1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_route.h" 48 #include "opt_rss.h" 49 50 #include <sys/param.h> 51 #include <sys/domain.h> 52 #include <sys/eventhandler.h> 53 #include <sys/jail.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/protosw.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sx.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/systm.h> 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/route.h> 75 #include <net/route/nhop.h> 76 #include <net/rss_config.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #ifdef INET6 86 #include <netinet/ip6.h> 87 #endif 88 #include <netinet/ip_icmp.h> 89 #include <netinet/icmp_var.h> 90 #include <netinet/ip_var.h> 91 #include <netinet/ip_options.h> 92 #ifdef INET6 93 #include <netinet6/ip6_var.h> 94 #endif 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 #include <netinet/udplite.h> 98 #include <netinet/in_rss.h> 99 100 #include <netipsec/ipsec_support.h> 101 102 #include <machine/in_cksum.h> 103 104 #include <security/mac/mac_framework.h> 105 106 /* 107 * UDP and UDP-Lite protocols implementation. 108 * Per RFC 768, August, 1980. 109 * Per RFC 3828, July, 2004. 110 */ 111 112 /* 113 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 114 * removes the only data integrity mechanism for packets and malformed 115 * packets that would otherwise be discarded due to bad checksums, and may 116 * cause problems (especially for NFS data blocks). 117 */ 118 VNET_DEFINE(int, udp_cksum) = 1; 119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 120 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 121 122 VNET_DEFINE(int, udp_log_in_vain) = 0; 123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 124 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 125 126 VNET_DEFINE(int, udp_blackhole) = 0; 127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 128 &VNET_NAME(udp_blackhole), 0, 129 "Do not send port unreachables for refused connects"); 130 VNET_DEFINE(bool, udp_blackhole_local) = false; 131 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 132 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 133 "Enforce net.inet.udp.blackhole for locally originated packets"); 134 135 u_long udp_sendspace = 9216; /* really max datagram size */ 136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 137 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 138 139 u_long udp_recvspace = 40 * (1024 + 140 #ifdef INET6 141 sizeof(struct sockaddr_in6) 142 #else 143 sizeof(struct sockaddr_in) 144 #endif 145 ); /* 40 1K datagrams */ 146 147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 148 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 149 150 VNET_DEFINE(struct inpcbinfo, udbinfo); 151 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 152 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone); 153 #define V_udpcb_zone VNET(udpcb_zone) 154 155 #ifndef UDBHASHSIZE 156 #define UDBHASHSIZE 128 157 #endif 158 159 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 160 VNET_PCPUSTAT_SYSINIT(udpstat); 161 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 162 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 163 164 #ifdef VIMAGE 165 VNET_PCPUSTAT_SYSUNINIT(udpstat); 166 #endif /* VIMAGE */ 167 #ifdef INET 168 static void udp_detach(struct socket *so); 169 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 170 struct mbuf *, struct thread *, int); 171 #endif 172 173 INPCBSTORAGE_DEFINE(udpcbstor, "udpinp", "udp_inpcb", "udp", "udphash"); 174 INPCBSTORAGE_DEFINE(udplitecbstor, "udpliteinp", "udplite_inpcb", "udplite", 175 "udplitehash"); 176 177 static void 178 udp_vnet_init(void *arg __unused) 179 { 180 181 /* 182 * For now default to 2-tuple UDP hashing - until the fragment 183 * reassembly code can also update the flowid. 184 * 185 * Once we can calculate the flowid that way and re-establish 186 * a 4-tuple, flip this to 4-tuple. 187 */ 188 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 189 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 190 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 191 uma_zone_set_max(V_udpcb_zone, maxsockets); 192 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 193 194 /* Additional pcbinfo for UDP-Lite */ 195 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 196 UDBHASHSIZE); 197 } 198 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 199 udp_vnet_init, NULL); 200 201 /* 202 * Kernel module interface for updating udpstat. The argument is an index 203 * into udpstat treated as an array of u_long. While this encodes the 204 * general layout of udpstat into the caller, it doesn't encode its location, 205 * so that future changes to add, for example, per-CPU stats support won't 206 * cause binary compatibility problems for kernel modules. 207 */ 208 void 209 kmod_udpstat_inc(int statnum) 210 { 211 212 counter_u64_add(VNET(udpstat)[statnum], 1); 213 } 214 215 int 216 udp_newudpcb(struct inpcb *inp) 217 { 218 struct udpcb *up; 219 220 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 221 if (up == NULL) 222 return (ENOBUFS); 223 inp->inp_ppcb = up; 224 return (0); 225 } 226 227 void 228 udp_discardcb(struct udpcb *up) 229 { 230 231 uma_zfree(V_udpcb_zone, up); 232 } 233 234 #ifdef VIMAGE 235 static void 236 udp_destroy(void *unused __unused) 237 { 238 239 in_pcbinfo_destroy(&V_udbinfo); 240 uma_zdestroy(V_udpcb_zone); 241 } 242 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 243 244 static void 245 udplite_destroy(void *unused __unused) 246 { 247 248 in_pcbinfo_destroy(&V_ulitecbinfo); 249 } 250 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 251 NULL); 252 #endif 253 254 #ifdef INET 255 /* 256 * Subroutine of udp_input(), which appends the provided mbuf chain to the 257 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 258 * contains the source address. If the socket ends up being an IPv6 socket, 259 * udp_append() will convert to a sockaddr_in6 before passing the address 260 * into the socket code. 261 * 262 * In the normal case udp_append() will return 0, indicating that you 263 * must unlock the inp. However if a tunneling protocol is in place we increment 264 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 265 * then decrement the reference count. If the inp_rele returns 1, indicating the 266 * inp is gone, we return that to the caller to tell them *not* to unlock 267 * the inp. In the case of multi-cast this will cause the distribution 268 * to stop (though most tunneling protocols known currently do *not* use 269 * multicast). 270 */ 271 static int 272 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 273 struct sockaddr_in *udp_in) 274 { 275 struct sockaddr *append_sa; 276 struct socket *so; 277 struct mbuf *tmpopts, *opts = NULL; 278 #ifdef INET6 279 struct sockaddr_in6 udp_in6; 280 #endif 281 struct udpcb *up; 282 bool filtered; 283 284 INP_LOCK_ASSERT(inp); 285 286 /* 287 * Engage the tunneling protocol. 288 */ 289 up = intoudpcb(inp); 290 if (up->u_tun_func != NULL) { 291 in_pcbref(inp); 292 INP_RUNLOCK(inp); 293 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 294 up->u_tun_ctx); 295 INP_RLOCK(inp); 296 if (filtered) 297 return (in_pcbrele_rlocked(inp)); 298 } 299 300 off += sizeof(struct udphdr); 301 302 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 303 /* Check AH/ESP integrity. */ 304 if (IPSEC_ENABLED(ipv4) && 305 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 306 m_freem(n); 307 return (0); 308 } 309 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 310 if (IPSEC_ENABLED(ipv4) && 311 UDPENCAP_INPUT(n, off, AF_INET) != 0) 312 return (0); /* Consumed. */ 313 } 314 #endif /* IPSEC */ 315 #ifdef MAC 316 if (mac_inpcb_check_deliver(inp, n) != 0) { 317 m_freem(n); 318 return (0); 319 } 320 #endif /* MAC */ 321 if (inp->inp_flags & INP_CONTROLOPTS || 322 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 323 #ifdef INET6 324 if (inp->inp_vflag & INP_IPV6) 325 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 326 else 327 #endif /* INET6 */ 328 ip_savecontrol(inp, &opts, ip, n); 329 } 330 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 331 tmpopts = sbcreatecontrol(&udp_in[1], 332 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 333 M_NOWAIT); 334 if (tmpopts) { 335 if (opts) { 336 tmpopts->m_next = opts; 337 opts = tmpopts; 338 } else 339 opts = tmpopts; 340 } 341 } 342 #ifdef INET6 343 if (inp->inp_vflag & INP_IPV6) { 344 bzero(&udp_in6, sizeof(udp_in6)); 345 udp_in6.sin6_len = sizeof(udp_in6); 346 udp_in6.sin6_family = AF_INET6; 347 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 348 append_sa = (struct sockaddr *)&udp_in6; 349 } else 350 #endif /* INET6 */ 351 append_sa = (struct sockaddr *)&udp_in[0]; 352 m_adj(n, off); 353 354 so = inp->inp_socket; 355 SOCKBUF_LOCK(&so->so_rcv); 356 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 357 soroverflow_locked(so); 358 m_freem(n); 359 if (opts) 360 m_freem(opts); 361 UDPSTAT_INC(udps_fullsock); 362 } else 363 sorwakeup_locked(so); 364 return (0); 365 } 366 367 static bool 368 udp_multi_match(const struct inpcb *inp, void *v) 369 { 370 struct ip *ip = v; 371 struct udphdr *uh = (struct udphdr *)(ip + 1); 372 373 if (inp->inp_lport != uh->uh_dport) 374 return (false); 375 #ifdef INET6 376 if ((inp->inp_vflag & INP_IPV4) == 0) 377 return (false); 378 #endif 379 if (inp->inp_laddr.s_addr != INADDR_ANY && 380 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 381 return (false); 382 if (inp->inp_faddr.s_addr != INADDR_ANY && 383 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 384 return (false); 385 if (inp->inp_fport != 0 && 386 inp->inp_fport != uh->uh_sport) 387 return (false); 388 389 return (true); 390 } 391 392 static int 393 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 394 { 395 struct ip *ip = mtod(m, struct ip *); 396 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 397 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 398 #ifdef KDTRACE_HOOKS 399 struct udphdr *uh = (struct udphdr *)(ip + 1); 400 #endif 401 struct inpcb *inp; 402 struct mbuf *n; 403 int appends = 0; 404 405 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 406 407 while ((inp = inp_next(&inpi)) != NULL) { 408 /* 409 * XXXRW: Because we weren't holding either the inpcb 410 * or the hash lock when we checked for a match 411 * before, we should probably recheck now that the 412 * inpcb lock is held. 413 */ 414 /* 415 * Handle socket delivery policy for any-source 416 * and source-specific multicast. [RFC3678] 417 */ 418 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 419 struct ip_moptions *imo; 420 struct sockaddr_in group; 421 int blocked; 422 423 imo = inp->inp_moptions; 424 if (imo == NULL) 425 continue; 426 bzero(&group, sizeof(struct sockaddr_in)); 427 group.sin_len = sizeof(struct sockaddr_in); 428 group.sin_family = AF_INET; 429 group.sin_addr = ip->ip_dst; 430 431 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 432 (struct sockaddr *)&group, 433 (struct sockaddr *)&udp_in[0]); 434 if (blocked != MCAST_PASS) { 435 if (blocked == MCAST_NOTGMEMBER) 436 IPSTAT_INC(ips_notmember); 437 if (blocked == MCAST_NOTSMEMBER || 438 blocked == MCAST_MUTED) 439 UDPSTAT_INC(udps_filtermcast); 440 continue; 441 } 442 } 443 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 444 if (proto == IPPROTO_UDPLITE) 445 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 446 else 447 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 448 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 449 INP_RUNLOCK(inp); 450 break; 451 } else 452 appends++; 453 } 454 /* 455 * Don't look for additional matches if this one does 456 * not have either the SO_REUSEPORT or SO_REUSEADDR 457 * socket options set. This heuristic avoids 458 * searching through all pcbs in the common case of a 459 * non-shared port. It assumes that an application 460 * will never clear these options after setting them. 461 */ 462 if ((inp->inp_socket->so_options & 463 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 464 INP_RUNLOCK(inp); 465 break; 466 } 467 } 468 469 if (appends == 0) { 470 /* 471 * No matching pcb found; discard datagram. (No need 472 * to send an ICMP Port Unreachable for a broadcast 473 * or multicast datgram.) 474 */ 475 UDPSTAT_INC(udps_noport); 476 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 477 UDPSTAT_INC(udps_noportmcast); 478 else 479 UDPSTAT_INC(udps_noportbcast); 480 } 481 m_freem(m); 482 483 return (IPPROTO_DONE); 484 } 485 486 static int 487 udp_input(struct mbuf **mp, int *offp, int proto) 488 { 489 struct ip *ip; 490 struct udphdr *uh; 491 struct ifnet *ifp; 492 struct inpcb *inp; 493 uint16_t len, ip_len; 494 struct inpcbinfo *pcbinfo; 495 struct sockaddr_in udp_in[2]; 496 struct mbuf *m; 497 struct m_tag *fwd_tag; 498 int cscov_partial, iphlen; 499 500 m = *mp; 501 iphlen = *offp; 502 ifp = m->m_pkthdr.rcvif; 503 *mp = NULL; 504 UDPSTAT_INC(udps_ipackets); 505 506 /* 507 * Strip IP options, if any; should skip this, make available to 508 * user, and use on returned packets, but we don't yet have a way to 509 * check the checksum with options still present. 510 */ 511 if (iphlen > sizeof (struct ip)) { 512 ip_stripoptions(m); 513 iphlen = sizeof(struct ip); 514 } 515 516 /* 517 * Get IP and UDP header together in first mbuf. 518 */ 519 if (m->m_len < iphlen + sizeof(struct udphdr)) { 520 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 521 UDPSTAT_INC(udps_hdrops); 522 return (IPPROTO_DONE); 523 } 524 } 525 ip = mtod(m, struct ip *); 526 uh = (struct udphdr *)((caddr_t)ip + iphlen); 527 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 528 529 /* 530 * Destination port of 0 is illegal, based on RFC768. 531 */ 532 if (uh->uh_dport == 0) 533 goto badunlocked; 534 535 /* 536 * Construct sockaddr format source address. Stuff source address 537 * and datagram in user buffer. 538 */ 539 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 540 udp_in[0].sin_len = sizeof(struct sockaddr_in); 541 udp_in[0].sin_family = AF_INET; 542 udp_in[0].sin_port = uh->uh_sport; 543 udp_in[0].sin_addr = ip->ip_src; 544 udp_in[1].sin_len = sizeof(struct sockaddr_in); 545 udp_in[1].sin_family = AF_INET; 546 udp_in[1].sin_port = uh->uh_dport; 547 udp_in[1].sin_addr = ip->ip_dst; 548 549 /* 550 * Make mbuf data length reflect UDP length. If not enough data to 551 * reflect UDP length, drop. 552 */ 553 len = ntohs((u_short)uh->uh_ulen); 554 ip_len = ntohs(ip->ip_len) - iphlen; 555 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 556 /* Zero means checksum over the complete packet. */ 557 if (len == 0) 558 len = ip_len; 559 cscov_partial = 0; 560 } 561 if (ip_len != len) { 562 if (len > ip_len || len < sizeof(struct udphdr)) { 563 UDPSTAT_INC(udps_badlen); 564 goto badunlocked; 565 } 566 if (proto == IPPROTO_UDP) 567 m_adj(m, len - ip_len); 568 } 569 570 /* 571 * Checksum extended UDP header and data. 572 */ 573 if (uh->uh_sum) { 574 u_short uh_sum; 575 576 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 577 !cscov_partial) { 578 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 579 uh_sum = m->m_pkthdr.csum_data; 580 else 581 uh_sum = in_pseudo(ip->ip_src.s_addr, 582 ip->ip_dst.s_addr, htonl((u_short)len + 583 m->m_pkthdr.csum_data + proto)); 584 uh_sum ^= 0xffff; 585 } else { 586 char b[offsetof(struct ipovly, ih_src)]; 587 struct ipovly *ipov = (struct ipovly *)ip; 588 589 bcopy(ipov, b, sizeof(b)); 590 bzero(ipov, sizeof(ipov->ih_x1)); 591 ipov->ih_len = (proto == IPPROTO_UDP) ? 592 uh->uh_ulen : htons(ip_len); 593 uh_sum = in_cksum(m, len + sizeof (struct ip)); 594 bcopy(b, ipov, sizeof(b)); 595 } 596 if (uh_sum) { 597 UDPSTAT_INC(udps_badsum); 598 m_freem(m); 599 return (IPPROTO_DONE); 600 } 601 } else { 602 if (proto == IPPROTO_UDP) { 603 UDPSTAT_INC(udps_nosum); 604 } else { 605 /* UDPLite requires a checksum */ 606 /* XXX: What is the right UDPLite MIB counter here? */ 607 m_freem(m); 608 return (IPPROTO_DONE); 609 } 610 } 611 612 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 613 in_broadcast(ip->ip_dst, ifp)) 614 return (udp_multi_input(m, proto, udp_in)); 615 616 pcbinfo = udp_get_inpcbinfo(proto); 617 618 /* 619 * Locate pcb for datagram. 620 * 621 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 622 */ 623 if ((m->m_flags & M_IP_NEXTHOP) && 624 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 625 struct sockaddr_in *next_hop; 626 627 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 628 629 /* 630 * Transparently forwarded. Pretend to be the destination. 631 * Already got one like this? 632 */ 633 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 634 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 635 if (!inp) { 636 /* 637 * It's new. Try to find the ambushing socket. 638 * Because we've rewritten the destination address, 639 * any hardware-generated hash is ignored. 640 */ 641 inp = in_pcblookup(pcbinfo, ip->ip_src, 642 uh->uh_sport, next_hop->sin_addr, 643 next_hop->sin_port ? htons(next_hop->sin_port) : 644 uh->uh_dport, INPLOOKUP_WILDCARD | 645 INPLOOKUP_RLOCKPCB, ifp); 646 } 647 /* Remove the tag from the packet. We don't need it anymore. */ 648 m_tag_delete(m, fwd_tag); 649 m->m_flags &= ~M_IP_NEXTHOP; 650 } else 651 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 652 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 653 INPLOOKUP_RLOCKPCB, ifp, m); 654 if (inp == NULL) { 655 if (V_udp_log_in_vain) { 656 char src[INET_ADDRSTRLEN]; 657 char dst[INET_ADDRSTRLEN]; 658 659 log(LOG_INFO, 660 "Connection attempt to UDP %s:%d from %s:%d\n", 661 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 662 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 663 } 664 if (proto == IPPROTO_UDPLITE) 665 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 666 else 667 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 668 UDPSTAT_INC(udps_noport); 669 if (m->m_flags & (M_BCAST | M_MCAST)) { 670 UDPSTAT_INC(udps_noportbcast); 671 goto badunlocked; 672 } 673 if (V_udp_blackhole && (V_udp_blackhole_local || 674 !in_localip(ip->ip_src))) 675 goto badunlocked; 676 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 677 goto badunlocked; 678 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 679 return (IPPROTO_DONE); 680 } 681 682 /* 683 * Check the minimum TTL for socket. 684 */ 685 INP_RLOCK_ASSERT(inp); 686 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 687 if (proto == IPPROTO_UDPLITE) 688 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 689 else 690 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 691 INP_RUNLOCK(inp); 692 m_freem(m); 693 return (IPPROTO_DONE); 694 } 695 if (cscov_partial) { 696 struct udpcb *up; 697 698 up = intoudpcb(inp); 699 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 700 INP_RUNLOCK(inp); 701 m_freem(m); 702 return (IPPROTO_DONE); 703 } 704 } 705 706 if (proto == IPPROTO_UDPLITE) 707 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 708 else 709 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 710 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 711 INP_RUNLOCK(inp); 712 return (IPPROTO_DONE); 713 714 badunlocked: 715 m_freem(m); 716 return (IPPROTO_DONE); 717 } 718 #endif /* INET */ 719 720 /* 721 * Notify a udp user of an asynchronous error; just wake up so that they can 722 * collect error status. 723 */ 724 struct inpcb * 725 udp_notify(struct inpcb *inp, int errno) 726 { 727 728 INP_WLOCK_ASSERT(inp); 729 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 730 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 731 NH_FREE(inp->inp_route.ro_nh); 732 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 733 } 734 735 inp->inp_socket->so_error = errno; 736 sorwakeup(inp->inp_socket); 737 sowwakeup(inp->inp_socket); 738 return (inp); 739 } 740 741 #ifdef INET 742 static void 743 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) 744 { 745 struct ip *ip = &icmp->icmp_ip; 746 struct udphdr *uh; 747 struct inpcb *inp; 748 749 if (icmp_errmap(icmp) == 0) 750 return; 751 752 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 753 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, 754 uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 755 if (inp != NULL) { 756 INP_WLOCK_ASSERT(inp); 757 if (inp->inp_socket != NULL) 758 udp_notify(inp, icmp_errmap(icmp)); 759 INP_WUNLOCK(inp); 760 } else { 761 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, 762 ip->ip_src, uh->uh_sport, 763 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 764 if (inp != NULL) { 765 struct udpcb *up; 766 udp_tun_icmp_t *func; 767 768 up = intoudpcb(inp); 769 func = up->u_icmp_func; 770 INP_RUNLOCK(inp); 771 if (func != NULL) 772 func(icmp); 773 } 774 } 775 } 776 777 static void 778 udp_ctlinput(struct icmp *icmp) 779 { 780 781 return (udp_common_ctlinput(icmp, &V_udbinfo)); 782 } 783 784 static void 785 udplite_ctlinput(struct icmp *icmp) 786 { 787 788 return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); 789 } 790 #endif /* INET */ 791 792 static int 793 udp_pcblist(SYSCTL_HANDLER_ARGS) 794 { 795 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 796 INPLOOKUP_RLOCKPCB); 797 struct xinpgen xig; 798 struct inpcb *inp; 799 int error; 800 801 if (req->newptr != 0) 802 return (EPERM); 803 804 if (req->oldptr == 0) { 805 int n; 806 807 n = V_udbinfo.ipi_count; 808 n += imax(n / 8, 10); 809 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 810 return (0); 811 } 812 813 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 814 return (error); 815 816 bzero(&xig, sizeof(xig)); 817 xig.xig_len = sizeof xig; 818 xig.xig_count = V_udbinfo.ipi_count; 819 xig.xig_gen = V_udbinfo.ipi_gencnt; 820 xig.xig_sogen = so_gencnt; 821 error = SYSCTL_OUT(req, &xig, sizeof xig); 822 if (error) 823 return (error); 824 825 while ((inp = inp_next(&inpi)) != NULL) { 826 if (inp->inp_gencnt <= xig.xig_gen && 827 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 828 struct xinpcb xi; 829 830 in_pcbtoxinpcb(inp, &xi); 831 error = SYSCTL_OUT(req, &xi, sizeof xi); 832 if (error) { 833 INP_RUNLOCK(inp); 834 break; 835 } 836 } 837 } 838 839 if (!error) { 840 /* 841 * Give the user an updated idea of our state. If the 842 * generation differs from what we told her before, she knows 843 * that something happened while we were processing this 844 * request, and it might be necessary to retry. 845 */ 846 xig.xig_gen = V_udbinfo.ipi_gencnt; 847 xig.xig_sogen = so_gencnt; 848 xig.xig_count = V_udbinfo.ipi_count; 849 error = SYSCTL_OUT(req, &xig, sizeof xig); 850 } 851 852 return (error); 853 } 854 855 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 856 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 857 udp_pcblist, "S,xinpcb", 858 "List of active UDP sockets"); 859 860 #ifdef INET 861 static int 862 udp_getcred(SYSCTL_HANDLER_ARGS) 863 { 864 struct xucred xuc; 865 struct sockaddr_in addrs[2]; 866 struct epoch_tracker et; 867 struct inpcb *inp; 868 int error; 869 870 error = priv_check(req->td, PRIV_NETINET_GETCRED); 871 if (error) 872 return (error); 873 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 874 if (error) 875 return (error); 876 NET_EPOCH_ENTER(et); 877 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 878 addrs[0].sin_addr, addrs[0].sin_port, 879 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 880 NET_EPOCH_EXIT(et); 881 if (inp != NULL) { 882 INP_RLOCK_ASSERT(inp); 883 if (inp->inp_socket == NULL) 884 error = ENOENT; 885 if (error == 0) 886 error = cr_canseeinpcb(req->td->td_ucred, inp); 887 if (error == 0) 888 cru2x(inp->inp_cred, &xuc); 889 INP_RUNLOCK(inp); 890 } else 891 error = ENOENT; 892 if (error == 0) 893 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 894 return (error); 895 } 896 897 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 898 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 899 0, 0, udp_getcred, "S,xucred", 900 "Get the xucred of a UDP connection"); 901 #endif /* INET */ 902 903 int 904 udp_ctloutput(struct socket *so, struct sockopt *sopt) 905 { 906 struct inpcb *inp; 907 struct udpcb *up; 908 int isudplite, error, optval; 909 910 error = 0; 911 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 912 inp = sotoinpcb(so); 913 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 914 INP_WLOCK(inp); 915 if (sopt->sopt_level != so->so_proto->pr_protocol) { 916 #ifdef INET6 917 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 918 INP_WUNLOCK(inp); 919 error = ip6_ctloutput(so, sopt); 920 } 921 #endif 922 #if defined(INET) && defined(INET6) 923 else 924 #endif 925 #ifdef INET 926 { 927 INP_WUNLOCK(inp); 928 error = ip_ctloutput(so, sopt); 929 } 930 #endif 931 return (error); 932 } 933 934 switch (sopt->sopt_dir) { 935 case SOPT_SET: 936 switch (sopt->sopt_name) { 937 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 938 #ifdef INET 939 case UDP_ENCAP: 940 if (!IPSEC_ENABLED(ipv4)) { 941 INP_WUNLOCK(inp); 942 return (ENOPROTOOPT); 943 } 944 error = UDPENCAP_PCBCTL(inp, sopt); 945 break; 946 #endif /* INET */ 947 #endif /* IPSEC */ 948 case UDPLITE_SEND_CSCOV: 949 case UDPLITE_RECV_CSCOV: 950 if (!isudplite) { 951 INP_WUNLOCK(inp); 952 error = ENOPROTOOPT; 953 break; 954 } 955 INP_WUNLOCK(inp); 956 error = sooptcopyin(sopt, &optval, sizeof(optval), 957 sizeof(optval)); 958 if (error != 0) 959 break; 960 inp = sotoinpcb(so); 961 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 962 INP_WLOCK(inp); 963 up = intoudpcb(inp); 964 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 965 if ((optval != 0 && optval < 8) || (optval > 65535)) { 966 INP_WUNLOCK(inp); 967 error = EINVAL; 968 break; 969 } 970 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 971 up->u_txcslen = optval; 972 else 973 up->u_rxcslen = optval; 974 INP_WUNLOCK(inp); 975 break; 976 default: 977 INP_WUNLOCK(inp); 978 error = ENOPROTOOPT; 979 break; 980 } 981 break; 982 case SOPT_GET: 983 switch (sopt->sopt_name) { 984 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 985 #ifdef INET 986 case UDP_ENCAP: 987 if (!IPSEC_ENABLED(ipv4)) { 988 INP_WUNLOCK(inp); 989 return (ENOPROTOOPT); 990 } 991 error = UDPENCAP_PCBCTL(inp, sopt); 992 break; 993 #endif /* INET */ 994 #endif /* IPSEC */ 995 case UDPLITE_SEND_CSCOV: 996 case UDPLITE_RECV_CSCOV: 997 if (!isudplite) { 998 INP_WUNLOCK(inp); 999 error = ENOPROTOOPT; 1000 break; 1001 } 1002 up = intoudpcb(inp); 1003 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1004 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1005 optval = up->u_txcslen; 1006 else 1007 optval = up->u_rxcslen; 1008 INP_WUNLOCK(inp); 1009 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1010 break; 1011 default: 1012 INP_WUNLOCK(inp); 1013 error = ENOPROTOOPT; 1014 break; 1015 } 1016 break; 1017 } 1018 return (error); 1019 } 1020 1021 #ifdef INET 1022 #ifdef INET6 1023 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1024 static int 1025 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1026 struct inpcb *inp, int flags) 1027 { 1028 struct ifnet *ifp; 1029 struct in6_pktinfo *pktinfo; 1030 struct in_addr ia; 1031 1032 if ((flags & PRUS_IPV6) == 0) 1033 return (0); 1034 1035 if (cm->cmsg_level != IPPROTO_IPV6) 1036 return (0); 1037 1038 if (cm->cmsg_type != IPV6_2292PKTINFO && 1039 cm->cmsg_type != IPV6_PKTINFO) 1040 return (0); 1041 1042 if (cm->cmsg_len != 1043 CMSG_LEN(sizeof(struct in6_pktinfo))) 1044 return (EINVAL); 1045 1046 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1047 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1048 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1049 return (EINVAL); 1050 1051 /* Validate the interface index if specified. */ 1052 if (pktinfo->ipi6_ifindex) { 1053 struct epoch_tracker et; 1054 1055 NET_EPOCH_ENTER(et); 1056 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1057 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 1058 if (ifp == NULL) 1059 return (ENXIO); 1060 } else 1061 ifp = NULL; 1062 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1063 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1064 if (in_ifhasaddr(ifp, ia) == 0) 1065 return (EADDRNOTAVAIL); 1066 } 1067 1068 bzero(src, sizeof(*src)); 1069 src->sin_family = AF_INET; 1070 src->sin_len = sizeof(*src); 1071 src->sin_port = inp->inp_lport; 1072 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1073 1074 return (0); 1075 } 1076 #endif 1077 1078 static int 1079 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1080 struct mbuf *control, struct thread *td, int flags) 1081 { 1082 struct udpiphdr *ui; 1083 int len = m->m_pkthdr.len; 1084 struct in_addr faddr, laddr; 1085 struct cmsghdr *cm; 1086 struct inpcbinfo *pcbinfo; 1087 struct sockaddr_in *sin, src; 1088 struct epoch_tracker et; 1089 int cscov_partial = 0; 1090 int error = 0; 1091 int ipflags = 0; 1092 u_short fport, lport; 1093 u_char tos; 1094 uint8_t pr; 1095 uint16_t cscov = 0; 1096 uint32_t flowid = 0; 1097 uint8_t flowtype = M_HASHTYPE_NONE; 1098 1099 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1100 if (control) 1101 m_freem(control); 1102 m_freem(m); 1103 return (EMSGSIZE); 1104 } 1105 1106 src.sin_family = 0; 1107 sin = (struct sockaddr_in *)addr; 1108 1109 /* 1110 * udp_output() may need to temporarily bind or connect the current 1111 * inpcb. As such, we don't know up front whether we will need the 1112 * pcbinfo lock or not. Do any work to decide what is needed up 1113 * front before acquiring any locks. 1114 * 1115 * We will need network epoch in either case, to safely lookup into 1116 * pcb hash. 1117 */ 1118 if (sin == NULL || 1119 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) 1120 INP_WLOCK(inp); 1121 else 1122 INP_RLOCK(inp); 1123 NET_EPOCH_ENTER(et); 1124 tos = inp->inp_ip_tos; 1125 if (control != NULL) { 1126 /* 1127 * XXX: Currently, we assume all the optional information is 1128 * stored in a single mbuf. 1129 */ 1130 if (control->m_next) { 1131 m_freem(control); 1132 error = EINVAL; 1133 goto release; 1134 } 1135 for (; control->m_len > 0; 1136 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1137 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1138 cm = mtod(control, struct cmsghdr *); 1139 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1140 || cm->cmsg_len > control->m_len) { 1141 error = EINVAL; 1142 break; 1143 } 1144 #ifdef INET6 1145 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1146 if (error != 0) 1147 break; 1148 #endif 1149 if (cm->cmsg_level != IPPROTO_IP) 1150 continue; 1151 1152 switch (cm->cmsg_type) { 1153 case IP_SENDSRCADDR: 1154 if (cm->cmsg_len != 1155 CMSG_LEN(sizeof(struct in_addr))) { 1156 error = EINVAL; 1157 break; 1158 } 1159 bzero(&src, sizeof(src)); 1160 src.sin_family = AF_INET; 1161 src.sin_len = sizeof(src); 1162 src.sin_port = inp->inp_lport; 1163 src.sin_addr = 1164 *(struct in_addr *)CMSG_DATA(cm); 1165 break; 1166 1167 case IP_TOS: 1168 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1169 error = EINVAL; 1170 break; 1171 } 1172 tos = *(u_char *)CMSG_DATA(cm); 1173 break; 1174 1175 case IP_FLOWID: 1176 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1177 error = EINVAL; 1178 break; 1179 } 1180 flowid = *(uint32_t *) CMSG_DATA(cm); 1181 break; 1182 1183 case IP_FLOWTYPE: 1184 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1185 error = EINVAL; 1186 break; 1187 } 1188 flowtype = *(uint32_t *) CMSG_DATA(cm); 1189 break; 1190 1191 #ifdef RSS 1192 case IP_RSSBUCKETID: 1193 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1194 error = EINVAL; 1195 break; 1196 } 1197 /* This is just a placeholder for now */ 1198 break; 1199 #endif /* RSS */ 1200 default: 1201 error = ENOPROTOOPT; 1202 break; 1203 } 1204 if (error) 1205 break; 1206 } 1207 m_freem(control); 1208 control = NULL; 1209 } 1210 if (error) 1211 goto release; 1212 1213 pr = inp->inp_socket->so_proto->pr_protocol; 1214 pcbinfo = udp_get_inpcbinfo(pr); 1215 1216 /* 1217 * If the IP_SENDSRCADDR control message was specified, override the 1218 * source address for this datagram. Its use is invalidated if the 1219 * address thus specified is incomplete or clobbers other inpcbs. 1220 */ 1221 laddr = inp->inp_laddr; 1222 lport = inp->inp_lport; 1223 if (src.sin_family == AF_INET) { 1224 if ((lport == 0) || 1225 (laddr.s_addr == INADDR_ANY && 1226 src.sin_addr.s_addr == INADDR_ANY)) { 1227 error = EINVAL; 1228 goto release; 1229 } 1230 INP_HASH_WLOCK(pcbinfo); 1231 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1232 &laddr.s_addr, &lport, td->td_ucred); 1233 INP_HASH_WUNLOCK(pcbinfo); 1234 if (error) 1235 goto release; 1236 } 1237 1238 /* 1239 * If a UDP socket has been connected, then a local address/port will 1240 * have been selected and bound. 1241 * 1242 * If a UDP socket has not been connected to, then an explicit 1243 * destination address must be used, in which case a local 1244 * address/port may not have been selected and bound. 1245 */ 1246 if (sin != NULL) { 1247 INP_LOCK_ASSERT(inp); 1248 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1249 error = EISCONN; 1250 goto release; 1251 } 1252 1253 /* 1254 * Jail may rewrite the destination address, so let it do 1255 * that before we use it. 1256 */ 1257 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1258 if (error) 1259 goto release; 1260 1261 /* 1262 * If a local address or port hasn't yet been selected, or if 1263 * the destination address needs to be rewritten due to using 1264 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1265 * to do the heavy lifting. Once a port is selected, we 1266 * commit the binding back to the socket; we also commit the 1267 * binding of the address if in jail. 1268 * 1269 * If we already have a valid binding and we're not 1270 * requesting a destination address rewrite, use a fast path. 1271 */ 1272 if (inp->inp_laddr.s_addr == INADDR_ANY || 1273 inp->inp_lport == 0 || 1274 sin->sin_addr.s_addr == INADDR_ANY || 1275 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1276 INP_HASH_WLOCK(pcbinfo); 1277 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1278 &lport, &faddr.s_addr, &fport, NULL, 1279 td->td_ucred); 1280 if (error) { 1281 INP_HASH_WUNLOCK(pcbinfo); 1282 goto release; 1283 } 1284 1285 /* 1286 * XXXRW: Why not commit the port if the address is 1287 * !INADDR_ANY? 1288 */ 1289 /* Commit the local port if newly assigned. */ 1290 if (inp->inp_laddr.s_addr == INADDR_ANY && 1291 inp->inp_lport == 0) { 1292 INP_WLOCK_ASSERT(inp); 1293 /* 1294 * Remember addr if jailed, to prevent 1295 * rebinding. 1296 */ 1297 if (prison_flag(td->td_ucred, PR_IP4)) 1298 inp->inp_laddr = laddr; 1299 inp->inp_lport = lport; 1300 error = in_pcbinshash(inp); 1301 INP_HASH_WUNLOCK(pcbinfo); 1302 if (error != 0) { 1303 inp->inp_lport = 0; 1304 error = EAGAIN; 1305 goto release; 1306 } 1307 inp->inp_flags |= INP_ANONPORT; 1308 } else 1309 INP_HASH_WUNLOCK(pcbinfo); 1310 } else { 1311 faddr = sin->sin_addr; 1312 fport = sin->sin_port; 1313 } 1314 } else { 1315 INP_LOCK_ASSERT(inp); 1316 faddr = inp->inp_faddr; 1317 fport = inp->inp_fport; 1318 if (faddr.s_addr == INADDR_ANY) { 1319 error = ENOTCONN; 1320 goto release; 1321 } 1322 } 1323 1324 /* 1325 * Calculate data length and get a mbuf for UDP, IP, and possible 1326 * link-layer headers. Immediate slide the data pointer back forward 1327 * since we won't use that space at this layer. 1328 */ 1329 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1330 if (m == NULL) { 1331 error = ENOBUFS; 1332 goto release; 1333 } 1334 m->m_data += max_linkhdr; 1335 m->m_len -= max_linkhdr; 1336 m->m_pkthdr.len -= max_linkhdr; 1337 1338 /* 1339 * Fill in mbuf with extended UDP header and addresses and length put 1340 * into network format. 1341 */ 1342 ui = mtod(m, struct udpiphdr *); 1343 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1344 ui->ui_v = IPVERSION << 4; 1345 ui->ui_pr = pr; 1346 ui->ui_src = laddr; 1347 ui->ui_dst = faddr; 1348 ui->ui_sport = lport; 1349 ui->ui_dport = fport; 1350 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1351 if (pr == IPPROTO_UDPLITE) { 1352 struct udpcb *up; 1353 uint16_t plen; 1354 1355 up = intoudpcb(inp); 1356 cscov = up->u_txcslen; 1357 plen = (u_short)len + sizeof(struct udphdr); 1358 if (cscov >= plen) 1359 cscov = 0; 1360 ui->ui_len = htons(plen); 1361 ui->ui_ulen = htons(cscov); 1362 /* 1363 * For UDP-Lite, checksum coverage length of zero means 1364 * the entire UDPLite packet is covered by the checksum. 1365 */ 1366 cscov_partial = (cscov == 0) ? 0 : 1; 1367 } 1368 1369 /* 1370 * Set the Don't Fragment bit in the IP header. 1371 */ 1372 if (inp->inp_flags & INP_DONTFRAG) { 1373 struct ip *ip; 1374 1375 ip = (struct ip *)&ui->ui_i; 1376 ip->ip_off |= htons(IP_DF); 1377 } 1378 1379 if (inp->inp_socket->so_options & SO_DONTROUTE) 1380 ipflags |= IP_ROUTETOIF; 1381 if (inp->inp_socket->so_options & SO_BROADCAST) 1382 ipflags |= IP_ALLOWBROADCAST; 1383 if (inp->inp_flags & INP_ONESBCAST) 1384 ipflags |= IP_SENDONES; 1385 1386 #ifdef MAC 1387 mac_inpcb_create_mbuf(inp, m); 1388 #endif 1389 1390 /* 1391 * Set up checksum and output datagram. 1392 */ 1393 ui->ui_sum = 0; 1394 if (pr == IPPROTO_UDPLITE) { 1395 if (inp->inp_flags & INP_ONESBCAST) 1396 faddr.s_addr = INADDR_BROADCAST; 1397 if (cscov_partial) { 1398 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1399 ui->ui_sum = 0xffff; 1400 } else { 1401 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1402 ui->ui_sum = 0xffff; 1403 } 1404 } else if (V_udp_cksum) { 1405 if (inp->inp_flags & INP_ONESBCAST) 1406 faddr.s_addr = INADDR_BROADCAST; 1407 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1408 htons((u_short)len + sizeof(struct udphdr) + pr)); 1409 m->m_pkthdr.csum_flags = CSUM_UDP; 1410 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1411 } 1412 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1413 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1414 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1415 UDPSTAT_INC(udps_opackets); 1416 1417 /* 1418 * Setup flowid / RSS information for outbound socket. 1419 * 1420 * Once the UDP code decides to set a flowid some other way, 1421 * this allows the flowid to be overridden by userland. 1422 */ 1423 if (flowtype != M_HASHTYPE_NONE) { 1424 m->m_pkthdr.flowid = flowid; 1425 M_HASHTYPE_SET(m, flowtype); 1426 } 1427 #if defined(ROUTE_MPATH) || defined(RSS) 1428 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1429 uint32_t hash_val, hash_type; 1430 1431 hash_val = fib4_calc_packet_hash(laddr, faddr, 1432 lport, fport, pr, &hash_type); 1433 m->m_pkthdr.flowid = hash_val; 1434 M_HASHTYPE_SET(m, hash_type); 1435 } 1436 1437 /* 1438 * Don't override with the inp cached flowid value. 1439 * 1440 * Depending upon the kind of send being done, the inp 1441 * flowid/flowtype values may actually not be appropriate 1442 * for this particular socket send. 1443 * 1444 * We should either leave the flowid at zero (which is what is 1445 * currently done) or set it to some software generated 1446 * hash value based on the packet contents. 1447 */ 1448 ipflags |= IP_NODEFAULTFLOWID; 1449 #endif /* RSS */ 1450 1451 if (pr == IPPROTO_UDPLITE) 1452 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1453 else 1454 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1455 error = ip_output(m, inp->inp_options, 1456 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1457 inp->inp_moptions, inp); 1458 INP_UNLOCK(inp); 1459 NET_EPOCH_EXIT(et); 1460 return (error); 1461 1462 release: 1463 INP_UNLOCK(inp); 1464 NET_EPOCH_EXIT(et); 1465 m_freem(m); 1466 return (error); 1467 } 1468 1469 pr_abort_t udp_abort; /* shared with udp6_usrreq.c */ 1470 void 1471 udp_abort(struct socket *so) 1472 { 1473 struct inpcb *inp; 1474 struct inpcbinfo *pcbinfo; 1475 1476 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1477 inp = sotoinpcb(so); 1478 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1479 INP_WLOCK(inp); 1480 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1481 INP_HASH_WLOCK(pcbinfo); 1482 in_pcbdisconnect(inp); 1483 inp->inp_laddr.s_addr = INADDR_ANY; 1484 INP_HASH_WUNLOCK(pcbinfo); 1485 soisdisconnected(so); 1486 } 1487 INP_WUNLOCK(inp); 1488 } 1489 1490 static int 1491 udp_attach(struct socket *so, int proto, struct thread *td) 1492 { 1493 static uint32_t udp_flowid; 1494 struct inpcb *inp; 1495 struct inpcbinfo *pcbinfo; 1496 int error; 1497 1498 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1499 inp = sotoinpcb(so); 1500 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1501 error = soreserve(so, udp_sendspace, udp_recvspace); 1502 if (error) 1503 return (error); 1504 error = in_pcballoc(so, pcbinfo); 1505 if (error) 1506 return (error); 1507 1508 inp = sotoinpcb(so); 1509 inp->inp_ip_ttl = V_ip_defttl; 1510 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1511 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1512 1513 error = udp_newudpcb(inp); 1514 if (error) { 1515 in_pcbdetach(inp); 1516 in_pcbfree(inp); 1517 return (error); 1518 } 1519 INP_WUNLOCK(inp); 1520 1521 return (0); 1522 } 1523 #endif /* INET */ 1524 1525 int 1526 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1527 { 1528 struct inpcb *inp; 1529 struct udpcb *up; 1530 1531 KASSERT(so->so_type == SOCK_DGRAM, 1532 ("udp_set_kernel_tunneling: !dgram")); 1533 inp = sotoinpcb(so); 1534 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1535 INP_WLOCK(inp); 1536 up = intoudpcb(inp); 1537 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1538 (up->u_icmp_func != NULL))) { 1539 INP_WUNLOCK(inp); 1540 return (EBUSY); 1541 } 1542 up->u_tun_func = f; 1543 up->u_icmp_func = i; 1544 up->u_tun_ctx = ctx; 1545 INP_WUNLOCK(inp); 1546 return (0); 1547 } 1548 1549 #ifdef INET 1550 static int 1551 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1552 { 1553 struct inpcb *inp; 1554 struct inpcbinfo *pcbinfo; 1555 struct sockaddr_in *sinp; 1556 int error; 1557 1558 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1559 inp = sotoinpcb(so); 1560 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1561 1562 sinp = (struct sockaddr_in *)nam; 1563 if (nam->sa_family != AF_INET) { 1564 /* 1565 * Preserve compatibility with old programs. 1566 */ 1567 if (nam->sa_family != AF_UNSPEC || 1568 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1569 sinp->sin_addr.s_addr != INADDR_ANY) 1570 return (EAFNOSUPPORT); 1571 nam->sa_family = AF_INET; 1572 } 1573 if (nam->sa_len != sizeof(struct sockaddr_in)) 1574 return (EINVAL); 1575 1576 INP_WLOCK(inp); 1577 INP_HASH_WLOCK(pcbinfo); 1578 error = in_pcbbind(inp, nam, td->td_ucred); 1579 INP_HASH_WUNLOCK(pcbinfo); 1580 INP_WUNLOCK(inp); 1581 return (error); 1582 } 1583 1584 static void 1585 udp_close(struct socket *so) 1586 { 1587 struct inpcb *inp; 1588 struct inpcbinfo *pcbinfo; 1589 1590 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1591 inp = sotoinpcb(so); 1592 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1593 INP_WLOCK(inp); 1594 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1595 INP_HASH_WLOCK(pcbinfo); 1596 in_pcbdisconnect(inp); 1597 inp->inp_laddr.s_addr = INADDR_ANY; 1598 INP_HASH_WUNLOCK(pcbinfo); 1599 soisdisconnected(so); 1600 } 1601 INP_WUNLOCK(inp); 1602 } 1603 1604 static int 1605 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1606 { 1607 struct epoch_tracker et; 1608 struct inpcb *inp; 1609 struct inpcbinfo *pcbinfo; 1610 struct sockaddr_in *sin; 1611 int error; 1612 1613 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1614 inp = sotoinpcb(so); 1615 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1616 1617 sin = (struct sockaddr_in *)nam; 1618 if (sin->sin_family != AF_INET) 1619 return (EAFNOSUPPORT); 1620 if (sin->sin_len != sizeof(*sin)) 1621 return (EINVAL); 1622 1623 INP_WLOCK(inp); 1624 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1625 INP_WUNLOCK(inp); 1626 return (EISCONN); 1627 } 1628 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1629 if (error != 0) { 1630 INP_WUNLOCK(inp); 1631 return (error); 1632 } 1633 NET_EPOCH_ENTER(et); 1634 INP_HASH_WLOCK(pcbinfo); 1635 error = in_pcbconnect(inp, nam, td->td_ucred, true); 1636 INP_HASH_WUNLOCK(pcbinfo); 1637 NET_EPOCH_EXIT(et); 1638 if (error == 0) 1639 soisconnected(so); 1640 INP_WUNLOCK(inp); 1641 return (error); 1642 } 1643 1644 static void 1645 udp_detach(struct socket *so) 1646 { 1647 struct inpcb *inp; 1648 struct udpcb *up; 1649 1650 inp = sotoinpcb(so); 1651 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1652 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1653 ("udp_detach: not disconnected")); 1654 INP_WLOCK(inp); 1655 up = intoudpcb(inp); 1656 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1657 inp->inp_ppcb = NULL; 1658 in_pcbdetach(inp); 1659 in_pcbfree(inp); 1660 udp_discardcb(up); 1661 } 1662 1663 pr_disconnect_t udp_disconnect; /* shared with udp6_usrreq.c */ 1664 int 1665 udp_disconnect(struct socket *so) 1666 { 1667 struct inpcb *inp; 1668 struct inpcbinfo *pcbinfo; 1669 1670 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1671 inp = sotoinpcb(so); 1672 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1673 INP_WLOCK(inp); 1674 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1675 INP_WUNLOCK(inp); 1676 return (ENOTCONN); 1677 } 1678 INP_HASH_WLOCK(pcbinfo); 1679 in_pcbdisconnect(inp); 1680 inp->inp_laddr.s_addr = INADDR_ANY; 1681 INP_HASH_WUNLOCK(pcbinfo); 1682 SOCK_LOCK(so); 1683 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1684 SOCK_UNLOCK(so); 1685 INP_WUNLOCK(inp); 1686 return (0); 1687 } 1688 1689 pr_send_t udp_send; /* shared with udp6_usrreq.c */ 1690 int 1691 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1692 struct mbuf *control, struct thread *td) 1693 { 1694 struct inpcb *inp; 1695 int error; 1696 1697 inp = sotoinpcb(so); 1698 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1699 1700 if (addr != NULL) { 1701 error = 0; 1702 if (addr->sa_family != AF_INET) 1703 error = EAFNOSUPPORT; 1704 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1705 error = EINVAL; 1706 if (__predict_false(error != 0)) { 1707 m_freem(control); 1708 m_freem(m); 1709 return (error); 1710 } 1711 } 1712 return (udp_output(inp, m, addr, control, td, flags)); 1713 } 1714 #endif /* INET */ 1715 1716 int 1717 udp_shutdown(struct socket *so) 1718 { 1719 struct inpcb *inp; 1720 1721 inp = sotoinpcb(so); 1722 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1723 INP_WLOCK(inp); 1724 socantsendmore(so); 1725 INP_WUNLOCK(inp); 1726 return (0); 1727 } 1728 1729 #ifdef INET 1730 #define UDP_PROTOSW \ 1731 .pr_type = SOCK_DGRAM, \ 1732 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ 1733 .pr_ctloutput = udp_ctloutput, \ 1734 .pr_abort = udp_abort, \ 1735 .pr_attach = udp_attach, \ 1736 .pr_bind = udp_bind, \ 1737 .pr_connect = udp_connect, \ 1738 .pr_control = in_control, \ 1739 .pr_detach = udp_detach, \ 1740 .pr_disconnect = udp_disconnect, \ 1741 .pr_peeraddr = in_getpeeraddr, \ 1742 .pr_send = udp_send, \ 1743 .pr_soreceive = soreceive_dgram, \ 1744 .pr_sosend = sosend_dgram, \ 1745 .pr_shutdown = udp_shutdown, \ 1746 .pr_sockaddr = in_getsockaddr, \ 1747 .pr_sosetlabel = in_pcbsosetlabel, \ 1748 .pr_close = udp_close 1749 1750 struct protosw udp_protosw = { 1751 .pr_protocol = IPPROTO_UDP, 1752 UDP_PROTOSW 1753 }; 1754 1755 struct protosw udplite_protosw = { 1756 .pr_protocol = IPPROTO_UDPLITE, 1757 UDP_PROTOSW 1758 }; 1759 1760 static void 1761 udp_init(void *arg __unused) 1762 { 1763 1764 IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); 1765 IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); 1766 } 1767 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 1768 #endif /* INET */ 1769