFO_WUNLOCK(pcbinfo); 1756 return (error); 1757 } 1758 1759 INP_WUNLOCK(inp); 1760 INP_INFO_WUNLOCK(pcbinfo); 1761 return (0); 1762 } 1763 #endif /* INET */ 1764 1765 int 1766 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1767 { 1768 struct inpcb *inp; 1769 struct udpcb *up; 1770 1771 KASSERT(so->so_type == SOCK_DGRAM, 1772 ("udp_set_kernel_tunneling: !dgram")); 1773 inp = sotoinpcb(so); 1774 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1775 INP_WLOCK(inp); 1776 up = intoudpcb(inp); 1777 if ((up->u_tun_func != NULL) || 1778 (up->u_icmp_func != NULL)) { 1779 INP_WUNLOCK(inp); 1780 return (EBUSY); 1781 } 1782 up->u_tun_func = f; 1783 up->u_icmp_func = i; 1784 up->u_tun_ctx = ctx; 1785 INP_WUNLOCK(inp); 1786 return (0); 1787 } 1788 1789 #ifdef INET 1790 static int 1791 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1792 { 1793 struct inpcb *inp; 1794 struct inpcbinfo *pcbinfo; 1795 int error; 1796 1797 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1798 inp = sotoinpcb(so); 1799 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1800 INP_WLOCK(inp); 1801 INP_HASH_WLOCK(pcbinfo); 1802 error = in_pcbbind(inp, nam, td->td_ucred); 1803 INP_HASH_WUNLOCK(pcbinfo); 1804 INP_WUNLOCK(inp); 1805 return (error); 1806 } 1807 1808 static void 1809 udp_close(struct socket *so) 1810 { 1811 struct inpcb *inp; 1812 struct inpcbinfo *pcbinfo; 1813 1814 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1815 inp = sotoinpcb(so); 1816 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1817 INP_WLOCK(inp); 1818 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1819 INP_HASH_WLOCK(pcbinfo); 1820 in_pcbdisconnect(inp); 1821 inp->inp_laddr.s_addr = INADDR_ANY; 1822 INP_HASH_WUNLOCK(pcbinfo); 1823 soisdisconnected(so); 1824 } 1825 INP_WUNLOCK(inp); 1826 } 1827 1828 static int 1829 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1830 { 1831 struct inpcb *inp; 1832 struct inpcbinfo *pcbinfo; 1833 struct sockaddr_in *sin; 1834 int error; 1835 1836 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1837 inp = sotoinpcb(so); 1838 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1839 INP_WLOCK(inp); 1840 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1841 INP_WUNLOCK(inp); 1842 return (EISCONN); 1843 } 1844 sin = (struct sockaddr_in *)nam; 1845 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1846 if (error != 0) { 1847 INP_WUNLOCK(inp); 1848 return (error); 1849 } 1850 INP_HASH_WLOCK(pcbinfo); 1851 error = in_pcbconnect(inp, nam, td->td_ucred); 1852 INP_HASH_WUNLOCK(pcbinfo); 1853 if (error == 0) 1854 soisconnected(so); 1855 INP_WUNLOCK(inp); 1856 return (error); 1857 } 1858 1859 static void 1860 udp_detach(struct socket *so) 1861 { 1862 struct inpcb *inp; 1863 struct inpcbinfo *pcbinfo; 1864 struct udpcb *up; 1865 1866 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1867 inp = sotoinpcb(so); 1868 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1869 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1870 ("udp_detach: not disconnected")); 1871 INP_INFO_WLOCK(pcbinfo); 1872 INP_WLOCK(inp); 1873 up = intoudpcb(inp); 1874 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1875 inp->inp_ppcb = NULL; 1876 in_pcbdetach(inp); 1877 in_pcbfree(inp); 1878 INP_INFO_WUNLOCK(pcbinfo); 1879 udp_discardcb(up); 1880 } 1881 1882 static int 1883 udp_disconnect(struct socket *so) 1884 { 1885 struct inpcb *inp; 1886 struct inpcbinfo *pcbinfo; 1887 1888 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1889 inp = sotoinpcb(so); 1890 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1891 INP_WLOCK(inp); 1892 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1893 INP_WUNLOCK(inp); 1894 return (ENOTCONN); 1895 } 1896 INP_HASH_WLOCK(pcbinfo); 1897 in_pcbdisconnect(inp); 1898 inp->inp_laddr.s_addr = INADDR_ANY; 1899 INP_HASH_WUNLOCK(pcbinfo); 1900 SOCK_LOCK(so); 1901 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1902 SOCK_UNLOCK(so); 1903 INP_WUNLOCK(inp); 1904 return (0); 1905 } 1906 1907 static int 1908 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1909 struct mbuf *control, struct thread *td) 1910 { 1911 struct inpcb *inp; 1912 1913 inp = sotoinpcb(so); 1914 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1915 return (udp_output(inp, m, addr, control, td)); 1916 } 1917 #endif /* INET */ 1918 1919 int 1920 udp_shutdown(struct socket *so) 1921 { 1922 struct inpcb *inp; 1923 1924 inp = sotoinpcb(so); 1925 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1926 INP_WLOCK(inp); 1927 socantsendmore(so); 1928 INP_WUNLOCK(inp); 1929 return (0); 1930 } 1931 1932 #ifdef INET 1933 struct pr_usrreqs udp_usrreqs = { 1934 .pru_abort = udp_abort, 1935 .pru_attach = udp_attach, 1936 .pru_bind = udp_bind, 1937 .pru_connect = udp_connect, 1938 .pru_control = in_control, 1939 .pru_detach = udp_detach, 1940 .pru_disconnect = udp_disconnect, 1941 .pru_peeraddr = in_getpeeraddr, 1942 .pru_send = udp_send, 1943 .pru_soreceive = soreceive_dgram, 1944 .pru_sosend = sosend_dgram, 1945 .pru_shutdown = udp_shutdown, 1946 .pru_sockaddr = in_getsockaddr, 1947 .pru_sosetlabel = in_pcbsosetlabel, 1948 .pru_close = udp_close, 1949 }; 1950 #endif /* INET */ 1951