1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_rss.h" 48 49 #include <sys/param.h> 50 #include <sys/domain.h> 51 #include <sys/eventhandler.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/priv.h> 58 #include <sys/proc.h> 59 #include <sys/protosw.h> 60 #include <sys/sdt.h> 61 #include <sys/signalvar.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sx.h> 65 #include <sys/sysctl.h> 66 #include <sys/syslog.h> 67 #include <sys/systm.h> 68 69 #include <vm/uma.h> 70 71 #include <net/if.h> 72 #include <net/if_var.h> 73 #include <net/route.h> 74 #include <net/rss_config.h> 75 76 #include <netinet/in.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_systm.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip.h> 82 #ifdef INET6 83 #include <netinet/ip6.h> 84 #endif 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/ip_options.h> 89 #ifdef INET6 90 #include <netinet6/ip6_var.h> 91 #endif 92 #include <netinet/udp.h> 93 #include <netinet/udp_var.h> 94 #include <netinet/udplite.h> 95 #include <netinet/in_rss.h> 96 97 #include <netipsec/ipsec_support.h> 98 99 #include <machine/in_cksum.h> 100 101 #include <security/mac/mac_framework.h> 102 103 /* 104 * UDP and UDP-Lite protocols implementation. 105 * Per RFC 768, August, 1980. 106 * Per RFC 3828, July, 2004. 107 */ 108 109 /* 110 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 111 * removes the only data integrity mechanism for packets and malformed 112 * packets that would otherwise be discarded due to bad checksums, and may 113 * cause problems (especially for NFS data blocks). 114 */ 115 VNET_DEFINE(int, udp_cksum) = 1; 116 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 117 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 118 119 int udp_log_in_vain = 0; 120 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 121 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 122 123 VNET_DEFINE(int, udp_blackhole) = 0; 124 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 125 &VNET_NAME(udp_blackhole), 0, 126 "Do not send port unreachables for refused connects"); 127 128 u_long udp_sendspace = 9216; /* really max datagram size */ 129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 130 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 131 132 u_long udp_recvspace = 40 * (1024 + 133 #ifdef INET6 134 sizeof(struct sockaddr_in6) 135 #else 136 sizeof(struct sockaddr_in) 137 #endif 138 ); /* 40 1K datagrams */ 139 140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 141 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 142 143 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 144 VNET_DEFINE(struct inpcbinfo, udbinfo); 145 VNET_DEFINE(struct inpcbhead, ulitecb); 146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 147 static VNET_DEFINE(uma_zone_t, udpcb_zone); 148 #define V_udpcb_zone VNET(udpcb_zone) 149 150 #ifndef UDBHASHSIZE 151 #define UDBHASHSIZE 128 152 #endif 153 154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 155 VNET_PCPUSTAT_SYSINIT(udpstat); 156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 157 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 158 159 #ifdef VIMAGE 160 VNET_PCPUSTAT_SYSUNINIT(udpstat); 161 #endif /* VIMAGE */ 162 #ifdef INET 163 static void udp_detach(struct socket *so); 164 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 165 struct mbuf *, struct thread *); 166 #endif 167 168 static void 169 udp_zone_change(void *tag) 170 { 171 172 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 173 uma_zone_set_max(V_udpcb_zone, maxsockets); 174 } 175 176 static int 177 udp_inpcb_init(void *mem, int size, int flags) 178 { 179 struct inpcb *inp; 180 181 inp = mem; 182 INP_LOCK_INIT(inp, "inp", "udpinp"); 183 return (0); 184 } 185 186 static int 187 udplite_inpcb_init(void *mem, int size, int flags) 188 { 189 struct inpcb *inp; 190 191 inp = mem; 192 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 193 return (0); 194 } 195 196 void 197 udp_init(void) 198 { 199 200 /* 201 * For now default to 2-tuple UDP hashing - until the fragment 202 * reassembly code can also update the flowid. 203 * 204 * Once we can calculate the flowid that way and re-establish 205 * a 4-tuple, flip this to 4-tuple. 206 */ 207 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 208 "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE); 209 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 211 uma_zone_set_max(V_udpcb_zone, maxsockets); 212 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 213 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 214 EVENTHANDLER_PRI_ANY); 215 } 216 217 void 218 udplite_init(void) 219 { 220 221 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 222 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, 223 IPI_HASHFIELDS_2TUPLE); 224 } 225 226 /* 227 * Kernel module interface for updating udpstat. The argument is an index 228 * into udpstat treated as an array of u_long. While this encodes the 229 * general layout of udpstat into the caller, it doesn't encode its location, 230 * so that future changes to add, for example, per-CPU stats support won't 231 * cause binary compatibility problems for kernel modules. 232 */ 233 void 234 kmod_udpstat_inc(int statnum) 235 { 236 237 counter_u64_add(VNET(udpstat)[statnum], 1); 238 } 239 240 int 241 udp_newudpcb(struct inpcb *inp) 242 { 243 struct udpcb *up; 244 245 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 246 if (up == NULL) 247 return (ENOBUFS); 248 inp->inp_ppcb = up; 249 return (0); 250 } 251 252 void 253 udp_discardcb(struct udpcb *up) 254 { 255 256 uma_zfree(V_udpcb_zone, up); 257 } 258 259 #ifdef VIMAGE 260 static void 261 udp_destroy(void *unused __unused) 262 { 263 264 in_pcbinfo_destroy(&V_udbinfo); 265 uma_zdestroy(V_udpcb_zone); 266 } 267 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 268 269 static void 270 udplite_destroy(void *unused __unused) 271 { 272 273 in_pcbinfo_destroy(&V_ulitecbinfo); 274 } 275 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 276 NULL); 277 #endif 278 279 #ifdef INET 280 /* 281 * Subroutine of udp_input(), which appends the provided mbuf chain to the 282 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 283 * contains the source address. If the socket ends up being an IPv6 socket, 284 * udp_append() will convert to a sockaddr_in6 before passing the address 285 * into the socket code. 286 * 287 * In the normal case udp_append() will return 0, indicating that you 288 * must unlock the inp. However if a tunneling protocol is in place we increment 289 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 290 * then decrement the reference count. If the inp_rele returns 1, indicating the 291 * inp is gone, we return that to the caller to tell them *not* to unlock 292 * the inp. In the case of multi-cast this will cause the distribution 293 * to stop (though most tunneling protocols known currently do *not* use 294 * multicast). 295 */ 296 static int 297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 298 struct sockaddr_in *udp_in) 299 { 300 struct sockaddr *append_sa; 301 struct socket *so; 302 struct mbuf *tmpopts, *opts = NULL; 303 #ifdef INET6 304 struct sockaddr_in6 udp_in6; 305 #endif 306 struct udpcb *up; 307 308 INP_LOCK_ASSERT(inp); 309 310 /* 311 * Engage the tunneling protocol. 312 */ 313 up = intoudpcb(inp); 314 if (up->u_tun_func != NULL) { 315 in_pcbref(inp); 316 INP_RUNLOCK(inp); 317 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 318 up->u_tun_ctx); 319 INP_RLOCK(inp); 320 return (in_pcbrele_rlocked(inp)); 321 } 322 323 off += sizeof(struct udphdr); 324 325 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 326 /* Check AH/ESP integrity. */ 327 if (IPSEC_ENABLED(ipv4) && 328 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 329 m_freem(n); 330 return (0); 331 } 332 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 333 if (IPSEC_ENABLED(ipv4) && 334 UDPENCAP_INPUT(n, off, AF_INET) != 0) 335 return (0); /* Consumed. */ 336 } 337 #endif /* IPSEC */ 338 #ifdef MAC 339 if (mac_inpcb_check_deliver(inp, n) != 0) { 340 m_freem(n); 341 return (0); 342 } 343 #endif /* MAC */ 344 if (inp->inp_flags & INP_CONTROLOPTS || 345 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 346 #ifdef INET6 347 if (inp->inp_vflag & INP_IPV6) 348 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 349 else 350 #endif /* INET6 */ 351 ip_savecontrol(inp, &opts, ip, n); 352 } 353 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 354 tmpopts = sbcreatecontrol((caddr_t)&udp_in[1], 355 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP); 356 if (tmpopts) { 357 if (opts) { 358 tmpopts->m_next = opts; 359 opts = tmpopts; 360 } else 361 opts = tmpopts; 362 } 363 } 364 #ifdef INET6 365 if (inp->inp_vflag & INP_IPV6) { 366 bzero(&udp_in6, sizeof(udp_in6)); 367 udp_in6.sin6_len = sizeof(udp_in6); 368 udp_in6.sin6_family = AF_INET6; 369 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 370 append_sa = (struct sockaddr *)&udp_in6; 371 } else 372 #endif /* INET6 */ 373 append_sa = (struct sockaddr *)&udp_in[0]; 374 m_adj(n, off); 375 376 so = inp->inp_socket; 377 SOCKBUF_LOCK(&so->so_rcv); 378 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 379 SOCKBUF_UNLOCK(&so->so_rcv); 380 m_freem(n); 381 if (opts) 382 m_freem(opts); 383 UDPSTAT_INC(udps_fullsock); 384 } else 385 sorwakeup_locked(so); 386 return (0); 387 } 388 389 int 390 udp_input(struct mbuf **mp, int *offp, int proto) 391 { 392 struct ip *ip; 393 struct udphdr *uh; 394 struct ifnet *ifp; 395 struct inpcb *inp; 396 uint16_t len, ip_len; 397 struct inpcbinfo *pcbinfo; 398 struct ip save_ip; 399 struct sockaddr_in udp_in[2]; 400 struct mbuf *m; 401 struct m_tag *fwd_tag; 402 struct epoch_tracker et; 403 int cscov_partial, iphlen; 404 405 m = *mp; 406 iphlen = *offp; 407 ifp = m->m_pkthdr.rcvif; 408 *mp = NULL; 409 UDPSTAT_INC(udps_ipackets); 410 411 /* 412 * Strip IP options, if any; should skip this, make available to 413 * user, and use on returned packets, but we don't yet have a way to 414 * check the checksum with options still present. 415 */ 416 if (iphlen > sizeof (struct ip)) { 417 ip_stripoptions(m); 418 iphlen = sizeof(struct ip); 419 } 420 421 /* 422 * Get IP and UDP header together in first mbuf. 423 */ 424 ip = mtod(m, struct ip *); 425 if (m->m_len < iphlen + sizeof(struct udphdr)) { 426 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 427 UDPSTAT_INC(udps_hdrops); 428 return (IPPROTO_DONE); 429 } 430 ip = mtod(m, struct ip *); 431 } 432 uh = (struct udphdr *)((caddr_t)ip + iphlen); 433 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 434 435 /* 436 * Destination port of 0 is illegal, based on RFC768. 437 */ 438 if (uh->uh_dport == 0) 439 goto badunlocked; 440 441 /* 442 * Construct sockaddr format source address. Stuff source address 443 * and datagram in user buffer. 444 */ 445 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 446 udp_in[0].sin_len = sizeof(struct sockaddr_in); 447 udp_in[0].sin_family = AF_INET; 448 udp_in[0].sin_port = uh->uh_sport; 449 udp_in[0].sin_addr = ip->ip_src; 450 udp_in[1].sin_len = sizeof(struct sockaddr_in); 451 udp_in[1].sin_family = AF_INET; 452 udp_in[1].sin_port = uh->uh_dport; 453 udp_in[1].sin_addr = ip->ip_dst; 454 455 /* 456 * Make mbuf data length reflect UDP length. If not enough data to 457 * reflect UDP length, drop. 458 */ 459 len = ntohs((u_short)uh->uh_ulen); 460 ip_len = ntohs(ip->ip_len) - iphlen; 461 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 462 /* Zero means checksum over the complete packet. */ 463 if (len == 0) 464 len = ip_len; 465 cscov_partial = 0; 466 } 467 if (ip_len != len) { 468 if (len > ip_len || len < sizeof(struct udphdr)) { 469 UDPSTAT_INC(udps_badlen); 470 goto badunlocked; 471 } 472 if (proto == IPPROTO_UDP) 473 m_adj(m, len - ip_len); 474 } 475 476 /* 477 * Save a copy of the IP header in case we want restore it for 478 * sending an ICMP error message in response. 479 */ 480 if (!V_udp_blackhole) 481 save_ip = *ip; 482 else 483 memset(&save_ip, 0, sizeof(save_ip)); 484 485 /* 486 * Checksum extended UDP header and data. 487 */ 488 if (uh->uh_sum) { 489 u_short uh_sum; 490 491 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 492 !cscov_partial) { 493 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 494 uh_sum = m->m_pkthdr.csum_data; 495 else 496 uh_sum = in_pseudo(ip->ip_src.s_addr, 497 ip->ip_dst.s_addr, htonl((u_short)len + 498 m->m_pkthdr.csum_data + proto)); 499 uh_sum ^= 0xffff; 500 } else { 501 char b[9]; 502 503 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 504 bzero(((struct ipovly *)ip)->ih_x1, 9); 505 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 506 uh->uh_ulen : htons(ip_len); 507 uh_sum = in_cksum(m, len + sizeof (struct ip)); 508 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 509 } 510 if (uh_sum) { 511 UDPSTAT_INC(udps_badsum); 512 m_freem(m); 513 return (IPPROTO_DONE); 514 } 515 } else { 516 if (proto == IPPROTO_UDP) { 517 UDPSTAT_INC(udps_nosum); 518 } else { 519 /* UDPLite requires a checksum */ 520 /* XXX: What is the right UDPLite MIB counter here? */ 521 m_freem(m); 522 return (IPPROTO_DONE); 523 } 524 } 525 526 pcbinfo = udp_get_inpcbinfo(proto); 527 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 528 in_broadcast(ip->ip_dst, ifp)) { 529 struct inpcb *last; 530 struct inpcbhead *pcblist; 531 struct ip_moptions *imo; 532 533 INP_INFO_RLOCK_ET(pcbinfo, et); 534 pcblist = udp_get_pcblist(proto); 535 last = NULL; 536 CK_LIST_FOREACH(inp, pcblist, inp_list) { 537 if (inp->inp_lport != uh->uh_dport) 538 continue; 539 #ifdef INET6 540 if ((inp->inp_vflag & INP_IPV4) == 0) 541 continue; 542 #endif 543 if (inp->inp_laddr.s_addr != INADDR_ANY && 544 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 545 continue; 546 if (inp->inp_faddr.s_addr != INADDR_ANY && 547 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 548 continue; 549 if (inp->inp_fport != 0 && 550 inp->inp_fport != uh->uh_sport) 551 continue; 552 553 INP_RLOCK(inp); 554 555 /* 556 * XXXRW: Because we weren't holding either the inpcb 557 * or the hash lock when we checked for a match 558 * before, we should probably recheck now that the 559 * inpcb lock is held. 560 */ 561 562 /* 563 * Handle socket delivery policy for any-source 564 * and source-specific multicast. [RFC3678] 565 */ 566 imo = inp->inp_moptions; 567 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 568 struct sockaddr_in group; 569 int blocked; 570 if (imo == NULL) { 571 INP_RUNLOCK(inp); 572 continue; 573 } 574 bzero(&group, sizeof(struct sockaddr_in)); 575 group.sin_len = sizeof(struct sockaddr_in); 576 group.sin_family = AF_INET; 577 group.sin_addr = ip->ip_dst; 578 579 blocked = imo_multi_filter(imo, ifp, 580 (struct sockaddr *)&group, 581 (struct sockaddr *)&udp_in[0]); 582 if (blocked != MCAST_PASS) { 583 if (blocked == MCAST_NOTGMEMBER) 584 IPSTAT_INC(ips_notmember); 585 if (blocked == MCAST_NOTSMEMBER || 586 blocked == MCAST_MUTED) 587 UDPSTAT_INC(udps_filtermcast); 588 INP_RUNLOCK(inp); 589 continue; 590 } 591 } 592 if (last != NULL) { 593 struct mbuf *n; 594 595 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != 596 NULL) { 597 UDP_PROBE(receive, NULL, last, ip, 598 last, uh); 599 if (udp_append(last, ip, n, iphlen, 600 udp_in)) { 601 goto inp_lost; 602 } 603 } 604 INP_RUNLOCK(last); 605 } 606 last = inp; 607 /* 608 * Don't look for additional matches if this one does 609 * not have either the SO_REUSEPORT or SO_REUSEADDR 610 * socket options set. This heuristic avoids 611 * searching through all pcbs in the common case of a 612 * non-shared port. It assumes that an application 613 * will never clear these options after setting them. 614 */ 615 if ((last->inp_socket->so_options & 616 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) 617 break; 618 } 619 620 if (last == NULL) { 621 /* 622 * No matching pcb found; discard datagram. (No need 623 * to send an ICMP Port Unreachable for a broadcast 624 * or multicast datgram.) 625 */ 626 UDPSTAT_INC(udps_noportbcast); 627 if (inp) 628 INP_RUNLOCK(inp); 629 INP_INFO_RUNLOCK_ET(pcbinfo, et); 630 goto badunlocked; 631 } 632 UDP_PROBE(receive, NULL, last, ip, last, uh); 633 if (udp_append(last, ip, m, iphlen, udp_in) == 0) 634 INP_RUNLOCK(last); 635 inp_lost: 636 INP_INFO_RUNLOCK_ET(pcbinfo, et); 637 return (IPPROTO_DONE); 638 } 639 640 /* 641 * Locate pcb for datagram. 642 */ 643 644 /* 645 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 646 */ 647 if ((m->m_flags & M_IP_NEXTHOP) && 648 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 649 struct sockaddr_in *next_hop; 650 651 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 652 653 /* 654 * Transparently forwarded. Pretend to be the destination. 655 * Already got one like this? 656 */ 657 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 658 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 659 if (!inp) { 660 /* 661 * It's new. Try to find the ambushing socket. 662 * Because we've rewritten the destination address, 663 * any hardware-generated hash is ignored. 664 */ 665 inp = in_pcblookup(pcbinfo, ip->ip_src, 666 uh->uh_sport, next_hop->sin_addr, 667 next_hop->sin_port ? htons(next_hop->sin_port) : 668 uh->uh_dport, INPLOOKUP_WILDCARD | 669 INPLOOKUP_RLOCKPCB, ifp); 670 } 671 /* Remove the tag from the packet. We don't need it anymore. */ 672 m_tag_delete(m, fwd_tag); 673 m->m_flags &= ~M_IP_NEXTHOP; 674 } else 675 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 676 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 677 INPLOOKUP_RLOCKPCB, ifp, m); 678 if (inp == NULL) { 679 if (udp_log_in_vain) { 680 char src[INET_ADDRSTRLEN]; 681 char dst[INET_ADDRSTRLEN]; 682 683 log(LOG_INFO, 684 "Connection attempt to UDP %s:%d from %s:%d\n", 685 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 686 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 687 } 688 UDPSTAT_INC(udps_noport); 689 if (m->m_flags & (M_BCAST | M_MCAST)) { 690 UDPSTAT_INC(udps_noportbcast); 691 goto badunlocked; 692 } 693 if (V_udp_blackhole) 694 goto badunlocked; 695 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 696 goto badunlocked; 697 *ip = save_ip; 698 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 699 return (IPPROTO_DONE); 700 } 701 702 /* 703 * Check the minimum TTL for socket. 704 */ 705 INP_RLOCK_ASSERT(inp); 706 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 707 INP_RUNLOCK(inp); 708 m_freem(m); 709 return (IPPROTO_DONE); 710 } 711 if (cscov_partial) { 712 struct udpcb *up; 713 714 up = intoudpcb(inp); 715 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 716 INP_RUNLOCK(inp); 717 m_freem(m); 718 return (IPPROTO_DONE); 719 } 720 } 721 722 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 723 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 724 INP_RUNLOCK(inp); 725 return (IPPROTO_DONE); 726 727 badunlocked: 728 m_freem(m); 729 return (IPPROTO_DONE); 730 } 731 #endif /* INET */ 732 733 /* 734 * Notify a udp user of an asynchronous error; just wake up so that they can 735 * collect error status. 736 */ 737 struct inpcb * 738 udp_notify(struct inpcb *inp, int errno) 739 { 740 741 /* 742 * While udp_ctlinput() always calls udp_notify() with a read lock 743 * when invoking it directly, in_pcbnotifyall() currently uses write 744 * locks due to sharing code with TCP. For now, accept either a read 745 * or a write lock, but a read lock is sufficient. 746 */ 747 INP_LOCK_ASSERT(inp); 748 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 749 errno == EHOSTDOWN) && inp->inp_route.ro_rt) { 750 RTFREE(inp->inp_route.ro_rt); 751 inp->inp_route.ro_rt = (struct rtentry *)NULL; 752 } 753 754 inp->inp_socket->so_error = errno; 755 sorwakeup(inp->inp_socket); 756 sowwakeup(inp->inp_socket); 757 return (inp); 758 } 759 760 #ifdef INET 761 static void 762 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 763 struct inpcbinfo *pcbinfo) 764 { 765 struct ip *ip = vip; 766 struct udphdr *uh; 767 struct in_addr faddr; 768 struct inpcb *inp; 769 770 faddr = ((struct sockaddr_in *)sa)->sin_addr; 771 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 772 return; 773 774 if (PRC_IS_REDIRECT(cmd)) { 775 /* signal EHOSTDOWN, as it flushes the cached route */ 776 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); 777 return; 778 } 779 780 /* 781 * Hostdead is ugly because it goes linearly through all PCBs. 782 * 783 * XXX: We never get this from ICMP, otherwise it makes an excellent 784 * DoS attack on machines with many connections. 785 */ 786 if (cmd == PRC_HOSTDEAD) 787 ip = NULL; 788 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 789 return; 790 if (ip != NULL) { 791 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 792 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 793 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); 794 if (inp != NULL) { 795 INP_RLOCK_ASSERT(inp); 796 if (inp->inp_socket != NULL) { 797 udp_notify(inp, inetctlerrmap[cmd]); 798 } 799 INP_RUNLOCK(inp); 800 } else { 801 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 802 ip->ip_src, uh->uh_sport, 803 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 804 if (inp != NULL) { 805 struct udpcb *up; 806 void *ctx; 807 udp_tun_icmp_t func; 808 809 up = intoudpcb(inp); 810 ctx = up->u_tun_ctx; 811 func = up->u_icmp_func; 812 INP_RUNLOCK(inp); 813 if (func != NULL) 814 (*func)(cmd, sa, vip, ctx); 815 } 816 } 817 } else 818 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 819 udp_notify); 820 } 821 void 822 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 823 { 824 825 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 826 } 827 828 void 829 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 830 { 831 832 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 833 } 834 #endif /* INET */ 835 836 static int 837 udp_pcblist(SYSCTL_HANDLER_ARGS) 838 { 839 int error, i, n; 840 struct inpcb *inp, **inp_list; 841 inp_gen_t gencnt; 842 struct xinpgen xig; 843 struct epoch_tracker et; 844 845 /* 846 * The process of preparing the PCB list is too time-consuming and 847 * resource-intensive to repeat twice on every request. 848 */ 849 if (req->oldptr == 0) { 850 n = V_udbinfo.ipi_count; 851 n += imax(n / 8, 10); 852 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 853 return (0); 854 } 855 856 if (req->newptr != 0) 857 return (EPERM); 858 859 /* 860 * OK, now we're committed to doing something. 861 */ 862 INP_INFO_RLOCK_ET(&V_udbinfo, et); 863 gencnt = V_udbinfo.ipi_gencnt; 864 n = V_udbinfo.ipi_count; 865 INP_INFO_RUNLOCK_ET(&V_udbinfo, et); 866 867 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 868 + n * sizeof(struct xinpcb)); 869 if (error != 0) 870 return (error); 871 872 xig.xig_len = sizeof xig; 873 xig.xig_count = n; 874 xig.xig_gen = gencnt; 875 xig.xig_sogen = so_gencnt; 876 error = SYSCTL_OUT(req, &xig, sizeof xig); 877 if (error) 878 return (error); 879 880 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 881 if (inp_list == NULL) 882 return (ENOMEM); 883 884 INP_INFO_RLOCK_ET(&V_udbinfo, et); 885 for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 886 inp = CK_LIST_NEXT(inp, inp_list)) { 887 INP_WLOCK(inp); 888 if (inp->inp_gencnt <= gencnt && 889 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 890 in_pcbref(inp); 891 inp_list[i++] = inp; 892 } 893 INP_WUNLOCK(inp); 894 } 895 INP_INFO_RUNLOCK_ET(&V_udbinfo, et); 896 n = i; 897 898 error = 0; 899 for (i = 0; i < n; i++) { 900 inp = inp_list[i]; 901 INP_RLOCK(inp); 902 if (inp->inp_gencnt <= gencnt) { 903 struct xinpcb xi; 904 905 in_pcbtoxinpcb(inp, &xi); 906 INP_RUNLOCK(inp); 907 error = SYSCTL_OUT(req, &xi, sizeof xi); 908 } else 909 INP_RUNLOCK(inp); 910 } 911 INP_INFO_WLOCK(&V_udbinfo); 912 for (i = 0; i < n; i++) { 913 inp = inp_list[i]; 914 INP_RLOCK(inp); 915 if (!in_pcbrele_rlocked(inp)) 916 INP_RUNLOCK(inp); 917 } 918 INP_INFO_WUNLOCK(&V_udbinfo); 919 920 if (!error) { 921 /* 922 * Give the user an updated idea of our state. If the 923 * generation differs from what we told her before, she knows 924 * that something happened while we were processing this 925 * request, and it might be necessary to retry. 926 */ 927 INP_INFO_RLOCK_ET(&V_udbinfo, et); 928 xig.xig_gen = V_udbinfo.ipi_gencnt; 929 xig.xig_sogen = so_gencnt; 930 xig.xig_count = V_udbinfo.ipi_count; 931 INP_INFO_RUNLOCK_ET(&V_udbinfo, et); 932 error = SYSCTL_OUT(req, &xig, sizeof xig); 933 } 934 free(inp_list, M_TEMP); 935 return (error); 936 } 937 938 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 939 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 940 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 941 942 #ifdef INET 943 static int 944 udp_getcred(SYSCTL_HANDLER_ARGS) 945 { 946 struct xucred xuc; 947 struct sockaddr_in addrs[2]; 948 struct inpcb *inp; 949 int error; 950 951 error = priv_check(req->td, PRIV_NETINET_GETCRED); 952 if (error) 953 return (error); 954 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 955 if (error) 956 return (error); 957 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 958 addrs[0].sin_addr, addrs[0].sin_port, 959 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 960 if (inp != NULL) { 961 INP_RLOCK_ASSERT(inp); 962 if (inp->inp_socket == NULL) 963 error = ENOENT; 964 if (error == 0) 965 error = cr_canseeinpcb(req->td->td_ucred, inp); 966 if (error == 0) 967 cru2x(inp->inp_cred, &xuc); 968 INP_RUNLOCK(inp); 969 } else 970 error = ENOENT; 971 if (error == 0) 972 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 973 return (error); 974 } 975 976 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 977 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 978 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 979 #endif /* INET */ 980 981 int 982 udp_ctloutput(struct socket *so, struct sockopt *sopt) 983 { 984 struct inpcb *inp; 985 struct udpcb *up; 986 int isudplite, error, optval; 987 988 error = 0; 989 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 990 inp = sotoinpcb(so); 991 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 992 INP_WLOCK(inp); 993 if (sopt->sopt_level != so->so_proto->pr_protocol) { 994 #ifdef INET6 995 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 996 INP_WUNLOCK(inp); 997 error = ip6_ctloutput(so, sopt); 998 } 999 #endif 1000 #if defined(INET) && defined(INET6) 1001 else 1002 #endif 1003 #ifdef INET 1004 { 1005 INP_WUNLOCK(inp); 1006 error = ip_ctloutput(so, sopt); 1007 } 1008 #endif 1009 return (error); 1010 } 1011 1012 switch (sopt->sopt_dir) { 1013 case SOPT_SET: 1014 switch (sopt->sopt_name) { 1015 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1016 #ifdef INET 1017 case UDP_ENCAP: 1018 if (!IPSEC_ENABLED(ipv4)) { 1019 INP_WUNLOCK(inp); 1020 return (ENOPROTOOPT); 1021 } 1022 error = UDPENCAP_PCBCTL(inp, sopt); 1023 break; 1024 #endif /* INET */ 1025 #endif /* IPSEC */ 1026 case UDPLITE_SEND_CSCOV: 1027 case UDPLITE_RECV_CSCOV: 1028 if (!isudplite) { 1029 INP_WUNLOCK(inp); 1030 error = ENOPROTOOPT; 1031 break; 1032 } 1033 INP_WUNLOCK(inp); 1034 error = sooptcopyin(sopt, &optval, sizeof(optval), 1035 sizeof(optval)); 1036 if (error != 0) 1037 break; 1038 inp = sotoinpcb(so); 1039 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1040 INP_WLOCK(inp); 1041 up = intoudpcb(inp); 1042 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1043 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1044 INP_WUNLOCK(inp); 1045 error = EINVAL; 1046 break; 1047 } 1048 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1049 up->u_txcslen = optval; 1050 else 1051 up->u_rxcslen = optval; 1052 INP_WUNLOCK(inp); 1053 break; 1054 default: 1055 INP_WUNLOCK(inp); 1056 error = ENOPROTOOPT; 1057 break; 1058 } 1059 break; 1060 case SOPT_GET: 1061 switch (sopt->sopt_name) { 1062 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1063 #ifdef INET 1064 case UDP_ENCAP: 1065 if (!IPSEC_ENABLED(ipv4)) { 1066 INP_WUNLOCK(inp); 1067 return (ENOPROTOOPT); 1068 } 1069 error = UDPENCAP_PCBCTL(inp, sopt); 1070 break; 1071 #endif /* INET */ 1072 #endif /* IPSEC */ 1073 case UDPLITE_SEND_CSCOV: 1074 case UDPLITE_RECV_CSCOV: 1075 if (!isudplite) { 1076 INP_WUNLOCK(inp); 1077 error = ENOPROTOOPT; 1078 break; 1079 } 1080 up = intoudpcb(inp); 1081 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1082 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1083 optval = up->u_txcslen; 1084 else 1085 optval = up->u_rxcslen; 1086 INP_WUNLOCK(inp); 1087 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1088 break; 1089 default: 1090 INP_WUNLOCK(inp); 1091 error = ENOPROTOOPT; 1092 break; 1093 } 1094 break; 1095 } 1096 return (error); 1097 } 1098 1099 #ifdef INET 1100 #define UH_WLOCKED 2 1101 #define UH_RLOCKED 1 1102 #define UH_UNLOCKED 0 1103 static int 1104 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1105 struct mbuf *control, struct thread *td) 1106 { 1107 struct udpiphdr *ui; 1108 int len = m->m_pkthdr.len; 1109 struct in_addr faddr, laddr; 1110 struct cmsghdr *cm; 1111 struct inpcbinfo *pcbinfo; 1112 struct sockaddr_in *sin, src; 1113 struct epoch_tracker et; 1114 int cscov_partial = 0; 1115 int error = 0; 1116 int ipflags; 1117 u_short fport, lport; 1118 int unlock_udbinfo, unlock_inp; 1119 u_char tos; 1120 uint8_t pr; 1121 uint16_t cscov = 0; 1122 uint32_t flowid = 0; 1123 uint8_t flowtype = M_HASHTYPE_NONE; 1124 1125 /* 1126 * udp_output() may need to temporarily bind or connect the current 1127 * inpcb. As such, we don't know up front whether we will need the 1128 * pcbinfo lock or not. Do any work to decide what is needed up 1129 * front before acquiring any locks. 1130 */ 1131 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1132 if (control) 1133 m_freem(control); 1134 m_freem(m); 1135 return (EMSGSIZE); 1136 } 1137 1138 src.sin_family = 0; 1139 sin = (struct sockaddr_in *)addr; 1140 if (sin == NULL || 1141 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1142 INP_WLOCK(inp); 1143 unlock_inp = UH_WLOCKED; 1144 } else { 1145 INP_RLOCK(inp); 1146 unlock_inp = UH_RLOCKED; 1147 } 1148 tos = inp->inp_ip_tos; 1149 if (control != NULL) { 1150 /* 1151 * XXX: Currently, we assume all the optional information is 1152 * stored in a single mbuf. 1153 */ 1154 if (control->m_next) { 1155 if (unlock_inp == UH_WLOCKED) 1156 INP_WUNLOCK(inp); 1157 else 1158 INP_RUNLOCK(inp); 1159 m_freem(control); 1160 m_freem(m); 1161 return (EINVAL); 1162 } 1163 for (; control->m_len > 0; 1164 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1165 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1166 cm = mtod(control, struct cmsghdr *); 1167 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1168 || cm->cmsg_len > control->m_len) { 1169 error = EINVAL; 1170 break; 1171 } 1172 if (cm->cmsg_level != IPPROTO_IP) 1173 continue; 1174 1175 switch (cm->cmsg_type) { 1176 case IP_SENDSRCADDR: 1177 if (cm->cmsg_len != 1178 CMSG_LEN(sizeof(struct in_addr))) { 1179 error = EINVAL; 1180 break; 1181 } 1182 bzero(&src, sizeof(src)); 1183 src.sin_family = AF_INET; 1184 src.sin_len = sizeof(src); 1185 src.sin_port = inp->inp_lport; 1186 src.sin_addr = 1187 *(struct in_addr *)CMSG_DATA(cm); 1188 break; 1189 1190 case IP_TOS: 1191 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1192 error = EINVAL; 1193 break; 1194 } 1195 tos = *(u_char *)CMSG_DATA(cm); 1196 break; 1197 1198 case IP_FLOWID: 1199 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1200 error = EINVAL; 1201 break; 1202 } 1203 flowid = *(uint32_t *) CMSG_DATA(cm); 1204 break; 1205 1206 case IP_FLOWTYPE: 1207 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1208 error = EINVAL; 1209 break; 1210 } 1211 flowtype = *(uint32_t *) CMSG_DATA(cm); 1212 break; 1213 1214 #ifdef RSS 1215 case IP_RSSBUCKETID: 1216 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1217 error = EINVAL; 1218 break; 1219 } 1220 /* This is just a placeholder for now */ 1221 break; 1222 #endif /* RSS */ 1223 default: 1224 error = ENOPROTOOPT; 1225 break; 1226 } 1227 if (error) 1228 break; 1229 } 1230 m_freem(control); 1231 } 1232 if (error) { 1233 if (unlock_inp == UH_WLOCKED) 1234 INP_WUNLOCK(inp); 1235 else 1236 INP_RUNLOCK(inp); 1237 m_freem(m); 1238 return (error); 1239 } 1240 1241 /* 1242 * Depending on whether or not the application has bound or connected 1243 * the socket, we may have to do varying levels of work. The optimal 1244 * case is for a connected UDP socket, as a global lock isn't 1245 * required at all. 1246 * 1247 * In order to decide which we need, we require stability of the 1248 * inpcb binding, which we ensure by acquiring a read lock on the 1249 * inpcb. This doesn't strictly follow the lock order, so we play 1250 * the trylock and retry game; note that we may end up with more 1251 * conservative locks than required the second time around, so later 1252 * assertions have to accept that. Further analysis of the number of 1253 * misses under contention is required. 1254 * 1255 * XXXRW: Check that hash locking update here is correct. 1256 */ 1257 pr = inp->inp_socket->so_proto->pr_protocol; 1258 pcbinfo = udp_get_inpcbinfo(pr); 1259 sin = (struct sockaddr_in *)addr; 1260 if (sin != NULL && 1261 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1262 INP_HASH_WLOCK(pcbinfo); 1263 unlock_udbinfo = UH_WLOCKED; 1264 } else if ((sin != NULL && ( 1265 (sin->sin_addr.s_addr == INADDR_ANY) || 1266 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1267 (inp->inp_laddr.s_addr == INADDR_ANY) || 1268 (inp->inp_lport == 0))) || 1269 (src.sin_family == AF_INET)) { 1270 INP_HASH_RLOCK_ET(pcbinfo, et); 1271 unlock_udbinfo = UH_RLOCKED; 1272 } else 1273 unlock_udbinfo = UH_UNLOCKED; 1274 1275 /* 1276 * If the IP_SENDSRCADDR control message was specified, override the 1277 * source address for this datagram. Its use is invalidated if the 1278 * address thus specified is incomplete or clobbers other inpcbs. 1279 */ 1280 laddr = inp->inp_laddr; 1281 lport = inp->inp_lport; 1282 if (src.sin_family == AF_INET) { 1283 INP_HASH_LOCK_ASSERT(pcbinfo); 1284 if ((lport == 0) || 1285 (laddr.s_addr == INADDR_ANY && 1286 src.sin_addr.s_addr == INADDR_ANY)) { 1287 error = EINVAL; 1288 goto release; 1289 } 1290 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1291 &laddr.s_addr, &lport, td->td_ucred); 1292 if (error) 1293 goto release; 1294 } 1295 1296 /* 1297 * If a UDP socket has been connected, then a local address/port will 1298 * have been selected and bound. 1299 * 1300 * If a UDP socket has not been connected to, then an explicit 1301 * destination address must be used, in which case a local 1302 * address/port may not have been selected and bound. 1303 */ 1304 if (sin != NULL) { 1305 INP_LOCK_ASSERT(inp); 1306 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1307 error = EISCONN; 1308 goto release; 1309 } 1310 1311 /* 1312 * Jail may rewrite the destination address, so let it do 1313 * that before we use it. 1314 */ 1315 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1316 if (error) 1317 goto release; 1318 1319 /* 1320 * If a local address or port hasn't yet been selected, or if 1321 * the destination address needs to be rewritten due to using 1322 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1323 * to do the heavy lifting. Once a port is selected, we 1324 * commit the binding back to the socket; we also commit the 1325 * binding of the address if in jail. 1326 * 1327 * If we already have a valid binding and we're not 1328 * requesting a destination address rewrite, use a fast path. 1329 */ 1330 if (inp->inp_laddr.s_addr == INADDR_ANY || 1331 inp->inp_lport == 0 || 1332 sin->sin_addr.s_addr == INADDR_ANY || 1333 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1334 INP_HASH_LOCK_ASSERT(pcbinfo); 1335 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1336 &lport, &faddr.s_addr, &fport, NULL, 1337 td->td_ucred); 1338 if (error) 1339 goto release; 1340 1341 /* 1342 * XXXRW: Why not commit the port if the address is 1343 * !INADDR_ANY? 1344 */ 1345 /* Commit the local port if newly assigned. */ 1346 if (inp->inp_laddr.s_addr == INADDR_ANY && 1347 inp->inp_lport == 0) { 1348 INP_WLOCK_ASSERT(inp); 1349 INP_HASH_WLOCK_ASSERT(pcbinfo); 1350 /* 1351 * Remember addr if jailed, to prevent 1352 * rebinding. 1353 */ 1354 if (prison_flag(td->td_ucred, PR_IP4)) 1355 inp->inp_laddr = laddr; 1356 inp->inp_lport = lport; 1357 if (in_pcbinshash(inp) != 0) { 1358 inp->inp_lport = 0; 1359 error = EAGAIN; 1360 goto release; 1361 } 1362 inp->inp_flags |= INP_ANONPORT; 1363 } 1364 } else { 1365 faddr = sin->sin_addr; 1366 fport = sin->sin_port; 1367 } 1368 } else { 1369 INP_LOCK_ASSERT(inp); 1370 faddr = inp->inp_faddr; 1371 fport = inp->inp_fport; 1372 if (faddr.s_addr == INADDR_ANY) { 1373 error = ENOTCONN; 1374 goto release; 1375 } 1376 } 1377 1378 /* 1379 * Calculate data length and get a mbuf for UDP, IP, and possible 1380 * link-layer headers. Immediate slide the data pointer back forward 1381 * since we won't use that space at this layer. 1382 */ 1383 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1384 if (m == NULL) { 1385 error = ENOBUFS; 1386 goto release; 1387 } 1388 m->m_data += max_linkhdr; 1389 m->m_len -= max_linkhdr; 1390 m->m_pkthdr.len -= max_linkhdr; 1391 1392 /* 1393 * Fill in mbuf with extended UDP header and addresses and length put 1394 * into network format. 1395 */ 1396 ui = mtod(m, struct udpiphdr *); 1397 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1398 ui->ui_pr = pr; 1399 ui->ui_src = laddr; 1400 ui->ui_dst = faddr; 1401 ui->ui_sport = lport; 1402 ui->ui_dport = fport; 1403 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1404 if (pr == IPPROTO_UDPLITE) { 1405 struct udpcb *up; 1406 uint16_t plen; 1407 1408 up = intoudpcb(inp); 1409 cscov = up->u_txcslen; 1410 plen = (u_short)len + sizeof(struct udphdr); 1411 if (cscov >= plen) 1412 cscov = 0; 1413 ui->ui_len = htons(plen); 1414 ui->ui_ulen = htons(cscov); 1415 /* 1416 * For UDP-Lite, checksum coverage length of zero means 1417 * the entire UDPLite packet is covered by the checksum. 1418 */ 1419 cscov_partial = (cscov == 0) ? 0 : 1; 1420 } else 1421 ui->ui_v = IPVERSION << 4; 1422 1423 /* 1424 * Set the Don't Fragment bit in the IP header. 1425 */ 1426 if (inp->inp_flags & INP_DONTFRAG) { 1427 struct ip *ip; 1428 1429 ip = (struct ip *)&ui->ui_i; 1430 ip->ip_off |= htons(IP_DF); 1431 } 1432 1433 ipflags = 0; 1434 if (inp->inp_socket->so_options & SO_DONTROUTE) 1435 ipflags |= IP_ROUTETOIF; 1436 if (inp->inp_socket->so_options & SO_BROADCAST) 1437 ipflags |= IP_ALLOWBROADCAST; 1438 if (inp->inp_flags & INP_ONESBCAST) 1439 ipflags |= IP_SENDONES; 1440 1441 #ifdef MAC 1442 mac_inpcb_create_mbuf(inp, m); 1443 #endif 1444 1445 /* 1446 * Set up checksum and output datagram. 1447 */ 1448 ui->ui_sum = 0; 1449 if (pr == IPPROTO_UDPLITE) { 1450 if (inp->inp_flags & INP_ONESBCAST) 1451 faddr.s_addr = INADDR_BROADCAST; 1452 if (cscov_partial) { 1453 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1454 ui->ui_sum = 0xffff; 1455 } else { 1456 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1457 ui->ui_sum = 0xffff; 1458 } 1459 } else if (V_udp_cksum) { 1460 if (inp->inp_flags & INP_ONESBCAST) 1461 faddr.s_addr = INADDR_BROADCAST; 1462 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1463 htons((u_short)len + sizeof(struct udphdr) + pr)); 1464 m->m_pkthdr.csum_flags = CSUM_UDP; 1465 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1466 } 1467 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1468 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1469 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1470 UDPSTAT_INC(udps_opackets); 1471 1472 /* 1473 * Setup flowid / RSS information for outbound socket. 1474 * 1475 * Once the UDP code decides to set a flowid some other way, 1476 * this allows the flowid to be overridden by userland. 1477 */ 1478 if (flowtype != M_HASHTYPE_NONE) { 1479 m->m_pkthdr.flowid = flowid; 1480 M_HASHTYPE_SET(m, flowtype); 1481 #ifdef RSS 1482 } else { 1483 uint32_t hash_val, hash_type; 1484 /* 1485 * Calculate an appropriate RSS hash for UDP and 1486 * UDP Lite. 1487 * 1488 * The called function will take care of figuring out 1489 * whether a 2-tuple or 4-tuple hash is required based 1490 * on the currently configured scheme. 1491 * 1492 * Later later on connected socket values should be 1493 * cached in the inpcb and reused, rather than constantly 1494 * re-calculating it. 1495 * 1496 * UDP Lite is a different protocol number and will 1497 * likely end up being hashed as a 2-tuple until 1498 * RSS / NICs grow UDP Lite protocol awareness. 1499 */ 1500 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, 1501 pr, &hash_val, &hash_type) == 0) { 1502 m->m_pkthdr.flowid = hash_val; 1503 M_HASHTYPE_SET(m, hash_type); 1504 } 1505 #endif 1506 } 1507 1508 #ifdef RSS 1509 /* 1510 * Don't override with the inp cached flowid value. 1511 * 1512 * Depending upon the kind of send being done, the inp 1513 * flowid/flowtype values may actually not be appropriate 1514 * for this particular socket send. 1515 * 1516 * We should either leave the flowid at zero (which is what is 1517 * currently done) or set it to some software generated 1518 * hash value based on the packet contents. 1519 */ 1520 ipflags |= IP_NODEFAULTFLOWID; 1521 #endif /* RSS */ 1522 1523 if (unlock_udbinfo == UH_WLOCKED) 1524 INP_HASH_WUNLOCK(pcbinfo); 1525 else if (unlock_udbinfo == UH_RLOCKED) 1526 INP_HASH_RUNLOCK_ET(pcbinfo, et); 1527 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1528 error = ip_output(m, inp->inp_options, 1529 (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags, 1530 inp->inp_moptions, inp); 1531 if (unlock_inp == UH_WLOCKED) 1532 INP_WUNLOCK(inp); 1533 else 1534 INP_RUNLOCK(inp); 1535 return (error); 1536 1537 release: 1538 if (unlock_udbinfo == UH_WLOCKED) { 1539 KASSERT(unlock_inp == UH_WLOCKED, 1540 ("%s: excl udbinfo lock, shared inp lock", __func__)); 1541 INP_HASH_WUNLOCK(pcbinfo); 1542 INP_WUNLOCK(inp); 1543 } else if (unlock_udbinfo == UH_RLOCKED) { 1544 KASSERT(unlock_inp == UH_RLOCKED, 1545 ("%s: shared udbinfo lock, excl inp lock", __func__)); 1546 INP_HASH_RUNLOCK_ET(pcbinfo, et); 1547 INP_RUNLOCK(inp); 1548 } else if (unlock_inp == UH_WLOCKED) 1549 INP_WUNLOCK(inp); 1550 else 1551 INP_RUNLOCK(inp); 1552 m_freem(m); 1553 return (error); 1554 } 1555 1556 static void 1557 udp_abort(struct socket *so) 1558 { 1559 struct inpcb *inp; 1560 struct inpcbinfo *pcbinfo; 1561 1562 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1563 inp = sotoinpcb(so); 1564 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1565 INP_WLOCK(inp); 1566 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1567 INP_HASH_WLOCK(pcbinfo); 1568 in_pcbdisconnect(inp); 1569 inp->inp_laddr.s_addr = INADDR_ANY; 1570 INP_HASH_WUNLOCK(pcbinfo); 1571 soisdisconnected(so); 1572 } 1573 INP_WUNLOCK(inp); 1574 } 1575 1576 static int 1577 udp_attach(struct socket *so, int proto, struct thread *td) 1578 { 1579 static uint32_t udp_flowid; 1580 struct inpcb *inp; 1581 struct inpcbinfo *pcbinfo; 1582 int error; 1583 1584 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1585 inp = sotoinpcb(so); 1586 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1587 error = soreserve(so, udp_sendspace, udp_recvspace); 1588 if (error) 1589 return (error); 1590 INP_INFO_WLOCK(pcbinfo); 1591 error = in_pcballoc(so, pcbinfo); 1592 if (error) { 1593 INP_INFO_WUNLOCK(pcbinfo); 1594 return (error); 1595 } 1596 1597 inp = sotoinpcb(so); 1598 inp->inp_vflag |= INP_IPV4; 1599 inp->inp_ip_ttl = V_ip_defttl; 1600 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1601 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1602 1603 error = udp_newudpcb(inp); 1604 if (error) { 1605 in_pcbdetach(inp); 1606 in_pcbfree(inp); 1607 INP_INFO_WUNLOCK(pcbinfo); 1608 return (error); 1609 } 1610 1611 INP_WUNLOCK(inp); 1612 INP_INFO_WUNLOCK(pcbinfo); 1613 return (0); 1614 } 1615 #endif /* INET */ 1616 1617 int 1618 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1619 { 1620 struct inpcb *inp; 1621 struct udpcb *up; 1622 1623 KASSERT(so->so_type == SOCK_DGRAM, 1624 ("udp_set_kernel_tunneling: !dgram")); 1625 inp = sotoinpcb(so); 1626 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1627 INP_WLOCK(inp); 1628 up = intoudpcb(inp); 1629 if ((up->u_tun_func != NULL) || 1630 (up->u_icmp_func != NULL)) { 1631 INP_WUNLOCK(inp); 1632 return (EBUSY); 1633 } 1634 up->u_tun_func = f; 1635 up->u_icmp_func = i; 1636 up->u_tun_ctx = ctx; 1637 INP_WUNLOCK(inp); 1638 return (0); 1639 } 1640 1641 #ifdef INET 1642 static int 1643 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1644 { 1645 struct inpcb *inp; 1646 struct inpcbinfo *pcbinfo; 1647 int error; 1648 1649 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1650 inp = sotoinpcb(so); 1651 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1652 INP_WLOCK(inp); 1653 INP_HASH_WLOCK(pcbinfo); 1654 error = in_pcbbind(inp, nam, td->td_ucred); 1655 INP_HASH_WUNLOCK(pcbinfo); 1656 INP_WUNLOCK(inp); 1657 return (error); 1658 } 1659 1660 static void 1661 udp_close(struct socket *so) 1662 { 1663 struct inpcb *inp; 1664 struct inpcbinfo *pcbinfo; 1665 1666 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1667 inp = sotoinpcb(so); 1668 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1669 INP_WLOCK(inp); 1670 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1671 INP_HASH_WLOCK(pcbinfo); 1672 in_pcbdisconnect(inp); 1673 inp->inp_laddr.s_addr = INADDR_ANY; 1674 INP_HASH_WUNLOCK(pcbinfo); 1675 soisdisconnected(so); 1676 } 1677 INP_WUNLOCK(inp); 1678 } 1679 1680 static int 1681 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1682 { 1683 struct inpcb *inp; 1684 struct inpcbinfo *pcbinfo; 1685 struct sockaddr_in *sin; 1686 int error; 1687 1688 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1689 inp = sotoinpcb(so); 1690 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1691 INP_WLOCK(inp); 1692 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1693 INP_WUNLOCK(inp); 1694 return (EISCONN); 1695 } 1696 sin = (struct sockaddr_in *)nam; 1697 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1698 if (error != 0) { 1699 INP_WUNLOCK(inp); 1700 return (error); 1701 } 1702 INP_HASH_WLOCK(pcbinfo); 1703 error = in_pcbconnect(inp, nam, td->td_ucred); 1704 INP_HASH_WUNLOCK(pcbinfo); 1705 if (error == 0) 1706 soisconnected(so); 1707 INP_WUNLOCK(inp); 1708 return (error); 1709 } 1710 1711 static void 1712 udp_detach(struct socket *so) 1713 { 1714 struct inpcb *inp; 1715 struct inpcbinfo *pcbinfo; 1716 struct udpcb *up; 1717 1718 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1719 inp = sotoinpcb(so); 1720 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1721 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1722 ("udp_detach: not disconnected")); 1723 INP_INFO_WLOCK(pcbinfo); 1724 INP_WLOCK(inp); 1725 up = intoudpcb(inp); 1726 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1727 inp->inp_ppcb = NULL; 1728 in_pcbdetach(inp); 1729 in_pcbfree(inp); 1730 INP_INFO_WUNLOCK(pcbinfo); 1731 udp_discardcb(up); 1732 } 1733 1734 static int 1735 udp_disconnect(struct socket *so) 1736 { 1737 struct inpcb *inp; 1738 struct inpcbinfo *pcbinfo; 1739 1740 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1741 inp = sotoinpcb(so); 1742 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1743 INP_WLOCK(inp); 1744 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1745 INP_WUNLOCK(inp); 1746 return (ENOTCONN); 1747 } 1748 INP_HASH_WLOCK(pcbinfo); 1749 in_pcbdisconnect(inp); 1750 inp->inp_laddr.s_addr = INADDR_ANY; 1751 INP_HASH_WUNLOCK(pcbinfo); 1752 SOCK_LOCK(so); 1753 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1754 SOCK_UNLOCK(so); 1755 INP_WUNLOCK(inp); 1756 return (0); 1757 } 1758 1759 static int 1760 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1761 struct mbuf *control, struct thread *td) 1762 { 1763 struct inpcb *inp; 1764 1765 inp = sotoinpcb(so); 1766 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1767 return (udp_output(inp, m, addr, control, td)); 1768 } 1769 #endif /* INET */ 1770 1771 int 1772 udp_shutdown(struct socket *so) 1773 { 1774 struct inpcb *inp; 1775 1776 inp = sotoinpcb(so); 1777 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1778 INP_WLOCK(inp); 1779 socantsendmore(so); 1780 INP_WUNLOCK(inp); 1781 return (0); 1782 } 1783 1784 #ifdef INET 1785 struct pr_usrreqs udp_usrreqs = { 1786 .pru_abort = udp_abort, 1787 .pru_attach = udp_attach, 1788 .pru_bind = udp_bind, 1789 .pru_connect = udp_connect, 1790 .pru_control = in_control, 1791 .pru_detach = udp_detach, 1792 .pru_disconnect = udp_disconnect, 1793 .pru_peeraddr = in_getpeeraddr, 1794 .pru_send = udp_send, 1795 .pru_soreceive = soreceive_dgram, 1796 .pru_sosend = sosend_dgram, 1797 .pru_shutdown = udp_shutdown, 1798 .pru_sockaddr = in_getsockaddr, 1799 .pru_sosetlabel = in_pcbsosetlabel, 1800 .pru_close = udp_close, 1801 }; 1802 #endif /* INET */ 1803