xref: /freebsd/sys/netinet/udp_usrreq.c (revision 809922b01004daf627ad4b8d92c7f98eb579043c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_route.h"
48 #include "opt_rss.h"
49 
50 #include <sys/param.h>
51 #include <sys/domain.h>
52 #include <sys/eventhandler.h>
53 #include <sys/jail.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/protosw.h>
61 #include <sys/sdt.h>
62 #include <sys/signalvar.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sx.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/systm.h>
69 
70 #include <vm/uma.h>
71 
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/route.h>
75 #include <net/route/nhop.h>
76 #include <net/rss_config.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_kdtrace.h>
80 #include <netinet/in_fib.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #endif
88 #include <netinet/ip_icmp.h>
89 #include <netinet/icmp_var.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/ip_options.h>
92 #ifdef INET6
93 #include <netinet6/ip6_var.h>
94 #endif
95 #include <netinet/udp.h>
96 #include <netinet/udp_var.h>
97 #include <netinet/udplite.h>
98 #include <netinet/in_rss.h>
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 /*
107  * UDP and UDP-Lite protocols implementation.
108  * Per RFC 768, August, 1980.
109  * Per RFC 3828, July, 2004.
110  */
111 
112 /*
113  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
114  * removes the only data integrity mechanism for packets and malformed
115  * packets that would otherwise be discarded due to bad checksums, and may
116  * cause problems (especially for NFS data blocks).
117  */
118 VNET_DEFINE(int, udp_cksum) = 1;
119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
120     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
121 
122 VNET_DEFINE(int, udp_log_in_vain) = 0;
123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
124     &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
125 
126 VNET_DEFINE(int, udp_blackhole) = 0;
127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
128     &VNET_NAME(udp_blackhole), 0,
129     "Do not send port unreachables for refused connects");
130 VNET_DEFINE(bool, udp_blackhole_local) = false;
131 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
132     CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false,
133     "Enforce net.inet.udp.blackhole for locally originated packets");
134 
135 u_long	udp_sendspace = 9216;		/* really max datagram size */
136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
137     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
138 
139 u_long	udp_recvspace = 40 * (1024 +
140 #ifdef INET6
141 				      sizeof(struct sockaddr_in6)
142 #else
143 				      sizeof(struct sockaddr_in)
144 #endif
145 				      );	/* 40 1K datagrams */
146 
147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
148     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
149 
150 VNET_DEFINE(struct inpcbinfo, udbinfo);
151 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
152 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
153 #define	V_udpcb_zone			VNET(udpcb_zone)
154 
155 #ifndef UDBHASHSIZE
156 #define	UDBHASHSIZE	128
157 #endif
158 
159 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
160 VNET_PCPUSTAT_SYSINIT(udpstat);
161 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
162     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
163 
164 #ifdef VIMAGE
165 VNET_PCPUSTAT_SYSUNINIT(udpstat);
166 #endif /* VIMAGE */
167 #ifdef INET
168 static void	udp_detach(struct socket *so);
169 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
170 		    struct mbuf *, struct thread *, int);
171 #endif
172 
173 INPCBSTORAGE_DEFINE(udpcbstor, "udpinp", "udp_inpcb", "udp", "udphash");
174 INPCBSTORAGE_DEFINE(udplitecbstor, "udpliteinp", "udplite_inpcb", "udplite",
175     "udplitehash");
176 
177 static void
178 udp_init(void *arg __unused)
179 {
180 
181 	/*
182 	 * For now default to 2-tuple UDP hashing - until the fragment
183 	 * reassembly code can also update the flowid.
184 	 *
185 	 * Once we can calculate the flowid that way and re-establish
186 	 * a 4-tuple, flip this to 4-tuple.
187 	 */
188 	in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE);
189 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
190 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
191 	uma_zone_set_max(V_udpcb_zone, maxsockets);
192 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
193 
194 	/* Additional pcbinfo for UDP-Lite */
195 	in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE,
196 	    UDBHASHSIZE);
197 }
198 VNET_SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL);
199 
200 /*
201  * Kernel module interface for updating udpstat.  The argument is an index
202  * into udpstat treated as an array of u_long.  While this encodes the
203  * general layout of udpstat into the caller, it doesn't encode its location,
204  * so that future changes to add, for example, per-CPU stats support won't
205  * cause binary compatibility problems for kernel modules.
206  */
207 void
208 kmod_udpstat_inc(int statnum)
209 {
210 
211 	counter_u64_add(VNET(udpstat)[statnum], 1);
212 }
213 
214 int
215 udp_newudpcb(struct inpcb *inp)
216 {
217 	struct udpcb *up;
218 
219 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
220 	if (up == NULL)
221 		return (ENOBUFS);
222 	inp->inp_ppcb = up;
223 	return (0);
224 }
225 
226 void
227 udp_discardcb(struct udpcb *up)
228 {
229 
230 	uma_zfree(V_udpcb_zone, up);
231 }
232 
233 #ifdef VIMAGE
234 static void
235 udp_destroy(void *unused __unused)
236 {
237 
238 	in_pcbinfo_destroy(&V_udbinfo);
239 	uma_zdestroy(V_udpcb_zone);
240 }
241 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
242 
243 static void
244 udplite_destroy(void *unused __unused)
245 {
246 
247 	in_pcbinfo_destroy(&V_ulitecbinfo);
248 }
249 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
250     NULL);
251 #endif
252 
253 #ifdef INET
254 /*
255  * Subroutine of udp_input(), which appends the provided mbuf chain to the
256  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
257  * contains the source address.  If the socket ends up being an IPv6 socket,
258  * udp_append() will convert to a sockaddr_in6 before passing the address
259  * into the socket code.
260  *
261  * In the normal case udp_append() will return 0, indicating that you
262  * must unlock the inp. However if a tunneling protocol is in place we increment
263  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
264  * then decrement the reference count. If the inp_rele returns 1, indicating the
265  * inp is gone, we return that to the caller to tell them *not* to unlock
266  * the inp. In the case of multi-cast this will cause the distribution
267  * to stop (though most tunneling protocols known currently do *not* use
268  * multicast).
269  */
270 static int
271 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
272     struct sockaddr_in *udp_in)
273 {
274 	struct sockaddr *append_sa;
275 	struct socket *so;
276 	struct mbuf *tmpopts, *opts = NULL;
277 #ifdef INET6
278 	struct sockaddr_in6 udp_in6;
279 #endif
280 	struct udpcb *up;
281 	bool filtered;
282 
283 	INP_LOCK_ASSERT(inp);
284 
285 	/*
286 	 * Engage the tunneling protocol.
287 	 */
288 	up = intoudpcb(inp);
289 	if (up->u_tun_func != NULL) {
290 		in_pcbref(inp);
291 		INP_RUNLOCK(inp);
292 		filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
293 		    up->u_tun_ctx);
294 		INP_RLOCK(inp);
295 		if (filtered)
296 			return (in_pcbrele_rlocked(inp));
297 	}
298 
299 	off += sizeof(struct udphdr);
300 
301 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
302 	/* Check AH/ESP integrity. */
303 	if (IPSEC_ENABLED(ipv4) &&
304 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
305 		m_freem(n);
306 		return (0);
307 	}
308 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
309 		if (IPSEC_ENABLED(ipv4) &&
310 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
311 			return (0);	/* Consumed. */
312 	}
313 #endif /* IPSEC */
314 #ifdef MAC
315 	if (mac_inpcb_check_deliver(inp, n) != 0) {
316 		m_freem(n);
317 		return (0);
318 	}
319 #endif /* MAC */
320 	if (inp->inp_flags & INP_CONTROLOPTS ||
321 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
322 #ifdef INET6
323 		if (inp->inp_vflag & INP_IPV6)
324 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
325 		else
326 #endif /* INET6 */
327 			ip_savecontrol(inp, &opts, ip, n);
328 	}
329 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
330 		tmpopts = sbcreatecontrol(&udp_in[1],
331 		    sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP,
332 		    M_NOWAIT);
333 		if (tmpopts) {
334 			if (opts) {
335 				tmpopts->m_next = opts;
336 				opts = tmpopts;
337 			} else
338 				opts = tmpopts;
339 		}
340 	}
341 #ifdef INET6
342 	if (inp->inp_vflag & INP_IPV6) {
343 		bzero(&udp_in6, sizeof(udp_in6));
344 		udp_in6.sin6_len = sizeof(udp_in6);
345 		udp_in6.sin6_family = AF_INET6;
346 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
347 		append_sa = (struct sockaddr *)&udp_in6;
348 	} else
349 #endif /* INET6 */
350 		append_sa = (struct sockaddr *)&udp_in[0];
351 	m_adj(n, off);
352 
353 	so = inp->inp_socket;
354 	SOCKBUF_LOCK(&so->so_rcv);
355 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
356 		soroverflow_locked(so);
357 		m_freem(n);
358 		if (opts)
359 			m_freem(opts);
360 		UDPSTAT_INC(udps_fullsock);
361 	} else
362 		sorwakeup_locked(so);
363 	return (0);
364 }
365 
366 static bool
367 udp_multi_match(const struct inpcb *inp, void *v)
368 {
369 	struct ip *ip = v;
370 	struct udphdr *uh = (struct udphdr *)(ip + 1);
371 
372 	if (inp->inp_lport != uh->uh_dport)
373 		return (false);
374 #ifdef INET6
375 	if ((inp->inp_vflag & INP_IPV4) == 0)
376 		return (false);
377 #endif
378 	if (inp->inp_laddr.s_addr != INADDR_ANY &&
379 	    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
380 		return (false);
381 	if (inp->inp_faddr.s_addr != INADDR_ANY &&
382 	    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
383 		return (false);
384 	if (inp->inp_fport != 0 &&
385 	    inp->inp_fport != uh->uh_sport)
386 		return (false);
387 
388 	return (true);
389 }
390 
391 static int
392 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in)
393 {
394 	struct ip *ip = mtod(m, struct ip *);
395 	struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto),
396 	    INPLOOKUP_RLOCKPCB, udp_multi_match, ip);
397 #ifdef KDTRACE_HOOKS
398 	struct udphdr *uh = (struct udphdr *)(ip + 1);
399 #endif
400 	struct inpcb *inp;
401 	struct mbuf *n;
402 	int appends = 0;
403 
404 	MPASS(ip->ip_hl == sizeof(struct ip) >> 2);
405 
406 	while ((inp = inp_next(&inpi)) != NULL) {
407 		/*
408 		 * XXXRW: Because we weren't holding either the inpcb
409 		 * or the hash lock when we checked for a match
410 		 * before, we should probably recheck now that the
411 		 * inpcb lock is held.
412 		 */
413 		/*
414 		 * Handle socket delivery policy for any-source
415 		 * and source-specific multicast. [RFC3678]
416 		 */
417 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
418 			struct ip_moptions	*imo;
419 			struct sockaddr_in	 group;
420 			int			 blocked;
421 
422 			imo = inp->inp_moptions;
423 			if (imo == NULL)
424 				continue;
425 			bzero(&group, sizeof(struct sockaddr_in));
426 			group.sin_len = sizeof(struct sockaddr_in);
427 			group.sin_family = AF_INET;
428 			group.sin_addr = ip->ip_dst;
429 
430 			blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif,
431 				(struct sockaddr *)&group,
432 				(struct sockaddr *)&udp_in[0]);
433 			if (blocked != MCAST_PASS) {
434 				if (blocked == MCAST_NOTGMEMBER)
435 					IPSTAT_INC(ips_notmember);
436 				if (blocked == MCAST_NOTSMEMBER ||
437 				    blocked == MCAST_MUTED)
438 					UDPSTAT_INC(udps_filtermcast);
439 				continue;
440 			}
441 		}
442 		if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) {
443 			if (proto == IPPROTO_UDPLITE)
444 				UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
445 			else
446 				UDP_PROBE(receive, NULL, inp, ip, inp, uh);
447 			if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) {
448 				INP_RUNLOCK(inp);
449 				break;
450 			} else
451 				appends++;
452 		}
453 		/*
454 		 * Don't look for additional matches if this one does
455 		 * not have either the SO_REUSEPORT or SO_REUSEADDR
456 		 * socket options set.  This heuristic avoids
457 		 * searching through all pcbs in the common case of a
458 		 * non-shared port.  It assumes that an application
459 		 * will never clear these options after setting them.
460 		 */
461 		if ((inp->inp_socket->so_options &
462 		    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) {
463 			INP_RUNLOCK(inp);
464 			break;
465 		}
466 	}
467 
468 	if (appends == 0) {
469 		/*
470 		 * No matching pcb found; discard datagram.  (No need
471 		 * to send an ICMP Port Unreachable for a broadcast
472 		 * or multicast datgram.)
473 		 */
474 		UDPSTAT_INC(udps_noport);
475 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
476 			UDPSTAT_INC(udps_noportmcast);
477 		else
478 			UDPSTAT_INC(udps_noportbcast);
479 	}
480 	m_freem(m);
481 
482 	return (IPPROTO_DONE);
483 }
484 
485 int
486 udp_input(struct mbuf **mp, int *offp, int proto)
487 {
488 	struct ip *ip;
489 	struct udphdr *uh;
490 	struct ifnet *ifp;
491 	struct inpcb *inp;
492 	uint16_t len, ip_len;
493 	struct inpcbinfo *pcbinfo;
494 	struct sockaddr_in udp_in[2];
495 	struct mbuf *m;
496 	struct m_tag *fwd_tag;
497 	int cscov_partial, iphlen;
498 
499 	m = *mp;
500 	iphlen = *offp;
501 	ifp = m->m_pkthdr.rcvif;
502 	*mp = NULL;
503 	UDPSTAT_INC(udps_ipackets);
504 
505 	/*
506 	 * Strip IP options, if any; should skip this, make available to
507 	 * user, and use on returned packets, but we don't yet have a way to
508 	 * check the checksum with options still present.
509 	 */
510 	if (iphlen > sizeof (struct ip)) {
511 		ip_stripoptions(m);
512 		iphlen = sizeof(struct ip);
513 	}
514 
515 	/*
516 	 * Get IP and UDP header together in first mbuf.
517 	 */
518 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
519 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
520 			UDPSTAT_INC(udps_hdrops);
521 			return (IPPROTO_DONE);
522 		}
523 	}
524 	ip = mtod(m, struct ip *);
525 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
526 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
527 
528 	/*
529 	 * Destination port of 0 is illegal, based on RFC768.
530 	 */
531 	if (uh->uh_dport == 0)
532 		goto badunlocked;
533 
534 	/*
535 	 * Construct sockaddr format source address.  Stuff source address
536 	 * and datagram in user buffer.
537 	 */
538 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
539 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
540 	udp_in[0].sin_family = AF_INET;
541 	udp_in[0].sin_port = uh->uh_sport;
542 	udp_in[0].sin_addr = ip->ip_src;
543 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
544 	udp_in[1].sin_family = AF_INET;
545 	udp_in[1].sin_port = uh->uh_dport;
546 	udp_in[1].sin_addr = ip->ip_dst;
547 
548 	/*
549 	 * Make mbuf data length reflect UDP length.  If not enough data to
550 	 * reflect UDP length, drop.
551 	 */
552 	len = ntohs((u_short)uh->uh_ulen);
553 	ip_len = ntohs(ip->ip_len) - iphlen;
554 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
555 		/* Zero means checksum over the complete packet. */
556 		if (len == 0)
557 			len = ip_len;
558 		cscov_partial = 0;
559 	}
560 	if (ip_len != len) {
561 		if (len > ip_len || len < sizeof(struct udphdr)) {
562 			UDPSTAT_INC(udps_badlen);
563 			goto badunlocked;
564 		}
565 		if (proto == IPPROTO_UDP)
566 			m_adj(m, len - ip_len);
567 	}
568 
569 	/*
570 	 * Checksum extended UDP header and data.
571 	 */
572 	if (uh->uh_sum) {
573 		u_short uh_sum;
574 
575 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
576 		    !cscov_partial) {
577 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
578 				uh_sum = m->m_pkthdr.csum_data;
579 			else
580 				uh_sum = in_pseudo(ip->ip_src.s_addr,
581 				    ip->ip_dst.s_addr, htonl((u_short)len +
582 				    m->m_pkthdr.csum_data + proto));
583 			uh_sum ^= 0xffff;
584 		} else {
585 			char b[offsetof(struct ipovly, ih_src)];
586 			struct ipovly *ipov = (struct ipovly *)ip;
587 
588 			bcopy(ipov, b, sizeof(b));
589 			bzero(ipov, sizeof(ipov->ih_x1));
590 			ipov->ih_len = (proto == IPPROTO_UDP) ?
591 			    uh->uh_ulen : htons(ip_len);
592 			uh_sum = in_cksum(m, len + sizeof (struct ip));
593 			bcopy(b, ipov, sizeof(b));
594 		}
595 		if (uh_sum) {
596 			UDPSTAT_INC(udps_badsum);
597 			m_freem(m);
598 			return (IPPROTO_DONE);
599 		}
600 	} else {
601 		if (proto == IPPROTO_UDP) {
602 			UDPSTAT_INC(udps_nosum);
603 		} else {
604 			/* UDPLite requires a checksum */
605 			/* XXX: What is the right UDPLite MIB counter here? */
606 			m_freem(m);
607 			return (IPPROTO_DONE);
608 		}
609 	}
610 
611 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
612 	    in_broadcast(ip->ip_dst, ifp))
613 		return (udp_multi_input(m, proto, udp_in));
614 
615 	pcbinfo = udp_get_inpcbinfo(proto);
616 
617 	/*
618 	 * Locate pcb for datagram.
619 	 *
620 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
621 	 */
622 	if ((m->m_flags & M_IP_NEXTHOP) &&
623 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
624 		struct sockaddr_in *next_hop;
625 
626 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
627 
628 		/*
629 		 * Transparently forwarded. Pretend to be the destination.
630 		 * Already got one like this?
631 		 */
632 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
633 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
634 		if (!inp) {
635 			/*
636 			 * It's new.  Try to find the ambushing socket.
637 			 * Because we've rewritten the destination address,
638 			 * any hardware-generated hash is ignored.
639 			 */
640 			inp = in_pcblookup(pcbinfo, ip->ip_src,
641 			    uh->uh_sport, next_hop->sin_addr,
642 			    next_hop->sin_port ? htons(next_hop->sin_port) :
643 			    uh->uh_dport, INPLOOKUP_WILDCARD |
644 			    INPLOOKUP_RLOCKPCB, ifp);
645 		}
646 		/* Remove the tag from the packet. We don't need it anymore. */
647 		m_tag_delete(m, fwd_tag);
648 		m->m_flags &= ~M_IP_NEXTHOP;
649 	} else
650 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
651 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
652 		    INPLOOKUP_RLOCKPCB, ifp, m);
653 	if (inp == NULL) {
654 		if (V_udp_log_in_vain) {
655 			char src[INET_ADDRSTRLEN];
656 			char dst[INET_ADDRSTRLEN];
657 
658 			log(LOG_INFO,
659 			    "Connection attempt to UDP %s:%d from %s:%d\n",
660 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
661 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
662 		}
663 		if (proto == IPPROTO_UDPLITE)
664 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
665 		else
666 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
667 		UDPSTAT_INC(udps_noport);
668 		if (m->m_flags & (M_BCAST | M_MCAST)) {
669 			UDPSTAT_INC(udps_noportbcast);
670 			goto badunlocked;
671 		}
672 		if (V_udp_blackhole && (V_udp_blackhole_local ||
673 		    !in_localip(ip->ip_src)))
674 			goto badunlocked;
675 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
676 			goto badunlocked;
677 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
678 		return (IPPROTO_DONE);
679 	}
680 
681 	/*
682 	 * Check the minimum TTL for socket.
683 	 */
684 	INP_RLOCK_ASSERT(inp);
685 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
686 		if (proto == IPPROTO_UDPLITE)
687 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
688 		else
689 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
690 		INP_RUNLOCK(inp);
691 		m_freem(m);
692 		return (IPPROTO_DONE);
693 	}
694 	if (cscov_partial) {
695 		struct udpcb *up;
696 
697 		up = intoudpcb(inp);
698 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
699 			INP_RUNLOCK(inp);
700 			m_freem(m);
701 			return (IPPROTO_DONE);
702 		}
703 	}
704 
705 	if (proto == IPPROTO_UDPLITE)
706 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
707 	else
708 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
709 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
710 		INP_RUNLOCK(inp);
711 	return (IPPROTO_DONE);
712 
713 badunlocked:
714 	m_freem(m);
715 	return (IPPROTO_DONE);
716 }
717 #endif /* INET */
718 
719 /*
720  * Notify a udp user of an asynchronous error; just wake up so that they can
721  * collect error status.
722  */
723 struct inpcb *
724 udp_notify(struct inpcb *inp, int errno)
725 {
726 
727 	INP_WLOCK_ASSERT(inp);
728 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
729 	     errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
730 		NH_FREE(inp->inp_route.ro_nh);
731 		inp->inp_route.ro_nh = (struct nhop_object *)NULL;
732 	}
733 
734 	inp->inp_socket->so_error = errno;
735 	sorwakeup(inp->inp_socket);
736 	sowwakeup(inp->inp_socket);
737 	return (inp);
738 }
739 
740 #ifdef INET
741 static void
742 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
743     struct inpcbinfo *pcbinfo)
744 {
745 	struct ip *ip = vip;
746 	struct udphdr *uh;
747 	struct in_addr faddr;
748 	struct inpcb *inp;
749 
750 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
751 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
752 		return;
753 
754 	if (PRC_IS_REDIRECT(cmd)) {
755 		/* signal EHOSTDOWN, as it flushes the cached route */
756 		in_pcbnotifyall(pcbinfo, faddr, EHOSTDOWN, udp_notify);
757 		return;
758 	}
759 
760 	/*
761 	 * Hostdead is ugly because it goes linearly through all PCBs.
762 	 *
763 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
764 	 * DoS attack on machines with many connections.
765 	 */
766 	if (cmd == PRC_HOSTDEAD)
767 		ip = NULL;
768 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
769 		return;
770 	if (ip != NULL) {
771 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
772 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
773 		    ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
774 		if (inp != NULL) {
775 			INP_WLOCK_ASSERT(inp);
776 			if (inp->inp_socket != NULL) {
777 				udp_notify(inp, inetctlerrmap[cmd]);
778 			}
779 			INP_WUNLOCK(inp);
780 		} else {
781 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
782 					   ip->ip_src, uh->uh_sport,
783 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
784 			if (inp != NULL) {
785 				struct udpcb *up;
786 				void *ctx;
787 				udp_tun_icmp_t func;
788 
789 				up = intoudpcb(inp);
790 				ctx = up->u_tun_ctx;
791 				func = up->u_icmp_func;
792 				INP_RUNLOCK(inp);
793 				if (func != NULL)
794 					(*func)(cmd, sa, vip, ctx);
795 			}
796 		}
797 	} else
798 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
799 		    udp_notify);
800 }
801 void
802 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
803 {
804 
805 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
806 }
807 
808 void
809 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
810 {
811 
812 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
813 }
814 #endif /* INET */
815 
816 static int
817 udp_pcblist(SYSCTL_HANDLER_ARGS)
818 {
819 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo,
820 	    INPLOOKUP_RLOCKPCB);
821 	struct xinpgen xig;
822 	struct inpcb *inp;
823 	int error;
824 
825 	if (req->newptr != 0)
826 		return (EPERM);
827 
828 	if (req->oldptr == 0) {
829 		int n;
830 
831 		n = V_udbinfo.ipi_count;
832 		n += imax(n / 8, 10);
833 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
834 		return (0);
835 	}
836 
837 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
838 		return (error);
839 
840 	bzero(&xig, sizeof(xig));
841 	xig.xig_len = sizeof xig;
842 	xig.xig_count = V_udbinfo.ipi_count;
843 	xig.xig_gen = V_udbinfo.ipi_gencnt;
844 	xig.xig_sogen = so_gencnt;
845 	error = SYSCTL_OUT(req, &xig, sizeof xig);
846 	if (error)
847 		return (error);
848 
849 	while ((inp = inp_next(&inpi)) != NULL) {
850 		if (inp->inp_gencnt <= xig.xig_gen &&
851 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
852 			struct xinpcb xi;
853 
854 			in_pcbtoxinpcb(inp, &xi);
855 			error = SYSCTL_OUT(req, &xi, sizeof xi);
856 			if (error) {
857 				INP_RUNLOCK(inp);
858 				break;
859 			}
860 		}
861 	}
862 
863 	if (!error) {
864 		/*
865 		 * Give the user an updated idea of our state.  If the
866 		 * generation differs from what we told her before, she knows
867 		 * that something happened while we were processing this
868 		 * request, and it might be necessary to retry.
869 		 */
870 		xig.xig_gen = V_udbinfo.ipi_gencnt;
871 		xig.xig_sogen = so_gencnt;
872 		xig.xig_count = V_udbinfo.ipi_count;
873 		error = SYSCTL_OUT(req, &xig, sizeof xig);
874 	}
875 
876 	return (error);
877 }
878 
879 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
880     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
881     udp_pcblist, "S,xinpcb",
882     "List of active UDP sockets");
883 
884 #ifdef INET
885 static int
886 udp_getcred(SYSCTL_HANDLER_ARGS)
887 {
888 	struct xucred xuc;
889 	struct sockaddr_in addrs[2];
890 	struct epoch_tracker et;
891 	struct inpcb *inp;
892 	int error;
893 
894 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
895 	if (error)
896 		return (error);
897 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
898 	if (error)
899 		return (error);
900 	NET_EPOCH_ENTER(et);
901 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
902 	    addrs[0].sin_addr, addrs[0].sin_port,
903 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
904 	NET_EPOCH_EXIT(et);
905 	if (inp != NULL) {
906 		INP_RLOCK_ASSERT(inp);
907 		if (inp->inp_socket == NULL)
908 			error = ENOENT;
909 		if (error == 0)
910 			error = cr_canseeinpcb(req->td->td_ucred, inp);
911 		if (error == 0)
912 			cru2x(inp->inp_cred, &xuc);
913 		INP_RUNLOCK(inp);
914 	} else
915 		error = ENOENT;
916 	if (error == 0)
917 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
918 	return (error);
919 }
920 
921 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
922     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
923     0, 0, udp_getcred, "S,xucred",
924     "Get the xucred of a UDP connection");
925 #endif /* INET */
926 
927 int
928 udp_ctloutput(struct socket *so, struct sockopt *sopt)
929 {
930 	struct inpcb *inp;
931 	struct udpcb *up;
932 	int isudplite, error, optval;
933 
934 	error = 0;
935 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
936 	inp = sotoinpcb(so);
937 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
938 	INP_WLOCK(inp);
939 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
940 #ifdef INET6
941 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
942 			INP_WUNLOCK(inp);
943 			error = ip6_ctloutput(so, sopt);
944 		}
945 #endif
946 #if defined(INET) && defined(INET6)
947 		else
948 #endif
949 #ifdef INET
950 		{
951 			INP_WUNLOCK(inp);
952 			error = ip_ctloutput(so, sopt);
953 		}
954 #endif
955 		return (error);
956 	}
957 
958 	switch (sopt->sopt_dir) {
959 	case SOPT_SET:
960 		switch (sopt->sopt_name) {
961 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
962 #ifdef INET
963 		case UDP_ENCAP:
964 			if (!IPSEC_ENABLED(ipv4)) {
965 				INP_WUNLOCK(inp);
966 				return (ENOPROTOOPT);
967 			}
968 			error = UDPENCAP_PCBCTL(inp, sopt);
969 			break;
970 #endif /* INET */
971 #endif /* IPSEC */
972 		case UDPLITE_SEND_CSCOV:
973 		case UDPLITE_RECV_CSCOV:
974 			if (!isudplite) {
975 				INP_WUNLOCK(inp);
976 				error = ENOPROTOOPT;
977 				break;
978 			}
979 			INP_WUNLOCK(inp);
980 			error = sooptcopyin(sopt, &optval, sizeof(optval),
981 			    sizeof(optval));
982 			if (error != 0)
983 				break;
984 			inp = sotoinpcb(so);
985 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
986 			INP_WLOCK(inp);
987 			up = intoudpcb(inp);
988 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
989 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
990 				INP_WUNLOCK(inp);
991 				error = EINVAL;
992 				break;
993 			}
994 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
995 				up->u_txcslen = optval;
996 			else
997 				up->u_rxcslen = optval;
998 			INP_WUNLOCK(inp);
999 			break;
1000 		default:
1001 			INP_WUNLOCK(inp);
1002 			error = ENOPROTOOPT;
1003 			break;
1004 		}
1005 		break;
1006 	case SOPT_GET:
1007 		switch (sopt->sopt_name) {
1008 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1009 #ifdef INET
1010 		case UDP_ENCAP:
1011 			if (!IPSEC_ENABLED(ipv4)) {
1012 				INP_WUNLOCK(inp);
1013 				return (ENOPROTOOPT);
1014 			}
1015 			error = UDPENCAP_PCBCTL(inp, sopt);
1016 			break;
1017 #endif /* INET */
1018 #endif /* IPSEC */
1019 		case UDPLITE_SEND_CSCOV:
1020 		case UDPLITE_RECV_CSCOV:
1021 			if (!isudplite) {
1022 				INP_WUNLOCK(inp);
1023 				error = ENOPROTOOPT;
1024 				break;
1025 			}
1026 			up = intoudpcb(inp);
1027 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1028 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1029 				optval = up->u_txcslen;
1030 			else
1031 				optval = up->u_rxcslen;
1032 			INP_WUNLOCK(inp);
1033 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1034 			break;
1035 		default:
1036 			INP_WUNLOCK(inp);
1037 			error = ENOPROTOOPT;
1038 			break;
1039 		}
1040 		break;
1041 	}
1042 	return (error);
1043 }
1044 
1045 #ifdef INET
1046 #ifdef INET6
1047 /* The logic here is derived from ip6_setpktopt(). See comments there. */
1048 static int
1049 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
1050     struct inpcb *inp, int flags)
1051 {
1052 	struct ifnet *ifp;
1053 	struct in6_pktinfo *pktinfo;
1054 	struct in_addr ia;
1055 
1056 	if ((flags & PRUS_IPV6) == 0)
1057 		return (0);
1058 
1059 	if (cm->cmsg_level != IPPROTO_IPV6)
1060 		return (0);
1061 
1062 	if  (cm->cmsg_type != IPV6_2292PKTINFO &&
1063 	    cm->cmsg_type != IPV6_PKTINFO)
1064 		return (0);
1065 
1066 	if (cm->cmsg_len !=
1067 	    CMSG_LEN(sizeof(struct in6_pktinfo)))
1068 		return (EINVAL);
1069 
1070 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1071 	if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
1072 	    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
1073 		return (EINVAL);
1074 
1075 	/* Validate the interface index if specified. */
1076 	if (pktinfo->ipi6_ifindex) {
1077 		struct epoch_tracker et;
1078 
1079 		NET_EPOCH_ENTER(et);
1080 		ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
1081 		NET_EPOCH_EXIT(et);	/* XXXGL: unsafe ifp */
1082 		if (ifp == NULL)
1083 			return (ENXIO);
1084 	} else
1085 		ifp = NULL;
1086 	if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
1087 		ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1088 		if (in_ifhasaddr(ifp, ia) == 0)
1089 			return (EADDRNOTAVAIL);
1090 	}
1091 
1092 	bzero(src, sizeof(*src));
1093 	src->sin_family = AF_INET;
1094 	src->sin_len = sizeof(*src);
1095 	src->sin_port = inp->inp_lport;
1096 	src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1097 
1098 	return (0);
1099 }
1100 #endif
1101 
1102 static int
1103 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1104     struct mbuf *control, struct thread *td, int flags)
1105 {
1106 	struct udpiphdr *ui;
1107 	int len = m->m_pkthdr.len;
1108 	struct in_addr faddr, laddr;
1109 	struct cmsghdr *cm;
1110 	struct inpcbinfo *pcbinfo;
1111 	struct sockaddr_in *sin, src;
1112 	struct epoch_tracker et;
1113 	int cscov_partial = 0;
1114 	int error = 0;
1115 	int ipflags = 0;
1116 	u_short fport, lport;
1117 	u_char tos;
1118 	uint8_t pr;
1119 	uint16_t cscov = 0;
1120 	uint32_t flowid = 0;
1121 	uint8_t flowtype = M_HASHTYPE_NONE;
1122 
1123 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1124 		if (control)
1125 			m_freem(control);
1126 		m_freem(m);
1127 		return (EMSGSIZE);
1128 	}
1129 
1130 	src.sin_family = 0;
1131 	sin = (struct sockaddr_in *)addr;
1132 
1133 	/*
1134 	 * udp_output() may need to temporarily bind or connect the current
1135 	 * inpcb.  As such, we don't know up front whether we will need the
1136 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1137 	 * front before acquiring any locks.
1138 	 *
1139 	 * We will need network epoch in either case, to safely lookup into
1140 	 * pcb hash.
1141 	 */
1142 	if (sin == NULL ||
1143 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0))
1144 		INP_WLOCK(inp);
1145 	else
1146 		INP_RLOCK(inp);
1147 	NET_EPOCH_ENTER(et);
1148 	tos = inp->inp_ip_tos;
1149 	if (control != NULL) {
1150 		/*
1151 		 * XXX: Currently, we assume all the optional information is
1152 		 * stored in a single mbuf.
1153 		 */
1154 		if (control->m_next) {
1155 			m_freem(control);
1156 			error = EINVAL;
1157 			goto release;
1158 		}
1159 		for (; control->m_len > 0;
1160 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1161 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1162 			cm = mtod(control, struct cmsghdr *);
1163 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1164 			    || cm->cmsg_len > control->m_len) {
1165 				error = EINVAL;
1166 				break;
1167 			}
1168 #ifdef INET6
1169 			error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
1170 			if (error != 0)
1171 				break;
1172 #endif
1173 			if (cm->cmsg_level != IPPROTO_IP)
1174 				continue;
1175 
1176 			switch (cm->cmsg_type) {
1177 			case IP_SENDSRCADDR:
1178 				if (cm->cmsg_len !=
1179 				    CMSG_LEN(sizeof(struct in_addr))) {
1180 					error = EINVAL;
1181 					break;
1182 				}
1183 				bzero(&src, sizeof(src));
1184 				src.sin_family = AF_INET;
1185 				src.sin_len = sizeof(src);
1186 				src.sin_port = inp->inp_lport;
1187 				src.sin_addr =
1188 				    *(struct in_addr *)CMSG_DATA(cm);
1189 				break;
1190 
1191 			case IP_TOS:
1192 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1193 					error = EINVAL;
1194 					break;
1195 				}
1196 				tos = *(u_char *)CMSG_DATA(cm);
1197 				break;
1198 
1199 			case IP_FLOWID:
1200 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1201 					error = EINVAL;
1202 					break;
1203 				}
1204 				flowid = *(uint32_t *) CMSG_DATA(cm);
1205 				break;
1206 
1207 			case IP_FLOWTYPE:
1208 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1209 					error = EINVAL;
1210 					break;
1211 				}
1212 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1213 				break;
1214 
1215 #ifdef	RSS
1216 			case IP_RSSBUCKETID:
1217 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1218 					error = EINVAL;
1219 					break;
1220 				}
1221 				/* This is just a placeholder for now */
1222 				break;
1223 #endif	/* RSS */
1224 			default:
1225 				error = ENOPROTOOPT;
1226 				break;
1227 			}
1228 			if (error)
1229 				break;
1230 		}
1231 		m_freem(control);
1232 		control = NULL;
1233 	}
1234 	if (error)
1235 		goto release;
1236 
1237 	pr = inp->inp_socket->so_proto->pr_protocol;
1238 	pcbinfo = udp_get_inpcbinfo(pr);
1239 
1240 	/*
1241 	 * If the IP_SENDSRCADDR control message was specified, override the
1242 	 * source address for this datagram.  Its use is invalidated if the
1243 	 * address thus specified is incomplete or clobbers other inpcbs.
1244 	 */
1245 	laddr = inp->inp_laddr;
1246 	lport = inp->inp_lport;
1247 	if (src.sin_family == AF_INET) {
1248 		if ((lport == 0) ||
1249 		    (laddr.s_addr == INADDR_ANY &&
1250 		     src.sin_addr.s_addr == INADDR_ANY)) {
1251 			error = EINVAL;
1252 			goto release;
1253 		}
1254 		INP_HASH_WLOCK(pcbinfo);
1255 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1256 		    &laddr.s_addr, &lport, td->td_ucred);
1257 		INP_HASH_WUNLOCK(pcbinfo);
1258 		if (error)
1259 			goto release;
1260 	}
1261 
1262 	/*
1263 	 * If a UDP socket has been connected, then a local address/port will
1264 	 * have been selected and bound.
1265 	 *
1266 	 * If a UDP socket has not been connected to, then an explicit
1267 	 * destination address must be used, in which case a local
1268 	 * address/port may not have been selected and bound.
1269 	 */
1270 	if (sin != NULL) {
1271 		INP_LOCK_ASSERT(inp);
1272 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1273 			error = EISCONN;
1274 			goto release;
1275 		}
1276 
1277 		/*
1278 		 * Jail may rewrite the destination address, so let it do
1279 		 * that before we use it.
1280 		 */
1281 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1282 		if (error)
1283 			goto release;
1284 
1285 		/*
1286 		 * If a local address or port hasn't yet been selected, or if
1287 		 * the destination address needs to be rewritten due to using
1288 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1289 		 * to do the heavy lifting.  Once a port is selected, we
1290 		 * commit the binding back to the socket; we also commit the
1291 		 * binding of the address if in jail.
1292 		 *
1293 		 * If we already have a valid binding and we're not
1294 		 * requesting a destination address rewrite, use a fast path.
1295 		 */
1296 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1297 		    inp->inp_lport == 0 ||
1298 		    sin->sin_addr.s_addr == INADDR_ANY ||
1299 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1300 			INP_HASH_WLOCK(pcbinfo);
1301 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1302 			    &lport, &faddr.s_addr, &fport, NULL,
1303 			    td->td_ucred);
1304 			if (error) {
1305 				INP_HASH_WUNLOCK(pcbinfo);
1306 				goto release;
1307 			}
1308 
1309 			/*
1310 			 * XXXRW: Why not commit the port if the address is
1311 			 * !INADDR_ANY?
1312 			 */
1313 			/* Commit the local port if newly assigned. */
1314 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1315 			    inp->inp_lport == 0) {
1316 				INP_WLOCK_ASSERT(inp);
1317 				/*
1318 				 * Remember addr if jailed, to prevent
1319 				 * rebinding.
1320 				 */
1321 				if (prison_flag(td->td_ucred, PR_IP4))
1322 					inp->inp_laddr = laddr;
1323 				inp->inp_lport = lport;
1324 				error = in_pcbinshash(inp);
1325 				INP_HASH_WUNLOCK(pcbinfo);
1326 				if (error != 0) {
1327 					inp->inp_lport = 0;
1328 					error = EAGAIN;
1329 					goto release;
1330 				}
1331 				inp->inp_flags |= INP_ANONPORT;
1332 			} else
1333 				INP_HASH_WUNLOCK(pcbinfo);
1334 		} else {
1335 			faddr = sin->sin_addr;
1336 			fport = sin->sin_port;
1337 		}
1338 	} else {
1339 		INP_LOCK_ASSERT(inp);
1340 		faddr = inp->inp_faddr;
1341 		fport = inp->inp_fport;
1342 		if (faddr.s_addr == INADDR_ANY) {
1343 			error = ENOTCONN;
1344 			goto release;
1345 		}
1346 	}
1347 
1348 	/*
1349 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1350 	 * link-layer headers.  Immediate slide the data pointer back forward
1351 	 * since we won't use that space at this layer.
1352 	 */
1353 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1354 	if (m == NULL) {
1355 		error = ENOBUFS;
1356 		goto release;
1357 	}
1358 	m->m_data += max_linkhdr;
1359 	m->m_len -= max_linkhdr;
1360 	m->m_pkthdr.len -= max_linkhdr;
1361 
1362 	/*
1363 	 * Fill in mbuf with extended UDP header and addresses and length put
1364 	 * into network format.
1365 	 */
1366 	ui = mtod(m, struct udpiphdr *);
1367 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1368 	ui->ui_v = IPVERSION << 4;
1369 	ui->ui_pr = pr;
1370 	ui->ui_src = laddr;
1371 	ui->ui_dst = faddr;
1372 	ui->ui_sport = lport;
1373 	ui->ui_dport = fport;
1374 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1375 	if (pr == IPPROTO_UDPLITE) {
1376 		struct udpcb *up;
1377 		uint16_t plen;
1378 
1379 		up = intoudpcb(inp);
1380 		cscov = up->u_txcslen;
1381 		plen = (u_short)len + sizeof(struct udphdr);
1382 		if (cscov >= plen)
1383 			cscov = 0;
1384 		ui->ui_len = htons(plen);
1385 		ui->ui_ulen = htons(cscov);
1386 		/*
1387 		 * For UDP-Lite, checksum coverage length of zero means
1388 		 * the entire UDPLite packet is covered by the checksum.
1389 		 */
1390 		cscov_partial = (cscov == 0) ? 0 : 1;
1391 	}
1392 
1393 	/*
1394 	 * Set the Don't Fragment bit in the IP header.
1395 	 */
1396 	if (inp->inp_flags & INP_DONTFRAG) {
1397 		struct ip *ip;
1398 
1399 		ip = (struct ip *)&ui->ui_i;
1400 		ip->ip_off |= htons(IP_DF);
1401 	}
1402 
1403 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1404 		ipflags |= IP_ROUTETOIF;
1405 	if (inp->inp_socket->so_options & SO_BROADCAST)
1406 		ipflags |= IP_ALLOWBROADCAST;
1407 	if (inp->inp_flags & INP_ONESBCAST)
1408 		ipflags |= IP_SENDONES;
1409 
1410 #ifdef MAC
1411 	mac_inpcb_create_mbuf(inp, m);
1412 #endif
1413 
1414 	/*
1415 	 * Set up checksum and output datagram.
1416 	 */
1417 	ui->ui_sum = 0;
1418 	if (pr == IPPROTO_UDPLITE) {
1419 		if (inp->inp_flags & INP_ONESBCAST)
1420 			faddr.s_addr = INADDR_BROADCAST;
1421 		if (cscov_partial) {
1422 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1423 				ui->ui_sum = 0xffff;
1424 		} else {
1425 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1426 				ui->ui_sum = 0xffff;
1427 		}
1428 	} else if (V_udp_cksum) {
1429 		if (inp->inp_flags & INP_ONESBCAST)
1430 			faddr.s_addr = INADDR_BROADCAST;
1431 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1432 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1433 		m->m_pkthdr.csum_flags = CSUM_UDP;
1434 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1435 	}
1436 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1437 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1438 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1439 	UDPSTAT_INC(udps_opackets);
1440 
1441 	/*
1442 	 * Setup flowid / RSS information for outbound socket.
1443 	 *
1444 	 * Once the UDP code decides to set a flowid some other way,
1445 	 * this allows the flowid to be overridden by userland.
1446 	 */
1447 	if (flowtype != M_HASHTYPE_NONE) {
1448 		m->m_pkthdr.flowid = flowid;
1449 		M_HASHTYPE_SET(m, flowtype);
1450 	}
1451 #if defined(ROUTE_MPATH) || defined(RSS)
1452 	else if (CALC_FLOWID_OUTBOUND_SENDTO) {
1453 		uint32_t hash_val, hash_type;
1454 
1455 		hash_val = fib4_calc_packet_hash(laddr, faddr,
1456 		    lport, fport, pr, &hash_type);
1457 		m->m_pkthdr.flowid = hash_val;
1458 		M_HASHTYPE_SET(m, hash_type);
1459 	}
1460 
1461 	/*
1462 	 * Don't override with the inp cached flowid value.
1463 	 *
1464 	 * Depending upon the kind of send being done, the inp
1465 	 * flowid/flowtype values may actually not be appropriate
1466 	 * for this particular socket send.
1467 	 *
1468 	 * We should either leave the flowid at zero (which is what is
1469 	 * currently done) or set it to some software generated
1470 	 * hash value based on the packet contents.
1471 	 */
1472 	ipflags |= IP_NODEFAULTFLOWID;
1473 #endif	/* RSS */
1474 
1475 	if (pr == IPPROTO_UDPLITE)
1476 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1477 	else
1478 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1479 	error = ip_output(m, inp->inp_options,
1480 	    INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags,
1481 	    inp->inp_moptions, inp);
1482 	INP_UNLOCK(inp);
1483 	NET_EPOCH_EXIT(et);
1484 	return (error);
1485 
1486 release:
1487 	INP_UNLOCK(inp);
1488 	NET_EPOCH_EXIT(et);
1489 	m_freem(m);
1490 	return (error);
1491 }
1492 
1493 static void
1494 udp_abort(struct socket *so)
1495 {
1496 	struct inpcb *inp;
1497 	struct inpcbinfo *pcbinfo;
1498 
1499 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1500 	inp = sotoinpcb(so);
1501 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1502 	INP_WLOCK(inp);
1503 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1504 		INP_HASH_WLOCK(pcbinfo);
1505 		in_pcbdisconnect(inp);
1506 		inp->inp_laddr.s_addr = INADDR_ANY;
1507 		INP_HASH_WUNLOCK(pcbinfo);
1508 		soisdisconnected(so);
1509 	}
1510 	INP_WUNLOCK(inp);
1511 }
1512 
1513 static int
1514 udp_attach(struct socket *so, int proto, struct thread *td)
1515 {
1516 	static uint32_t udp_flowid;
1517 	struct inpcb *inp;
1518 	struct inpcbinfo *pcbinfo;
1519 	int error;
1520 
1521 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1522 	inp = sotoinpcb(so);
1523 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1524 	error = soreserve(so, udp_sendspace, udp_recvspace);
1525 	if (error)
1526 		return (error);
1527 	error = in_pcballoc(so, pcbinfo);
1528 	if (error)
1529 		return (error);
1530 
1531 	inp = sotoinpcb(so);
1532 	inp->inp_vflag |= INP_IPV4;
1533 	inp->inp_ip_ttl = V_ip_defttl;
1534 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1535 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1536 
1537 	error = udp_newudpcb(inp);
1538 	if (error) {
1539 		in_pcbdetach(inp);
1540 		in_pcbfree(inp);
1541 		return (error);
1542 	}
1543 	INP_WUNLOCK(inp);
1544 
1545 	return (0);
1546 }
1547 #endif /* INET */
1548 
1549 int
1550 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1551 {
1552 	struct inpcb *inp;
1553 	struct udpcb *up;
1554 
1555 	KASSERT(so->so_type == SOCK_DGRAM,
1556 	    ("udp_set_kernel_tunneling: !dgram"));
1557 	inp = sotoinpcb(so);
1558 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1559 	INP_WLOCK(inp);
1560 	up = intoudpcb(inp);
1561 	if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) ||
1562 	    (up->u_icmp_func != NULL))) {
1563 		INP_WUNLOCK(inp);
1564 		return (EBUSY);
1565 	}
1566 	up->u_tun_func = f;
1567 	up->u_icmp_func = i;
1568 	up->u_tun_ctx = ctx;
1569 	INP_WUNLOCK(inp);
1570 	return (0);
1571 }
1572 
1573 #ifdef INET
1574 static int
1575 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1576 {
1577 	struct inpcb *inp;
1578 	struct inpcbinfo *pcbinfo;
1579 	struct sockaddr_in *sinp;
1580 	int error;
1581 
1582 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1583 	inp = sotoinpcb(so);
1584 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1585 
1586 	sinp = (struct sockaddr_in *)nam;
1587 	if (nam->sa_family != AF_INET) {
1588 		/*
1589 		 * Preserve compatibility with old programs.
1590 		 */
1591 		if (nam->sa_family != AF_UNSPEC ||
1592 		    nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
1593 		    sinp->sin_addr.s_addr != INADDR_ANY)
1594 			return (EAFNOSUPPORT);
1595 		nam->sa_family = AF_INET;
1596 	}
1597 	if (nam->sa_len != sizeof(struct sockaddr_in))
1598 		return (EINVAL);
1599 
1600 	INP_WLOCK(inp);
1601 	INP_HASH_WLOCK(pcbinfo);
1602 	error = in_pcbbind(inp, nam, td->td_ucred);
1603 	INP_HASH_WUNLOCK(pcbinfo);
1604 	INP_WUNLOCK(inp);
1605 	return (error);
1606 }
1607 
1608 static void
1609 udp_close(struct socket *so)
1610 {
1611 	struct inpcb *inp;
1612 	struct inpcbinfo *pcbinfo;
1613 
1614 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1615 	inp = sotoinpcb(so);
1616 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1617 	INP_WLOCK(inp);
1618 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1619 		INP_HASH_WLOCK(pcbinfo);
1620 		in_pcbdisconnect(inp);
1621 		inp->inp_laddr.s_addr = INADDR_ANY;
1622 		INP_HASH_WUNLOCK(pcbinfo);
1623 		soisdisconnected(so);
1624 	}
1625 	INP_WUNLOCK(inp);
1626 }
1627 
1628 static int
1629 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1630 {
1631 	struct epoch_tracker et;
1632 	struct inpcb *inp;
1633 	struct inpcbinfo *pcbinfo;
1634 	struct sockaddr_in *sin;
1635 	int error;
1636 
1637 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1638 	inp = sotoinpcb(so);
1639 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1640 
1641 	sin = (struct sockaddr_in *)nam;
1642 	if (sin->sin_family != AF_INET)
1643 		return (EAFNOSUPPORT);
1644 	if (sin->sin_len != sizeof(*sin))
1645 		return (EINVAL);
1646 
1647 	INP_WLOCK(inp);
1648 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1649 		INP_WUNLOCK(inp);
1650 		return (EISCONN);
1651 	}
1652 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1653 	if (error != 0) {
1654 		INP_WUNLOCK(inp);
1655 		return (error);
1656 	}
1657 	NET_EPOCH_ENTER(et);
1658 	INP_HASH_WLOCK(pcbinfo);
1659 	error = in_pcbconnect(inp, nam, td->td_ucred, true);
1660 	INP_HASH_WUNLOCK(pcbinfo);
1661 	NET_EPOCH_EXIT(et);
1662 	if (error == 0)
1663 		soisconnected(so);
1664 	INP_WUNLOCK(inp);
1665 	return (error);
1666 }
1667 
1668 static void
1669 udp_detach(struct socket *so)
1670 {
1671 	struct inpcb *inp;
1672 	struct udpcb *up;
1673 
1674 	inp = sotoinpcb(so);
1675 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1676 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1677 	    ("udp_detach: not disconnected"));
1678 	INP_WLOCK(inp);
1679 	up = intoudpcb(inp);
1680 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1681 	inp->inp_ppcb = NULL;
1682 	in_pcbdetach(inp);
1683 	in_pcbfree(inp);
1684 	udp_discardcb(up);
1685 }
1686 
1687 static int
1688 udp_disconnect(struct socket *so)
1689 {
1690 	struct inpcb *inp;
1691 	struct inpcbinfo *pcbinfo;
1692 
1693 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1694 	inp = sotoinpcb(so);
1695 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1696 	INP_WLOCK(inp);
1697 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1698 		INP_WUNLOCK(inp);
1699 		return (ENOTCONN);
1700 	}
1701 	INP_HASH_WLOCK(pcbinfo);
1702 	in_pcbdisconnect(inp);
1703 	inp->inp_laddr.s_addr = INADDR_ANY;
1704 	INP_HASH_WUNLOCK(pcbinfo);
1705 	SOCK_LOCK(so);
1706 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1707 	SOCK_UNLOCK(so);
1708 	INP_WUNLOCK(inp);
1709 	return (0);
1710 }
1711 
1712 static int
1713 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1714     struct mbuf *control, struct thread *td)
1715 {
1716 	struct inpcb *inp;
1717 	int error;
1718 
1719 	inp = sotoinpcb(so);
1720 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1721 
1722 	if (addr != NULL) {
1723 		error = 0;
1724 		if (addr->sa_family != AF_INET)
1725 			error = EAFNOSUPPORT;
1726 		else if (addr->sa_len != sizeof(struct sockaddr_in))
1727 			error = EINVAL;
1728 		if (__predict_false(error != 0)) {
1729 			m_freem(control);
1730 			m_freem(m);
1731 			return (error);
1732 		}
1733 	}
1734 	return (udp_output(inp, m, addr, control, td, flags));
1735 }
1736 #endif /* INET */
1737 
1738 int
1739 udp_shutdown(struct socket *so)
1740 {
1741 	struct inpcb *inp;
1742 
1743 	inp = sotoinpcb(so);
1744 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1745 	INP_WLOCK(inp);
1746 	socantsendmore(so);
1747 	INP_WUNLOCK(inp);
1748 	return (0);
1749 }
1750 
1751 #ifdef INET
1752 struct pr_usrreqs udp_usrreqs = {
1753 	.pru_abort =		udp_abort,
1754 	.pru_attach =		udp_attach,
1755 	.pru_bind =		udp_bind,
1756 	.pru_connect =		udp_connect,
1757 	.pru_control =		in_control,
1758 	.pru_detach =		udp_detach,
1759 	.pru_disconnect =	udp_disconnect,
1760 	.pru_peeraddr =		in_getpeeraddr,
1761 	.pru_send =		udp_send,
1762 	.pru_soreceive =	soreceive_dgram,
1763 	.pru_sosend =		sosend_dgram,
1764 	.pru_shutdown =		udp_shutdown,
1765 	.pru_sockaddr =		in_getsockaddr,
1766 	.pru_sosetlabel =	in_pcbsosetlabel,
1767 	.pru_close =		udp_close,
1768 };
1769 #endif /* INET */
1770