xref: /freebsd/sys/netinet/udp_usrreq.c (revision 89128ff3e42196c8b41a3c59f7a2d95c0a4ac0ee)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_route.h"
48 #include "opt_rss.h"
49 
50 #include <sys/param.h>
51 #include <sys/domain.h>
52 #include <sys/eventhandler.h>
53 #include <sys/jail.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/protosw.h>
61 #include <sys/sdt.h>
62 #include <sys/signalvar.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sx.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/systm.h>
69 
70 #include <vm/uma.h>
71 
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/route.h>
75 #include <net/route/nhop.h>
76 #include <net/rss_config.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_kdtrace.h>
80 #include <netinet/in_fib.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #endif
88 #include <netinet/ip_icmp.h>
89 #include <netinet/icmp_var.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/ip_options.h>
92 #ifdef INET6
93 #include <netinet6/ip6_var.h>
94 #endif
95 #include <netinet/udp.h>
96 #include <netinet/udp_var.h>
97 #include <netinet/udplite.h>
98 #include <netinet/in_rss.h>
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 /*
107  * UDP and UDP-Lite protocols implementation.
108  * Per RFC 768, August, 1980.
109  * Per RFC 3828, July, 2004.
110  */
111 
112 /*
113  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
114  * removes the only data integrity mechanism for packets and malformed
115  * packets that would otherwise be discarded due to bad checksums, and may
116  * cause problems (especially for NFS data blocks).
117  */
118 VNET_DEFINE(int, udp_cksum) = 1;
119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
120     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
121 
122 VNET_DEFINE(int, udp_log_in_vain) = 0;
123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
124     &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
125 
126 VNET_DEFINE(int, udp_blackhole) = 0;
127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
128     &VNET_NAME(udp_blackhole), 0,
129     "Do not send port unreachables for refused connects");
130 VNET_DEFINE(bool, udp_blackhole_local) = false;
131 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
132     CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false,
133     "Enforce net.inet.udp.blackhole for locally originated packets");
134 
135 u_long	udp_sendspace = 9216;		/* really max datagram size */
136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
137     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
138 
139 u_long	udp_recvspace = 40 * (1024 +
140 #ifdef INET6
141 				      sizeof(struct sockaddr_in6)
142 #else
143 				      sizeof(struct sockaddr_in)
144 #endif
145 				      );	/* 40 1K datagrams */
146 
147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
148     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
149 
150 VNET_DEFINE(struct inpcbinfo, udbinfo);
151 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
152 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
153 #define	V_udpcb_zone			VNET(udpcb_zone)
154 
155 #ifndef UDBHASHSIZE
156 #define	UDBHASHSIZE	128
157 #endif
158 
159 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
160 VNET_PCPUSTAT_SYSINIT(udpstat);
161 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
162     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
163 
164 #ifdef VIMAGE
165 VNET_PCPUSTAT_SYSUNINIT(udpstat);
166 #endif /* VIMAGE */
167 #ifdef INET
168 static void	udp_detach(struct socket *so);
169 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
170 		    struct mbuf *, struct thread *, int);
171 #endif
172 
173 static void
174 udp_zone_change(void *tag)
175 {
176 
177 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
178 	uma_zone_set_max(V_udpcb_zone, maxsockets);
179 }
180 
181 static int
182 udp_inpcb_init(void *mem, int size, int flags)
183 {
184 	struct inpcb *inp;
185 
186 	inp = mem;
187 	INP_LOCK_INIT(inp, "inp", "udpinp");
188 	return (0);
189 }
190 
191 static int
192 udplite_inpcb_init(void *mem, int size, int flags)
193 {
194 	struct inpcb *inp;
195 
196 	inp = mem;
197 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
198 	return (0);
199 }
200 
201 static void
202 udp_init(void *arg __unused)
203 {
204 
205 	/*
206 	 * For now default to 2-tuple UDP hashing - until the fragment
207 	 * reassembly code can also update the flowid.
208 	 *
209 	 * Once we can calculate the flowid that way and re-establish
210 	 * a 4-tuple, flip this to 4-tuple.
211 	 */
212 	in_pcbinfo_init(&V_udbinfo, "udp", UDBHASHSIZE, UDBHASHSIZE,
213 	    "udp_inpcb", udp_inpcb_init);
214 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
215 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
216 	uma_zone_set_max(V_udpcb_zone, maxsockets);
217 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
218 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
219 	    EVENTHANDLER_PRI_ANY);
220 
221 	/* Additional pcbinfo for UDP-Lite */
222 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", UDBHASHSIZE,
223 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init);
224 }
225 VNET_SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL);
226 
227 /*
228  * Kernel module interface for updating udpstat.  The argument is an index
229  * into udpstat treated as an array of u_long.  While this encodes the
230  * general layout of udpstat into the caller, it doesn't encode its location,
231  * so that future changes to add, for example, per-CPU stats support won't
232  * cause binary compatibility problems for kernel modules.
233  */
234 void
235 kmod_udpstat_inc(int statnum)
236 {
237 
238 	counter_u64_add(VNET(udpstat)[statnum], 1);
239 }
240 
241 int
242 udp_newudpcb(struct inpcb *inp)
243 {
244 	struct udpcb *up;
245 
246 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
247 	if (up == NULL)
248 		return (ENOBUFS);
249 	inp->inp_ppcb = up;
250 	return (0);
251 }
252 
253 void
254 udp_discardcb(struct udpcb *up)
255 {
256 
257 	uma_zfree(V_udpcb_zone, up);
258 }
259 
260 #ifdef VIMAGE
261 static void
262 udp_destroy(void *unused __unused)
263 {
264 
265 	in_pcbinfo_destroy(&V_udbinfo);
266 	uma_zdestroy(V_udpcb_zone);
267 }
268 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
269 
270 static void
271 udplite_destroy(void *unused __unused)
272 {
273 
274 	in_pcbinfo_destroy(&V_ulitecbinfo);
275 }
276 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
277     NULL);
278 #endif
279 
280 #ifdef INET
281 /*
282  * Subroutine of udp_input(), which appends the provided mbuf chain to the
283  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
284  * contains the source address.  If the socket ends up being an IPv6 socket,
285  * udp_append() will convert to a sockaddr_in6 before passing the address
286  * into the socket code.
287  *
288  * In the normal case udp_append() will return 0, indicating that you
289  * must unlock the inp. However if a tunneling protocol is in place we increment
290  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
291  * then decrement the reference count. If the inp_rele returns 1, indicating the
292  * inp is gone, we return that to the caller to tell them *not* to unlock
293  * the inp. In the case of multi-cast this will cause the distribution
294  * to stop (though most tunneling protocols known currently do *not* use
295  * multicast).
296  */
297 static int
298 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
299     struct sockaddr_in *udp_in)
300 {
301 	struct sockaddr *append_sa;
302 	struct socket *so;
303 	struct mbuf *tmpopts, *opts = NULL;
304 #ifdef INET6
305 	struct sockaddr_in6 udp_in6;
306 #endif
307 	struct udpcb *up;
308 
309 	INP_LOCK_ASSERT(inp);
310 
311 	/*
312 	 * Engage the tunneling protocol.
313 	 */
314 	up = intoudpcb(inp);
315 	if (up->u_tun_func != NULL) {
316 		in_pcbref(inp);
317 		INP_RUNLOCK(inp);
318 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
319 		    up->u_tun_ctx);
320 		INP_RLOCK(inp);
321 		return (in_pcbrele_rlocked(inp));
322 	}
323 
324 	off += sizeof(struct udphdr);
325 
326 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
327 	/* Check AH/ESP integrity. */
328 	if (IPSEC_ENABLED(ipv4) &&
329 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
330 		m_freem(n);
331 		return (0);
332 	}
333 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
334 		if (IPSEC_ENABLED(ipv4) &&
335 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
336 			return (0);	/* Consumed. */
337 	}
338 #endif /* IPSEC */
339 #ifdef MAC
340 	if (mac_inpcb_check_deliver(inp, n) != 0) {
341 		m_freem(n);
342 		return (0);
343 	}
344 #endif /* MAC */
345 	if (inp->inp_flags & INP_CONTROLOPTS ||
346 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
347 #ifdef INET6
348 		if (inp->inp_vflag & INP_IPV6)
349 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
350 		else
351 #endif /* INET6 */
352 			ip_savecontrol(inp, &opts, ip, n);
353 	}
354 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
355 		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
356 			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
357 		if (tmpopts) {
358 			if (opts) {
359 				tmpopts->m_next = opts;
360 				opts = tmpopts;
361 			} else
362 				opts = tmpopts;
363 		}
364 	}
365 #ifdef INET6
366 	if (inp->inp_vflag & INP_IPV6) {
367 		bzero(&udp_in6, sizeof(udp_in6));
368 		udp_in6.sin6_len = sizeof(udp_in6);
369 		udp_in6.sin6_family = AF_INET6;
370 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
371 		append_sa = (struct sockaddr *)&udp_in6;
372 	} else
373 #endif /* INET6 */
374 		append_sa = (struct sockaddr *)&udp_in[0];
375 	m_adj(n, off);
376 
377 	so = inp->inp_socket;
378 	SOCKBUF_LOCK(&so->so_rcv);
379 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
380 		soroverflow_locked(so);
381 		m_freem(n);
382 		if (opts)
383 			m_freem(opts);
384 		UDPSTAT_INC(udps_fullsock);
385 	} else
386 		sorwakeup_locked(so);
387 	return (0);
388 }
389 
390 static bool
391 udp_multi_match(const struct inpcb *inp, void *v)
392 {
393 	struct ip *ip = v;
394 	struct udphdr *uh = (struct udphdr *)(ip + 1);
395 
396 	if (inp->inp_lport != uh->uh_dport)
397 		return (false);
398 #ifdef INET6
399 	if ((inp->inp_vflag & INP_IPV4) == 0)
400 		return (false);
401 #endif
402 	if (inp->inp_laddr.s_addr != INADDR_ANY &&
403 	    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
404 		return (false);
405 	if (inp->inp_faddr.s_addr != INADDR_ANY &&
406 	    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
407 		return (false);
408 	if (inp->inp_fport != 0 &&
409 	    inp->inp_fport != uh->uh_sport)
410 		return (false);
411 
412 	return (true);
413 }
414 
415 static int
416 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in)
417 {
418 	struct ip *ip = mtod(m, struct ip *);
419 	struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto),
420 	    INPLOOKUP_RLOCKPCB, udp_multi_match, ip);
421 #ifdef KDTRACE_HOOKS
422 	struct udphdr *uh = (struct udphdr *)(ip + 1);
423 #endif
424 	struct inpcb *inp;
425 	struct mbuf *n;
426 	int appends = 0;
427 
428 	MPASS(ip->ip_hl == sizeof(struct ip) >> 2);
429 
430 	while ((inp = inp_next(&inpi)) != NULL) {
431 		/*
432 		 * XXXRW: Because we weren't holding either the inpcb
433 		 * or the hash lock when we checked for a match
434 		 * before, we should probably recheck now that the
435 		 * inpcb lock is held.
436 		 */
437 		/*
438 		 * Handle socket delivery policy for any-source
439 		 * and source-specific multicast. [RFC3678]
440 		 */
441 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
442 			struct ip_moptions	*imo;
443 			struct sockaddr_in	 group;
444 			int			 blocked;
445 
446 			imo = inp->inp_moptions;
447 			if (imo == NULL)
448 				continue;
449 			bzero(&group, sizeof(struct sockaddr_in));
450 			group.sin_len = sizeof(struct sockaddr_in);
451 			group.sin_family = AF_INET;
452 			group.sin_addr = ip->ip_dst;
453 
454 			blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif,
455 				(struct sockaddr *)&group,
456 				(struct sockaddr *)&udp_in[0]);
457 			if (blocked != MCAST_PASS) {
458 				if (blocked == MCAST_NOTGMEMBER)
459 					IPSTAT_INC(ips_notmember);
460 				if (blocked == MCAST_NOTSMEMBER ||
461 				    blocked == MCAST_MUTED)
462 					UDPSTAT_INC(udps_filtermcast);
463 				continue;
464 			}
465 		}
466 		if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) {
467 			if (proto == IPPROTO_UDPLITE)
468 				UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
469 			else
470 				UDP_PROBE(receive, NULL, inp, ip, inp, uh);
471 			if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) {
472 				INP_RUNLOCK(inp);
473 				break;
474 			} else
475 				appends++;
476 		}
477 		/*
478 		 * Don't look for additional matches if this one does
479 		 * not have either the SO_REUSEPORT or SO_REUSEADDR
480 		 * socket options set.  This heuristic avoids
481 		 * searching through all pcbs in the common case of a
482 		 * non-shared port.  It assumes that an application
483 		 * will never clear these options after setting them.
484 		 */
485 		if ((inp->inp_socket->so_options &
486 		    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) {
487 			INP_RUNLOCK(inp);
488 			break;
489 		}
490 	}
491 
492 	if (appends == 0) {
493 		/*
494 		 * No matching pcb found; discard datagram.  (No need
495 		 * to send an ICMP Port Unreachable for a broadcast
496 		 * or multicast datgram.)
497 		 */
498 		UDPSTAT_INC(udps_noport);
499 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
500 			UDPSTAT_INC(udps_noportmcast);
501 		else
502 			UDPSTAT_INC(udps_noportbcast);
503 	}
504 	m_freem(m);
505 
506 	return (IPPROTO_DONE);
507 }
508 
509 int
510 udp_input(struct mbuf **mp, int *offp, int proto)
511 {
512 	struct ip *ip;
513 	struct udphdr *uh;
514 	struct ifnet *ifp;
515 	struct inpcb *inp;
516 	uint16_t len, ip_len;
517 	struct inpcbinfo *pcbinfo;
518 	struct sockaddr_in udp_in[2];
519 	struct mbuf *m;
520 	struct m_tag *fwd_tag;
521 	int cscov_partial, iphlen;
522 
523 	m = *mp;
524 	iphlen = *offp;
525 	ifp = m->m_pkthdr.rcvif;
526 	*mp = NULL;
527 	UDPSTAT_INC(udps_ipackets);
528 
529 	/*
530 	 * Strip IP options, if any; should skip this, make available to
531 	 * user, and use on returned packets, but we don't yet have a way to
532 	 * check the checksum with options still present.
533 	 */
534 	if (iphlen > sizeof (struct ip)) {
535 		ip_stripoptions(m);
536 		iphlen = sizeof(struct ip);
537 	}
538 
539 	/*
540 	 * Get IP and UDP header together in first mbuf.
541 	 */
542 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
543 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
544 			UDPSTAT_INC(udps_hdrops);
545 			return (IPPROTO_DONE);
546 		}
547 	}
548 	ip = mtod(m, struct ip *);
549 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
550 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
551 
552 	/*
553 	 * Destination port of 0 is illegal, based on RFC768.
554 	 */
555 	if (uh->uh_dport == 0)
556 		goto badunlocked;
557 
558 	/*
559 	 * Construct sockaddr format source address.  Stuff source address
560 	 * and datagram in user buffer.
561 	 */
562 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
563 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
564 	udp_in[0].sin_family = AF_INET;
565 	udp_in[0].sin_port = uh->uh_sport;
566 	udp_in[0].sin_addr = ip->ip_src;
567 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
568 	udp_in[1].sin_family = AF_INET;
569 	udp_in[1].sin_port = uh->uh_dport;
570 	udp_in[1].sin_addr = ip->ip_dst;
571 
572 	/*
573 	 * Make mbuf data length reflect UDP length.  If not enough data to
574 	 * reflect UDP length, drop.
575 	 */
576 	len = ntohs((u_short)uh->uh_ulen);
577 	ip_len = ntohs(ip->ip_len) - iphlen;
578 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
579 		/* Zero means checksum over the complete packet. */
580 		if (len == 0)
581 			len = ip_len;
582 		cscov_partial = 0;
583 	}
584 	if (ip_len != len) {
585 		if (len > ip_len || len < sizeof(struct udphdr)) {
586 			UDPSTAT_INC(udps_badlen);
587 			goto badunlocked;
588 		}
589 		if (proto == IPPROTO_UDP)
590 			m_adj(m, len - ip_len);
591 	}
592 
593 	/*
594 	 * Checksum extended UDP header and data.
595 	 */
596 	if (uh->uh_sum) {
597 		u_short uh_sum;
598 
599 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
600 		    !cscov_partial) {
601 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
602 				uh_sum = m->m_pkthdr.csum_data;
603 			else
604 				uh_sum = in_pseudo(ip->ip_src.s_addr,
605 				    ip->ip_dst.s_addr, htonl((u_short)len +
606 				    m->m_pkthdr.csum_data + proto));
607 			uh_sum ^= 0xffff;
608 		} else {
609 			char b[offsetof(struct ipovly, ih_src)];
610 			struct ipovly *ipov = (struct ipovly *)ip;
611 
612 			bcopy(ipov, b, sizeof(b));
613 			bzero(ipov, sizeof(ipov->ih_x1));
614 			ipov->ih_len = (proto == IPPROTO_UDP) ?
615 			    uh->uh_ulen : htons(ip_len);
616 			uh_sum = in_cksum(m, len + sizeof (struct ip));
617 			bcopy(b, ipov, sizeof(b));
618 		}
619 		if (uh_sum) {
620 			UDPSTAT_INC(udps_badsum);
621 			m_freem(m);
622 			return (IPPROTO_DONE);
623 		}
624 	} else {
625 		if (proto == IPPROTO_UDP) {
626 			UDPSTAT_INC(udps_nosum);
627 		} else {
628 			/* UDPLite requires a checksum */
629 			/* XXX: What is the right UDPLite MIB counter here? */
630 			m_freem(m);
631 			return (IPPROTO_DONE);
632 		}
633 	}
634 
635 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
636 	    in_broadcast(ip->ip_dst, ifp))
637 		return (udp_multi_input(m, proto, udp_in));
638 
639 	pcbinfo = udp_get_inpcbinfo(proto);
640 
641 	/*
642 	 * Locate pcb for datagram.
643 	 *
644 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
645 	 */
646 	if ((m->m_flags & M_IP_NEXTHOP) &&
647 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
648 		struct sockaddr_in *next_hop;
649 
650 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
651 
652 		/*
653 		 * Transparently forwarded. Pretend to be the destination.
654 		 * Already got one like this?
655 		 */
656 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
657 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
658 		if (!inp) {
659 			/*
660 			 * It's new.  Try to find the ambushing socket.
661 			 * Because we've rewritten the destination address,
662 			 * any hardware-generated hash is ignored.
663 			 */
664 			inp = in_pcblookup(pcbinfo, ip->ip_src,
665 			    uh->uh_sport, next_hop->sin_addr,
666 			    next_hop->sin_port ? htons(next_hop->sin_port) :
667 			    uh->uh_dport, INPLOOKUP_WILDCARD |
668 			    INPLOOKUP_RLOCKPCB, ifp);
669 		}
670 		/* Remove the tag from the packet. We don't need it anymore. */
671 		m_tag_delete(m, fwd_tag);
672 		m->m_flags &= ~M_IP_NEXTHOP;
673 	} else
674 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
675 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
676 		    INPLOOKUP_RLOCKPCB, ifp, m);
677 	if (inp == NULL) {
678 		if (V_udp_log_in_vain) {
679 			char src[INET_ADDRSTRLEN];
680 			char dst[INET_ADDRSTRLEN];
681 
682 			log(LOG_INFO,
683 			    "Connection attempt to UDP %s:%d from %s:%d\n",
684 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
685 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
686 		}
687 		if (proto == IPPROTO_UDPLITE)
688 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
689 		else
690 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
691 		UDPSTAT_INC(udps_noport);
692 		if (m->m_flags & (M_BCAST | M_MCAST)) {
693 			UDPSTAT_INC(udps_noportbcast);
694 			goto badunlocked;
695 		}
696 		if (V_udp_blackhole && (V_udp_blackhole_local ||
697 		    !in_localip(ip->ip_src)))
698 			goto badunlocked;
699 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
700 			goto badunlocked;
701 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
702 		return (IPPROTO_DONE);
703 	}
704 
705 	/*
706 	 * Check the minimum TTL for socket.
707 	 */
708 	INP_RLOCK_ASSERT(inp);
709 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
710 		if (proto == IPPROTO_UDPLITE)
711 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
712 		else
713 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
714 		INP_RUNLOCK(inp);
715 		m_freem(m);
716 		return (IPPROTO_DONE);
717 	}
718 	if (cscov_partial) {
719 		struct udpcb *up;
720 
721 		up = intoudpcb(inp);
722 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
723 			INP_RUNLOCK(inp);
724 			m_freem(m);
725 			return (IPPROTO_DONE);
726 		}
727 	}
728 
729 	if (proto == IPPROTO_UDPLITE)
730 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
731 	else
732 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
733 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
734 		INP_RUNLOCK(inp);
735 	return (IPPROTO_DONE);
736 
737 badunlocked:
738 	m_freem(m);
739 	return (IPPROTO_DONE);
740 }
741 #endif /* INET */
742 
743 /*
744  * Notify a udp user of an asynchronous error; just wake up so that they can
745  * collect error status.
746  */
747 struct inpcb *
748 udp_notify(struct inpcb *inp, int errno)
749 {
750 
751 	INP_WLOCK_ASSERT(inp);
752 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
753 	     errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
754 		NH_FREE(inp->inp_route.ro_nh);
755 		inp->inp_route.ro_nh = (struct nhop_object *)NULL;
756 	}
757 
758 	inp->inp_socket->so_error = errno;
759 	sorwakeup(inp->inp_socket);
760 	sowwakeup(inp->inp_socket);
761 	return (inp);
762 }
763 
764 #ifdef INET
765 static void
766 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
767     struct inpcbinfo *pcbinfo)
768 {
769 	struct ip *ip = vip;
770 	struct udphdr *uh;
771 	struct in_addr faddr;
772 	struct inpcb *inp;
773 
774 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
775 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
776 		return;
777 
778 	if (PRC_IS_REDIRECT(cmd)) {
779 		/* signal EHOSTDOWN, as it flushes the cached route */
780 		in_pcbnotifyall(pcbinfo, faddr, EHOSTDOWN, udp_notify);
781 		return;
782 	}
783 
784 	/*
785 	 * Hostdead is ugly because it goes linearly through all PCBs.
786 	 *
787 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
788 	 * DoS attack on machines with many connections.
789 	 */
790 	if (cmd == PRC_HOSTDEAD)
791 		ip = NULL;
792 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
793 		return;
794 	if (ip != NULL) {
795 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
796 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
797 		    ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
798 		if (inp != NULL) {
799 			INP_WLOCK_ASSERT(inp);
800 			if (inp->inp_socket != NULL) {
801 				udp_notify(inp, inetctlerrmap[cmd]);
802 			}
803 			INP_WUNLOCK(inp);
804 		} else {
805 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
806 					   ip->ip_src, uh->uh_sport,
807 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
808 			if (inp != NULL) {
809 				struct udpcb *up;
810 				void *ctx;
811 				udp_tun_icmp_t func;
812 
813 				up = intoudpcb(inp);
814 				ctx = up->u_tun_ctx;
815 				func = up->u_icmp_func;
816 				INP_RUNLOCK(inp);
817 				if (func != NULL)
818 					(*func)(cmd, sa, vip, ctx);
819 			}
820 		}
821 	} else
822 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
823 		    udp_notify);
824 }
825 void
826 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
827 {
828 
829 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
830 }
831 
832 void
833 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
834 {
835 
836 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
837 }
838 #endif /* INET */
839 
840 static int
841 udp_pcblist(SYSCTL_HANDLER_ARGS)
842 {
843 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo,
844 	    INPLOOKUP_RLOCKPCB);
845 	struct xinpgen xig;
846 	struct inpcb *inp;
847 	int error;
848 
849 	if (req->newptr != 0)
850 		return (EPERM);
851 
852 	if (req->oldptr == 0) {
853 		int n;
854 
855 		n = V_udbinfo.ipi_count;
856 		n += imax(n / 8, 10);
857 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
858 		return (0);
859 	}
860 
861 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
862 		return (error);
863 
864 	bzero(&xig, sizeof(xig));
865 	xig.xig_len = sizeof xig;
866 	xig.xig_count = V_udbinfo.ipi_count;
867 	xig.xig_gen = V_udbinfo.ipi_gencnt;
868 	xig.xig_sogen = so_gencnt;
869 	error = SYSCTL_OUT(req, &xig, sizeof xig);
870 	if (error)
871 		return (error);
872 
873 	while ((inp = inp_next(&inpi)) != NULL) {
874 		if (inp->inp_gencnt <= xig.xig_gen &&
875 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
876 			struct xinpcb xi;
877 
878 			in_pcbtoxinpcb(inp, &xi);
879 			error = SYSCTL_OUT(req, &xi, sizeof xi);
880 			if (error) {
881 				INP_RUNLOCK(inp);
882 				break;
883 			}
884 		}
885 	}
886 
887 	if (!error) {
888 		/*
889 		 * Give the user an updated idea of our state.  If the
890 		 * generation differs from what we told her before, she knows
891 		 * that something happened while we were processing this
892 		 * request, and it might be necessary to retry.
893 		 */
894 		xig.xig_gen = V_udbinfo.ipi_gencnt;
895 		xig.xig_sogen = so_gencnt;
896 		xig.xig_count = V_udbinfo.ipi_count;
897 		error = SYSCTL_OUT(req, &xig, sizeof xig);
898 	}
899 
900 	return (error);
901 }
902 
903 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
904     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
905     udp_pcblist, "S,xinpcb",
906     "List of active UDP sockets");
907 
908 #ifdef INET
909 static int
910 udp_getcred(SYSCTL_HANDLER_ARGS)
911 {
912 	struct xucred xuc;
913 	struct sockaddr_in addrs[2];
914 	struct epoch_tracker et;
915 	struct inpcb *inp;
916 	int error;
917 
918 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
919 	if (error)
920 		return (error);
921 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
922 	if (error)
923 		return (error);
924 	NET_EPOCH_ENTER(et);
925 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
926 	    addrs[0].sin_addr, addrs[0].sin_port,
927 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
928 	NET_EPOCH_EXIT(et);
929 	if (inp != NULL) {
930 		INP_RLOCK_ASSERT(inp);
931 		if (inp->inp_socket == NULL)
932 			error = ENOENT;
933 		if (error == 0)
934 			error = cr_canseeinpcb(req->td->td_ucred, inp);
935 		if (error == 0)
936 			cru2x(inp->inp_cred, &xuc);
937 		INP_RUNLOCK(inp);
938 	} else
939 		error = ENOENT;
940 	if (error == 0)
941 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
942 	return (error);
943 }
944 
945 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
946     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
947     0, 0, udp_getcred, "S,xucred",
948     "Get the xucred of a UDP connection");
949 #endif /* INET */
950 
951 int
952 udp_ctloutput(struct socket *so, struct sockopt *sopt)
953 {
954 	struct inpcb *inp;
955 	struct udpcb *up;
956 	int isudplite, error, optval;
957 
958 	error = 0;
959 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
960 	inp = sotoinpcb(so);
961 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
962 	INP_WLOCK(inp);
963 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
964 #ifdef INET6
965 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
966 			INP_WUNLOCK(inp);
967 			error = ip6_ctloutput(so, sopt);
968 		}
969 #endif
970 #if defined(INET) && defined(INET6)
971 		else
972 #endif
973 #ifdef INET
974 		{
975 			INP_WUNLOCK(inp);
976 			error = ip_ctloutput(so, sopt);
977 		}
978 #endif
979 		return (error);
980 	}
981 
982 	switch (sopt->sopt_dir) {
983 	case SOPT_SET:
984 		switch (sopt->sopt_name) {
985 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
986 #ifdef INET
987 		case UDP_ENCAP:
988 			if (!IPSEC_ENABLED(ipv4)) {
989 				INP_WUNLOCK(inp);
990 				return (ENOPROTOOPT);
991 			}
992 			error = UDPENCAP_PCBCTL(inp, sopt);
993 			break;
994 #endif /* INET */
995 #endif /* IPSEC */
996 		case UDPLITE_SEND_CSCOV:
997 		case UDPLITE_RECV_CSCOV:
998 			if (!isudplite) {
999 				INP_WUNLOCK(inp);
1000 				error = ENOPROTOOPT;
1001 				break;
1002 			}
1003 			INP_WUNLOCK(inp);
1004 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1005 			    sizeof(optval));
1006 			if (error != 0)
1007 				break;
1008 			inp = sotoinpcb(so);
1009 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1010 			INP_WLOCK(inp);
1011 			up = intoudpcb(inp);
1012 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1013 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1014 				INP_WUNLOCK(inp);
1015 				error = EINVAL;
1016 				break;
1017 			}
1018 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1019 				up->u_txcslen = optval;
1020 			else
1021 				up->u_rxcslen = optval;
1022 			INP_WUNLOCK(inp);
1023 			break;
1024 		default:
1025 			INP_WUNLOCK(inp);
1026 			error = ENOPROTOOPT;
1027 			break;
1028 		}
1029 		break;
1030 	case SOPT_GET:
1031 		switch (sopt->sopt_name) {
1032 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1033 #ifdef INET
1034 		case UDP_ENCAP:
1035 			if (!IPSEC_ENABLED(ipv4)) {
1036 				INP_WUNLOCK(inp);
1037 				return (ENOPROTOOPT);
1038 			}
1039 			error = UDPENCAP_PCBCTL(inp, sopt);
1040 			break;
1041 #endif /* INET */
1042 #endif /* IPSEC */
1043 		case UDPLITE_SEND_CSCOV:
1044 		case UDPLITE_RECV_CSCOV:
1045 			if (!isudplite) {
1046 				INP_WUNLOCK(inp);
1047 				error = ENOPROTOOPT;
1048 				break;
1049 			}
1050 			up = intoudpcb(inp);
1051 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1052 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1053 				optval = up->u_txcslen;
1054 			else
1055 				optval = up->u_rxcslen;
1056 			INP_WUNLOCK(inp);
1057 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1058 			break;
1059 		default:
1060 			INP_WUNLOCK(inp);
1061 			error = ENOPROTOOPT;
1062 			break;
1063 		}
1064 		break;
1065 	}
1066 	return (error);
1067 }
1068 
1069 #ifdef INET
1070 #ifdef INET6
1071 /* The logic here is derived from ip6_setpktopt(). See comments there. */
1072 static int
1073 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
1074     struct inpcb *inp, int flags)
1075 {
1076 	struct ifnet *ifp;
1077 	struct in6_pktinfo *pktinfo;
1078 	struct in_addr ia;
1079 
1080 	if ((flags & PRUS_IPV6) == 0)
1081 		return (0);
1082 
1083 	if (cm->cmsg_level != IPPROTO_IPV6)
1084 		return (0);
1085 
1086 	if  (cm->cmsg_type != IPV6_2292PKTINFO &&
1087 	    cm->cmsg_type != IPV6_PKTINFO)
1088 		return (0);
1089 
1090 	if (cm->cmsg_len !=
1091 	    CMSG_LEN(sizeof(struct in6_pktinfo)))
1092 		return (EINVAL);
1093 
1094 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1095 	if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
1096 	    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
1097 		return (EINVAL);
1098 
1099 	/* Validate the interface index if specified. */
1100 	if (pktinfo->ipi6_ifindex) {
1101 		struct epoch_tracker et;
1102 
1103 		NET_EPOCH_ENTER(et);
1104 		ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
1105 		NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
1106 		if (ifp == NULL)
1107 			return (ENXIO);
1108 	} else
1109 		ifp = NULL;
1110 	if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
1111 		ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1112 		if (in_ifhasaddr(ifp, ia) == 0)
1113 			return (EADDRNOTAVAIL);
1114 	}
1115 
1116 	bzero(src, sizeof(*src));
1117 	src->sin_family = AF_INET;
1118 	src->sin_len = sizeof(*src);
1119 	src->sin_port = inp->inp_lport;
1120 	src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1121 
1122 	return (0);
1123 }
1124 #endif
1125 
1126 static int
1127 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1128     struct mbuf *control, struct thread *td, int flags)
1129 {
1130 	struct udpiphdr *ui;
1131 	int len = m->m_pkthdr.len;
1132 	struct in_addr faddr, laddr;
1133 	struct cmsghdr *cm;
1134 	struct inpcbinfo *pcbinfo;
1135 	struct sockaddr_in *sin, src;
1136 	struct epoch_tracker et;
1137 	int cscov_partial = 0;
1138 	int error = 0;
1139 	int ipflags = 0;
1140 	u_short fport, lport;
1141 	u_char tos;
1142 	uint8_t pr;
1143 	uint16_t cscov = 0;
1144 	uint32_t flowid = 0;
1145 	uint8_t flowtype = M_HASHTYPE_NONE;
1146 
1147 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1148 		if (control)
1149 			m_freem(control);
1150 		m_freem(m);
1151 		return (EMSGSIZE);
1152 	}
1153 
1154 	src.sin_family = 0;
1155 	sin = (struct sockaddr_in *)addr;
1156 
1157 	/*
1158 	 * udp_output() may need to temporarily bind or connect the current
1159 	 * inpcb.  As such, we don't know up front whether we will need the
1160 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1161 	 * front before acquiring any locks.
1162 	 *
1163 	 * We will need network epoch in either case, to safely lookup into
1164 	 * pcb hash.
1165 	 */
1166 	if (sin == NULL ||
1167 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0))
1168 		INP_WLOCK(inp);
1169 	else
1170 		INP_RLOCK(inp);
1171 	NET_EPOCH_ENTER(et);
1172 	tos = inp->inp_ip_tos;
1173 	if (control != NULL) {
1174 		/*
1175 		 * XXX: Currently, we assume all the optional information is
1176 		 * stored in a single mbuf.
1177 		 */
1178 		if (control->m_next) {
1179 			m_freem(control);
1180 			error = EINVAL;
1181 			goto release;
1182 		}
1183 		for (; control->m_len > 0;
1184 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1185 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1186 			cm = mtod(control, struct cmsghdr *);
1187 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1188 			    || cm->cmsg_len > control->m_len) {
1189 				error = EINVAL;
1190 				break;
1191 			}
1192 #ifdef INET6
1193 			error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
1194 			if (error != 0)
1195 				break;
1196 #endif
1197 			if (cm->cmsg_level != IPPROTO_IP)
1198 				continue;
1199 
1200 			switch (cm->cmsg_type) {
1201 			case IP_SENDSRCADDR:
1202 				if (cm->cmsg_len !=
1203 				    CMSG_LEN(sizeof(struct in_addr))) {
1204 					error = EINVAL;
1205 					break;
1206 				}
1207 				bzero(&src, sizeof(src));
1208 				src.sin_family = AF_INET;
1209 				src.sin_len = sizeof(src);
1210 				src.sin_port = inp->inp_lport;
1211 				src.sin_addr =
1212 				    *(struct in_addr *)CMSG_DATA(cm);
1213 				break;
1214 
1215 			case IP_TOS:
1216 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1217 					error = EINVAL;
1218 					break;
1219 				}
1220 				tos = *(u_char *)CMSG_DATA(cm);
1221 				break;
1222 
1223 			case IP_FLOWID:
1224 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1225 					error = EINVAL;
1226 					break;
1227 				}
1228 				flowid = *(uint32_t *) CMSG_DATA(cm);
1229 				break;
1230 
1231 			case IP_FLOWTYPE:
1232 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1233 					error = EINVAL;
1234 					break;
1235 				}
1236 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1237 				break;
1238 
1239 #ifdef	RSS
1240 			case IP_RSSBUCKETID:
1241 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1242 					error = EINVAL;
1243 					break;
1244 				}
1245 				/* This is just a placeholder for now */
1246 				break;
1247 #endif	/* RSS */
1248 			default:
1249 				error = ENOPROTOOPT;
1250 				break;
1251 			}
1252 			if (error)
1253 				break;
1254 		}
1255 		m_freem(control);
1256 		control = NULL;
1257 	}
1258 	if (error)
1259 		goto release;
1260 
1261 	pr = inp->inp_socket->so_proto->pr_protocol;
1262 	pcbinfo = udp_get_inpcbinfo(pr);
1263 
1264 	/*
1265 	 * If the IP_SENDSRCADDR control message was specified, override the
1266 	 * source address for this datagram.  Its use is invalidated if the
1267 	 * address thus specified is incomplete or clobbers other inpcbs.
1268 	 */
1269 	laddr = inp->inp_laddr;
1270 	lport = inp->inp_lport;
1271 	if (src.sin_family == AF_INET) {
1272 		if ((lport == 0) ||
1273 		    (laddr.s_addr == INADDR_ANY &&
1274 		     src.sin_addr.s_addr == INADDR_ANY)) {
1275 			error = EINVAL;
1276 			goto release;
1277 		}
1278 		INP_HASH_WLOCK(pcbinfo);
1279 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1280 		    &laddr.s_addr, &lport, td->td_ucred);
1281 		INP_HASH_WUNLOCK(pcbinfo);
1282 		if (error)
1283 			goto release;
1284 	}
1285 
1286 	/*
1287 	 * If a UDP socket has been connected, then a local address/port will
1288 	 * have been selected and bound.
1289 	 *
1290 	 * If a UDP socket has not been connected to, then an explicit
1291 	 * destination address must be used, in which case a local
1292 	 * address/port may not have been selected and bound.
1293 	 */
1294 	if (sin != NULL) {
1295 		INP_LOCK_ASSERT(inp);
1296 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1297 			error = EISCONN;
1298 			goto release;
1299 		}
1300 
1301 		/*
1302 		 * Jail may rewrite the destination address, so let it do
1303 		 * that before we use it.
1304 		 */
1305 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1306 		if (error)
1307 			goto release;
1308 
1309 		/*
1310 		 * If a local address or port hasn't yet been selected, or if
1311 		 * the destination address needs to be rewritten due to using
1312 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1313 		 * to do the heavy lifting.  Once a port is selected, we
1314 		 * commit the binding back to the socket; we also commit the
1315 		 * binding of the address if in jail.
1316 		 *
1317 		 * If we already have a valid binding and we're not
1318 		 * requesting a destination address rewrite, use a fast path.
1319 		 */
1320 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1321 		    inp->inp_lport == 0 ||
1322 		    sin->sin_addr.s_addr == INADDR_ANY ||
1323 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1324 			INP_HASH_WLOCK(pcbinfo);
1325 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1326 			    &lport, &faddr.s_addr, &fport, NULL,
1327 			    td->td_ucred);
1328 			if (error) {
1329 				INP_HASH_WUNLOCK(pcbinfo);
1330 				goto release;
1331 			}
1332 
1333 			/*
1334 			 * XXXRW: Why not commit the port if the address is
1335 			 * !INADDR_ANY?
1336 			 */
1337 			/* Commit the local port if newly assigned. */
1338 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1339 			    inp->inp_lport == 0) {
1340 				INP_WLOCK_ASSERT(inp);
1341 				/*
1342 				 * Remember addr if jailed, to prevent
1343 				 * rebinding.
1344 				 */
1345 				if (prison_flag(td->td_ucred, PR_IP4))
1346 					inp->inp_laddr = laddr;
1347 				inp->inp_lport = lport;
1348 				error = in_pcbinshash(inp);
1349 				INP_HASH_WUNLOCK(pcbinfo);
1350 				if (error != 0) {
1351 					inp->inp_lport = 0;
1352 					error = EAGAIN;
1353 					goto release;
1354 				}
1355 				inp->inp_flags |= INP_ANONPORT;
1356 			} else
1357 				INP_HASH_WUNLOCK(pcbinfo);
1358 		} else {
1359 			faddr = sin->sin_addr;
1360 			fport = sin->sin_port;
1361 		}
1362 	} else {
1363 		INP_LOCK_ASSERT(inp);
1364 		faddr = inp->inp_faddr;
1365 		fport = inp->inp_fport;
1366 		if (faddr.s_addr == INADDR_ANY) {
1367 			error = ENOTCONN;
1368 			goto release;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1374 	 * link-layer headers.  Immediate slide the data pointer back forward
1375 	 * since we won't use that space at this layer.
1376 	 */
1377 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1378 	if (m == NULL) {
1379 		error = ENOBUFS;
1380 		goto release;
1381 	}
1382 	m->m_data += max_linkhdr;
1383 	m->m_len -= max_linkhdr;
1384 	m->m_pkthdr.len -= max_linkhdr;
1385 
1386 	/*
1387 	 * Fill in mbuf with extended UDP header and addresses and length put
1388 	 * into network format.
1389 	 */
1390 	ui = mtod(m, struct udpiphdr *);
1391 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1392 	ui->ui_v = IPVERSION << 4;
1393 	ui->ui_pr = pr;
1394 	ui->ui_src = laddr;
1395 	ui->ui_dst = faddr;
1396 	ui->ui_sport = lport;
1397 	ui->ui_dport = fport;
1398 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1399 	if (pr == IPPROTO_UDPLITE) {
1400 		struct udpcb *up;
1401 		uint16_t plen;
1402 
1403 		up = intoudpcb(inp);
1404 		cscov = up->u_txcslen;
1405 		plen = (u_short)len + sizeof(struct udphdr);
1406 		if (cscov >= plen)
1407 			cscov = 0;
1408 		ui->ui_len = htons(plen);
1409 		ui->ui_ulen = htons(cscov);
1410 		/*
1411 		 * For UDP-Lite, checksum coverage length of zero means
1412 		 * the entire UDPLite packet is covered by the checksum.
1413 		 */
1414 		cscov_partial = (cscov == 0) ? 0 : 1;
1415 	}
1416 
1417 	/*
1418 	 * Set the Don't Fragment bit in the IP header.
1419 	 */
1420 	if (inp->inp_flags & INP_DONTFRAG) {
1421 		struct ip *ip;
1422 
1423 		ip = (struct ip *)&ui->ui_i;
1424 		ip->ip_off |= htons(IP_DF);
1425 	}
1426 
1427 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1428 		ipflags |= IP_ROUTETOIF;
1429 	if (inp->inp_socket->so_options & SO_BROADCAST)
1430 		ipflags |= IP_ALLOWBROADCAST;
1431 	if (inp->inp_flags & INP_ONESBCAST)
1432 		ipflags |= IP_SENDONES;
1433 
1434 #ifdef MAC
1435 	mac_inpcb_create_mbuf(inp, m);
1436 #endif
1437 
1438 	/*
1439 	 * Set up checksum and output datagram.
1440 	 */
1441 	ui->ui_sum = 0;
1442 	if (pr == IPPROTO_UDPLITE) {
1443 		if (inp->inp_flags & INP_ONESBCAST)
1444 			faddr.s_addr = INADDR_BROADCAST;
1445 		if (cscov_partial) {
1446 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1447 				ui->ui_sum = 0xffff;
1448 		} else {
1449 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1450 				ui->ui_sum = 0xffff;
1451 		}
1452 	} else if (V_udp_cksum) {
1453 		if (inp->inp_flags & INP_ONESBCAST)
1454 			faddr.s_addr = INADDR_BROADCAST;
1455 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1456 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1457 		m->m_pkthdr.csum_flags = CSUM_UDP;
1458 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1459 	}
1460 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1461 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1462 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1463 	UDPSTAT_INC(udps_opackets);
1464 
1465 	/*
1466 	 * Setup flowid / RSS information for outbound socket.
1467 	 *
1468 	 * Once the UDP code decides to set a flowid some other way,
1469 	 * this allows the flowid to be overridden by userland.
1470 	 */
1471 	if (flowtype != M_HASHTYPE_NONE) {
1472 		m->m_pkthdr.flowid = flowid;
1473 		M_HASHTYPE_SET(m, flowtype);
1474 	}
1475 #if defined(ROUTE_MPATH) || defined(RSS)
1476 	else if (CALC_FLOWID_OUTBOUND_SENDTO) {
1477 		uint32_t hash_val, hash_type;
1478 
1479 		hash_val = fib4_calc_packet_hash(laddr, faddr,
1480 		    lport, fport, pr, &hash_type);
1481 		m->m_pkthdr.flowid = hash_val;
1482 		M_HASHTYPE_SET(m, hash_type);
1483 	}
1484 
1485 	/*
1486 	 * Don't override with the inp cached flowid value.
1487 	 *
1488 	 * Depending upon the kind of send being done, the inp
1489 	 * flowid/flowtype values may actually not be appropriate
1490 	 * for this particular socket send.
1491 	 *
1492 	 * We should either leave the flowid at zero (which is what is
1493 	 * currently done) or set it to some software generated
1494 	 * hash value based on the packet contents.
1495 	 */
1496 	ipflags |= IP_NODEFAULTFLOWID;
1497 #endif	/* RSS */
1498 
1499 	if (pr == IPPROTO_UDPLITE)
1500 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1501 	else
1502 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1503 	error = ip_output(m, inp->inp_options,
1504 	    INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags,
1505 	    inp->inp_moptions, inp);
1506 	INP_UNLOCK(inp);
1507 	NET_EPOCH_EXIT(et);
1508 	return (error);
1509 
1510 release:
1511 	INP_UNLOCK(inp);
1512 	NET_EPOCH_EXIT(et);
1513 	m_freem(m);
1514 	return (error);
1515 }
1516 
1517 static void
1518 udp_abort(struct socket *so)
1519 {
1520 	struct inpcb *inp;
1521 	struct inpcbinfo *pcbinfo;
1522 
1523 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1524 	inp = sotoinpcb(so);
1525 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1526 	INP_WLOCK(inp);
1527 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1528 		INP_HASH_WLOCK(pcbinfo);
1529 		in_pcbdisconnect(inp);
1530 		inp->inp_laddr.s_addr = INADDR_ANY;
1531 		INP_HASH_WUNLOCK(pcbinfo);
1532 		soisdisconnected(so);
1533 	}
1534 	INP_WUNLOCK(inp);
1535 }
1536 
1537 static int
1538 udp_attach(struct socket *so, int proto, struct thread *td)
1539 {
1540 	static uint32_t udp_flowid;
1541 	struct inpcb *inp;
1542 	struct inpcbinfo *pcbinfo;
1543 	int error;
1544 
1545 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1546 	inp = sotoinpcb(so);
1547 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1548 	error = soreserve(so, udp_sendspace, udp_recvspace);
1549 	if (error)
1550 		return (error);
1551 	error = in_pcballoc(so, pcbinfo);
1552 	if (error)
1553 		return (error);
1554 
1555 	inp = sotoinpcb(so);
1556 	inp->inp_vflag |= INP_IPV4;
1557 	inp->inp_ip_ttl = V_ip_defttl;
1558 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1559 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1560 
1561 	error = udp_newudpcb(inp);
1562 	if (error) {
1563 		in_pcbdetach(inp);
1564 		in_pcbfree(inp);
1565 		return (error);
1566 	}
1567 	INP_WUNLOCK(inp);
1568 
1569 	return (0);
1570 }
1571 #endif /* INET */
1572 
1573 int
1574 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1575 {
1576 	struct inpcb *inp;
1577 	struct udpcb *up;
1578 
1579 	KASSERT(so->so_type == SOCK_DGRAM,
1580 	    ("udp_set_kernel_tunneling: !dgram"));
1581 	inp = sotoinpcb(so);
1582 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1583 	INP_WLOCK(inp);
1584 	up = intoudpcb(inp);
1585 	if ((up->u_tun_func != NULL) ||
1586 	    (up->u_icmp_func != NULL)) {
1587 		INP_WUNLOCK(inp);
1588 		return (EBUSY);
1589 	}
1590 	up->u_tun_func = f;
1591 	up->u_icmp_func = i;
1592 	up->u_tun_ctx = ctx;
1593 	INP_WUNLOCK(inp);
1594 	return (0);
1595 }
1596 
1597 #ifdef INET
1598 static int
1599 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1600 {
1601 	struct inpcb *inp;
1602 	struct inpcbinfo *pcbinfo;
1603 	struct sockaddr_in *sinp;
1604 	int error;
1605 
1606 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1607 	inp = sotoinpcb(so);
1608 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1609 
1610 	sinp = (struct sockaddr_in *)nam;
1611 	if (nam->sa_family != AF_INET) {
1612 		/*
1613 		 * Preserve compatibility with old programs.
1614 		 */
1615 		if (nam->sa_family != AF_UNSPEC ||
1616 		    nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
1617 		    sinp->sin_addr.s_addr != INADDR_ANY)
1618 			return (EAFNOSUPPORT);
1619 		nam->sa_family = AF_INET;
1620 	}
1621 	if (nam->sa_len != sizeof(struct sockaddr_in))
1622 		return (EINVAL);
1623 
1624 	INP_WLOCK(inp);
1625 	INP_HASH_WLOCK(pcbinfo);
1626 	error = in_pcbbind(inp, nam, td->td_ucred);
1627 	INP_HASH_WUNLOCK(pcbinfo);
1628 	INP_WUNLOCK(inp);
1629 	return (error);
1630 }
1631 
1632 static void
1633 udp_close(struct socket *so)
1634 {
1635 	struct inpcb *inp;
1636 	struct inpcbinfo *pcbinfo;
1637 
1638 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1639 	inp = sotoinpcb(so);
1640 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1641 	INP_WLOCK(inp);
1642 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1643 		INP_HASH_WLOCK(pcbinfo);
1644 		in_pcbdisconnect(inp);
1645 		inp->inp_laddr.s_addr = INADDR_ANY;
1646 		INP_HASH_WUNLOCK(pcbinfo);
1647 		soisdisconnected(so);
1648 	}
1649 	INP_WUNLOCK(inp);
1650 }
1651 
1652 static int
1653 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1654 {
1655 	struct epoch_tracker et;
1656 	struct inpcb *inp;
1657 	struct inpcbinfo *pcbinfo;
1658 	struct sockaddr_in *sin;
1659 	int error;
1660 
1661 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1662 	inp = sotoinpcb(so);
1663 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1664 
1665 	sin = (struct sockaddr_in *)nam;
1666 	if (sin->sin_family != AF_INET)
1667 		return (EAFNOSUPPORT);
1668 	if (sin->sin_len != sizeof(*sin))
1669 		return (EINVAL);
1670 
1671 	INP_WLOCK(inp);
1672 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1673 		INP_WUNLOCK(inp);
1674 		return (EISCONN);
1675 	}
1676 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1677 	if (error != 0) {
1678 		INP_WUNLOCK(inp);
1679 		return (error);
1680 	}
1681 	NET_EPOCH_ENTER(et);
1682 	INP_HASH_WLOCK(pcbinfo);
1683 	error = in_pcbconnect(inp, nam, td->td_ucred, true);
1684 	INP_HASH_WUNLOCK(pcbinfo);
1685 	NET_EPOCH_EXIT(et);
1686 	if (error == 0)
1687 		soisconnected(so);
1688 	INP_WUNLOCK(inp);
1689 	return (error);
1690 }
1691 
1692 static void
1693 udp_detach(struct socket *so)
1694 {
1695 	struct inpcb *inp;
1696 	struct udpcb *up;
1697 
1698 	inp = sotoinpcb(so);
1699 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1700 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1701 	    ("udp_detach: not disconnected"));
1702 	INP_WLOCK(inp);
1703 	up = intoudpcb(inp);
1704 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1705 	inp->inp_ppcb = NULL;
1706 	in_pcbdetach(inp);
1707 	in_pcbfree(inp);
1708 	udp_discardcb(up);
1709 }
1710 
1711 static int
1712 udp_disconnect(struct socket *so)
1713 {
1714 	struct inpcb *inp;
1715 	struct inpcbinfo *pcbinfo;
1716 
1717 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1718 	inp = sotoinpcb(so);
1719 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1720 	INP_WLOCK(inp);
1721 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1722 		INP_WUNLOCK(inp);
1723 		return (ENOTCONN);
1724 	}
1725 	INP_HASH_WLOCK(pcbinfo);
1726 	in_pcbdisconnect(inp);
1727 	inp->inp_laddr.s_addr = INADDR_ANY;
1728 	INP_HASH_WUNLOCK(pcbinfo);
1729 	SOCK_LOCK(so);
1730 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1731 	SOCK_UNLOCK(so);
1732 	INP_WUNLOCK(inp);
1733 	return (0);
1734 }
1735 
1736 static int
1737 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1738     struct mbuf *control, struct thread *td)
1739 {
1740 	struct inpcb *inp;
1741 	int error;
1742 
1743 	inp = sotoinpcb(so);
1744 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1745 
1746 	if (addr != NULL) {
1747 		error = 0;
1748 		if (addr->sa_family != AF_INET)
1749 			error = EAFNOSUPPORT;
1750 		else if (addr->sa_len != sizeof(struct sockaddr_in))
1751 			error = EINVAL;
1752 		if (__predict_false(error != 0)) {
1753 			m_freem(control);
1754 			m_freem(m);
1755 			return (error);
1756 		}
1757 	}
1758 	return (udp_output(inp, m, addr, control, td, flags));
1759 }
1760 #endif /* INET */
1761 
1762 int
1763 udp_shutdown(struct socket *so)
1764 {
1765 	struct inpcb *inp;
1766 
1767 	inp = sotoinpcb(so);
1768 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1769 	INP_WLOCK(inp);
1770 	socantsendmore(so);
1771 	INP_WUNLOCK(inp);
1772 	return (0);
1773 }
1774 
1775 #ifdef INET
1776 struct pr_usrreqs udp_usrreqs = {
1777 	.pru_abort =		udp_abort,
1778 	.pru_attach =		udp_attach,
1779 	.pru_bind =		udp_bind,
1780 	.pru_connect =		udp_connect,
1781 	.pru_control =		in_control,
1782 	.pru_detach =		udp_detach,
1783 	.pru_disconnect =	udp_disconnect,
1784 	.pru_peeraddr =		in_getpeeraddr,
1785 	.pru_send =		udp_send,
1786 	.pru_soreceive =	soreceive_dgram,
1787 	.pru_sosend =		sosend_dgram,
1788 	.pru_shutdown =		udp_shutdown,
1789 	.pru_sockaddr =		in_getsockaddr,
1790 	.pru_sosetlabel =	in_pcbsosetlabel,
1791 	.pru_close =		udp_close,
1792 };
1793 #endif /* INET */
1794