1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_rss.h" 48 49 #include <sys/param.h> 50 #include <sys/domain.h> 51 #include <sys/eventhandler.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/priv.h> 58 #include <sys/proc.h> 59 #include <sys/protosw.h> 60 #include <sys/sdt.h> 61 #include <sys/signalvar.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sx.h> 65 #include <sys/sysctl.h> 66 #include <sys/syslog.h> 67 #include <sys/systm.h> 68 69 #include <vm/uma.h> 70 71 #include <net/if.h> 72 #include <net/if_var.h> 73 #include <net/route.h> 74 #include <net/rss_config.h> 75 76 #include <netinet/in.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_systm.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip.h> 82 #ifdef INET6 83 #include <netinet/ip6.h> 84 #endif 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/ip_options.h> 89 #ifdef INET6 90 #include <netinet6/ip6_var.h> 91 #endif 92 #include <netinet/udp.h> 93 #include <netinet/udp_var.h> 94 #include <netinet/udplite.h> 95 #include <netinet/in_rss.h> 96 97 #include <netipsec/ipsec_support.h> 98 99 #include <machine/in_cksum.h> 100 101 #include <security/mac/mac_framework.h> 102 103 /* 104 * UDP and UDP-Lite protocols implementation. 105 * Per RFC 768, August, 1980. 106 * Per RFC 3828, July, 2004. 107 */ 108 109 /* 110 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 111 * removes the only data integrity mechanism for packets and malformed 112 * packets that would otherwise be discarded due to bad checksums, and may 113 * cause problems (especially for NFS data blocks). 114 */ 115 VNET_DEFINE(int, udp_cksum) = 1; 116 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 117 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 118 119 int udp_log_in_vain = 0; 120 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 121 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 122 123 VNET_DEFINE(int, udp_blackhole) = 0; 124 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 125 &VNET_NAME(udp_blackhole), 0, 126 "Do not send port unreachables for refused connects"); 127 128 u_long udp_sendspace = 9216; /* really max datagram size */ 129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 130 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 131 132 u_long udp_recvspace = 40 * (1024 + 133 #ifdef INET6 134 sizeof(struct sockaddr_in6) 135 #else 136 sizeof(struct sockaddr_in) 137 #endif 138 ); /* 40 1K datagrams */ 139 140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 141 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 142 143 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 144 VNET_DEFINE(struct inpcbinfo, udbinfo); 145 VNET_DEFINE(struct inpcbhead, ulitecb); 146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 147 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone); 148 #define V_udpcb_zone VNET(udpcb_zone) 149 150 #ifndef UDBHASHSIZE 151 #define UDBHASHSIZE 128 152 #endif 153 154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 155 VNET_PCPUSTAT_SYSINIT(udpstat); 156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 157 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 158 159 #ifdef VIMAGE 160 VNET_PCPUSTAT_SYSUNINIT(udpstat); 161 #endif /* VIMAGE */ 162 #ifdef INET 163 static void udp_detach(struct socket *so); 164 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 165 struct mbuf *, struct thread *); 166 #endif 167 168 static void 169 udp_zone_change(void *tag) 170 { 171 172 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 173 uma_zone_set_max(V_udpcb_zone, maxsockets); 174 } 175 176 static int 177 udp_inpcb_init(void *mem, int size, int flags) 178 { 179 struct inpcb *inp; 180 181 inp = mem; 182 INP_LOCK_INIT(inp, "inp", "udpinp"); 183 return (0); 184 } 185 186 static int 187 udplite_inpcb_init(void *mem, int size, int flags) 188 { 189 struct inpcb *inp; 190 191 inp = mem; 192 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 193 return (0); 194 } 195 196 void 197 udp_init(void) 198 { 199 200 /* 201 * For now default to 2-tuple UDP hashing - until the fragment 202 * reassembly code can also update the flowid. 203 * 204 * Once we can calculate the flowid that way and re-establish 205 * a 4-tuple, flip this to 4-tuple. 206 */ 207 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 208 "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE); 209 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 211 uma_zone_set_max(V_udpcb_zone, maxsockets); 212 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 213 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 214 EVENTHANDLER_PRI_ANY); 215 } 216 217 void 218 udplite_init(void) 219 { 220 221 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 222 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, 223 IPI_HASHFIELDS_2TUPLE); 224 } 225 226 /* 227 * Kernel module interface for updating udpstat. The argument is an index 228 * into udpstat treated as an array of u_long. While this encodes the 229 * general layout of udpstat into the caller, it doesn't encode its location, 230 * so that future changes to add, for example, per-CPU stats support won't 231 * cause binary compatibility problems for kernel modules. 232 */ 233 void 234 kmod_udpstat_inc(int statnum) 235 { 236 237 counter_u64_add(VNET(udpstat)[statnum], 1); 238 } 239 240 int 241 udp_newudpcb(struct inpcb *inp) 242 { 243 struct udpcb *up; 244 245 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 246 if (up == NULL) 247 return (ENOBUFS); 248 inp->inp_ppcb = up; 249 return (0); 250 } 251 252 void 253 udp_discardcb(struct udpcb *up) 254 { 255 256 uma_zfree(V_udpcb_zone, up); 257 } 258 259 #ifdef VIMAGE 260 static void 261 udp_destroy(void *unused __unused) 262 { 263 264 in_pcbinfo_destroy(&V_udbinfo); 265 uma_zdestroy(V_udpcb_zone); 266 } 267 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 268 269 static void 270 udplite_destroy(void *unused __unused) 271 { 272 273 in_pcbinfo_destroy(&V_ulitecbinfo); 274 } 275 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 276 NULL); 277 #endif 278 279 #ifdef INET 280 /* 281 * Subroutine of udp_input(), which appends the provided mbuf chain to the 282 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 283 * contains the source address. If the socket ends up being an IPv6 socket, 284 * udp_append() will convert to a sockaddr_in6 before passing the address 285 * into the socket code. 286 * 287 * In the normal case udp_append() will return 0, indicating that you 288 * must unlock the inp. However if a tunneling protocol is in place we increment 289 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 290 * then decrement the reference count. If the inp_rele returns 1, indicating the 291 * inp is gone, we return that to the caller to tell them *not* to unlock 292 * the inp. In the case of multi-cast this will cause the distribution 293 * to stop (though most tunneling protocols known currently do *not* use 294 * multicast). 295 */ 296 static int 297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 298 struct sockaddr_in *udp_in) 299 { 300 struct sockaddr *append_sa; 301 struct socket *so; 302 struct mbuf *tmpopts, *opts = NULL; 303 #ifdef INET6 304 struct sockaddr_in6 udp_in6; 305 #endif 306 struct udpcb *up; 307 308 INP_LOCK_ASSERT(inp); 309 310 /* 311 * Engage the tunneling protocol. 312 */ 313 up = intoudpcb(inp); 314 if (up->u_tun_func != NULL) { 315 in_pcbref(inp); 316 INP_RUNLOCK(inp); 317 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 318 up->u_tun_ctx); 319 INP_RLOCK(inp); 320 return (in_pcbrele_rlocked(inp)); 321 } 322 323 off += sizeof(struct udphdr); 324 325 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 326 /* Check AH/ESP integrity. */ 327 if (IPSEC_ENABLED(ipv4) && 328 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 329 m_freem(n); 330 return (0); 331 } 332 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 333 if (IPSEC_ENABLED(ipv4) && 334 UDPENCAP_INPUT(n, off, AF_INET) != 0) 335 return (0); /* Consumed. */ 336 } 337 #endif /* IPSEC */ 338 #ifdef MAC 339 if (mac_inpcb_check_deliver(inp, n) != 0) { 340 m_freem(n); 341 return (0); 342 } 343 #endif /* MAC */ 344 if (inp->inp_flags & INP_CONTROLOPTS || 345 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 346 #ifdef INET6 347 if (inp->inp_vflag & INP_IPV6) 348 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 349 else 350 #endif /* INET6 */ 351 ip_savecontrol(inp, &opts, ip, n); 352 } 353 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 354 tmpopts = sbcreatecontrol((caddr_t)&udp_in[1], 355 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP); 356 if (tmpopts) { 357 if (opts) { 358 tmpopts->m_next = opts; 359 opts = tmpopts; 360 } else 361 opts = tmpopts; 362 } 363 } 364 #ifdef INET6 365 if (inp->inp_vflag & INP_IPV6) { 366 bzero(&udp_in6, sizeof(udp_in6)); 367 udp_in6.sin6_len = sizeof(udp_in6); 368 udp_in6.sin6_family = AF_INET6; 369 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 370 append_sa = (struct sockaddr *)&udp_in6; 371 } else 372 #endif /* INET6 */ 373 append_sa = (struct sockaddr *)&udp_in[0]; 374 m_adj(n, off); 375 376 so = inp->inp_socket; 377 SOCKBUF_LOCK(&so->so_rcv); 378 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 379 SOCKBUF_UNLOCK(&so->so_rcv); 380 m_freem(n); 381 if (opts) 382 m_freem(opts); 383 UDPSTAT_INC(udps_fullsock); 384 } else 385 sorwakeup_locked(so); 386 return (0); 387 } 388 389 int 390 udp_input(struct mbuf **mp, int *offp, int proto) 391 { 392 struct ip *ip; 393 struct udphdr *uh; 394 struct ifnet *ifp; 395 struct inpcb *inp; 396 uint16_t len, ip_len; 397 struct inpcbinfo *pcbinfo; 398 struct ip save_ip; 399 struct sockaddr_in udp_in[2]; 400 struct mbuf *m; 401 struct m_tag *fwd_tag; 402 int cscov_partial, iphlen; 403 404 m = *mp; 405 iphlen = *offp; 406 ifp = m->m_pkthdr.rcvif; 407 *mp = NULL; 408 UDPSTAT_INC(udps_ipackets); 409 410 /* 411 * Strip IP options, if any; should skip this, make available to 412 * user, and use on returned packets, but we don't yet have a way to 413 * check the checksum with options still present. 414 */ 415 if (iphlen > sizeof (struct ip)) { 416 ip_stripoptions(m); 417 iphlen = sizeof(struct ip); 418 } 419 420 /* 421 * Get IP and UDP header together in first mbuf. 422 */ 423 if (m->m_len < iphlen + sizeof(struct udphdr)) { 424 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 425 UDPSTAT_INC(udps_hdrops); 426 return (IPPROTO_DONE); 427 } 428 } 429 ip = mtod(m, struct ip *); 430 uh = (struct udphdr *)((caddr_t)ip + iphlen); 431 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 432 433 /* 434 * Destination port of 0 is illegal, based on RFC768. 435 */ 436 if (uh->uh_dport == 0) 437 goto badunlocked; 438 439 /* 440 * Construct sockaddr format source address. Stuff source address 441 * and datagram in user buffer. 442 */ 443 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 444 udp_in[0].sin_len = sizeof(struct sockaddr_in); 445 udp_in[0].sin_family = AF_INET; 446 udp_in[0].sin_port = uh->uh_sport; 447 udp_in[0].sin_addr = ip->ip_src; 448 udp_in[1].sin_len = sizeof(struct sockaddr_in); 449 udp_in[1].sin_family = AF_INET; 450 udp_in[1].sin_port = uh->uh_dport; 451 udp_in[1].sin_addr = ip->ip_dst; 452 453 /* 454 * Make mbuf data length reflect UDP length. If not enough data to 455 * reflect UDP length, drop. 456 */ 457 len = ntohs((u_short)uh->uh_ulen); 458 ip_len = ntohs(ip->ip_len) - iphlen; 459 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 460 /* Zero means checksum over the complete packet. */ 461 if (len == 0) 462 len = ip_len; 463 cscov_partial = 0; 464 } 465 if (ip_len != len) { 466 if (len > ip_len || len < sizeof(struct udphdr)) { 467 UDPSTAT_INC(udps_badlen); 468 goto badunlocked; 469 } 470 if (proto == IPPROTO_UDP) 471 m_adj(m, len - ip_len); 472 } 473 474 /* 475 * Save a copy of the IP header in case we want restore it for 476 * sending an ICMP error message in response. 477 */ 478 if (!V_udp_blackhole) 479 save_ip = *ip; 480 else 481 memset(&save_ip, 0, sizeof(save_ip)); 482 483 /* 484 * Checksum extended UDP header and data. 485 */ 486 if (uh->uh_sum) { 487 u_short uh_sum; 488 489 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 490 !cscov_partial) { 491 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 492 uh_sum = m->m_pkthdr.csum_data; 493 else 494 uh_sum = in_pseudo(ip->ip_src.s_addr, 495 ip->ip_dst.s_addr, htonl((u_short)len + 496 m->m_pkthdr.csum_data + proto)); 497 uh_sum ^= 0xffff; 498 } else { 499 char b[9]; 500 501 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 502 bzero(((struct ipovly *)ip)->ih_x1, 9); 503 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 504 uh->uh_ulen : htons(ip_len); 505 uh_sum = in_cksum(m, len + sizeof (struct ip)); 506 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 507 } 508 if (uh_sum) { 509 UDPSTAT_INC(udps_badsum); 510 m_freem(m); 511 return (IPPROTO_DONE); 512 } 513 } else { 514 if (proto == IPPROTO_UDP) { 515 UDPSTAT_INC(udps_nosum); 516 } else { 517 /* UDPLite requires a checksum */ 518 /* XXX: What is the right UDPLite MIB counter here? */ 519 m_freem(m); 520 return (IPPROTO_DONE); 521 } 522 } 523 524 pcbinfo = udp_get_inpcbinfo(proto); 525 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 526 in_broadcast(ip->ip_dst, ifp)) { 527 struct inpcb *last; 528 struct inpcbhead *pcblist; 529 530 NET_EPOCH_ASSERT(); 531 532 pcblist = udp_get_pcblist(proto); 533 last = NULL; 534 CK_LIST_FOREACH(inp, pcblist, inp_list) { 535 if (inp->inp_lport != uh->uh_dport) 536 continue; 537 #ifdef INET6 538 if ((inp->inp_vflag & INP_IPV4) == 0) 539 continue; 540 #endif 541 if (inp->inp_laddr.s_addr != INADDR_ANY && 542 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 543 continue; 544 if (inp->inp_faddr.s_addr != INADDR_ANY && 545 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 546 continue; 547 if (inp->inp_fport != 0 && 548 inp->inp_fport != uh->uh_sport) 549 continue; 550 551 INP_RLOCK(inp); 552 553 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 554 INP_RUNLOCK(inp); 555 continue; 556 } 557 558 /* 559 * XXXRW: Because we weren't holding either the inpcb 560 * or the hash lock when we checked for a match 561 * before, we should probably recheck now that the 562 * inpcb lock is held. 563 */ 564 565 /* 566 * Handle socket delivery policy for any-source 567 * and source-specific multicast. [RFC3678] 568 */ 569 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 570 struct ip_moptions *imo; 571 struct sockaddr_in group; 572 int blocked; 573 574 imo = inp->inp_moptions; 575 if (imo == NULL) { 576 INP_RUNLOCK(inp); 577 continue; 578 } 579 bzero(&group, sizeof(struct sockaddr_in)); 580 group.sin_len = sizeof(struct sockaddr_in); 581 group.sin_family = AF_INET; 582 group.sin_addr = ip->ip_dst; 583 584 blocked = imo_multi_filter(imo, ifp, 585 (struct sockaddr *)&group, 586 (struct sockaddr *)&udp_in[0]); 587 if (blocked != MCAST_PASS) { 588 if (blocked == MCAST_NOTGMEMBER) 589 IPSTAT_INC(ips_notmember); 590 if (blocked == MCAST_NOTSMEMBER || 591 blocked == MCAST_MUTED) 592 UDPSTAT_INC(udps_filtermcast); 593 INP_RUNLOCK(inp); 594 continue; 595 } 596 } 597 if (last != NULL) { 598 struct mbuf *n; 599 600 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != 601 NULL) { 602 if (proto == IPPROTO_UDPLITE) 603 UDPLITE_PROBE(receive, NULL, last, ip, 604 last, uh); 605 else 606 UDP_PROBE(receive, NULL, last, ip, last, 607 uh); 608 if (udp_append(last, ip, n, iphlen, 609 udp_in)) { 610 goto inp_lost; 611 } 612 } 613 INP_RUNLOCK(last); 614 } 615 last = inp; 616 /* 617 * Don't look for additional matches if this one does 618 * not have either the SO_REUSEPORT or SO_REUSEADDR 619 * socket options set. This heuristic avoids 620 * searching through all pcbs in the common case of a 621 * non-shared port. It assumes that an application 622 * will never clear these options after setting them. 623 */ 624 if ((last->inp_socket->so_options & 625 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) 626 break; 627 } 628 629 if (last == NULL) { 630 /* 631 * No matching pcb found; discard datagram. (No need 632 * to send an ICMP Port Unreachable for a broadcast 633 * or multicast datgram.) 634 */ 635 UDPSTAT_INC(udps_noportbcast); 636 if (inp) 637 INP_RUNLOCK(inp); 638 goto badunlocked; 639 } 640 if (proto == IPPROTO_UDPLITE) 641 UDPLITE_PROBE(receive, NULL, last, ip, last, uh); 642 else 643 UDP_PROBE(receive, NULL, last, ip, last, uh); 644 if (udp_append(last, ip, m, iphlen, udp_in) == 0) 645 INP_RUNLOCK(last); 646 inp_lost: 647 return (IPPROTO_DONE); 648 } 649 650 /* 651 * Locate pcb for datagram. 652 */ 653 654 /* 655 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 656 */ 657 if ((m->m_flags & M_IP_NEXTHOP) && 658 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 659 struct sockaddr_in *next_hop; 660 661 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 662 663 /* 664 * Transparently forwarded. Pretend to be the destination. 665 * Already got one like this? 666 */ 667 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 668 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 669 if (!inp) { 670 /* 671 * It's new. Try to find the ambushing socket. 672 * Because we've rewritten the destination address, 673 * any hardware-generated hash is ignored. 674 */ 675 inp = in_pcblookup(pcbinfo, ip->ip_src, 676 uh->uh_sport, next_hop->sin_addr, 677 next_hop->sin_port ? htons(next_hop->sin_port) : 678 uh->uh_dport, INPLOOKUP_WILDCARD | 679 INPLOOKUP_RLOCKPCB, ifp); 680 } 681 /* Remove the tag from the packet. We don't need it anymore. */ 682 m_tag_delete(m, fwd_tag); 683 m->m_flags &= ~M_IP_NEXTHOP; 684 } else 685 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 686 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 687 INPLOOKUP_RLOCKPCB, ifp, m); 688 if (inp == NULL) { 689 if (udp_log_in_vain) { 690 char src[INET_ADDRSTRLEN]; 691 char dst[INET_ADDRSTRLEN]; 692 693 log(LOG_INFO, 694 "Connection attempt to UDP %s:%d from %s:%d\n", 695 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 696 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 697 } 698 if (proto == IPPROTO_UDPLITE) 699 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 700 else 701 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 702 UDPSTAT_INC(udps_noport); 703 if (m->m_flags & (M_BCAST | M_MCAST)) { 704 UDPSTAT_INC(udps_noportbcast); 705 goto badunlocked; 706 } 707 if (V_udp_blackhole) 708 goto badunlocked; 709 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 710 goto badunlocked; 711 *ip = save_ip; 712 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 713 return (IPPROTO_DONE); 714 } 715 716 /* 717 * Check the minimum TTL for socket. 718 */ 719 INP_RLOCK_ASSERT(inp); 720 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 721 if (proto == IPPROTO_UDPLITE) 722 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 723 else 724 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 725 INP_RUNLOCK(inp); 726 m_freem(m); 727 return (IPPROTO_DONE); 728 } 729 if (cscov_partial) { 730 struct udpcb *up; 731 732 up = intoudpcb(inp); 733 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 734 INP_RUNLOCK(inp); 735 m_freem(m); 736 return (IPPROTO_DONE); 737 } 738 } 739 740 if (proto == IPPROTO_UDPLITE) 741 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 742 else 743 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 744 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 745 INP_RUNLOCK(inp); 746 return (IPPROTO_DONE); 747 748 badunlocked: 749 m_freem(m); 750 return (IPPROTO_DONE); 751 } 752 #endif /* INET */ 753 754 /* 755 * Notify a udp user of an asynchronous error; just wake up so that they can 756 * collect error status. 757 */ 758 struct inpcb * 759 udp_notify(struct inpcb *inp, int errno) 760 { 761 762 INP_WLOCK_ASSERT(inp); 763 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 764 errno == EHOSTDOWN) && inp->inp_route.ro_rt) { 765 RTFREE(inp->inp_route.ro_rt); 766 inp->inp_route.ro_rt = (struct rtentry *)NULL; 767 } 768 769 inp->inp_socket->so_error = errno; 770 sorwakeup(inp->inp_socket); 771 sowwakeup(inp->inp_socket); 772 return (inp); 773 } 774 775 #ifdef INET 776 static void 777 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 778 struct inpcbinfo *pcbinfo) 779 { 780 struct ip *ip = vip; 781 struct udphdr *uh; 782 struct in_addr faddr; 783 struct inpcb *inp; 784 785 faddr = ((struct sockaddr_in *)sa)->sin_addr; 786 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 787 return; 788 789 if (PRC_IS_REDIRECT(cmd)) { 790 /* signal EHOSTDOWN, as it flushes the cached route */ 791 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); 792 return; 793 } 794 795 /* 796 * Hostdead is ugly because it goes linearly through all PCBs. 797 * 798 * XXX: We never get this from ICMP, otherwise it makes an excellent 799 * DoS attack on machines with many connections. 800 */ 801 if (cmd == PRC_HOSTDEAD) 802 ip = NULL; 803 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 804 return; 805 if (ip != NULL) { 806 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 807 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 808 ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 809 if (inp != NULL) { 810 INP_WLOCK_ASSERT(inp); 811 if (inp->inp_socket != NULL) { 812 udp_notify(inp, inetctlerrmap[cmd]); 813 } 814 INP_WUNLOCK(inp); 815 } else { 816 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 817 ip->ip_src, uh->uh_sport, 818 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 819 if (inp != NULL) { 820 struct udpcb *up; 821 void *ctx; 822 udp_tun_icmp_t func; 823 824 up = intoudpcb(inp); 825 ctx = up->u_tun_ctx; 826 func = up->u_icmp_func; 827 INP_RUNLOCK(inp); 828 if (func != NULL) 829 (*func)(cmd, sa, vip, ctx); 830 } 831 } 832 } else 833 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 834 udp_notify); 835 } 836 void 837 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 838 { 839 840 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 841 } 842 843 void 844 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 845 { 846 847 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 848 } 849 #endif /* INET */ 850 851 static int 852 udp_pcblist(SYSCTL_HANDLER_ARGS) 853 { 854 struct xinpgen xig; 855 struct epoch_tracker et; 856 struct inpcb *inp; 857 int error; 858 859 if (req->newptr != 0) 860 return (EPERM); 861 862 if (req->oldptr == 0) { 863 int n; 864 865 n = V_udbinfo.ipi_count; 866 n += imax(n / 8, 10); 867 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 868 return (0); 869 } 870 871 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 872 return (error); 873 874 bzero(&xig, sizeof(xig)); 875 xig.xig_len = sizeof xig; 876 xig.xig_count = V_udbinfo.ipi_count; 877 xig.xig_gen = V_udbinfo.ipi_gencnt; 878 xig.xig_sogen = so_gencnt; 879 error = SYSCTL_OUT(req, &xig, sizeof xig); 880 if (error) 881 return (error); 882 883 NET_EPOCH_ENTER(et); 884 for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead); 885 inp != NULL; 886 inp = CK_LIST_NEXT(inp, inp_list)) { 887 INP_RLOCK(inp); 888 if (inp->inp_gencnt <= xig.xig_gen && 889 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 890 struct xinpcb xi; 891 892 in_pcbtoxinpcb(inp, &xi); 893 INP_RUNLOCK(inp); 894 error = SYSCTL_OUT(req, &xi, sizeof xi); 895 if (error) 896 break; 897 } else 898 INP_RUNLOCK(inp); 899 } 900 NET_EPOCH_EXIT(et); 901 902 if (!error) { 903 /* 904 * Give the user an updated idea of our state. If the 905 * generation differs from what we told her before, she knows 906 * that something happened while we were processing this 907 * request, and it might be necessary to retry. 908 */ 909 xig.xig_gen = V_udbinfo.ipi_gencnt; 910 xig.xig_sogen = so_gencnt; 911 xig.xig_count = V_udbinfo.ipi_count; 912 error = SYSCTL_OUT(req, &xig, sizeof xig); 913 } 914 915 return (error); 916 } 917 918 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 919 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 920 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 921 922 #ifdef INET 923 static int 924 udp_getcred(SYSCTL_HANDLER_ARGS) 925 { 926 struct xucred xuc; 927 struct sockaddr_in addrs[2]; 928 struct epoch_tracker et; 929 struct inpcb *inp; 930 int error; 931 932 error = priv_check(req->td, PRIV_NETINET_GETCRED); 933 if (error) 934 return (error); 935 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 936 if (error) 937 return (error); 938 NET_EPOCH_ENTER(et); 939 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 940 addrs[0].sin_addr, addrs[0].sin_port, 941 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 942 NET_EPOCH_EXIT(et); 943 if (inp != NULL) { 944 INP_RLOCK_ASSERT(inp); 945 if (inp->inp_socket == NULL) 946 error = ENOENT; 947 if (error == 0) 948 error = cr_canseeinpcb(req->td->td_ucred, inp); 949 if (error == 0) 950 cru2x(inp->inp_cred, &xuc); 951 INP_RUNLOCK(inp); 952 } else 953 error = ENOENT; 954 if (error == 0) 955 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 956 return (error); 957 } 958 959 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 960 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 961 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 962 #endif /* INET */ 963 964 int 965 udp_ctloutput(struct socket *so, struct sockopt *sopt) 966 { 967 struct inpcb *inp; 968 struct udpcb *up; 969 int isudplite, error, optval; 970 971 error = 0; 972 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 973 inp = sotoinpcb(so); 974 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 975 INP_WLOCK(inp); 976 if (sopt->sopt_level != so->so_proto->pr_protocol) { 977 #ifdef INET6 978 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 979 INP_WUNLOCK(inp); 980 error = ip6_ctloutput(so, sopt); 981 } 982 #endif 983 #if defined(INET) && defined(INET6) 984 else 985 #endif 986 #ifdef INET 987 { 988 INP_WUNLOCK(inp); 989 error = ip_ctloutput(so, sopt); 990 } 991 #endif 992 return (error); 993 } 994 995 switch (sopt->sopt_dir) { 996 case SOPT_SET: 997 switch (sopt->sopt_name) { 998 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 999 #ifdef INET 1000 case UDP_ENCAP: 1001 if (!IPSEC_ENABLED(ipv4)) { 1002 INP_WUNLOCK(inp); 1003 return (ENOPROTOOPT); 1004 } 1005 error = UDPENCAP_PCBCTL(inp, sopt); 1006 break; 1007 #endif /* INET */ 1008 #endif /* IPSEC */ 1009 case UDPLITE_SEND_CSCOV: 1010 case UDPLITE_RECV_CSCOV: 1011 if (!isudplite) { 1012 INP_WUNLOCK(inp); 1013 error = ENOPROTOOPT; 1014 break; 1015 } 1016 INP_WUNLOCK(inp); 1017 error = sooptcopyin(sopt, &optval, sizeof(optval), 1018 sizeof(optval)); 1019 if (error != 0) 1020 break; 1021 inp = sotoinpcb(so); 1022 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1023 INP_WLOCK(inp); 1024 up = intoudpcb(inp); 1025 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1026 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1027 INP_WUNLOCK(inp); 1028 error = EINVAL; 1029 break; 1030 } 1031 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1032 up->u_txcslen = optval; 1033 else 1034 up->u_rxcslen = optval; 1035 INP_WUNLOCK(inp); 1036 break; 1037 default: 1038 INP_WUNLOCK(inp); 1039 error = ENOPROTOOPT; 1040 break; 1041 } 1042 break; 1043 case SOPT_GET: 1044 switch (sopt->sopt_name) { 1045 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1046 #ifdef INET 1047 case UDP_ENCAP: 1048 if (!IPSEC_ENABLED(ipv4)) { 1049 INP_WUNLOCK(inp); 1050 return (ENOPROTOOPT); 1051 } 1052 error = UDPENCAP_PCBCTL(inp, sopt); 1053 break; 1054 #endif /* INET */ 1055 #endif /* IPSEC */ 1056 case UDPLITE_SEND_CSCOV: 1057 case UDPLITE_RECV_CSCOV: 1058 if (!isudplite) { 1059 INP_WUNLOCK(inp); 1060 error = ENOPROTOOPT; 1061 break; 1062 } 1063 up = intoudpcb(inp); 1064 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1065 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1066 optval = up->u_txcslen; 1067 else 1068 optval = up->u_rxcslen; 1069 INP_WUNLOCK(inp); 1070 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1071 break; 1072 default: 1073 INP_WUNLOCK(inp); 1074 error = ENOPROTOOPT; 1075 break; 1076 } 1077 break; 1078 } 1079 return (error); 1080 } 1081 1082 #ifdef INET 1083 static int 1084 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1085 struct mbuf *control, struct thread *td) 1086 { 1087 struct udpiphdr *ui; 1088 int len = m->m_pkthdr.len; 1089 struct in_addr faddr, laddr; 1090 struct cmsghdr *cm; 1091 struct inpcbinfo *pcbinfo; 1092 struct sockaddr_in *sin, src; 1093 struct epoch_tracker et; 1094 int cscov_partial = 0; 1095 int error = 0; 1096 int ipflags; 1097 u_short fport, lport; 1098 u_char tos; 1099 uint8_t pr; 1100 uint16_t cscov = 0; 1101 uint32_t flowid = 0; 1102 uint8_t flowtype = M_HASHTYPE_NONE; 1103 1104 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1105 if (control) 1106 m_freem(control); 1107 m_freem(m); 1108 return (EMSGSIZE); 1109 } 1110 1111 src.sin_family = 0; 1112 sin = (struct sockaddr_in *)addr; 1113 1114 /* 1115 * udp_output() may need to temporarily bind or connect the current 1116 * inpcb. As such, we don't know up front whether we will need the 1117 * pcbinfo lock or not. Do any work to decide what is needed up 1118 * front before acquiring any locks. 1119 * 1120 * We will need network epoch in either case, to safely lookup into 1121 * pcb hash. 1122 */ 1123 if (sin == NULL || 1124 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) 1125 INP_WLOCK(inp); 1126 else 1127 INP_RLOCK(inp); 1128 NET_EPOCH_ENTER(et); 1129 tos = inp->inp_ip_tos; 1130 if (control != NULL) { 1131 /* 1132 * XXX: Currently, we assume all the optional information is 1133 * stored in a single mbuf. 1134 */ 1135 if (control->m_next) { 1136 m_freem(control); 1137 error = EINVAL; 1138 goto release; 1139 } 1140 for (; control->m_len > 0; 1141 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1142 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1143 cm = mtod(control, struct cmsghdr *); 1144 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1145 || cm->cmsg_len > control->m_len) { 1146 error = EINVAL; 1147 break; 1148 } 1149 if (cm->cmsg_level != IPPROTO_IP) 1150 continue; 1151 1152 switch (cm->cmsg_type) { 1153 case IP_SENDSRCADDR: 1154 if (cm->cmsg_len != 1155 CMSG_LEN(sizeof(struct in_addr))) { 1156 error = EINVAL; 1157 break; 1158 } 1159 bzero(&src, sizeof(src)); 1160 src.sin_family = AF_INET; 1161 src.sin_len = sizeof(src); 1162 src.sin_port = inp->inp_lport; 1163 src.sin_addr = 1164 *(struct in_addr *)CMSG_DATA(cm); 1165 break; 1166 1167 case IP_TOS: 1168 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1169 error = EINVAL; 1170 break; 1171 } 1172 tos = *(u_char *)CMSG_DATA(cm); 1173 break; 1174 1175 case IP_FLOWID: 1176 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1177 error = EINVAL; 1178 break; 1179 } 1180 flowid = *(uint32_t *) CMSG_DATA(cm); 1181 break; 1182 1183 case IP_FLOWTYPE: 1184 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1185 error = EINVAL; 1186 break; 1187 } 1188 flowtype = *(uint32_t *) CMSG_DATA(cm); 1189 break; 1190 1191 #ifdef RSS 1192 case IP_RSSBUCKETID: 1193 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1194 error = EINVAL; 1195 break; 1196 } 1197 /* This is just a placeholder for now */ 1198 break; 1199 #endif /* RSS */ 1200 default: 1201 error = ENOPROTOOPT; 1202 break; 1203 } 1204 if (error) 1205 break; 1206 } 1207 m_freem(control); 1208 } 1209 if (error) 1210 goto release; 1211 1212 pr = inp->inp_socket->so_proto->pr_protocol; 1213 pcbinfo = udp_get_inpcbinfo(pr); 1214 1215 /* 1216 * If the IP_SENDSRCADDR control message was specified, override the 1217 * source address for this datagram. Its use is invalidated if the 1218 * address thus specified is incomplete or clobbers other inpcbs. 1219 */ 1220 laddr = inp->inp_laddr; 1221 lport = inp->inp_lport; 1222 if (src.sin_family == AF_INET) { 1223 INP_HASH_LOCK_ASSERT(pcbinfo); 1224 if ((lport == 0) || 1225 (laddr.s_addr == INADDR_ANY && 1226 src.sin_addr.s_addr == INADDR_ANY)) { 1227 error = EINVAL; 1228 goto release; 1229 } 1230 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1231 &laddr.s_addr, &lport, td->td_ucred); 1232 if (error) 1233 goto release; 1234 } 1235 1236 /* 1237 * If a UDP socket has been connected, then a local address/port will 1238 * have been selected and bound. 1239 * 1240 * If a UDP socket has not been connected to, then an explicit 1241 * destination address must be used, in which case a local 1242 * address/port may not have been selected and bound. 1243 */ 1244 if (sin != NULL) { 1245 INP_LOCK_ASSERT(inp); 1246 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1247 error = EISCONN; 1248 goto release; 1249 } 1250 1251 /* 1252 * Jail may rewrite the destination address, so let it do 1253 * that before we use it. 1254 */ 1255 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1256 if (error) 1257 goto release; 1258 1259 /* 1260 * If a local address or port hasn't yet been selected, or if 1261 * the destination address needs to be rewritten due to using 1262 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1263 * to do the heavy lifting. Once a port is selected, we 1264 * commit the binding back to the socket; we also commit the 1265 * binding of the address if in jail. 1266 * 1267 * If we already have a valid binding and we're not 1268 * requesting a destination address rewrite, use a fast path. 1269 */ 1270 if (inp->inp_laddr.s_addr == INADDR_ANY || 1271 inp->inp_lport == 0 || 1272 sin->sin_addr.s_addr == INADDR_ANY || 1273 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1274 INP_HASH_LOCK_ASSERT(pcbinfo); 1275 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1276 &lport, &faddr.s_addr, &fport, NULL, 1277 td->td_ucred); 1278 if (error) 1279 goto release; 1280 1281 /* 1282 * XXXRW: Why not commit the port if the address is 1283 * !INADDR_ANY? 1284 */ 1285 /* Commit the local port if newly assigned. */ 1286 if (inp->inp_laddr.s_addr == INADDR_ANY && 1287 inp->inp_lport == 0) { 1288 INP_WLOCK_ASSERT(inp); 1289 /* 1290 * Remember addr if jailed, to prevent 1291 * rebinding. 1292 */ 1293 if (prison_flag(td->td_ucred, PR_IP4)) 1294 inp->inp_laddr = laddr; 1295 inp->inp_lport = lport; 1296 INP_HASH_WLOCK(pcbinfo); 1297 error = in_pcbinshash(inp); 1298 INP_HASH_WUNLOCK(pcbinfo); 1299 if (error != 0) { 1300 inp->inp_lport = 0; 1301 error = EAGAIN; 1302 goto release; 1303 } 1304 inp->inp_flags |= INP_ANONPORT; 1305 } 1306 } else { 1307 faddr = sin->sin_addr; 1308 fport = sin->sin_port; 1309 } 1310 } else { 1311 INP_LOCK_ASSERT(inp); 1312 faddr = inp->inp_faddr; 1313 fport = inp->inp_fport; 1314 if (faddr.s_addr == INADDR_ANY) { 1315 error = ENOTCONN; 1316 goto release; 1317 } 1318 } 1319 1320 /* 1321 * Calculate data length and get a mbuf for UDP, IP, and possible 1322 * link-layer headers. Immediate slide the data pointer back forward 1323 * since we won't use that space at this layer. 1324 */ 1325 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1326 if (m == NULL) { 1327 error = ENOBUFS; 1328 goto release; 1329 } 1330 m->m_data += max_linkhdr; 1331 m->m_len -= max_linkhdr; 1332 m->m_pkthdr.len -= max_linkhdr; 1333 1334 /* 1335 * Fill in mbuf with extended UDP header and addresses and length put 1336 * into network format. 1337 */ 1338 ui = mtod(m, struct udpiphdr *); 1339 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1340 ui->ui_v = IPVERSION << 4; 1341 ui->ui_pr = pr; 1342 ui->ui_src = laddr; 1343 ui->ui_dst = faddr; 1344 ui->ui_sport = lport; 1345 ui->ui_dport = fport; 1346 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1347 if (pr == IPPROTO_UDPLITE) { 1348 struct udpcb *up; 1349 uint16_t plen; 1350 1351 up = intoudpcb(inp); 1352 cscov = up->u_txcslen; 1353 plen = (u_short)len + sizeof(struct udphdr); 1354 if (cscov >= plen) 1355 cscov = 0; 1356 ui->ui_len = htons(plen); 1357 ui->ui_ulen = htons(cscov); 1358 /* 1359 * For UDP-Lite, checksum coverage length of zero means 1360 * the entire UDPLite packet is covered by the checksum. 1361 */ 1362 cscov_partial = (cscov == 0) ? 0 : 1; 1363 } 1364 1365 /* 1366 * Set the Don't Fragment bit in the IP header. 1367 */ 1368 if (inp->inp_flags & INP_DONTFRAG) { 1369 struct ip *ip; 1370 1371 ip = (struct ip *)&ui->ui_i; 1372 ip->ip_off |= htons(IP_DF); 1373 } 1374 1375 ipflags = 0; 1376 if (inp->inp_socket->so_options & SO_DONTROUTE) 1377 ipflags |= IP_ROUTETOIF; 1378 if (inp->inp_socket->so_options & SO_BROADCAST) 1379 ipflags |= IP_ALLOWBROADCAST; 1380 if (inp->inp_flags & INP_ONESBCAST) 1381 ipflags |= IP_SENDONES; 1382 1383 #ifdef MAC 1384 mac_inpcb_create_mbuf(inp, m); 1385 #endif 1386 1387 /* 1388 * Set up checksum and output datagram. 1389 */ 1390 ui->ui_sum = 0; 1391 if (pr == IPPROTO_UDPLITE) { 1392 if (inp->inp_flags & INP_ONESBCAST) 1393 faddr.s_addr = INADDR_BROADCAST; 1394 if (cscov_partial) { 1395 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1396 ui->ui_sum = 0xffff; 1397 } else { 1398 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1399 ui->ui_sum = 0xffff; 1400 } 1401 } else if (V_udp_cksum) { 1402 if (inp->inp_flags & INP_ONESBCAST) 1403 faddr.s_addr = INADDR_BROADCAST; 1404 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1405 htons((u_short)len + sizeof(struct udphdr) + pr)); 1406 m->m_pkthdr.csum_flags = CSUM_UDP; 1407 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1408 } 1409 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1410 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1411 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1412 UDPSTAT_INC(udps_opackets); 1413 1414 /* 1415 * Setup flowid / RSS information for outbound socket. 1416 * 1417 * Once the UDP code decides to set a flowid some other way, 1418 * this allows the flowid to be overridden by userland. 1419 */ 1420 if (flowtype != M_HASHTYPE_NONE) { 1421 m->m_pkthdr.flowid = flowid; 1422 M_HASHTYPE_SET(m, flowtype); 1423 } 1424 #ifdef RSS 1425 else { 1426 uint32_t hash_val, hash_type; 1427 /* 1428 * Calculate an appropriate RSS hash for UDP and 1429 * UDP Lite. 1430 * 1431 * The called function will take care of figuring out 1432 * whether a 2-tuple or 4-tuple hash is required based 1433 * on the currently configured scheme. 1434 * 1435 * Later later on connected socket values should be 1436 * cached in the inpcb and reused, rather than constantly 1437 * re-calculating it. 1438 * 1439 * UDP Lite is a different protocol number and will 1440 * likely end up being hashed as a 2-tuple until 1441 * RSS / NICs grow UDP Lite protocol awareness. 1442 */ 1443 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, 1444 pr, &hash_val, &hash_type) == 0) { 1445 m->m_pkthdr.flowid = hash_val; 1446 M_HASHTYPE_SET(m, hash_type); 1447 } 1448 } 1449 1450 /* 1451 * Don't override with the inp cached flowid value. 1452 * 1453 * Depending upon the kind of send being done, the inp 1454 * flowid/flowtype values may actually not be appropriate 1455 * for this particular socket send. 1456 * 1457 * We should either leave the flowid at zero (which is what is 1458 * currently done) or set it to some software generated 1459 * hash value based on the packet contents. 1460 */ 1461 ipflags |= IP_NODEFAULTFLOWID; 1462 #endif /* RSS */ 1463 1464 if (pr == IPPROTO_UDPLITE) 1465 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1466 else 1467 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1468 error = ip_output(m, inp->inp_options, 1469 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1470 inp->inp_moptions, inp); 1471 INP_UNLOCK(inp); 1472 NET_EPOCH_EXIT(et); 1473 return (error); 1474 1475 release: 1476 INP_UNLOCK(inp); 1477 NET_EPOCH_EXIT(et); 1478 m_freem(m); 1479 return (error); 1480 } 1481 1482 static void 1483 udp_abort(struct socket *so) 1484 { 1485 struct inpcb *inp; 1486 struct inpcbinfo *pcbinfo; 1487 1488 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1489 inp = sotoinpcb(so); 1490 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1491 INP_WLOCK(inp); 1492 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1493 INP_HASH_WLOCK(pcbinfo); 1494 in_pcbdisconnect(inp); 1495 inp->inp_laddr.s_addr = INADDR_ANY; 1496 INP_HASH_WUNLOCK(pcbinfo); 1497 soisdisconnected(so); 1498 } 1499 INP_WUNLOCK(inp); 1500 } 1501 1502 static int 1503 udp_attach(struct socket *so, int proto, struct thread *td) 1504 { 1505 static uint32_t udp_flowid; 1506 struct inpcb *inp; 1507 struct inpcbinfo *pcbinfo; 1508 int error; 1509 1510 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1511 inp = sotoinpcb(so); 1512 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1513 error = soreserve(so, udp_sendspace, udp_recvspace); 1514 if (error) 1515 return (error); 1516 INP_INFO_WLOCK(pcbinfo); 1517 error = in_pcballoc(so, pcbinfo); 1518 if (error) { 1519 INP_INFO_WUNLOCK(pcbinfo); 1520 return (error); 1521 } 1522 1523 inp = sotoinpcb(so); 1524 inp->inp_vflag |= INP_IPV4; 1525 inp->inp_ip_ttl = V_ip_defttl; 1526 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1527 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1528 1529 error = udp_newudpcb(inp); 1530 if (error) { 1531 in_pcbdetach(inp); 1532 in_pcbfree(inp); 1533 INP_INFO_WUNLOCK(pcbinfo); 1534 return (error); 1535 } 1536 1537 INP_WUNLOCK(inp); 1538 INP_INFO_WUNLOCK(pcbinfo); 1539 return (0); 1540 } 1541 #endif /* INET */ 1542 1543 int 1544 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1545 { 1546 struct inpcb *inp; 1547 struct udpcb *up; 1548 1549 KASSERT(so->so_type == SOCK_DGRAM, 1550 ("udp_set_kernel_tunneling: !dgram")); 1551 inp = sotoinpcb(so); 1552 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1553 INP_WLOCK(inp); 1554 up = intoudpcb(inp); 1555 if ((up->u_tun_func != NULL) || 1556 (up->u_icmp_func != NULL)) { 1557 INP_WUNLOCK(inp); 1558 return (EBUSY); 1559 } 1560 up->u_tun_func = f; 1561 up->u_icmp_func = i; 1562 up->u_tun_ctx = ctx; 1563 INP_WUNLOCK(inp); 1564 return (0); 1565 } 1566 1567 #ifdef INET 1568 static int 1569 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1570 { 1571 struct inpcb *inp; 1572 struct inpcbinfo *pcbinfo; 1573 int error; 1574 1575 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1576 inp = sotoinpcb(so); 1577 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1578 INP_WLOCK(inp); 1579 INP_HASH_WLOCK(pcbinfo); 1580 error = in_pcbbind(inp, nam, td->td_ucred); 1581 INP_HASH_WUNLOCK(pcbinfo); 1582 INP_WUNLOCK(inp); 1583 return (error); 1584 } 1585 1586 static void 1587 udp_close(struct socket *so) 1588 { 1589 struct inpcb *inp; 1590 struct inpcbinfo *pcbinfo; 1591 1592 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1593 inp = sotoinpcb(so); 1594 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1595 INP_WLOCK(inp); 1596 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1597 INP_HASH_WLOCK(pcbinfo); 1598 in_pcbdisconnect(inp); 1599 inp->inp_laddr.s_addr = INADDR_ANY; 1600 INP_HASH_WUNLOCK(pcbinfo); 1601 soisdisconnected(so); 1602 } 1603 INP_WUNLOCK(inp); 1604 } 1605 1606 static int 1607 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1608 { 1609 struct inpcb *inp; 1610 struct inpcbinfo *pcbinfo; 1611 struct sockaddr_in *sin; 1612 int error; 1613 1614 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1615 inp = sotoinpcb(so); 1616 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1617 INP_WLOCK(inp); 1618 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1619 INP_WUNLOCK(inp); 1620 return (EISCONN); 1621 } 1622 sin = (struct sockaddr_in *)nam; 1623 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1624 if (error != 0) { 1625 INP_WUNLOCK(inp); 1626 return (error); 1627 } 1628 INP_HASH_WLOCK(pcbinfo); 1629 error = in_pcbconnect(inp, nam, td->td_ucred); 1630 INP_HASH_WUNLOCK(pcbinfo); 1631 if (error == 0) 1632 soisconnected(so); 1633 INP_WUNLOCK(inp); 1634 return (error); 1635 } 1636 1637 static void 1638 udp_detach(struct socket *so) 1639 { 1640 struct inpcb *inp; 1641 struct inpcbinfo *pcbinfo; 1642 struct udpcb *up; 1643 1644 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1645 inp = sotoinpcb(so); 1646 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1647 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1648 ("udp_detach: not disconnected")); 1649 INP_INFO_WLOCK(pcbinfo); 1650 INP_WLOCK(inp); 1651 up = intoudpcb(inp); 1652 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1653 inp->inp_ppcb = NULL; 1654 in_pcbdetach(inp); 1655 in_pcbfree(inp); 1656 INP_INFO_WUNLOCK(pcbinfo); 1657 udp_discardcb(up); 1658 } 1659 1660 static int 1661 udp_disconnect(struct socket *so) 1662 { 1663 struct inpcb *inp; 1664 struct inpcbinfo *pcbinfo; 1665 1666 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1667 inp = sotoinpcb(so); 1668 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1669 INP_WLOCK(inp); 1670 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1671 INP_WUNLOCK(inp); 1672 return (ENOTCONN); 1673 } 1674 INP_HASH_WLOCK(pcbinfo); 1675 in_pcbdisconnect(inp); 1676 inp->inp_laddr.s_addr = INADDR_ANY; 1677 INP_HASH_WUNLOCK(pcbinfo); 1678 SOCK_LOCK(so); 1679 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1680 SOCK_UNLOCK(so); 1681 INP_WUNLOCK(inp); 1682 return (0); 1683 } 1684 1685 static int 1686 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1687 struct mbuf *control, struct thread *td) 1688 { 1689 struct inpcb *inp; 1690 1691 inp = sotoinpcb(so); 1692 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1693 return (udp_output(inp, m, addr, control, td)); 1694 } 1695 #endif /* INET */ 1696 1697 int 1698 udp_shutdown(struct socket *so) 1699 { 1700 struct inpcb *inp; 1701 1702 inp = sotoinpcb(so); 1703 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1704 INP_WLOCK(inp); 1705 socantsendmore(so); 1706 INP_WUNLOCK(inp); 1707 return (0); 1708 } 1709 1710 #ifdef INET 1711 struct pr_usrreqs udp_usrreqs = { 1712 .pru_abort = udp_abort, 1713 .pru_attach = udp_attach, 1714 .pru_bind = udp_bind, 1715 .pru_connect = udp_connect, 1716 .pru_control = in_control, 1717 .pru_detach = udp_detach, 1718 .pru_disconnect = udp_disconnect, 1719 .pru_peeraddr = in_getpeeraddr, 1720 .pru_send = udp_send, 1721 .pru_soreceive = soreceive_dgram, 1722 .pru_sosend = sosend_dgram, 1723 .pru_shutdown = udp_shutdown, 1724 .pru_sockaddr = in_getsockaddr, 1725 .pru_sosetlabel = in_pcbsosetlabel, 1726 .pru_close = udp_close, 1727 }; 1728 #endif /* INET */ 1729